(水利水电)部分常用岩土物理力学参数经验数值
岩土力学重要参数取值大全
常用岩土材料力学重要参数(E, ν) 与(K, G)的转换关系如下:)21(3ν-=E K )1(2ν+=E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980)表7.1土的弹性特性值(实验室值)(Das,1980)表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3,ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3,ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室)表7.3流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。
这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f kK n t ∝∆ (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
f 'K n m k C +=νν(7.4)其中3/4G K 1m +=ν f 'k k γ=其中,'k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒)f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。
常用的岩土和岩石物理力学参数
(E v) •与(K. G)的转换关系如下:3(1-2v)G = ------------ (7.2)2(1+ v)当v 值接近0.5的时候不能盲目的使用公式3.5,因为汁算的K 值将会非常的高,偏离 实际值很多。
最好是确左好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和v 来计算G 值。
表7」和7.2分别给出了岩土体的一些典型弹性特性值。
各向异性弹性特性一一作为各向异性弹性体的特姝情况,横切各向同性弹性模型需要 5中弹性常量:E], E 3, V 12, VI 3和On ;正交%向异性弹性模型有9个弹性模量E h E 2,E 3, V12, V13, V23,G12,G13 GlJo 这些常量的定义见理论篇。
均质的节理或是层状的岩仃一般表现出横切各向同性弹性特性。
一些学者已经给出了 用各向同性弹性特性参数、巧理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了 各向异性岩石的一些典型的特性值。
1 / 10页岩66.849.50」70.2125.3大理石6&650.20.060.2226.6花岗岩10.7 5.20.200.41 1.2流体弹性特性一一用于地F水分析的模型涉及到不可压缩的土粒时用到水的体积模量K…如果土粒是可压缩的,则要用到比奥模量M o纯净水在室温情况下的K「值是2 Gpa Q 其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体■固体相互作用分析),则尽量要用比较低的Kr,不用折减。
这是由于对于大的K(流动时间步长很小,并且,力学收敛性也较差。
在FLAC3D中用到的流动时间步长,△"与孔隙度m渗透系数k以及心有如下关系:(7.3)对于可变形流体(多数课本中都是将流体设左为不可压缩的)我们可以通过获得的固结系数C,来决定改变&的结果。
(7.4)英中1m|z = -------------K + 4G/3 k = k /f其中,k—一FLAC3D使用的渗透系数k一一渗透系数,单位和速度单位一样(如米/秒)r r——水的单位重量考虑到固结时间常量与G,成比例,我么可以将K(的值从英实际值(2xlOSd)减少,利用上面得表达式看看其产生的误差。
附表2岩土工程物理力学指标表
表11-1 岩土参数建议值表岩土分层岩土名称时代与成因岩石地基承载力特征值土承载力特征值桩侧摩阻力特征值(钻孔灌注桩)桩端阻力特征值(钻孔灌注桩)桩极限侧阻力标准值(钻孔灌注桩)桩极限端阻力标准值(钻孔灌注桩)土体与锚固体极限摩阻力标准值岩石与锚固体极限摩阻力标准值地基系数的比例系数(灌注桩)岩层或土层水平基床系数岩层或土层垂直基床系数静止侧压力系数岩土泊桑比岩石质量指标基底摩擦系数边坡坡度高宽比允许值(1:n)土石可挖性分级f a f ak q sa q pa q sik q sik q s q s m K s Kc K0μRQD f(kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (MPa) (MPa/m2) (MPa/m) (MPa/m) (%)(1-1) 填土Q4ml60 18 18 12 0.40 0.29 0.28 支护Ⅰ~Ⅱ(3-4) 粗砂Q2al190 30 40 50 18.0 20 18 0.40 0.29 0.28 1.25 Ⅱ(4-2) 粉质粘土Q2el210 30 43 50 22.0 35 30 0.39 0.28 0.30 1 Ⅱ(11)-1 全风化板岩P t220 35 50 55 40.0 35 30 0.38 0.28 0.30 1 Ⅲ(11)-2 强风化板岩P t350 70 700 75 750 0.12 150 120 0.38 0.28 0.33 0.75 Ⅲ~Ⅳ(11)-3 中风化板岩P t800 130 1300 170 1600 0.30 170 135 0.28 0.22 10~150.38 0.5 Ⅳ(11)-4 微风化板岩P t1200 135 1500 180 1800 0.50 200 175 0.26 0.21 10~20 0.45 0.5 Ⅴ说明:1、本表的岩土参数值,是根据勘察结果,按工程类比(工程经验)的方法经过查阅有关规程、规范、手册或通过计算而提供的可用于设计的岩土参数。
(水利水电)部分常用岩土物理力学参数经验数值
(水利水电)部分常用岩土物理力学参数经验数值-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN使用说明:1、资料涉及各行各业;2、资料出处为黄底加粗字体的为最新版本内容。
可按规范适用范围选择使用;3、资料出处非黄底加粗字体的为引用资料,很多为老版本,参考用。
水利水电工程部分岩土物理力学参数经验数值1岩土的渗透性(1)渗透系数《地下铁道、轻轨交通岩土工程勘察规范》GB50307-1999 139~140页土体的渗透系数值2《水利水电工程水文地质勘察规范》SL373-2007 62~63页岩土体渗透性分级Lu:吕荣单位,是1MPa压力下,每米试段的平均压入流量。
以L/min计摘自《水利水电工程地质勘察规范》GB50287-99 附录J 66页表F 岩土体渗透性分级3《水利水电工程地质勘察规范》(GB50487-2008)109页附录F (2)单位吸水量各种构造岩的单位吸水量(ω值)上表可以看出:同一断层内,一般碎块岩强烈透水;压碎岩中等透水;断层角砾岩弱透水;糜棱岩和断层泥不透水或微透水。
摘自高等学校教材天津大学《水利工程地质》第三版 113页坝基(肩)防渗控制标准4注:透水率1Lu(吕荣)相当于单位吸水量0.01摘自高等学校教材天津大学《水利工程地质》第三版 118页。
(3)简易钻孔抽注水公式1)简易钻孔抽水公式根据水位恢复速度计算渗透系数公式1.57γ(h2-h1)K= ———————t (S1+S2)式中:γ---- 井的半径;h1---- 抽水停止后t1时刻的水头值;h2---- 抽水停止后t2时刻的水头值;S1、S2---- t1或t2时刻从承压水的静止水位至恢复水位的距离;H---- 未抽水时承压水的水头值或潜水含水层厚度。
《工程地质手册》第三版 927页2)简易钻孔注水公式当l/γ<4时0.366Q 2lK= ———— lg ———Ls γ式中:K—渗透系数(m/d);l---试验段或过滤器长度(m);Q---稳定注水量(m3/d);s---孔中水头高度(m);γ---钻孔或过滤器半径(m)。
常用岩土材料参数和岩石物理力学性质一览表-附详细表格
(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表7.3流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。
这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f k K nt ∝∆ (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
f'K nm k C +=νν (7.4)其中3/4G K 1m +=νf 'k k γ=其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。
(水利水电)部分常用岩土物理力学参数经验数值
(水利水电)部分常用岩土物理力学参数经验数值-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN使用说明:1、资料涉及各行各业;2、资料出处为黄底加粗字体的为最新版本内容。
可按规范适用范围选择使用;3、资料出处非黄底加粗字体的为引用资料,很多为老版本,参考用。
水利水电工程部分岩土物理力学参数经验数值1岩土的渗透性(1)渗透系数《地下铁道、轻轨交通岩土工程勘察规范》GB50307-1999 139~140页土体的渗透系数值2《水利水电工程水文地质勘察规范》SL373-2007 62~63页岩土体渗透性分级Lu:吕荣单位,是1MPa压力下,每米试段的平均压入流量。
以L/min计摘自《水利水电工程地质勘察规范》GB50287-99 附录J 66页表F 岩土体渗透性分级3《水利水电工程地质勘察规范》(GB50487-2008)109页附录F (2)单位吸水量各种构造岩的单位吸水量(ω值)上表可以看出:同一断层内,一般碎块岩强烈透水;压碎岩中等透水;断层角砾岩弱透水;糜棱岩和断层泥不透水或微透水。
摘自高等学校教材天津大学《水利工程地质》第三版 113页坝基(肩)防渗控制标准4注:透水率1Lu(吕荣)相当于单位吸水量0.01摘自高等学校教材天津大学《水利工程地质》第三版 118页。
(3)简易钻孔抽注水公式1)简易钻孔抽水公式根据水位恢复速度计算渗透系数公式1.57γ(h2-h1)K= ———————t (S1+S2)式中:γ---- 井的半径;h1---- 抽水停止后t1时刻的水头值;h2---- 抽水停止后t2时刻的水头值;S1、S2---- t1或t2时刻从承压水的静止水位至恢复水位的距离;H---- 未抽水时承压水的水头值或潜水含水层厚度。
《工程地质手册》第三版 927页2)简易钻孔注水公式当l/γ<4时0.366Q 2lK= ———— lg ———Ls γ式中:K—渗透系数(m/d);l---试验段或过滤器长度(m);Q---稳定注水量(m3/d);s---孔中水头高度(m);γ---钻孔或过滤器半径(m)。
常用岩土材料参数和岩石物理力学性质一览表
(E, ν) 与(K, G)的转换关系如下:)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表7.3流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。
这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f kK nt ∝∆ (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
f'K nm k C +=νν (7.4)其中其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。
岩土物理参数指标
表2 部分岩石的孔隙率与吸水率花岗岩0.04 7 2.80 0.95 0.10〜-1.70流纹斑岩 1.10 7.40 2.00 0.14〜-1.65闪长岩0.25 7.00 1.25 0.18〜-1.00 正长岩— 2.54 0.48安山岩0.29 〜1.13 0.70 —玄武岩 1.10 4.30 2.30 0.20〜-1.00辉绿岩 1.00 7 2.20 1.70 0.30〜-0.80霏细岩0.29 T.10 2.20 0.20〜-1.00凝灰岩 1.59 7 2.23 1.80 0.18〜-0.35 火山角砾岩0.90 7 7.54 3.20 0.34 〜2.12安山凝灰集块岩0.40 〜4.10 2.10 0.14〜-4.00砾岩 2.00 T.10 3.20 0.40〜-1.00 砂岩 1.04 7 9.30 5.04 0.14 〜4.10砂岩(第三纪) 5.00〜20.00 13.00 1.00〜-9.00砂岩(白垩纪) 2.20〜42.00 15.30 —砂岩(侏罗纪)7.20〜-37.70 17.10 —砂岩(三迭纪) 4.20〜-24.60 13.20 —砂岩新鲜的0.60〜27.70 19.30 —风化的—21.11 —石英砂岩— 2.26 —石英砂岩新鲜的— 1.71 —风化的— 4.91 —页岩0.70 7.00 一 2.30〜-6.00 砂质页岩0.80 〜4.15 一—泥质页岩— 1.35 —煤质页岩— 1.03 —泥灰岩 1.00〜-52.00 18.00 1.00〜-5.00石灰石0.53〜27.00 12.00 0.20〜-6.40石灰岩(第三纪)—20.00 —石灰岩(中生代) 1.20〜26.50 11.65 —石灰岩(古生代)0.80〜27.00 12.00 —白垩 5.00〜-58.00 26.40 —石膏0.10 7 4.00 1.70 —硬石膏0.63 7 6.26 1.65 —片麻岩0.30 7 2.40 1.35 0.14〜-0.30 大理岩0.10 7 6.00 1.00 —白云岩0.30〜25.00 7.70 —石英岩0.00 7 8.70 2.40 0.02〜-0.28注:1.平均比重取:砂为 2.65 ;轻亚粘土为 2.70 ;亚粘土为2.71 ;粘土 2.74。
岩土主要物理力学指标参考值
岩土主要物理力学指标参考值(2)溢洪道工程地质条件坝址溢洪道位于左坝肩斜坡顶部,进口段至坡顶地形较平缓,坡顶至出口段为降坡段,斜坡坡度25~28°。
浅表层为全、强风化石英闪长岩,工程地质条件与大坝左坝肩基本一致,但全、强风化石英闪长岩风化严重,抗冲刷能力较弱。
(3)放水、冲沙洞工程地质条件①隧洞地质条件洞区地形、地质条件较简单,主要物理地质作用为自然风化、剥蚀,无滑坡、崩塌、泥石流等不良地质作用,未见断裂构造通过,整体稳定。
隧洞进口段为第四系冲洪积砾砂土覆盖层,结构松散,强度低,对洞口边坡需进行加固护坡。
隧洞洞身前段主要由弱风化石英闪长岩组成,岩体较破碎,岩体基本质量等级为Ⅳ级,自稳能力较差,成洞后稳定性差,隧洞开挖容易产生局部塌方、掉块等挤压形式变形破坏;隧洞中段主要由微风化石英闪长岩组成,岩体较完整,自稳能力较好,开挖后可基本稳定,局部可能会出现岩块位移错动掉块;隧洞出口段主要由弱风化石英闪长岩组成,岩体较破碎,自稳能力较差,隧洞开挖容易产生局部塌方、掉块等挤形式压变形破坏。
隧洞出口段该段地层为第四系冲洪积漂石土覆盖层,结构松散,强度低,开挖易产生塌方。
②隧洞岩土物理力学特性隧洞岩土物理力学特性主要物理力学指标参考前表。
工程岩体分级标准(上)2010-04-15 | 作者:| 来源:中国地质环境信息网| 【大中小】【打印】【关闭】1 总则1.0.1 为建立统一的评价工程岩体稳定性的分级方法;为岩石工程建设的勘察、设计、施工和编制定额提供必要的基本依据,制定本标准。
1.0.2 本标准适用于各类型岩石工程的岩体分级。
1.0.3 工程岩体分级,应采用定性与定量相结合的方法,并分两步进行,先确定岩体基本质量,再结合具体工程的特点确定岩体级别。
1.0.4 工程岩体分级所必需的地质调查和岩石试验,除应符合本标准外,尚应符合有关现行国家标准的规定。
2 术语、符号2.l 术语2.1.1 岩石工程rock engineering以岩体为工程建筑物地甚或环境,并对岩体进行开挖或加固的工程,包括地下工程和地面工程。
关于常用的岩土和岩石物理力学参数
(E , ν) 与(K , G )的转换关系如下:)1(2ν+=EG ()当ν值接近的时候不能盲目的使用公式,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表和分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表土的弹性特性值(实验室值)(Das,1980) 表各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。
这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f k K nt ∝∆ () 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
f'K n m k C +=νν ()其中其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。
岩土主要物理力学指标参考值
岩土主要物理力学指标参考值(2)溢洪道工程地质条件坝址溢洪道位于左坝肩斜坡顶部,进口段至坡顶地形较平缓,坡顶至出口段为降坡段,斜坡坡度25~28°。
浅表层为全、强风化石英闪长岩,工程地质条件与大坝左坝肩基本一致,但全、强风化石英闪长岩风化严重,抗冲刷能力较弱。
(3)放水、冲沙洞工程地质条件①隧洞地质条件洞区地形、地质条件较简单,主要物理地质作用为自然风化、剥蚀,无滑坡、崩塌、泥石流等不良地质作用,未见断裂构造通过,整体稳定。
隧洞进口段为第四系冲洪积砾砂土覆盖层,结构松散,强度低,对洞口边坡需进行加固护坡。
隧洞洞身前段主要由弱风化石英闪长岩组成,岩体较破碎,岩体基本质量等级为Ⅳ级,自稳能力较差,成洞后稳定性差,隧洞开挖容易产生局部塌方、掉块等挤压形式变形破坏;隧洞中段主要由微风化石英闪长岩组成,岩体较完整,自稳能力较好,开挖后可基本稳定,局部可能会出现岩块位移错动掉块;隧洞出口段主要由弱风化石英闪长岩组成,岩体较破碎,自稳能力较差,隧洞开挖容易产生局部塌方、掉块等挤形式压变形破坏。
隧洞出口段该段地层为第四系冲洪积漂石土覆盖层,结构松散,强度低,开挖易产生塌方。
②隧洞岩土物理力学特性隧洞岩土物理力学特性主要物理力学指标参考前表。
工程岩体分级标准(上)2010-04-15 | 作者:| 来源:中国地质环境信息网| 【大中小】【打印】【关闭】1 总则1.0.1 为建立统一的评价工程岩体稳定性的分级方法;为岩石工程建设的勘察、设计、施工和编制定额提供必要的基本依据,制定本标准。
1.0.2 本标准适用于各类型岩石工程的岩体分级。
1.0.3 工程岩体分级,应采用定性与定量相结合的方法,并分两步进行,先确定岩体基本质量,再结合具体工程的特点确定岩体级别。
1.0.4 工程岩体分级所必需的地质调查和岩石试验,除应符合本标准外,尚应符合有关现行国家标准的规定。
2 术语、符号2.l 术语2.1.1 岩石工程rock engineering以岩体为工程建筑物地甚或环境,并对岩体进行开挖或加固的工程,包括地下工程和地面工程。
常用的岩土和岩石物理力学参数
(7.2)(E, v 与(K, G )的转换关系如下:E2(—)当v 值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好 K 值(利用压缩试验或者 P 波速度试验估计),然后再用 K 和v来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
中弹性常量:E 1, E 3, V 2, V 3和G 13;正交各向异性弹性模型有9个弹性模量 E 1,E 2,E 3,v 2, v 3, v 3,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表 3.7给出了各向异性岩石的一些典型的特性值。
1K 4G/3石灰石 39.8 36.0 0.18 0.25 14.5 页岩 66.8 49.5 0.17 0.21 25.3 大理石68.6 50.2 0.06 0.22 26.6 花岗岩10.75.20.200.411.2流体弹性特性一一用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量 M 。
纯净水在室温情况下的 K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的 K f ,不用折减。
这是由于对于大的 K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC ’D 中用到的流动时间步长,."f 与孔隙度n ,渗透系数k 以及K f 有如下关系:— n■ =t f'(7.3)K f k对于可变形流体(多数课本中都是将流体设定为不可压缩的) 我们可以通过获得的固结系数C 来决定改变K f 的结果。
(7.4)K f其中其中,k '—— FLAC 3D 使用的渗透系数k —渗透系数,单位和速度单位一样(如米 /秒)f ――水的单位重量. 9考虑到固结时间常量与 C 成比例,我么可以将K f 的值从其实际值(2 10 Pa )减少, 利用上面得表达式看看其产生的误差。
关于常用的岩土和岩石物理力学参数
(E, ν) 与(K, G)的转换关系如下:)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表7.3K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。
这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f kK nt ∝∆ (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
f'K nm k C +=νν (7.4)其中其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。
常用岩土材料参数和岩石物理力学性质一览表,附详细表格
(E, ν) 与(K, G)的转换关系如下:)21(3ν-=E K)1(2ν+=E G (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表7.3流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。
这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D 中用到的流动时间步长,∆ t f 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f kK n t ∝∆ (7.3)对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
f'K n m k C +=νν (7.4)其中3/4G K 1m +=νf 'k k γ=其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。
水利水电工程物探常用介质物性参数、基本公式、物探探测应用
附录A(规范性)常用介质物性参数表A.1常见介质电阻率表A.2常见介质相对介电常数、电导率、电磁波速度'电磁波衰减参数取值附录B(规范性)基本公式1.1误差计算公式1.1.1 绝对误差计算公式A=IdLdl ..............................................................................(B.1) 式中:Δ——绝对误差;d i——基本观测值,若有重复观测值取其算术平均值;d,i——检查观测值,若有重复观测值取其算术平均值。
1.1.2 平均绝对误差计算公式nΔ=21Δ1 ............................................................................ (B∙2)2=1式中:Δ——平均绝对误差;n --- 检查点总数;Δ——绝对误差。
B.1.3相对误差计算公式Idi-d,1;|δ=J×100% .................................................................. (B. 3)d i式中:δ——相对误差;d i——基本观测值,若有重复观测值取其算术平均值;d,i——检查观测值,若有重复观测值取其算术平均值。
1.1.4 均方相对误差计算公式nm=\ RW年X100% .............................1=1....................... (B-4)式中:m——均方相对误差;δi——第i点相对误差。
n——检查点总数。
1.1.5 总均方相对误差计算公式(B.5):W mι×I。
%i=l式中:M ——总均方相对误差。
m i ——第i 点均方相对误差。
8.2 电法勘探计算公式 8.2.1视电阻率计算公式式中:PS ——视电阻率(。
仙);K --- 装置系数(m );AUMN ——电位差(V );/——供电电流(八)。
岩土力学重要参数取值大全
常用岩土材料力学重要参数(E, v与(K, G)的转换关系如下:G (7.2)2(1 .)当v值接近0.5的时候不能盲目的使用公式 3.5,因为计算的K值将会非常的高,偏离实际值很多。
最好是确定好K值(利用压缩试验或者P波速度试验估计),然后再用K和v来计算G值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
各向异性弹性特性一一作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要中弹性常量:E1, E3, V2, V3和G13;正交各向异性弹性模型有9个弹性模量E1,E2,E3,v2, v3, v3,G12,G 13和G23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表 3.7给出了各向异性岩石的一些典型的特性值。
E x (GPa) E y (GPa) V xG xy (GPa) 砂岩 43.0 40.0 0.28 0.17 17.0 砂岩 15.7 9.6 0.28 0.21 5.2 石灰石 39.8 36.0 0.18 0.25 14.5 页岩 66.8 49.5 0.17 0.21 25.3 大理石68.6 50.2 0.06 0.22 26.6 花岗岩10.75.20.200.411.2流体弹性特性一一用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量 M 。
纯净水在室温情况下的 K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的 K f ,不用折减。
这是由于对于大的 K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC ’D 中用到的流动时间步长,."f 与孔隙度n ,渗透系数k 以及K f 有如下关系:― n■ :t f'(7.3)K f k对于可变形流体(多数课本中都是将流体设定为不可压缩的) 我们可以通过获得的固结系数C 来决定改变K f 的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使用说明:1、资料涉及各行各业;2、资料出处为黄底加粗字体得为最新版本内容。
可按规范适用范围选择使用;3、资料出处非黄底加粗字体得为引用资料,很多为老版本,参考用。
水利水电工程部分岩土物理力学参数经验数值1岩土得渗透性(1)渗透系数《地下铁道、轻轨交通岩土工程勘察规范》GB50307-1999 139~140页《水利水电工程水文地质勘察规范》SL373-2007 62~63页Lu:吕荣单位,就是1MPa压力下,每米试段得平均压入流量。
以L/min计摘自《水利水电工程地质勘察规范》GB50287-99 附录J 66页(2)单位吸水量一般碎块岩强烈透水;压碎岩中等透水;断层角砾岩弱透水;糜棱岩与断层泥不透水或微透水。
摘自高等学校教材天津大学《水利工程地质》第三版113页注:透水率1Lu(吕荣)相当于单位吸水量0、01摘自高等学校教材天津大学《水利工程地质》第三版118页。
(3)简易钻孔抽注水公式1)简易钻孔抽水公式根据水位恢复速度计算渗透系数公式1、57γ(h2-h1)K= ———————t (S1+S2)式中:γ---- 井得半径;h1---- 抽水停止后t1时刻得水头值;h2---- 抽水停止后t2时刻得水头值;S1、S2---- t1或t2时刻从承压水得静止水位至恢复水位得距离;H---- 未抽水时承压水得水头值或潜水含水层厚度。
《工程地质手册》第三版927页2)简易钻孔注水公式当l/γ<4时0、366Q 2lK= ———— lg ———Ls γ式中:K—渗透系数(m/d);l---试验段或过滤器长度(m);Q---稳定注水量(m3/d);s---孔中水头高度(m);γ---钻孔或过滤器半径(m)。
《工程地质手册》第三版936页(4)水力坡降0~3、0,即Ⅰ允= Ⅰ临/2、0~3、0。
摘自长春地质学院《中小型水利水电工程地质》1978年139页出口保护情况下地基允许渗流比降见上表。
摘自《堤防工程地质勘察与评价》水规总院李广诚司富安杜忠信等。
42页(5)土毛细水上升值摘自长春地质学院《中小型水利水电工程地质》1978年79页k摘自《工程地质手册》(第三版)937页2土分类及状态、密实度(1)分类《土工试验规程》SL237-1999 2页(2)密实度、状态判定《建筑地基基础设计规范》广东省标准GBJ15-31-2003 19页(4)原位测试有关参数《岩土工程手册》1995年4月第二版199页E0-----变形模量。
《岩土工程手册》1995年4月第二版202~203页《公路工程地质勘察规范》(JTJ064-98) 248页当采用重型圆锥动力触探确定碎石土密实度时,锤击数N63、5应按下式修正:N63、5=α1×N'63、5式中N63、5----修正后得重型圆锥动力触探锤击数;α1----修正系数,按上表取值;N'63、5----实测重型圆锥动力触探锤击数。
摘自《岩土工程勘察规范》GB50021----2001附录B 141页N63、5动力触探试验锤击数。
《公路工程地质勘察规范》JTJ 064-98 251 页N63、5标贯击数。
《公路工程地质勘察规范》JTJ 064-98 250 页3软土(1)特性1)压缩性a1~2≥0、5MPa-1时,属高压缩性土;0、1≤a1~2<0、5MPa-1时,属中缩性土;a1~2<0、15MPa-1时,属低缩性土。
2)固结系数当p c/p o<1时,属欠固结土;p c/p o =1时,属正常固结土;p c/p o>1时,属超固结土。
p c/p o—土得先期固结压力/土得自重压力。
《软土地区工程地质勘察规范》JGJ 83-91 14页3)灵敏度《软土地区工程地质勘察规范》JGJ 83-91 15页(2)软土经验值《工程地质手册》第三版478页4岩土边坡经验值摘自高等学校教材天津大学《水利工程地质》第三版191页《地下铁道、轻轨交通岩土工程勘察规范》GB50307-1999 56页2、本表适用于无外倾结构面得岩质边坡;摘自福建《岩土得工程勘察规范》DBJ13-84-2006 227页注:1、表中碎石土(混合土),其充填物应为坚硬或硬塑状态得粘性土或稍湿得粉土;2、当砂土或碎石土(混合土)得充填物为砂土时,其坡率允许值按自然休止角确定。
摘自福建《岩土得工程勘察规范》DBJ13-84-2006 227页摘自长春地质学院《中小型水利水电工程地质》1978年120页5岩土得物理力学经验值(1)各类粘性土摘自长春地质学院《中小型水利水电工程地质》1978年(2)花岗岩物理力学统计值风化花岗岩试验数据统计注:作者据1724组试验数据(每组为多个样得平均值)进行统计。
摘自高等学校教材天津大学《水利工程地质》第三版37页(3)泊松比(4)弹性模量Eu 经验值Eu ------ 地基弹性模量(kpa),由采用室内试验或现场旁压试验得到得不排水模量经验值参见上表、(5)变形模量β=1-2μk0 k0---土得测压系数或静止压力系数。
E0=βE sE0—变形模量E s---压缩模量摘自高等学校推荐教材《地基及基础》第三版77页6地基参数(1)垫层参数0S《建筑地基处理技术规范》JGJ79-2002 92页注:压实系数小得垫层,承载力特征值取低值,反之取高值;原状矿渣垫层取低值,分级矿渣或混合矿渣垫层取高值。
《建筑地基处理技术规范》JGJ79-2002 92页(2)基床系数《地下铁道、轻轨交通岩土工程勘察规范》GB 50307---1999 98页(3)岩石承载力注:强风化岩石得实测标准贯入击数N'≥50。
《建筑地基基础设计规范》广东省标准DBJ 15-31-2003 30页《工程岩体分级标准》GB50218-94 59页摘自高等学校教材天津大学《水利工程地质》第三版145页(4)RQD分类岩体RQD分类表摘自高等学校教材天津大学《水利工程地质》第三版139页(5)岩体分级b VR b为岩石单轴饱与抗压强度(Mpa);K V为岩体完整性系数;当R b>90K V+30时,应以R b=90K V+30代入;当K V>0、04R b+0、4时,应以K V=0、04R b+0、4代入。
摘自高等学校教材天津大学《水利工程地质》第三版141页《工程岩体分级标准》(GB/T50218-2014)第8页(6)结构面(7)岩块摘自高等学校教材天津大学《水利工程地质》第三版126页(8)桩基注:1、本表适用于内(外)击式沉管灌注桩,打入式预制桩、冲、钻、挖孔灌注桩。
2.冲钻孔桩孔底沉渣厚度应小于50mm;3.对中风化、微风化岩及胶结状得构造岩,当节理裂隙不甚发育时,取表中上限值,反之取下限值。
4.对强风化岩及松散块状得构造岩,视含泥量多少而分别选用上限或下限值。
《工程地质手册》第三版834页7 坝(闸)基有关岩体参数(1)岩体参数注:表中参数限于硬质岩,软质岩应根据软化系数进行折减。
摘自《水利水电工程地质勘察规范》GB50487-2008 107页结构面类型f’C’(MPa) f胶结结构面0、90~0、70 0、30~0、20 0、70~0、55 无充填结构面0、70~0、55 0、20~0、10 0、55~0、45软弱结构面岩块岩屑型0、55~0、45 0、10~0、08 0、45~0、35 岩屑夹泥型0、45~0、35 0、08~0、05 0、35~0、28 泥夹岩屑型0、35~0、25 0、05~0、02 0、28~0、22 泥型0、25~0、18 0、01~0、005 0、22~0、18摘自《水利水电工程地质勘察规范》GB50487-2008 108页岩体基本质量级别重力密度γ(kN/m3)抗剪断峰值强度变形模量(GPa)泊松比μ内摩擦角φ(°)粘聚力c(MPa)Ⅰ>26、5 >60 >2、1 >33 <0、2 Ⅱ>26、5 60~50 2、1~1、5 33~20 0、2~0、25Ⅲ26、5~24、5 50~39 1、5~0、7 20~6 0、25~0、3Ⅳ24、5~22、5 39~27 0、7~0、2 6~1、3 0、3~0、35Ⅴ<22、5 <27 <0、2 <1、3 >0、35 摘自《工程岩体分级标准》GB/T 50218-2014第22页表D、0、1岩体结构面抗剪断峰值强度摘自《工程岩体分级标准》GB/T 50218-2014第22页表D、0、2级别内摩擦角φ(°) 凝聚力c(MPa)弹性模量E0(Gpa)重力密度γ(kN/m)泊松比μⅠ>55 3~8 >25 27~30 <0、2 Ⅱ45~55 1、2~3 15~25 25~28 0、2~0、25 Ⅲ35~45 0、4~1、2 4~15 23~26 0、25~0、3 Ⅳ25~35 0、1~0、4 0、8~3 21~25 0、3~0、4 Ⅴ<30 <0、1 <1 20~24 >0、4《工程岩体分级标准》GB50218-94 70页《工程岩体分级标准》GB50218-94 70页坝下游岩石冲刷坑深度确定经验公式估量:t k=αq0、5H0、25α为冲刷系数,坚硬完整岩石为0、9~1、2,软弱破碎、裂隙发育岩石为1、5~2、0;q为单宽流量(m3/s、m);H为上下游水位差(m);t k为水垫厚度,即水面至坑底水深(m)。
摘自高等学校教材天津大学《水利工程地质》第三版162页(4)岩体风化8隧洞围岩参数k k kf k=R b/10。
C为土得粘聚力,φ为土得内摩擦角,σ为洞顶土层得自重应力,R b为岩石得饱与抗压强度(Mpa)。
摘自高等学校教材天津大学《水利工程地质》第三版207页f k为岩石得坚固系数,又称普氏系数。
摘自高等学校教材天津大学《水利工程地质》第三版206页但国内大量工程实践中,勘察报告一般只提供岩石饱与抗压强度,导致按坚固系数确定施工岩体类别发生困难,故一些省份在修订施工定额时,改用饱与抗压强度划分岩体类别,便于可直接利用勘察报告作为可靠依据。
故两者得计算公式为:岩石极限压碎强度(坚固系数)=0、1×岩石饱与抗压强度÷软化系数[1]摘自网络9地震参数(1)土类型与剪切波2、水工建筑物开挖处理后得场地土类型,宜根据土层剪切波速按上表划分。
摘自《水电工程水工建筑物抗震设计规范》NB35047-2015第11 页注:f ak--地基承载力特征值;f rk—岩石饱与单轴极限抗压强度标准值《建筑抗震设计规范》GB50011-2010 19 页(2)软土震陷估算值注:1场区基本烈度≥7度时,一级建筑物与对沉降有严格要求得二级建筑物应进行专门得震陷分析计算。
2沉降无特殊要求得二级建筑物与沉降敏感得三级建筑物可参考上表《软土地区工程地质勘察规范》JGJ 83-91 30页10 天然建材质量指标(1)粗骨料(3)土料注:风化土料>5mm得颗粒含量为击实后试验成果摘自《水利水电工程天然建筑材料勘察规程》SL251-2015 第21页(3)土石坝、堤防粘性土压实度1)土石坝土石坝粘性土得压实度应符合下列要求:1. 1级、2级坝与高坝得压实度应为98%~100%,3级中低坝及3级以下得中坝压实度应为96%~98%;2. 设计地震烈度为8度、9度得地区,宜取上述规定得大值;3. 有特殊用途与性质特殊得土料得压实度宜另行确定。