地球物理勘探在活断层探测中的应用
地球物理方法对城市活断层的探测与研究

地球物理方法对城市活断层的探测与研究城市活断层是指活动性比较高的断层,它们经常会对城市地区的建筑物和人们的生活带来威胁。
因此,对城市活断层的探测和研究具有重要的现实意义。
地球物理方法是对城市活断层进行探测和研究的一种有效手段,本文将结合相关文献介绍地球物理方法对城市活断层的探测与研究。
地球物理方法包括地震勘探、电法勘探、磁法勘探、地热勘探等多种方法,在城市活断层的探测中,常用的地球物理方法主要包括:地震勘探和电法勘探。
地震勘探是一种基于地震波传播的测量方法,适用于非均质地层中构造和物性界面的探测。
在城市活断层的探测中,地震勘探主要应用于地层结构和构造研究,以及活断层的位置定位、滑动带等活动特征的探测。
地震勘探通过反射波、折射波、震源波和表面波等多种波形信息特征,探测出地下介质的物理特征,很好地满足了城市活断层探测的需求。
电法勘探是利用自然电场或外部电源产生的电场在地下介质内传播的方法,通过地下介质电阻率的变化来推断地下介质结构和物性参数的一种勘探方法。
在城市活断层的探测中,电法勘探主要应用于反映地下断层的电性异常特征以及断层变形和滑动带的探测。
电法勘探可以发现断层的走向和形态、确定断层的岩石类型、发现断层附近的地下水资源等信息,为城市活断层的探测和研究提供了有效的数据支持。
除了上述两种主要地球物理方法,磁法勘探和地热勘探也可以应用于城市活断层的探测和研究。
磁法勘探是指测量地下磁场的变化,反映地下岩石的磁性和结构特征的一种地球物理方法。
磁法勘探可以检测出城市活断层周围的地下矿体和磁性异常带等特征,为城市活断层的探测和研究提供了辅助信息。
地热勘探是指利用地下热流场和地下水流场等热学性质的变化来勘探地下介质的结构和物性的方法。
虽然在城市活断层的探测中,地热勘探的应用相对较少,但仍然可以通过检测地下热场变化等特征来辅助探测城市活断层。
综上所述,地球物理方法是探测城市活断层的一种有效手段,其中地震勘探和电法勘探是应用较为广泛的方法。
地球物理方法对城市活断层的探测与研究

城市活断层是指位于城市周边,对城市社会经济和生态环境稳定构成威胁的断层。活动中的断层会导致地震,给城市带来极大的破坏和人员伤亡。因此,对城市活断层进行探测和研究具有重要意义。
地球物理方法是城市活断层探测和研究中常用的一种方法。它主要依靠地球物理场的探测,对地下物质性质、构造及其运动状态进行解释,从而推断活动地质构造。以下是地球物理方法在城市活断层探测和研究中的应用。
2、动特性,探测地下物质性质和构造的一种方法。在城市活断层研究中,常常使用电阻率法和自然电场法。电阻率法利用电流在地下不同材料中传输的差异而推断地下物质的性质。自然电场法则是在地表观测自然电场强度及其变化,推断地下物质构造。这些方法可以识别地下潜在的活动构造,进一步确定断层的位置和深度。
1、地震地质方法
地震地质方法是利用地震波在地下传播的速度、衰减、反射、折射和干涉等现象,判断地下构造及地层状态的一种方法。在城市活断层研究中,可以利用地震地质方法进行地震波速度及其变化的测量,推断活动构造带的深度和位置。地震勘探可以使用爆炸法、震源勘探法和地震反射法,其中地震反射法主要用于城市活断层的细部构造研究。通过分析地震波的反射能量的强度、畸变、持续时间等特征,可以判断构造层的情况。
地球物理方法具有操作简单、经济高效、无损探测等优点,因此在城市活断层探测和研究中得到了广泛应用。但是地球物理方法也有一定的局限性,如解释结果受到观测数据的影响、地球物理场参数的精度、不同孔径解释结果的差异等。因此,在实际应用时需要综合使用多种方法进行验证,以确保结果的可靠性,并为城市活断层防灾减灾提供科学依据。
地球物理勘探在活断层探测中的应用分析

地球物理勘探在活断层探测中的应用分析
姚祥福
【期刊名称】《有色金属文摘》
【年(卷),期】2017(032)001
【摘要】活断层也就是活动断层,该断层是引发地震的主要原因,对人们的生命和财产安全造成了一定威胁.随着人口逐步密集,一旦出现地震,影响严重.我国较多大城市位于地震带,贵州地区地形多样,一旦出现地震对整个省市为危害较大,因此需要对活断层位置进行勘察,及时发现运动中存在的问题,减少地震造成的危害.本文主要针对地球物勘探在活断层中的实践进行分析.
【总页数】2页(P5-6)
【作者】姚祥福
【作者单位】贵州省有色金属和核工业地质勘查局物化探总队,贵州都匀558000【正文语种】中文
【中图分类】P631
【相关文献】
1.地球物理勘探在活断层探测中的应用 [J], 姚琳
2.综合地球物理方法在城市活断层探测中的应用综述——以哈尔滨城市活断层探测项目为例 [J], 余中元;杨金山;韦庆海;欧阳兆国;张立忱;王立梅
3.地球物理方法在城市活断层探测中的应用研究——以哈尔滨城市活断层探测项目为例 [J], 余中元;杨金山;刘双;康健;李天翔;赵斌
4.地球物理勘探在活断层探测中的应用分析 [J], 姚祥福;
5.综合地球物理勘探在青川县城区活动断层探测中的应用 [J], 李大虎;何强;邵昌盛;石金虎;刘保金;顾勤平
因版权原因,仅展示原文概要,查看原文内容请购买。
地球物理方法对城市活断层的探测与研究

地球物理方法对城市活断层的探测与研究
地球物理方法是对城市活断层进行探测与研究的重要手段。
城市活断层指的是位于城
市范围内或临近城市的断裂带,它对城市的地质灾害风险和建设规划具有重要影响。
地球
物理方法可以通过勘探地下物质的性质和分布,揭示活断层的存在、活动情况和性质,为
城市规划、工程设计和灾害防治提供科学依据。
地球物理方法主要包括地震监测、地电、磁法探测、重力测量和地球雷达等。
地震监
测是判断活断层存在和活动情况的重要手段。
通过监测地震活动的分布、能量释放和运动
方式,可以判断活断层的位置、长度、断距和滑动速率等基本特征。
地震监测还可以确定
地震动参数,为城市地震灾害风险评估和工程防护提供依据。
地电法和磁法是探测地下构造和物质性质的常用地球物理方法。
地电法是利用地下电
阻率差异来推断地下构造的方法,可探测到活断层的存在和变形情况。
磁法则是通过测量
地磁场的变化来推测地下构造的磁性差异,可以判断活断层的位置和断裂特征。
地球雷达是近年来发展起来的一种地球物理探测方法。
它可以通过记录雷达波反射回
传的时间和强度,来推测地下结构的分布和性质。
地球雷达能够直接揭示地下构造的变化,能有效地探测到活断层的存在和活动情况。
地球物理方法在城市活断层探测中的应用综述

地球物理方法在城市活断层探测中的应用综述1引言据统计, 上世纪死于地震的人数为160 万人以上, 而后50 年地震造成的经济损失约2000 亿美元.本世纪以来, 发生在我国的两次强地震对我国的国民经济造成了极大的损失.频频发生的地震等自然灾害, 向人类提出了如何防震抗灾的重要问题.世界范围内大量的震例考察表明,历史上或现今地表破裂型地震主要沿先存活动断层发生.可见,为了评价一个城市及其周边地区的地震危险性,查明活动断层的位置、性质、深浅构造关系、深部构造环境是非常重要的基础性工作.近几年来,在我国开展的城市活断层探测与地震危险性评价过程中,由于所探测的城市,一般均被第四系地层覆盖,探测的目标断层绝大多数为隐伏断层,因此地球物理探测成为活断层探测中必不可少的重要手段.由于我国进行城市活断层探测的二十个重点城市遍及全国,第四系覆盖层的厚度相差悬殊,地表地质条件复杂多变,加之城市建筑物密集,城市交通等干扰因素,决定了应用物探手段的高难度和复杂性,正是在这种复杂条件下,探测工作取得了好的结果.实践证明,它在进行断层空间定位及活动性评价和深部构造环境探测与研究中发挥了极其重要的作用.并且随着探测的进展,也积累了其在城市活断层探测中的经验与教训,促进了地球物理探测学科的发展.近十年来, 地球物理工作者对城市活断层的研究做了许多实验工作. 如在日本Suzuki K 等学者( 2000) 利用高密度电阻率法和可控源音频电磁法研究了北岛活断层的形态和产状; Chow J 等( 2001) 利用地质雷达研究活断层的上断点; Unsworth M 等( 1999) 利用井间层析成像技术( 因不受城市中强电磁干扰) , 目标体的分辨率垂直深度为0. 5m, 水平方向为1~ 2m, 探测深度可达800 m 对活断层进行高精度定位; Abbott R E 等( 2000) 利用长期的重力场测量资料, 通过重力反演对孕震体密度场变化、断层对地震与迁移的作用和流体对活断层的作用等进行深入研究; 吴子泉等( 2005) 在潍坊市利用地震和电法对活断层的空间位置精确定位; 马翔等( 1996) 认为: 不再活动的老构造断裂带天然放射性没有增强的反映, 而近期有活动的新构造断裂带天然放射性有明显的增强反映. 这些实验工作的不断深入进行, 有效地推动了活断层研究的开展.2 地震活断层探测的地球物理方法类型及主要特点目前在城市活断层空间定位及活动性评价中,采用的地球物理探测手段主要有:高精度重力测量(试验性)、多道直流电法勘探、探地雷达探测和浅层人工地震勘探等,其中浅层人工地震勘探包括反射波法勘探和折射波法勘探,反射波法勘探中包括纵波反射勘探和横波反射勘探.上述不同的勘探手段,据其原理有各自不同的物理条件,不同的探测设备、不同的探测方法、不同的特点与应用条件.开展城市活断层探测的主要特点是:第四系地层是探测的主要目的层,不仅要求查明有无断层存在,还要查明是否断至第四系内部及其层位即断层上端点的确切位置.一般来说, 城市开展活断层探测大体经历了区域探测与初步鉴定阶段、深部孕震构造探测、断层的详细探测与精确定位等3 个阶段, 每类地球物理方法按其工作特点和所要解决的问题的不同, 在活断层探测的不同阶段有不同的应用.2.1活断层区域探测与初步鉴定地震活断层区域地球物理探测, 一般采用浅层地震、浅层电磁、微重力测量等方法.美国NZ24 型仪器, 市区内各种强干扰以及地表介质的不均匀, 给地震波的激发、检波器安置和观测系统等环节均带来许多不利. 由于浅层地震要求较高的主频和较宽的频带, 试验对比了大锤、落锤和可控震源的效果和特性; 在对不同频率检波器对比观测中, 选出不同地面条件下适合的最佳检波器; 对不同道间距、不同偏移距和不同覆盖次数的试验中, 选出最为时宜的观测系统. 研究第四系覆盖层内物性差异和落差较小的活断层, 需提高地震资料的信噪比和分辨率. 采用的数据处理有: 复杂表层的速度估算、静校正问题、随机噪声衰减和去噪滤波等. 利用初至波有限差分走时层析成像, 进行初至走时反演, 在表层速度不均时, 实现复杂浅地表结构的高精度、高效率计算区域控制性.探测就其目的而言, 一是对已知断层的探测定位, 二是寻找未知的隐伏断层.对于前者, 首先应根据航卫片判译和区域地质调查结果, 在城区及外围地区布设若干条跨已知断层的控制性浅层地震和电磁探测剖面或微重力测量剖面.剖面长度以能控制住断层的规模而定, 探测深度不小于第四纪覆盖层厚度, 由于是控制性探测, 剖面间距一般控制在5~ 10km.对于寻找未知的隐伏断层, 应在不同方向, 布设相对长一些的控制性探测剖面, 以不至于漏掉断层为宜.对于浅层地震而言, 测点距可略大一些, 应依第四纪覆盖层厚度进行试验, 以能分辨出地层层位和断层位置来确定; 微重力测量剖面测量法多适用于探测已知活断层的大体部位, 布设剖面应通过主要构造单元和活断层带, 且应垂直于断层布设; 测网测量适用于确定断层在平面上的走向.重力测量点距应视待确定的断层规模而定.通过上述工作初步查明第四系中隐伏断层的位置、走向和平面分布, 获得断层在平面上分布的大体部位.2.2断层的详细探测与精确定位近地表地球物理探测有多种方法, 但在 1 个大城市采用哪种或哪些方法应根据主观条件( 如经费、技术装备、人员素质与工作经验等) 和客观条件( 如活断层埋藏深度、环境干扰因素、地下介质与地下水状况等) 合理选择, 应以达到探测目的为原则.地震活断层详细地球物理探测用到的几种主要方法有:(a) 近地表浅层人工地震探测方法: 城市活断层探测的主要方法, 城市由于干扰大、施工难度大, 一般采用抗干扰纵、横波反射探测, 抗干扰反射、折射联合勘探等;(b)地震层析成像探测: 利用在地表或井中记录到的地震波对地下介质的投影数据, 用计算机反演和重现地下介质结构的几何形态与物理参数( 如速度、吸收系数等) ,分为井间地震层析成像和非纵剖面地震层析成像;(c)高密度电法探测: 深度范围为几米至几百米, 有效范围一般几十米.该方法抗干扰能力强, 分辨率高, 适合于探测浅部几十米深度内地震断层的形态、关系和组合形式.实验表明, 在地下电流( 如地下电缆等) 干扰小的地方利用该方法往往具有一定的效果;(d)井间电磁层析成像探测: 适合于局部范围的详查, 需要结合钻孔来实现;(e)瞬变电磁( TEM) 方法:利用不接地或接地回线源向地下发送一次脉冲磁场, 在一次脉冲磁场的间歇期间, 利用线圈或接地电极观测二次涡流场进行流动观测, 具有一定的抗干扰能力, 分辨率和信噪比较高, 它在探测浅层细结构, 圈定1km 范围内的隐伏断层方面比较有效;(f)地质雷达探测: 适合0~ 30m深度范围内活断层的精确定位, 以及探测山前断层向沉积层内的延伸状况等.美国SIR22 型仪器, 采用分离式低频48 MHz 天线, 采样长度为1000 ns, 32 次叠加, 收发天线距1 m, 点距2 m, 天线长度4.8 m.城区中随机干扰多, 需采用多次叠加以获得高信噪比数据. 数据处理中采用增益恢复使经大地滤波的信号得到复原, 以增强深部信息; 带通滤波以滤掉信号中的低频震荡和高频噪声等成分; 频率- 波数滤波消除背景噪声干扰、地表点状反射体和装置引起的斜反射; 绕射偏移处理消除数据采集中引起的畸变; 反褶积滤波消除天线的多次发射, 提高垂向分辨能力. 一般情况, 反射波形均匀无杂乱反射, 而在断层处波形的同相轴被错断, 有明显位移. 对于不是断层的低阻含水体, 由于低速层使高频电磁波衰减较快形成低幅反射波, 其同相轴晚于围岩, 波形连续性差且杂乱.上述各种探测方法由于工作原理不同, 工作方式、对工作环境的要求和所解决的问题也不尽相同.前人经验告诉我们, 在地震活断层详细探测的初始阶段, 可开展浅层人工地震探测、电磁探测和高精度重力测量来确定地震活断层的具体部位.一般情况下, 非纵剖面地震层析成像常结合浅层人工地震探测同时进行.对于小范围的局部不清晰的地震活断层, 也可结合已有钻孔开展井间地震层析成像探测与电磁层析成像探测, 在重点隐伏地震活断层地段, 也可专门钻孔开展上述工作.在需要精确地确定0~ 30m 深度范围内的地震活断层的确切位置、断层走向及断层的尖灭部位时, 可应用地质雷达进行探测.2.3 深部构造探测地表活断层调查与浅层地震活断层探测只能获得地壳表层活断层的几何学参数, 是评价活断层地震危险性的重要基础.但是, 由于地震毕竟大多发生在地壳5~ 20km深度范围内, 已有的研究结果表明, 地壳浅层构造多受深部构造的控制, 它们之间存在着复杂的关系.因此, 要对 1 个大城市及其邻近地区未来的地震危险性做出科学的评价, 就必须对深部孕震构造及震源深部介质的物理力学性质、动力学环境有所了解, 以便综合深、浅构造总体特征做出科学的评价( 王椿镛等, 1993; 徐锡伟等, 2002) .为此, 在城市及其邻近地区具有发生强震危险性的大城市, 有必要开展深部孕震构造探测.一般采用方法有:(a) 深地震反射探测: 为城市及其附近地区提供1 种高分辨率的由浅层到地壳深部的探测地震活断层分布的方法.若大城市已存在规模较大、埋藏较深的地震活断层, 则在城区外围横跨断层走向, 布设1- 2 条, 每条长度至少在40km 以上的探测剖面, 开展深地震反射探测.通过深地震反射探测, 测出地表下3km 到莫霍界面范围内地壳的精细结构、地震活动断层向深部的延伸状况, 揭示出深、浅构造间的复杂关系;(b) 地震宽角反射/ 折射探测: 通过地震波传播过程中的运动学和动力学特性, 获得城市下方及其邻近地区从地壳上部至地壳底界面深度范围内孕震断层的深部构造背景, 地壳结构特性、不同深度断裂构造的几何特征( 断距、规模及空间展布) 等.同时它还能够揭示深、浅活动断层间的关系, 为浅部活动断层的响应提供依据.通常采用剖面探测法和三维地震层析成像探测方法;(c)宽频带地震台阵观测( 刘启元, 1994) : 在于记录城市地震危险区内的地方震、邻近区域的地震和远震, 获得大城市及邻近地区地壳、上地幔的地震构造和速度结构, 提供活断层所在地区的地质构造背景;(d)大地电磁探测(MT 法) : 通过地壳-上地幔范围内的电导率在纵、横向上的分布规律, 圈定构造块体边界, 断层的展布、延伸以及壳幔高导层的分布状况, 从而揭示活断层的展布、性质、深浅构造关系以及活断层所处的深部构造背景等.现在MT 方法已经很少使用单点观测, 而是使用远参考阵列方式, 以提高抗干扰能力;(e)高密度电法测量: 高密度电法装置具有一次布极、多种装置按程序化模式自动测量、数据采集与资料处理自动化和综合信息丰富的特点. 软件绘制的断面图、用角域点源纯地形电位相对异常进行地改, 数据平滑处理和畸变点剔除等, 使电阻率反演断面图更接近/ 真0断面. 实践证明, 温纳( A) 装置观测的异常与目的体有较好的对应关系,且抗干扰强探测深度较大; 偶极( B) 装置分辨能力较强, 但抗干扰差些勘探深度相对较小; 微分( C) 装置异常幅值较小, 受地表影响大; 梯度装置对异常的细节反映较丰富; 三极装置异常会出现位移; 二极装置勘探深度大, 但异常对应不够稳定.3 城市活断层的空间定位3.1 合理的测线布置在城市活断层探测中,目标断层都是依据前人物探和地质资料的成果确定的,由于各个城市以往研究程度的差异,其可靠程度有高有低,有的城市在工作前收集和整理了大量的石油人工地震资料,确定了待查明的目标断层,如郑州、天津等城市,但大多城市不具备这种条件,因此在初勘阶段,首先在目标区内应至少布置1-2条较长的穿过所有目标断层的控制性地球物理探测剖面,最好是浅层人工地震勘探剖面,探测深度至少应达到第四系底界,其主要目的是证实和检查所确定的目标断层的可靠性,为初勘布线提供依据.然后布置垂直目标断层,其长度能有效控制目标断层的控制性探测剖面,相邻测线最大间距不大于六公里,若初步发现目标断层具有活动性,则在初勘基础上,加密布线,最大测线距不大于二公里,以满足查明目标断层准确空间位置和活动性的要求.3.2地球物理探测手段的综合应用目前在城市活断层空间定位及活动性评价中,采用的地球物理探测手段主要有:高精度重力测量(试验性)、多道直流电法勘探、探地雷达探测和浅层人工地震勘探等,其中浅层人工地震勘探包括反射波法勘探和折射波法勘探,反射波法勘探中包括纵波反射勘探和横波反射勘探.上述不同的勘探手段,据其原理有各自不同的物理条件,不同的探测设备、不同的探测方法、不同的特点与应用条件.重力测量,多道直流电法勘探,人工地震反射勘探和人工地震折射勘探的应用物理条件分别是地层间的密度、视电阻率、波阻抗和速度的差异,但人工地震折射勘探不能探测速度逆转层,即探测界面的下层速度必须大于上层速度,该方法比反射波法的分辨能力差.就探测的效率、成本、施工方法和探测精度相对而言,高精度重力测量效率最高,成本最低,受外界条件影响较小,施工灵活,适于在初勘阶段探查主要断裂的大致位置;浅层人工地震勘探效率较低,成本最高,施工方法较复杂、受外界条件影响较大,但其本身探测方法多,勘探深度范围大,分辨率和精度最高,在城市活断层探测中,无论在初勘阶段或详勘阶段,都是最主要的地球物理探测手段;探地雷达探测,勘探深度有限,通过试验,在某些城市如长春市在几米至十余米深度范围内,取得了较好的效果,它可以在覆盖层薄的地区,配合浅层人工地震勘探或多道直流电法勘探开展探测;在地震地质条件较复杂,浅层人工地震勘探受某些限制的地区,可用多道直流电法勘探作为辅助手段,配合人工地震勘探开展探测,因为该手段受地下水因素影响较大,所发现的异常或异常带,有时可能为地层中含水因素所造成,如古河道分布等.开展城市活断层探测的主要特点是:第四系地层是探测的主要目的层,不仅要求查明有无断层存在,还要查明是否断至第四系内部及其层位即断层上端点的确切位置.当前我国城市活断层探测所涉及的二十个主要城市,第四系复盖层厚度从几米变化至几百米,探测深度包括超浅层(几米至几十米)勘探地区,如南京、广州、长春、乌鲁木齐、西宁等城市;浅层(几十米直几百米)甚至中深层(几百米至几公里)勘探地区,如北京、天津、上海、西安、银川、呼和浩特等城市.在深入了解和仔细分析探测地区地质条件的基础上,根据不同地球物理探测手段特点和不同阶段的目标任务,合理选取不同的探测手段,实现不同地球物理探测手段的最佳组合,提高城市活断层探测的效果.3.2.1 纵波反射与横波反射联合勘探前已述及,地震勘探的分辨率(这里指的是纵向分辨)主要取决于地震波的波长,波长越大,分辨率越低,波长越小,则分辨率越高.速度与频率是决定波长的两个参数,而纵波的速度远大于横波的速度,其具体比值视不同地区的地质条件而不同,尽管横波的频率比纵波低,但与波速差异小的多,因此纵波波长远大于横波波长,所以横波的分辨率远高于纵波的分辨率.如某探测地区,根据钻井测速资料,在深度13-41m范围内,地层纵波波速为1500m/s,横波波速为470m/s,根据一般情况,设纵波主频为80HZ,横波主频为40HZ,则纵波波长为12m,横波波长为1.88m.通常认为人工地震勘探的分辨率为地震波长的1/4,则在这里,纵波的分辨能力为3.0m,而横波的分辨率能力则为0.47m,横波比纵波分辨率提高六倍以上.在南京、长春、杭州等城市的实践探测表明,在超浅层探测条件下,对于探测第四系内部的反射层和确定断层上端点的位置,判定是否为活动断层取得了好的效果(图1).但是横波反射勘探,由于激发能量的影响,探测深度有限,一般在深度大于50米以上,其效果明显降低,特别是在第四系底界面以下(它往往是一个强反射界面),很少能获取可靠的反射.而纵波反射勘探虽然在超浅层条件下,由于分辨率低的原因,很难获取十米以内的可靠反射层,但其对十几米埋深的基岩面及大于基岩面埋深的地层却有很好的效果,它对断层的空间定位、产状的确定和确定断点异常可靠性有重要价值.因此实现纵波反射和横波反射勘探的联合应用,在第四系复盖层较浅地区可作为城市活断层探测中的主要手段.图1纵波反射与横波反射时间剖面对比图(引自长春市活断层探测资料)3.2.2 地球物理探测与钻孔探测紧密结合前已述及,在地球物理资料解释中必须结合地质特别是钻孔资料,而最直接的是与钻孔探测紧密结合,一方面由于地球物理探测发现的异常有它的多解性,并不一定都是断层,尽管人工地震勘探手段在地球物理探测中精度最高,多解性较少,但解释为断层异常除了前述的从专业本身的特点判断外,最主要的是靠钻孔探测加以证实.另一方面,地球物理方法包括高分辨的浅层地震勘探和探地雷达探测,但都难以可靠解决从地表至几米乃至十米左右深度的地质构造问题,而研究活动构造,这一深度却是不可忽视的.第三是赋予地球物理探测成果如地震反射或折射层位以地质含义,进行地质解释,与地震探测剖面相重合的钻孔探测成果是最直接最佳的依据.第四,人工地震勘探中所需的最重要的解释参数—速度资料,可通过钻孔中的速度测井获得,用以校正和检验人工地震勘探资料直接求取的迭加速度值和作为时—深转换的速度,可提高解释精度.4 总结与讨论在不同的工作阶段, 采用的地球物理方法并不完全相同, 既使是在同一阶段用同一方法, 由于工作区的地质条件不同, 观测系统的布置也不相同( 方盛明、张先康等, 2002) .大城市活断层探测和危险性评价是一项复杂的系统工程, 仅从技术角度来讲, 各种地球物理方法的探测工作是其中的一部分, 是非常重要的基础性工作.但要想探测出大城市活断层并对其危险性做出科学评价, 则应综合地质、地球化学、地壳形变等其它学科方法的探测结果, 进一步做大量综合性的工作, 在此基础上, 对大城市发震活动断裂的地表和近地表未来一定时限内的累积错动量、同震位移量、断裂错动对地面设施毁坏的影响带宽度, 以及发震断裂产生的地震地表破裂带的特性等进行评估, 并针对它们提出在大城市经济建设活动中的灾害防治和工程对策方案, 达到最大限度减轻地震灾害的目的.近年来在全国开展的大城市活断层探测实践经验表明, 根据地球物理方法确定断层, 特别是埋深30m 以上的隐伏断层, 需要具备两个条件.一是在一定范围内横向结构的支持.隐伏断层必须在横向上较大的范围内存在.二三十米以上范围与人类活动最密切, 也最容易受到人类活动的影响, 容易造成局部的横向不连续界面.所以, 浅层勘探一般宜采用一定面积的密集探测, 很少依据少数几条测线来确定地下隐伏结构.二是在一定范围纵向结构的支持.隐伏断层在纵向上要有一定的延伸, 或具有发生浅部断层的深部环境; 探测深度必须大于目标深度的1. 5 倍.地球物理方法可研究断层形态, 帮助确定断层的上端点埋深等. 通过选用不同的物探方法综合探测是十分有效的. 与此同时, 城市环境的复杂性, 也给我们提出了一些需要继续研究的问题.( 1) 复杂的城市环境、各种强干扰对活断层异常的影响、如何进一步提高抗干扰能力和探测效果, 还需总结经验加深认识.( 2) 对发生在第四系地层中堆积物结构松散和弱胶结的某些活断层, 受力后变形轻微、构造形迹不明显和断层影响范围小, 如何较准确的判别断层还需研究.( 3) 城市活断层是一个相对动态变化过程, 在应用地球物理进行探测时, 要考虑不同方法的有效配合. 综合解释时, 需结合区域地震地质、水文地质和放射性等方面的资料进行深入研究.。
活断层探测中对地球物理勘探的应用

活断层探测中对地球物理勘探的应用在我国自然灾害在连年的发生,尤其是在近几年,地震、泥石流等灾害,危及着人们的生命安全和财产安全,发生这些灾害的原因归结于地下的活动断层。
我们对活断层进行探测,根据地球物理勘探在活断层中的应用进行分析。
我国地球物理勘探的发展物理勘探在地质学中是不可缺少的一种方法,进行地球物理勘探主要是运用一些仪器,进行物理现象的测量和接受信息,使用相应的物理方法获取相应的信息然后根据地质条件进行综合分析,对地质进行解释,认识地质的构造。
物理勘探研究的基础是对岩石、矿石的密度、磁性等物理特征,使用不同的物理勘探仪器,以及不用的勘探测量方式,对地球物理场的变化进行探测。
在目前对活断层进行探测的方法有:重力物理勘探、磁力物理勘探、地震物理勘探以及放射性勘探等,这些勘探方法中结合了很多学科的技术和理论知识,不仅有物理学、还有计算机、电子学等。
有的时候为了使对地质进行的研究更具有合理性和有效性,都会采用很多种物理方法进行勘探。
目前物理勘探仪器已经应用到各个领域中,比如说冶金、水电、建筑。
地球物理勘探在活断层探测中的应用对活断层进行探测主要是对活动断层的分布等进行详细的测量,准确的找出活动断层的所在的位置,并将其延伸空间进行确定,还可以对隐藏断层进行探测,进而帮助我们认识地质的活动特性,对在未来时间里可能出现的危险做出预先的评价。
活动断层的首次提出是李四光,其主要是指活动着的断层,在这10几万年来一直存在并活动着,在未来的时间里还会出现活动空间的断层。
这些活动断层的主要特征有以下几点。
1 断层穿过新沉积物。
比如说,在上世纪中土层为深红色的粘性土,慢慢的土层的颜色在发生的变化,有深红色向着棕红色、红色、黄色进行转变,在山西的火山群中活动断层将土层的颜色进行断开。
2 特殊地貌。
比如说在形势陡险的山脚下会出现一些沼泽、水洼;在断层带会经常的出现泉水涌出,断层地带的地表植物产生差异性。
3 地震。
在活动断层的附近会发生一些小地震,在活动断层附近生活的居民会经常感受到震感。
综合地球物理方法在城市活断层探测中的应用综述——以哈尔滨城市活断层探测项目为例

(. l g f e lgcl x lrt nadE gn eig X nj n nvri , u i80 4 ; 1Col e oo ia E poai n n i r , igi gU ies yUrmq, 3 0 6 e oG o e n a t 2 E r q a e d iirt no elnj n oic , ab , i nj n 5 0 0 . at uk m ns a o f i gi gP vne H ri He o gi g10 9 ) h A t i H o a r n l a
d fe e t e i d f c v u t x l r t n s c sr g o a u v y o rlmi ay i v s g t n d t i de p o a o i r n r s t ef l e p o a i , u h a e i n l r e r ei n r e t a i , e al x l r t n f p o o ai a o s p n i o e i o r c s o a i n a d t ei e t c t n o e s g n c sr c u e . es m et , h ic s i n p o e a e rp e i el c t , n n f ai fs imo e i tu t r s At a i o h d i i o h t me t e d s u so r v d t tt h h g o h sc lme o s h v r a i n fc n e i r a ci e f u t d t ci n t r u h t e e a l fa t e f u t e p y ia t d a e g e t sg i a c n u b n a t a l e e t h o g h x mp e o c v a l h i v o i d t c o r b n ct , s e i l ,n t e i r v me t f c u a y o tr r t t n a d r s l . e e t ni Ha i i e p c al i i n y y h mp o e n c r c f n e p e ai n u t o a i o e s Ke wo d : e p y i a t o ; r a e s s im ca t ef u t p o p c i g r s a c y r s g o h sc me h d u b n a a ; e s c i a l; r s e t ; e e r h l r i v n
地球物理方法对城市活断层的探测与研究

地球物理方法对城市活断层的探测与研究地球物理方法是利用地球物理学原理,通过观测地球的物理场参数变化,来探测地球内部结构和性质的方法。
地震地球物理、重力地球物理、电磁地球物理等方法在城市活断层的探测和研究中得到了广泛应用。
地震地球物理方法是通过观测地震波在地下传播的速度和路径,来推断地下结构的一种方法。
在城市活断层的探测中,地震地球物理方法常常通过地震勘探、地震震源观测等手段获取地下构造的信息。
利用地震波在地下传播时因地层变化而产生的折射、反射等现象,可以推断出地下岩层的性质、构造和分布。
通过对这些地下结构的研究,可以揭示城市活断层的位置、规模和活动性质,为城市的地震防灾准备和规划提供重要依据。
重力地球物理方法是利用地球的重力场参数来研究地下结构的一种方法。
在城市活断层的探测中,通过利用重力测量技术,可以获取地下不同密度区域的信息。
由于地震带来的构造变形通常伴随着地下密度的变化,因此重力地球物理方法可以用来识别城市活断层区域的密度变化情况,从而揭示活断层的位置和活动特征。
重力地球物理方法还可以配合其他地球物理方法进行联合观测,提高活断层探测的精度和可靠性。
地球物理方法在城市活断层的探测与研究中发挥着重要作用。
通过地震地球物理、重力地球物理、电磁地球物理等方法的应用,可以获取城市活断层的空间分布、构造特征和活动规律等信息,为城市的地震防灾工作提供科学依据。
随着地球物理方法技术的不断发展,相信在未来的城市活断层研究中,地球物理方法将会有更加广泛和深入的应用,为城市地震防灾工作提供更加有效的支持。
【一】参考文献:[1] 王志岗, 等. 地震地球物理方法在城市断裂活动性研究中的应用[J]. 地震研究, 2019, 42(01): 1-11.。
断层成像技术在地球物理勘探中的应用

断层成像技术在地球物理勘探中的应用地球物理勘探是一项在野外进行测量、研究矿产资源、地质构造及地下水等方面的科学研究工作。
断层成像技术是其中一种重要的勘探方法,是地球物理勘探的前沿技术之一。
在断层成像技术的辅助下,地球物理勘探可以更深入地了解地下结构,获得更准确的地质参数,为矿产资源的发掘提供更加可靠的依据。
本文将探讨断层成像技术在地球物理勘探中的应用及意义。
普及断层成像技术首先,我们来普及一下什么是断层成像技术。
断层成像技术是通过对地下介质的不同物理特性进行综合观测,研究地下结构构造的一种勘探方法。
其主要原理是利用介质的不同物理性质(比如密度、磁性、电性等)的反差,形成某些物理场,如重力场、电场、磁场等。
通过对这些物理场的观测和测量,就可以推断出深处构造的分布情况。
这些信息被整合分析后可进一步推断出地下各层的参数信息。
断层成像技术主要有重力测量、电磁法、地震勘探、地磁测量等多个类型。
应用场景那么,在地下勘探中,我们究竟在哪些场景下可以使用到断层成像技术呢?矿产勘探在矿产勘探中,断层成像技术作为常规勘探手段之一,可以通过地面、甚至空中的勘探技术,监测各类信号并形成数据。
在这些数据的帮助下,可以快速准确发现矿床、目标区域等,从而实现矿产勘探的快速高效。
工程勘察在工程勘察中,勘探者需要了解地下复杂的地质结构,包括岩土性质、断层、褶皱和岩性变化等因素的影响,从而在规划、设计和施工方面进行精细优化。
环境监测在环境监测中,勘探者需要了解不同土层和岩层的地下水含量、地下水流动素质、土壤中有害物质的分布等情况,以便在处理污染时更加准确的地了解有害物质的扩散情况和适宜处理方式。
战争情况在战争情况下,勘探技术作为科技侦察的一种手段,帮助地方政府和军队在发现安全隐患,特别是破坏性隐患时提前预防和发现。
优点及应用那层成像技术在各个应用场景中,究竟有哪些优点呢?首先,断层成像技术可以直接检测地下的物理场,而非依靠主观预测和推测。
地球物理勘探在活断层探测中的应用评价

地球物理勘探在活断层探测中的应用评价对活断层的探测需要从活动断裂的研究以及进展出发,以国内外的活动断裂研究发展史作为参考。
结合实际情况以及当前活动断裂研究的方法与趋势来看,地球物理勘探普遍被认为是城市活断层探测的一项较为重要方法之一。
以下,笔者重点介绍物探技术在活断层探测中的重要应用,并对探测中所需要用到的地球物理方法的类型和主要特点作了阐述。
以下笔者简要就这几方面进行简单介绍。
标签:地球物理勘探活断层探测应用评价0引言活动断裂历来是地球科学研究中一项极为重要的研究内容,也是科学研究的一个重要领域。
活动断裂与诸多因素有关,比如地震活动带的分布情况、中强地震的发生等等因素,由于活动断裂与地震的紧密关联性,因此通常会将活动断裂作为换份震区、震带以及潜在震源区的一个重要的依据和标准而且也是在中、短期地震预报危险区中有效对地震构造以及地震类型极加以确定的一个主要手段之一。
此外,活动断裂对于工程建设的安全也有着直接的影响,无论是断裂蠕动还是突发性错动,对于建筑物自身都会有着一定程度的破坏性,并有可能会导致产生诸多的次生灾害。
但是活动断裂是地质历史中最新活动的产物,一般情况下很少会经过后期改造,对其的研究结构将会被直接应用于构造地质学变形理论和分析之中。
因此,对于活动断裂的相关研究历来是国内外的研究热点。
1浅层地震勘探分析浅层地震高分辨地震勘测是城市活断层浅部勘测中最为有效的勘测方式之一,不仅可以有效的提供断层的具体位置、断层带看度以及地层变形时代等信息,而且也可以更好的了解构造活动历史,为更好的研究强震发生时的可能性等奠定基础。
城市范围内的浅层地震勘测,会受到诸多因素的干扰,在这些因素之中,机械振动和交通是其最为主要的干扰因素。
因此,必须采取可行性较高的有针对性措施,合理筛选最为合适的震源、科学的技术方案以及资料处理手段等等,最大程度的将干扰降至最低,有效提高信噪比。
此外,城市建筑以及地下设施可能会导致浅表介质的强烈不均匀性,对浅层地震勘探造成很大的干扰,这就需要在日常的工作中,加以高度的重視。
地球物理探测技术在地质勘探中的应用

地球物理探测技术在地质勘探中的应用地球物理探测技术是一种利用地球物理现象来探测地下岩石、矿藏及资源的技术。
近年来,随着技术的不断进步,地球物理探测技术已经成为地质勘探中不可缺少的工具之一。
本文将介绍地球物理探测技术在地质勘探中的应用,包括地电、重力、磁法和地震方法。
一、地电方法地电方法是将电流施加在地下,通过测量地下电场的变化来了解地下的岩层、矿体等物质的情况。
这种方法适用于岩矿体和水体的电阻率不同的情况下。
地电法主要用于金属、铜、铅锌等硫化矿体的勘探。
地电勘探的优势是实验成本低,适用范围广,且方便使用。
二、重力方法重力方法是将测量物体重量和重力引力之间的关系应用于地质探测中。
这种方法在地下物质分布的密度不同情况下有更好的应用效果。
在勘探中,通过控制测量仪器的位置关系和重力变化来推定地下物质的密度变化分布情况。
重力方法主要用于勘探铅锌矿、铜矿、金矿、钨矿等非铁矿的勘探。
重力方法是一种更为精确的物理勘探方法,被广泛应用于矿山工业勘探中。
三、磁法磁法探测是一种通过测量地磁场的变化来了解地下物质分布情况的技术。
通过地磁场的测量和分析来推导地下岩矿体、地下岩层和脆性岩的位置和厚度。
磁法方法适用于寻找含铁矿石、石墨、铜、铜锌、钨、锂以及稀土等矿物资源。
磁法技术主要适用于浅层物探和中深层物探,通常要配合其它方法使用,以达到最佳效果。
四、地震方法地震方法是一种利用地震波传播来了解地下结构的技术。
地震波的传播受岩石物理和结构的影响,通过测量震波传播的速度和波形,可以判断不同岩石和矿石体的地层分布、形状和厚度等。
地震勘探技术主要适用于勘探油气和煤炭等矿产资源。
这种方法为地质勘探增加了全新的监测手段,科学的定义了不同层次、不同类型油气藏、煤炭等矿物区的地质结构特征。
总之,地球物理探测技术是地质勘探中不可或缺的探测工具之一,可以通过合理的组合利用各种探测方法来完成地质勘探的任务,得到精确的勘探结果,减少冤枉钱的产生。
地球物理探测技术在勘探中的应用

地球物理探测技术在勘探中的应用地球物理探测技术是研究地球内部结构、物质组成和地球表层特征的一种方法。
它通过观测和分析地球的物理场以及相关的地球物理参数,来揭示地球内部和地表的物质分布、构造特征和自然规律。
地球物理探测技术广泛应用于地质勘探、矿产资源勘查、地下水资源调查和环境工程等领域。
本文将从不同的地球物理探测方法和应用领域来介绍地球物理探测技术在勘探中的应用。
一、重力探测技术重力探测技术是通过测量地球引力场的变化,研究地质构造和地下物质分布的一种方法。
在地质勘探中,重力探测技术可用于研究地壳构造、油气藏的分布和储量、矿床的勘探等。
通过对重力场数据的观测和分析,可以揭示地下物质分布的规律,指导勘探活动的展开,并提供勘探预测和评价的依据。
二、地磁探测技术地磁探测技术是通过测量地球磁场的强度和方向变化,研究地球内部结构和地壳活动的一种方法。
在矿产资源勘查中,地磁探测技术可用于寻找矿床的磁性异常、判断矿体的大小和形态、勘探矿产资源等。
地磁探测技术还能应用于地下水资源调查、石油勘探等领域。
通过对地磁场数据的测量和分析,可以获得地下岩石和地壳构造的信息,提供勘探预测和评价的参考。
三、电磁探测技术电磁探测技术是利用电磁场与地下物质的相互作用关系,研究地质构造和地下物质分布的一种方法。
电磁探测技术在矿产资源勘查中有着广泛的应用,可用于寻找金属矿床、油气藏、地下水资源等。
电磁探测技术还可用于地下管线检测、环境污染调查等领域。
通过对电磁场数据的测量和解释,可以获取地下物质的电性参数,为勘探活动提供重要的信息。
四、地震探测技术地震探测技术是通过利用地震波在地下传播的特点,研究地质构造、地震活动和地下物质分布的一种方法。
地震探测技术广泛应用于石油勘探、地下水资源调查、地震监测等领域。
通过对地震波数据的采集和分析,可以判断地下岩石的性质、岩层的分布和断层的情况,为勘探活动提供宝贵的信息。
五、综合应用在实际勘探中,不同的地球物理探测技术常常结合应用,以获得更加准确和全面的地质信息。
地球物理方法对城市活断层的探测与研究

地球物理方法对城市活断层的探测与研究近年来,城市化的高速发展使得城市活断层问题变得越来越紧迫。
针对这个问题,地球物理方法成为了寻找及研究城市活断层的重要手段。
地球物理方法探测城市活断层的技术体系主要包括地震勘探、综合地球物理勘探及浅层地球物理勘探等多个方向。
地震勘探是探测城市活断层的重要手段之一。
地震勘探的原理基于构造形变与弹性波传播之间的关系,它能够检测到不同形态和主要方向的活动断层,同时也能够记录震源到接收站的地震波传播特性。
一般而言,构造形变会导致地下岩石的弹性属性产生改变,因此地震波在不同介质下传播速度及其它物理(比如密度)特性也会有所不同。
因此,地震勘探技术是通过地震波在岩石内传播时,记录地震波的速度变化,并且分析波速与介质密度、共振频率之间的关系来推断断层发育的特性。
综合地球物理勘探是领域内另外一个研究城市活断层的关键技术。
在综合地球物理勘探中,不仅仅是地震勘探技术被使用。
使用了多个地球物理方法,例如重力测量、电法勘探、地磁勘探等。
通过这些方法,可以同时探查地下不同深度的物质特性,在探测活动断层时也可以用其中一项数据做比较。
浅层地球物理勘探在不同的地形地貌条件下的城市活断层探测着重在对短期内能够感知到的变化进行勘探。
这个方法对于地震勘探可能不够精细分辨不同介质的问题,并且也没有那么高灵敏度。
浅层地球物理勘探技术主要包括电法勘探、微地电阻率法等,与其他勘探技术相比它在定量探测和数据分析处理上相对容易。
总的来说,地球物理方法已经成为现代城市活断层探测及研究的重要手段。
各种勘探手段的结合运用,能够高效地发现并识别城市活动断层位置及活动状态,为城市规划和建设的决策提供了科学依据。
浅谈地球物理勘探在工程地质勘察中的应用

浅谈地球物理勘探在工程地质勘察中的应用摘要:因为中国地域广阔,地形复杂,很多工程都需要在比较恶劣的地质条件下进行施工,所以在施工之前,需要对施工现场进行地质调查。
目前,伴随着科学技术的飞速发展,物探技术以其高安全性和良好的勘探效果,成了许多勘探技术中的佼佼者,并被广泛运用于各种工程地质勘探工作中。
关键词:地球物理勘探;工程地质勘察;有效应用1 地质物探综合方法1.1 重力、磁法和放射性测量法重力、磁法和放射性测量法在工程地质勘察前期应用比较少,常作为辅助方法,重力、磁法主要用来验证地质构造变化、断层、采空区或某些类型的火成岩,而放射性测量法主要用于隧洞内评估岩体放射性辐射强度。
得益于导航定位技术,航空重力和航空磁法精度得到大幅提升,在丛林区或地形起伏很大的地区,这两种方法在工程建设中应用越来越广范。
特别是磁法,主要被用来圈定断裂带、破碎带,还用磁法作为地热普查的一种辅助手段,用来确定地热系统的区域地质构造、基底起伏和寻找隐伏岩体,还可计算与地热有直接关系的居里温度等深面,甚至在小范围内圈定热水蚀变带等。
1.2 GPS传感技术我国大部分铜矿区面积较大,地质勘查过程中存在一定困难。
如果无法对矿产资源做好科学的定位,不仅会造成探矿时间以及成本的浪费,对矿业的健康稳定发展造成负面的影响。
因此,在工作中,应着重借助先进的GPS传感技术,有效开展矿区调查工作,全方位采集矿区数据信息,为后续找矿工作顺利进行提供有利条件。
同时,需要对GPS传感技术进行应用,从而能够详细的了解勘查地点的三维坐标数据信息,让找矿工作更加的准确,与光谱分析技术进行相应的融合,合理开展找矿工作。
1.3 电法技术就电法技术的应用来看,应用历史比较久,在科技水平提升的同时,该项技术的应用日渐成熟,在地质勘察工作中的应用价值越来越突出。
就电法技术的实际应用来看,主要表现为两种形式,即高密电法和激化法。
就高密电法来讲,其应用原理是利用形式化的调查方法来达到地区地质勘察的目的,此种方法操作比较简单,比较适用于野外地质勘察工作。
地球物理勘探在活断层探测中的应用

为 活 动 性 特 征 。 如 高 分 辨 率 地 震 勘 探 方 法 非 常精 细地 勾 画近 地 表 地 层 分 布 , 在 有 地 层 年 代 控 制 的情 况 下 , 能 获得 断层 的 活 动 年 代 ;探 地 雷 达 作 为 一 种 高 分 辨 率 地 球 物 理 手段 , 与 反 射 地 震 法 的 原 理 类 似 , 也 具 有 研 究 断 层 活 动 性 的 能 力 。 还 有 ,如 活动 断 层 上 方 常 表 现 出放 射 性异 常 , 如 马 翔 (96 总 19 ) 结 的放 射性 方 法 探 测 活 断 层 的主 要 判 断依 据 有 : 核辐 射 异 常
分段 性 是 客 观 存 在 的 ,是 断 层 本 身 固有 的属 性 。 认 识 了这 种
活 动 断 层 是 诱 发 地 震 的 主 要 原 因 ,也 是 破 坏 城 市 建 筑 设 施 的 主 要 因素 。 随着 经 济 的 高 速 发 展 ,大 城 市 及 中 心 城 市 的 建 设 规 模 越 来 越 大 , 人 口密 集 程 度 在 迅 速 增 长 。在 这 种 形 势 下 ,如 何 使 人 们 居 住 的 环 境 更 加 安 全 , 已经 成 为 当 今 社 会 高 度 关 注 的 问题 。 而 城 市 的 地 震 和 地 质 体 的 活 动 成 为 重 要 的危 险 因素 之 一 。 地 震 和 地 质 体 活 动 的 直接 原 因 是 活 动 断 层 的作 用 。我 国 许 多 大 城 市 开 展 活 动 断层 的 探 测 与 地 震 危 险 性 的评 价 意义 重 大 。事 实 证 明 ,城 市 的建 设 物 或 城 市 结 构 物 , 能不 能有 效 地 避 开 活 动 断 层 ,也 决 定 着 这 个 城 市 或 建 筑 物 , 能 不 能 有 效 地 避 开 地 震 灾 害 。通 过 地 球 物 理 综 合 方 法 和 技 术 ,把 所 得 的 数 据 、参 数 进 行 系 统 地 分 析 ,从 而 得 到 活 动 断层 的 空 间 分 布 , 为活 动 断层 活 动 性 的 研究提供基础资料。 2 活 断 层 2 1 活 断 层 的定 义 . 活 动 断 层 , 这 一 术 语 在 上 世 纪 由
地球物理方法对城市活断层的探测与研究

地球物理方法对城市活断层的探测与研究一、地球物理方法概述地球物理方法是利用地球物理学原理,通过地震波、电磁波等在地下的传播特性,来对地下构造和地层性质进行研究和测量的方法。
常见的地球物理方法包括地震勘探、重力勘探、电磁勘探等。
这些方法通过对地下物质密度、速度、电阻率等特性的测量,能够精确描绘地下构造,为地质、地震等领域的研究提供重要数据。
二、城市活断层的特点城市活断层是指位于城市地区的活动断层,其特点包括:1. 穿越城市建筑区域,可能对城市建筑物和人员造成威胁;2. 活动频繁,可能导致地震等灾害事件;3. 隐蔽性强,常常难以被准确探测和研究。
城市活断层的研究具有一定的复杂性和难度。
三、地球物理方法在城市活断层探测中的应用1. 地震勘探地震勘探是通过地震波在地下的传播特性,来研究地下构造和地层性质的一种地球物理探测方法。
在城市活断层研究中,地震勘探可通过对地下地层的纵波和横波传播速度的测量,来判断活断层的位置、范围和活动状况。
通过分析地震波的反射、折射等特性,可以建立城市活断层的地质构造模型,为城市规划和防灾减灾提供重要依据。
2. 重力勘探3. 电磁勘探地球物理方法在城市活断层研究中具有重要的应用价值,但也存在一些局限性,如:1. 分辨率限制,地球物理方法对地下构造的分辨率不足,难以有效描绘活断层的细节特征;2. 高成本,地球物理方法需要使用专业仪器和设备,成本较高,限制了其在城市活断层研究中的广泛应用;3. 受地质条件影响,地球物理方法在城市地区受到地下建筑、管线等人为干扰,测量结果可靠性受到影响。
为了克服地球物理方法在城市活断层研究中的局限性,需要采取一系列措施来提高地球物理方法的应用效果和适用范围,主要包括:1. 差异化技术,通过创新地球物理方法和仪器设备,提高地下构造的分辨率和精度;2. 多元化数据,结合多种地球物理数据,进行综合解译和分析,提高对城市活断层的探测能力;3. 自动化处理,借助计算机技术和数据处理算法,提高地球物理数据的处理速度和效率。
地球物理方法对城市活断层的探测与研究

地球物理方法对城市活断层的探测与研究随着城市化进程的不断加快,城市面临着越来越多的地质灾害风险,其中活断层的存在给城市发展带来了很大的隐患。
活断层是地球表层地质构造的一种表现形式,是地壳中由构造运动引起的一种断裂构造,如果活断层穿越到城市地区,将会增加城市地质灾害的风险。
为了对城市活断层进行准确的探测与研究,地球物理方法成为了一种重要的手段。
地球物理方法利用地球物理学原理对地球内部的物理性质进行研究,通过对地球内部的物理性质进行探测,可以辅助工程师和地质学家找到活断层的位置和规模,从而对城市的规划和建设进行指导,减小地质灾害的风险。
本文将介绍几种地球物理方法在城市活断层探测与研究中的应用,以帮助我们更好地了解城市活断层及其对城市的影响。
地震地质勘探是一种常用的地球物理方法,它是利用地面振动波在地下介质中传播的规律来对地质构造和地质体进行探测的方法。
当遇到活动的构造断层时,地震波会发生反射、折射、透射等现象,通过对这些现象的分析,可以确定活动断层的位置、形态和规模。
地震地质勘探可以通过布设地震仪网、利用人工地震震源等方式进行,然后通过分析数据和成像技术来确定地下的地质构造。
这种方法可以有效地对城市中的活动断层进行探测,并为城市的规划和建设提供参考。
重磁测量是另一种常用的地球物理方法,它是利用地球的重力场和磁场来对地下构造进行探测的方法。
通过对地下构造的密度和磁性特征进行分析,可以确定地下结构的性质和地球物理参数。
活动的构造断层通常会伴随着特定的地下构造变化,这些变化会对地球的重力场和磁场产生影响。
通过对重磁数据的分析,可以确定活动断层的位置和形态,并且可以进一步推断出其规模和活动性。
重磁测量在城市活断层的探测与研究中具有很大的应用潜力,可以为城市地质灾害的防范和减灾提供更精准的数据支持。
上述地球物理方法的应用为城市活断层的探测与研究提供了重要的技术手段,同时也为城市地质灾害的防范和减灾提供了可靠的数据支持。
地球物理方法对城市活断层的探测与研究

地球物理方法对城市活断层的探测与研究【摘要】地球物理方法在城市活断层研究中发挥着重要作用。
地震监测、地质勘探、地面形变监测以及地震波传播特性研究等技术对城市活断层的探测和研究起到至关重要的作用。
通过这些方法,我们可以更好地了解城市地下构造,预测地震活动以及减少城市地震灾害的风险。
地球物理方法对城市活断层研究具有重要意义,未来地球物理方法的发展方向将更加注重高精度监测技术和多参数综合分析,以提高城市活断层研究的精度和有效性。
地球物理方法在城市活断层研究中的应用将不断拓展,为城市地震灾害防范和减灾提供更加有效的手段。
【关键词】地球物理方法、城市活断层、地震监测、地质勘探、地面形变监测、地震波传播、意义、发展方向1. 引言1.1 地震活动与城市灾害风险地震活动是地球内部能量释放的一种形式,是地球表面的一种自然现象。
城市是人类重要的生活与发展场所,然而城市中存在着活断层,这些活断层可能会引发地震活动,对城市造成灾害性影响。
地震活动与城市灾害风险密切相关,城市活断层的探测与研究对减少城市灾害风险具有重要意义。
在城市中,活动构造的存在可能导致地表的变形,地震波传播的研究可以帮助我们了解地下结构,地质勘探技术可以帮助我们探测活动构造的位置和特性。
地面形变监测技术可以帮助我们监测城市中地表的变形情况,提前预警可能的地震灾害。
地球物理方法在城市活断层研究中的应用是十分重要的,通过这些方法,我们可以更好地了解城市中的地质构造,预测可能发生的地震活动,从而有效降低城市灾害风险。
地球物理方法对城市活断层的探测与研究具有重要作用,可以帮助我们更好地了解城市中的地质构造,减少地震灾害带来的危害。
未来地球物理方法的发展方向应该是更加精确、快速的监测技术,以更好地应对可能发生的地震灾害,保护城市的安全。
1.2 地球物理方法的重要性地球物理方法在城市活断层的探测与研究中起着至关重要的作用。
地球物理方法能够提供关于地下构造的详细信息,帮助科学家们更加准确地理解城市地下活动构造的分布和特征。
深层地震勘探技术在活断层探测中的应用

比图。囹5为药量10、20、30、柏、50、1GOkg的单炮在有效波接收道时
窗(1800ms,4800ms)空间窗为(160道.220道)分析得到的井深与信噪 比对比图.
㈣tU…*e∞4%∞±“1
国
㈣
圈5药■与信嗓比关蒹圈 2.3图6为20s的单炮记录例子。从单炮记录可以看到.来自地壳内
不同深度的反射同相轴非常清楚。
SCIENCE&TECHNOLOGYINFORMATION
o科教前沿。
科技信息
条件的不同及激发条件的不同所引起的炮问或道间能量、频率及相位 的不一致性。 经过地表一致性加预测反裙积这样一种组合反褶积处理后.不仅 提高了资料的分辩率,拓宽了频带,而且压制掉部分线性干扰.提高了 同相轴的连续性..
分析和两轮剩余静校正. 3.6叠前时间偏移成像技术 常规的叠前偏移模块是建立在水平地表假设基础上的对于山区 资料来说.则会造成偏移成像不准或根本不能成像等问题。 基于以上原困,本次处理采用基于起伏地表地震数据资料的叠前 时间偏移技术(PSG—M1G),其偏移条件是建立在起伏地表基础上的. 通过对本区实际资料的检验,PSG_MIG能够做到更好地使绕射渡收 敛,同相轴更加聚焦,断层更清楚,断点干脆。
上的分布.然后再确定其频率分布特征.将其进行压镧。图7展示的是
各种干扰压制前和压制后的单炮剖面。 3.2静校正技术
本次地震数据处理过程中的主要问题之一是静校正问题。主要应
本次处理中首先采用大步长预测反摺积来晨宽低频频带.保护低 频频率。在此基础上.采用地表一致性反褶积技术来清除困地表地震
万方数据
2012年第3期
要活断层向深部的延伸情况、深战构造藕合关系,为城市建设抗震设计、土地规则利用和防变战竞规划制定提供科学琅据。通过谴项目形成一 套深地震层反射数据采集的方法和合适的深地震数据处理技术度深地震数据解释的有效办法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于断层的存在和断裂的活动,使断裂带岩石发生变 形,并使断层周围物质的性质发生变化,这些变化所产生的 地球物理性质差异而表现出的特征,称为形态特征。其中包 括反映断层空间分布,如走向、规模及倾向、倾角等地质特 征。如在断裂带重磁异常的平面走向与断裂走向的一致性特 征,电阻率异常的平面延长也常与断裂走向相符,电阻率剖 面的分布特征与断裂的剖面特征相吻合;浅层地震、探地雷 达等能较准确地反映断层的形态。沿断裂带地热异常,地热 数值偏高;沿断裂带重力异常,地电、地磁或各种气体数值 一般偏高,在不同地段差异显著。 3.2 活动断层的动态特征
断层活动在时间上、空间上的不均匀性反映为地震事件 的丛集性,反映为不同时间尺度的期、幕、段。断层活动的 分段性是客观存在的,是断层本身固有的属性。认识了这种 属性,对进行地震危险性评价及测报地震灾害是非常重要 的。然而,这一问题正是国际上最热门的公关研究。地震发 生在活动断层上,又在弹性介质中。因为,断层活动反映受 有应力,弹性介质才能储存大量弹性能。所以,构造地震是 构造应力与岩体强度矛盾斗争的结果,构造应力无时 不存 在。岩体的强度取决于岩体成因及其以后的变化,当岩体承 受的应力超过岩体破裂的极限强度时,岩体就会突然破坏, 释放能量,产生地震。但是,也有只产生蠕变而不发震或只 造成许多微震的,因蠕变会同时释放应力。所以,地震发生 在活动断层上,而活动断层不一定都发震。 3 活动断层的物探特征 3.1 活动断层的静态特征
活 动 断 层 , [1] 这 一 术 语 在 上 世 纪 由 A.C.Lawson(1908), H.Q.Wool(1916), B.Willis(1923)和 李四光等先后提出。1956年中国科学院第一次新构造运动 谈会上,提出用新断层和第四纪断层来描述,使新生代地 层或第四纪地层发生错断或有明显地貌显示的新断层。我 国不同的研究者给予活动断层以不同的年代含义,长到 200万年,短至10万年、5万年,有的1.1万年。当活动断 层研究与地震预报及工程抗震防震相联系时,尽量按短期 包含的年代范围。1973年美国原子能委员会提出了能动断 层,并对其规定:(1)在3.5万年内有过一次或多次活动 的断层;(2)它们和能动的断层有联系;(3)沿该断裂 带仪器记录到小震活动和多次的历史地震事件,或该断层 发生过蠕动。国际原子能机构(IAEA)除上述三条外,并 增加了两条规定:(1)晚第四纪它们有过活动;(2)沿 该断裂有地面破裂证据。自80年代以来,美、日等国在活 动断层研究方面进展很快。我国对活动断层理解也不完全 一致,1989年国家地震局震害防御司规定:“活动断层是 指第四纪期间,尤其是晚更新世(10万年)以来活动过 的,并在今后仍有可能活动的断层。 2.2 活断层的分段性
收稿日期:2010-07-25 修回日期:2010-08-19 作者简介:姚琳(1980-),女,宁夏固原籍,本科,助理工程师,从事地震监测工作。
57
中国西部科技 2010年09月(上旬)第09卷第25期总 第222期
与新构造断裂活动有十分密切的联系;不再活动的老构造 断裂带天然放射性没有增强的反映,而近期有活动的新构 造断裂带天然放射性有明显的增强反映。 4 物探方法
1 引言 活动断层[1]是诱发地震的主要原因,也是破坏城市建
筑设施的主要因素。随着经济的高速发展,大城市及中心 城市的建设规模越来越大,人口密集程度在迅速增长。在 这种形势下,如何使人们居住的环境更加安全,已经成为 当今社会高度关注的问题。而城市的地震和地质体的活动 成为重要的危险因素之一。地震和地质体活动的直接原因 是活动断层的作用。我国许多大城市开展活动断层的探测 与地震危险性的评价意义重大。事实证明,城市的建设物 或城市结构物,能不能有效地避开活动断层,也决定着这 个城市或建筑物,能不能有效地避开地震灾害。通过地球 物理综合方法和技术,把所得的数据、参数进行系统地分 析,从而得到活动断层的空间分布,为活动断层活动性的 研究提供基础资料。 2 活断层 2.1 活断层的定
姚琳
(宁夏回族自治区地震局,宁夏 银川 750001)
摘 要:本文简要叙述了活断层的概念和活断层的分段性,从静态和动态性两方面阐述了活动断层的物探特征,并扼要 的举例了几种常见的地球物理勘探方法在活断裂勘测中的应用。 关键词:天然地震;地球物理;活断裂;重力勘探;磁法勘探;电法勘探;浅层地震勘探;放射性测量 DOI:10.3969/j.issn.1671-6396.2010.25.026
根据活动断层探测和评价工作的不断加深,物探工作 可分为以下几个阶段进行:(1)断层位置、形态参数的探 测与确定;(2)断层活动性探测与研究;(3)活动断层 分段性研究和危险性评价。
在活动断层的探测研究中,不同探测阶段采用的地球 物理方法也不尽相同。比如,在物探探测的第一阶段,一 般可以采用重磁、电法、放射性和浅层地震等方法进行探 测,这些方法一般能够大致确定断层或隐伏断层的空间赋 存状态;在物探探测的第二阶段,一般采用人工源地震、 探地雷达、放射性和井中地球物理等方法,这些方法可以 活动断层的活动性进行分析研究;在物探探测的第三阶 段,一般是利用深部物探资料——深部人工源地震或天然 地震、大地电磁测深等。
活动断层的活动特征实际是断层的形态特征的一种,是 活动断层的具体体现,是断层更加精细的一类特征。形态特 征表征了断层的存在,但断层的活动性或活动的年代需要进 一步的特征表述。将反映断层活动性的地球物理特征,称之 为活动性特征。如高分辨率地震勘探方法非常精细地勾画近 地表地层分布,在有地层年代控制的情况下,能获得断层的 活动年代;探地雷达作为一种高分辨率地球物理手段,与反 射地震法的原理类似,也具有研究断层活动性的能力。还 有,如活动断层上方常表现出放射性异常,如马翔(1996)总 结的放射性方法探测活断层的主要判断依据有:核辐射异常