线段最值问题解法汇编
专题09 几何中最小值计算压轴真题训练(解析版)
挑战2023年中考数学选择、填空压轴真题汇编专题09 几何中最小值计算压轴真题训练一.轴对称-最短路线问题1.(2022•眉山)如图,点P为矩形ABCD的对角线AC上一动点,点E为BC 的中点,连接PE,PB,若AB=4,BC=4,则PE+PB的最小值为 .【答案】6【解答】解:如图,作点B关于AC的对称点B',交AC于点F,连接B′E 交AC于点P,则PE+PB的最小值为B′E的长度,∵四边形ABCD为矩形,∴AB=CD=4,∠ABC=90°,在Rt△ABC中,AB=4,BC=4,∴tan∠ACB==,∴∠ACB=30°,由对称的性质可知,B'B=2BF,B'B⊥AC,∴BF=BC=2,∠CBF=60°,∴B′B=2BF=4,∵BE=BF,∠CBF=60°,∴△BEF是等边三角形,∴BE=BF=B'F,∴△BEB'是直角三角形,∴B′E===6,∴PE+PB的最小值为6,故答案为:6.2.(2022•自贡)如图,矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB上左右滑动,若EF=1,则GE+CF的最小值为 .【答案】3 【解答】解:解法一:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,∵CH=EF=1,CH∥EF,∴四边形EFCH是平行四边形,∴EH=CF,∴G'H=EG'+EH=EG+CF,∵AB=4,BC=AD=2,G为边AD的中点,∴DG'=AD+AG'=2+1=3,DH=4﹣1=3,由勾股定理得:HG'==3,即GE+CF的最小值为3.解法二:∵AG=AD=1,设AE=x,则BF=AB﹣EF﹣AE=4﹣x﹣1=3﹣x,由勾股定理得:EG+CF=+,如图,矩形EFGH中,EH=3,GH=2,GQ=1,P为FG上一动点,设PG=x,则FP=3﹣x,∴EP+PQ=+,当E,P,Q三点共线时,EP+PQ最小,最小值是3,即EG+CF的最小值是3.故答案为:3.3.(2022•鄂州)如图,定直线MN∥PQ,点B、C分别为MN、PQ上的动点,且BC=12,BC在两直线间运动过程中始终有∠BCQ=60°.点A是MN上方一定点,点D是PQ下方一定点,且AE∥BC∥DF,AE=4,DF=8,AD=24,当线段BC在平移过程中,AB+CD的最小值为( )A.24B.24C.12D.12【答案】C【解答】解:如图,作DL⊥PQ于L,过点A作PQ的垂线,过点D作PQ的平行线,它们交于点R,延长DF至T,使DT=BC=12,连接AT,AT交MN于B′,作B′C′∥BC,交PQ于C′,则当BC在B′C′时,AB+CD 最小,最小值为AT的长,可得AK=AE•sin60°==2,DL==4,=6,∴AR=2+6+4=12,∵AD=24,∴sin∠ADR==,∴∠ADR=30°,∵∠PFD9=60°,∴∠ADT=90°,∴AT===12,故答案为:C.4.(2022•贺州)如图,在矩形ABCD中,AB=8,BC=6,E,F分别是AD,AB的中点,∠ADC的平分线交AB于点G,点P是线段DG上的一个动点,则△PEF的周长最小值为 .【答案】5+ 【解答】解:如图,在DC上截取DT,使得DT=DE,连接FT,过点T作TH ⊥AB于点H.∵四边形ABCD是矩形,∴∠A=∠ADT=90°,∵∠AHT=90°,∴四边形AHTD是矩形,∵AE=DE=AD=3.AF=FB=AB=4,∴AH=DT=3,HF=AF﹣AH=4﹣3=1,HT=AD=6,∴FT===,∵DG平分∠ADC,DE=DT,∴E、T关于DG对称,∴PE=PT,∴PE+PF=PF+PT≥FT=,∵EF===5,∴△EFP的周长的最小值为5+,故答案为:5+.5.(2022•滨州)如图,在矩形ABCD中,AB=5,AD=10.若点E是边AD 上的一个动点,过点E作EF⊥AC且分别交对角线AC、直线BC于点O、F,则在点E移动的过程中,AF+FE+EC的最小值为 .【答案】+【解答】解:如图,过点E作EH⊥BC于点H.∵四边形ABCD是矩形,∴∠B=∠BAD=∠BHE=90°,∴四边形ABHE是矩形,∴EH=AB=5,∵BC=AD=10,∴AC===5,∵EF⊥AC,∴∠COF=90°,∴∠EFH+∠ACB=90°,∵∠BAC+∠ACB=90°,∴∠EFH=∠BAC,∴△EHF∽△CBA,∴==,∴==,∴FH=,EF=,设BF=x,则DE=10﹣x﹣=﹣x,∵EF是定值,∴AF+CE的值最小时,AF+EF+CE的值最小,∵AF+CE=+,∴欲求AF+CE的最小值相当于在x轴上找一点P(x,0),使得P到A(0,5),B(,5)的距离和最小,如图1中,作点A关于x轴的对称点A′,连接BA′交xz轴于点P,连接AP,此时PA+PB 的值最小,最小值为线段A′B的长,∵A′(0,﹣5),B(,5),∴A′B==,∴AF+CE的最小值为,∴AF+EF+CE的最小值为+.解法二:过点C作CC′∥EF,使得CC′=EF,连接C′F.∵EF=CC′,EF∥CC′,∴四边形EFC′C是平行四边形,∴EC=FC′,∵EF⊥AC,∴AC⊥CC′,∴∠ACC=90°,∵AC′===,∴AF+EC=AF+FC′≥AC′=,∴AF+EF+CE的最小值为+.故答案为:+二.胡不归问题6.(2022•鄂尔多斯)如图,在△ABC中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为D,P为线段AD上的一动点,连接PB、PC.则PA+2PB的最小值为 .【答案】4【解答】解:如图,在∠BAC的外部作∠CAE=15°,作BF⊥AE于F,交AD于P,此时PA+2PB最小,∴∠AFB=90°∵AB=AC,AD⊥BC,∴∠CAD=∠BAD=,∴∠EAD=∠CAE+∠CAD=30°,∴PF=,∴PA+2PB=2()=2(PF+PB)=2BF,在Rt△ABF中,AB=4,∠BAF=∠BAC+∠CAE=45°,∴BF=AB•sin45°=4×=2,∴(PA+2PB)=2BF=4,最小故答案为:4.三.旋转的性质7.(2022•黄石)如图,等边△ABC中,AB=10,点E为高AD上的一动点,以BE为边作等边△BEF,连接DF,CF,则∠BCF= ,FB+FD的最小值为 .【答案】30°5 【解答】解:如图,∵△ABC是等边三角形,AD⊥CB,∴∠BAE=∠BAC=30°,∵△BEF是等边三角形,∴∠EBF=∠ABC=60°,BE=BF,∴∠ABE=∠CBF,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴∠BAE=∠BCF=30°,作点D关于CF的对称点G,连接CG,DG,BG,BG交CF的延长线于点F′,连接DF′,此时BF′+DF′的值最小,最小值=线段BG的长.∵∠DCF=∠FCG=30°,∴∠DCG=60°,∵CD=CG=5,∴△CDG是等边三角形,∴DB=DC=DG,∴∠CGB=90°,∴BG===5,∴BF+DF的最小值为5,故答案为:30°,5.8.(2022•柳州)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为 .【答案】2﹣2【解答】解:连接DG,将DG绕点D逆时针旋转90°得DM,连接MG,CM,MF,作MH⊥CD于H,∵∠EDF=∠GDM,∴∠EDG=∠FDM,∵DE=DF,DG=DM,∴△EDG≌△MDF(SAS),∴MF=EG=2,∵∠GDC=∠DMH,∠DCG=∠DHM,DG=DM,∴△DGC≌△MDH(AAS),∴CG=DH=2,MH=CD=4,∴CM==2,∵CF≥CM﹣MF,∴CF的最小值为2﹣2,故答案为:2﹣2.9.(2022•广州)如图,在矩形ABCD中,BC=2AB,点P为边AD上的一个动点,线段BP绕点B顺时针旋转60°得到线段BP′,连接PP′,CP′.当点P′落在边BC上时,∠PP′C的度数为 ;当线段CP′的长度最小时,∠PP′C的度数为 .【答案】120°,75°【解答】解:如图,以AB为边向右作等边△ABE,连接EP′.∵△BPP′是等边三角形,∴∠ABE=∠PBP′=60°,BP=BP′,BA=BE,∴∠ABP=∠EBP′,在△ABP和△EBP′中,,∴△ABP≌△EBP′(SAS),∴∠BAP=∠BEP′=90°,∴点P′在射线EP′上运动,如图1中,设EP′交BC于点O,当点P′落在BC上时,点P′与O重合,此时∠PP′C=180°﹣60°=120°,当CP′⊥EP′时,CP′的长最小,此时∠EBO=∠OCP′=30°,∴EO=OB,OP′=OC,∴EP′=EO+OP′=OB+OC=BC,∵BC=2AB,∴EP′=AB=EB,∴∠EBP′=∠EP′B=45°,∴∠BP′C=45°+90°=135°,∴∠PP′C=∠BP′C﹣∠BP′P=135°﹣60°=75°.故答案为:120°,75°.10.(2022•无锡)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF= °;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是 .【答案】80,4﹣.【解答】解:∵△ACB,△DEC都是等边三角形,∴AC=CB,DC=EC,∠ACB=∠DCE=60°,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴∠DBC=∠EAC=20°,∵∠BAC=60°,∴∠BAF=∠BAC+∠CAE=80°.如图1中,设BF交AC于点T.同法可证△BCD≌△ACE,∴∠CBD=∠CAF,∵∠BTC=∠ATF,∴∠BCT=∠AFT=60°,∴点F在△ABC的外接圆上运动,当∠ABF最小时,AF的值最小,此时CD⊥BD,∴BD===4,∴AE=BD=4,∠BDC=∠AEC=90°,∵CD=CE,CF=CF,∴Rt△CFD≌Rt△CFE(HL),∴∠DCF=∠ECF=30°,∴EF=CE•tan30°=,∴AF的最小值=AE﹣EF=4﹣,故答案为:80,4﹣.四.折叠有关最值问题11.(2022•青岛)如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有: .(填写序号)①BD=8②点E到AC的距离为3③EM=④EM∥AC【答案】①④【解答】解:在△ABC中,AB=AC,BC=16,AD⊥BC,∴BD=DC=BC=8,故①正确;如图,过点E作EF⊥AB于点F,EH⊥AC于点H,∵AD⊥BC,AB=AC,∴AE平分∠BAC,∴EH=EF,∵BE是∠ABD的角平分线,∵ED⊥BC,EF⊥AB,∴EF=ED,∴EH=ED=4,故②错误;由折叠性质可得:EM=MC,DM+MC=DM+EM=CD=8,设DM=x,则EM=8﹣x,Rt△EDM中,EM2=DM2+DE2,∴(8﹣x)2=42+x2,解得:x=3,∴EM=MC=5,故③错误;设AE=a,则AD=AE+ED=4+a,BD=8,∴AB2=(4+a)2+82,∵=,∴,∴,∴AB=2a,∴(4+a)2+82=(2a)2,解得:a=或a=﹣4(舍去),∴tan C==,又∵tan∠EMD=,∴∠C=∠EMD,∴EM∥AC,故④正确,故答案为:①④.12.(2022•铜仁市)如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE 上的动点,过点N作NP∥EM交MC于点P,则MN+NP的最小值为 .【答案】【解答】解:作点P关于CE的对称点P′,由折叠的性质知CE是∠DCM的平分线,∴点P′在CD上,过点M作MF⊥CD于F,交CE于点G,∵MN+NP=MN+NP′≥MF,∴MN+NP的最小值为MF的长,连接DG,DM,由折叠的性质知CE为线段DM的垂直平分线,∵AD=CD=2,DE=1,∴CE==,∵CE×DO=CD×DE,∴DO=,∴EO=,∵MF⊥CD,∠EDC=90°,∴DE∥MF,∴∠EDO=∠GMO,∵CE为线段DM的垂直平分线,∴DO=OM,∠DOE=∠MOG=90°,∴△DOE≌△MOG,∴DE=GM,∴四边形DEMG为平行四边形,∵∠MOG=90°,∴四边形DEMG为菱形,∴EG=2OE=,GM=DE=1,∴CG=,∵DE∥MF,即DE∥GF,∴△CFG∽△CDE,∴,即,∴FG=,∴MF=1+=,∴MN+NP的最小值为;方法二:同理方法一得出MN+NP的最小值为MF的长,DO=,∴OC==,DM=2DO=,=DM•OC=CD•MF,∵S△CDM即×=2×MF,∴MF=,∴MN+NP的最小值为;故答案为:.13.(2022•辽宁)如图,正方形ABCD的边长为10,点G是边CD的中点,点E是边AD上一动点,连接BE,将△ABE沿BE翻折得到△FBE,连接GF,当GF最小时,AE的长是 .【答案】5﹣5 【解答】解:∵将△ABE沿BE翻折得到△FBE,∴BF=BA=10,∴点F在以B为圆心,10为半径的圆上运动,∴当点G、F、B三点共线时,GF最小,连接EG,设AE=x,由勾股定理得,BG=5,∵S梯形ABGD =S△EDG+S△ABE+S△EBG,∴(5+10)×10=++,解得x=5﹣5,∴AE=5﹣5,故答案为:5﹣5.14.(2022•台州)如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M 与点B重合时,EF的长为 ;当点M的位置变化时,DF长的最大值为 .【答案】3,6﹣3.【解答】解:如图1中,∵四边形ABCD是菱形,∴AD=AB=BC=CD,∠A=∠C=60°,∴△ADB,△BDC都是等边三角形,当点M与B重合时,EF是等边△ADB的高,EF=AD•sin60°=6×=3.如图2中,连接AM交EF于点O,过点O作OK⊥AD于点K,交BC于点T,过点A作AG⊥CB交CB的延长线于点G,取AF的中点R,连接OR.∵AD∥CG,OK⊥AD,∴OK⊥CG,∴∠G=∠AKT=∠GTK=90°,∴四边形AGTK是矩形,∴AG=TK=AB•sin60°=3,∵OA=OM,∠AOK=∠MOT,∠AKO=∠MTO=90°,∴△AOK≌△MOT(AAS),∴OK=OT=,∵OK⊥AD,∴OR≥OK=,∵∠AOF=90°,AR=RF,∴AF=2OR≥3,∴AF的最小值为3,∴DF的最大值为6﹣3.解法二:如图,过点D作DT⊥CB于点T.∵DF=AD﹣AF,∴当AF最小时,DF的值最大,∵AF=FM≥DT=3,∴AF的最小值为3,∴DF的最大值为6﹣3.故答案为:3,6﹣3.五.与圆有关最值计算15.(2022•泸州)如图,在Rt△ABC中,∠C=90°,AC=6,BC=2,半径为1的⊙O在Rt△ABC内平移(⊙O可以与该三角形的边相切),则点A 到⊙O上的点的距离的最大值为 .【答案】2+1【解答】解:当⊙O与BC、BA都相切时,连接AO并延长交⊙O于点D,则AD为点A到⊙O上的点的距离的最大值,设⊙O与BC、BA的切点分别为E、F,连接OE、OF,则OE⊥BC,OF⊥AB,∵AC=6,BC=2,∴tan∠ABC==,AB==4,∴∠ABC=60°,∴∠OBF=30°,∴BF==,∴AF=AB﹣BF=3,∴OA==2,∴AD=2+1,故答案为:2+1.37.(2022•桂林)如图,某雕塑MN位于河段OA上,游客P在步道上由点O 出发沿OB方向行走.已知∠AOB=30°,MN=2OM=40m,当观景视角∠MPN 最大时,游客P行走的距离OP是 米.【答案】20 【解答】解:如图,取MN的中点F,过点F作FE⊥OB于E,以直径MN作⊙F,∵MN=2OM=40m,点F是MN的中点,∴MF=FN=20m,OF=40m,∵∠AOB=30°,EF⊥OB,∴EF=20m,OE=EF=20m,∴EF=MF,又∵EF⊥OB,∴OB是⊙F的切线,切点为E,∴当点P与点E重合时,观景视角∠MPN最大,此时OP=20m,故答案为:20.。
线段最值问题总结
数学历史名题与中考数学命题(一)——线段最值问题总结【讲座提纲】应群主纪老师的邀请,进行这次的讲座,对于中考数学我其实是外行,因为我主要是教高中数学,初中数学我平时也会偶尔关注一下,对于特等老师们的执着、专业、无私,我是从心里佩服的,他们才是中考数学解题命题专家,他们的讲座给与我很大的启发,学到了很多。
但是我这个外行为什么还进行这次讲座呢?一是在群里学到了很多大神的妙招,我也应该为草根群出自己一份力,提供个人的一些浅薄的想法;二是通过这次讲座跟各位老师学习和交流,提高自己的解题水平;三是通过自己的一些想法,抛砖引玉,希望群里其他真正厉害的高手出来为群里老师们进行指导,形成草根群更加浓厚的学术交流氛围。
在此特别感谢群主和各位群友在草根群一直对我的指导和帮助,谢谢大家!数学历史名题是各文明古国灿烂文化的结晶,有的是数学大师的伟大数学思想的光辉杰作,有的是激励人们为之拼搏奋斗的世界难题。
我们通过数学名题,学习和欣赏数学大师们的别致、独到的构思,新颖、奇巧的方法和精美、漂亮的结论的基础上,启迪我们的思维、开阔我们探索问题的思路、提高解决问题的能力、丰富我们的解题经验。
数学文化现在越来越受到大家的重视,2017年高考考纲正式加入数学文化的内容,中考数学试题中更是很多数学试题是根据数学名题改编或者简化或者直接引用而成,本讲座主要在于探索一些中考几何真题的文化价值和命题背景。
本讲座主要涉及的名题背景有“将军饮马问题”、“阿波罗尼斯圆与胡不归问题”将研究其解法和背景,结合中考真题进行讲解分析,期待引起大家对数学名题的关注和研究!线段的最值问题频频出现在各地中考数学试卷上面,这些问题有大家熟知的“将军饮马问题”及其引申,也有近几年非常热火的“胡不归问题”与“阿波罗尼斯圆问题”,很多老师对它们有所了解,但是却缺乏这方面的总结整理,甚至有“知其然不知其所以然”,因此很有必要对它们作一个梳理,这里我尽可能讲清楚这些问题的来龙去脉,历史渊源,归纳其解法,掌握其思想,对中考数学命题背景作一些浅显的探讨,由于本人水平有限,准备时间仓,可能整理得不够完整,甚至出现错误,望各位批评指正,感激不尽!一将军饮马问题:问题起源:亚历山大城有一位精通物理和数学的学者海伦,一天一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题,军官每天从军营出发先到河边饮马,然后再去河的同侧帐篷休息,应该怎么走最省时?海伦利用光学性质很快就得到了解答,我们知道光在同一种介质里面是沿直线传播的,也就是说是沿最短路径行进的,但是当光从一点射出后不是直线射向另一点,而是经过平面镜反射到另一点的时候,光依旧会沿最短的路径进行。
线段最值问题总结
数学历史名题与中考数学命题(一)——线段最值问题总结【讲座提纲】应群主纪老师的邀请,进行这次的讲座,对于中考数学我其实是外行,因为我主要是教高中数学,初中数学我平时也会偶尔关注一下,对于特等老师们的执着、专业、无私,我是从心里佩服的,他们才是中考数学解题命题专家,他们的讲座给与我很大的启发,学到了很多。
但是我这个外行为什么还进行这次讲座呢?一是在群里学到了很多大神的妙招,我也应该为草根群出自己一份力,提供个人的一些浅薄的想法;二是通过这次讲座跟各位老师学习和交流,提高自己的解题水平;三是通过自己的一些想法,抛砖引玉,希望群里其他真正厉害的高手出来为群里老师们进行指导,形成草根群更加浓厚的学术交流氛围。
在此特别感谢群主和各位群友在草根群一直对我的指导和帮助,谢谢大家!数学历史名题是各文明古国灿烂文化的结晶,有的是数学大师的伟大数学思想的光辉杰作,有的是激励人们为之拼搏奋斗的世界难题。
我们通过数学名题,学习和欣赏数学大师们的别致、独到的构思,新颖、奇巧的方法和精美、漂亮的结论的基础上,启迪我们的思维、开阔我们探索问题的思路、提高解决问题的能力、丰富我们的解题经验。
数学文化现在越来越受到大家的重视,2017年高考考纲正式加入数学文化的内容,中考数学试题中更是很多数学试题是根据数学名题改编或者简化或者直接引用而成,本讲座主要在于探索一些中考几何真题的文化价值和命题背景。
本讲座主要涉及的名题背景有“将军饮马问题”、“阿波罗尼斯圆与胡不归问题”将研究其解法和背景,结合中考真题进行讲解分析,期待引起大家对数学名题的关注和研究!线段的最值问题频频出现在各地中考数学试卷上面,这些问题有大家熟知的“将军饮马问题”及其引申,也有近几年非常热火的“胡不归问题”与“阿波罗尼斯圆问题”,很多老师对它们有所了解,但是却缺乏这方面的总结整理,甚至有“知其然不知其所以然”,因此很有必要对它们作一个梳理,这里我尽可能讲清楚这些问题的来龙去脉,历史渊源,归纳其解法,掌握其思想,对中考数学命题背景作一些浅显的探讨,由于本人水平有限,准备时间仓,可能整理得不够完整,甚至出现错误,望各位批评指正,感激不尽!一将军饮马问题:问题起源:亚历山大城有一位精通物理和数学的学者海伦,一天一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题,军官每天从军营出发先到河边饮马,然后再去河的同侧帐篷休息,应该怎么走最省时?海伦利用光学性质很快就得到了解答,我们知道光在同一种介质里面是沿直线传播的,也就是说是沿最短路径行进的,但是当光从一点射出后不是直线射向另一点,而是经过平面镜反射到另一点的时候,光依旧会沿最短的路径进行。
中考数学教学指导:求解线段最值问题的常用方法
求解线段最值问题的常用方法求线段的最值问题经常出现在各地中考试卷中.解决这类问题的关键是要结合题意,借助相关的概念、图形的性质,将最值问题转化为相应的数学模型.如,函数增减性、线段公理、垂线段定理、三角形三边关系等进行分析与突破.现对这类问题作一个归类整理.一、利用“将军饮马”数学模型,求线段和的最小值或差的最大值“将军饮马”模型为:在一条定直线上求一点,使得该点到这条直线同侧的两个定点的距离之和最小.其实质是根据“两点之间线段最短”求最短距离的一个数学模型.“将军饮马”问题可变化为以下几种情形:情形一如图1,A、B为直线MN同侧的两点,在直线MN上求作一点P,使P A+PB-最大(图1 (2)).最小(图1 (1)),或使PA PB情形二如图2,A、B为直线MN异侧的两点,在直线MN上求作一点P,使P A+PB-最大(图2 (2)).最小(图2 (1)),或使PA PB情形三如图3,点P是∠MON内一点,分别在边OM、ON上求点A、B,使P AB的周长最小.情形四如图4,点P、Q是∠MON内两点,分别在边OM、ON上求点A、B,使四边形P ABQ的周长最小;上述几种情形都利用了轴对称的性质,不妨把情形一、二简称为“两点一线”,情形三为“一点两线”,情形四为“两点两线”.例1如图5,在平面直角坐标系中,Rt△OAB的顶点A在x轴正半轴上.顶点B的坐标为(3,3),点C的坐标为(12,0.),点P为斜边OB上的一个动点,则P A+PC的最小值为.例2如图6,已知A (12,y1),B (2,y2) 为反比例函数y=1x图像上的两点,动点P在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是.例3如图7,在平面直角坐标系中,已知点A (-1,0),B (4,0),C (2,-3),P (3,-2),当P、C同时向左平移t个单位时得到的对应点分别为P1,C1,则当四边形AB P1C1的周长最小时t的值为.简析例1是“两点一线”(定点A、C和直线OB) 模型,P A+PC的最小值为312.例2延长线段AB交x轴可得P (2.5,0).例3实际为“两点(点A、B) 一线(过点P平行x轴的直线l ) 一平移(平移距离和方向均为PC)”模型.如图7,过点A作AA1∥PC,AA1=PC,作点A1关于直线l的对称点A2,连结A2B,交直线l于点P1,作P1C1∥PC,P1C1=PC,四边形ABP1C1的周长即为最小,求得t =PP1=0.6.或过点B用类似作法一样可求,此时“一线”应是过点C平行x轴的直线.二、构造三角形求不定线段的最大值若P A、PB是两条定长线段,AB是一条不定的线段,由三角形三边关系PA PB≤AB ≤P A+PB (等号当且仅当P、A、B三点一直线时成立),求得不定线段AB的最大值或最小值.例4如图8,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB 边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连结A'C.则A'C长度的最小值是简析因为A'M=AM,所以A'M、MC为定长线段,当A'、M、C三点共线时,最小值A'C72.例5如图9,△ABC中,∠C=90°,AC=6,BC=3,点A、C分别在x轴、y轴正半轴上.当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,求点B到原点的最大和最小距离.简析取AC中点D,连结BD、OD,则BD、OD为定长线段.当点B在第一象限,且B、O、D三点共线时,最大值BO=3柜+3;当点j5}在第三象限,j!}、D、D三点共线时,最小值BO = 32-3.例6如图10,在△ABC中,AB=3,BC=4,∠ACB=30°,将△ABC绕点B按逆时针方向旋转得到△A1BC1.如图,点E为线段AB中点,点P是线段AC上的动点,在△ABC 绕点B按逆时针方向旋转的过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.简析EB为定长线段,当点P1在A1C1上运动时,BP1的最长距离为BC1= 4,最短距离为垂线段长2.当按E、B、C1顺序并且三点共线时,最长EP1=4 + 1.5 = 5.5;类似地,最短EP1=2-1.5 = 0.5.在上述三个问题中,找到定长的两条线段很重要,需要根据题意,结合图形特征,熟悉图形性质.例如,定圆的半径为定值,斜边一定的直角三角形斜边中线为定值,两平行线间的距离为定值等.要仔细分析,有时需要添加适当的辅助线.三、利用“垂线段最短”求线段的最值“两点之间线段最短”,最短距离为“点点距”,指的是点到点的距离;“垂线段最短”,最短距离为“点线距“,指的是直线外一点到直线的距离.利用“垂线段最短“求线段最值,需要运用动态的观点,结合图形性质,多数情况下要构造直角三角形,利用直角三角形性质 解决问题.例7 如图11,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点.过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .简析 由切线性质得PQ =22OP OQ ,OQ 为定值.当OP 最小,即OP 为AB 边上的垂线段时,PQ 最小,最小值PQ =22.例8 如图12,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P ,Q ,则线段PQ 长度的最小值是 .简析 ∠C 是直角,则PQ 为直径.连结CD ,当C D ⊥AB 且CD 成为直径时,最小值PQ=CD =4.8.四、建立函数模型求线段最值一些动态问题的两个变量之间存在着某种函数关系,建立函数关系式,在自变量取值范围内利用函数性质求线段最值.数形结合,把几何问题代数化,以达到快捷解决最值问题的目的.例9 如图13,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cos α=45,求CE的最大值.简析先求得BC=16,由△ABD~△DCE,得CEBD=DCAB.设BD=x,CE=(16)10x x,当x=8时,最大值CE=6.4.综上,线段的最值问题需要在动态情形中对图形特殊位置作出深入的探索,既要寻找合适的模型,又要具体问题具体分析,这样才能达到顺利解决问题之目的.。
几何专项——线段最值问题
1 / 14线段最值问题一、将军饮马问题作法图形原理在直线l 上求作点P ,使PA +PB 最小.连接AB ,与l 交点即为P.两点之间,线段最短. PA +PB 最小值即为AB 长.在直线l 上求一点P ,使AP BP +最短将A 对称到'A ,连接'A B ,与l 的交点即为点P两点之间,线段最短.'AP BP A B +=在直线12l l 、上分别求点M N 、,使PMN △周长最小分别将点P 关于两直线对称到'''P P 、,连接'''P P 与两直线交点即为M N 、两点之间,线段最短.'''PM MN PN P P ++=在直线l 1、l 2上分别求点M N 、,使四边形PMNQ 周长最小将P Q 、分别对称到P ′、Q ′,连接''P Q 与直线的交点即为M N 、两点之间,线段最短.''PM MN NQ P Q ++=直线l 1∥l 2,在l 1、l 2上分别求点M N 、,使MN ⊥l 1,且AM +MN +NB 最小.将点A 向下平移MN 的长度 得A ′,连接A ′B ,交l 2于点N ,过点N 作MN⊥l 1于点M.两点之间,线段最短. AM +MN +NB 的最小值为A ′B+MN .2 / 14在直线l 上求两点M N 、(M在左),使得MN =a ,并使AM MN NB ++最短将B 向左平移a 个单位到B ′,对称A 到A′,连接A′B′与l 交点即为M ,右平移a 个单位即为N.两点之间,线段最短.AM MN NB ++的最小值为A′B′+MN .在OA 上求点M ,在OB 上求点B ,使PM+PN 值最小.作点P 关于OA 的对称点P ′,作P ′N ⊥OB 于点N ,交OA 于点M.点到直线,垂线段最短.PA+AB 的最小值为线段P ′N 的长.P ,Q 为OA ,OB 的定点,在OA ,OB 上求作点M ,N ,使PN +NM +MQ 的值最小.作点P 关于OA 的对称点P ′,作点Q 关于OB 的对称点Q ′,连P ′Q′交OA 于点M ,交OB 于点N.两点之间,线段最短. PN +NM +MQ 最小值为线段P′Q′的长.在直线l 上求作点P ,使|PA -PB|的值最小.连AB ,作AB 的垂直平分线与直线l 的交点即为P.垂直平分线上的点到线段两端的距离相等.|PA -PB|最小为0.在直线l 上求作点P ,使|PA -PB|的值最大.作直线AB ,与直线l 的交点即为P.三角形任意两边之差小于第三边. |PA -PB|最大值即为AB 长.在直线l 上求点P ,使AP BP -最大 作点B 关于l 的对称点B ′,作直线'AB ,与l 的交点即为点P .三角形任意两边之差小于第三边. |AP −BP |最大值即为AB′.3 / 14二、垂线段最值问题作法图形原理在直线l 上求作点P ,使线段AP 的值最小. 过点A 作AP ′⊥l于点P ′.连结直线外一点和直线上各点的所有线段中,垂线段最短. AP ′即为最小值.三、轨迹问题问题作法图形原理如图,在Rt△ABC 中,∠ACB=90°,AC=4,BC=6,点D 是边BC 的中点,点E 是边AB 上的任意一点(点E 不与点B 重合),沿DE 翻折△DBE 使点B 落在点F 处,连接AF ,则线段AF 长的最小值是________.由翻折得到,DF=DB=3.所以点F 在以点D 为圆心以3为半径的圆上.连接A 与圆心D ,AD 与圆的交点即为F'所以AF 的最小值是AD-DF'=5-3=2.利用“画圆”来确定动点问题解决最值问题. 如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE=DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是________.取AB 的中点O ,连接OH 、OD ,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD ,然后根据三角形的三边关系可知当O 、D 、H 三点共线求线段的最大值与最小值需要将该条线段转化到一个三角形中,在该三角形中,其他两边是已知的,则所求线段的最大值为其他两线段之和,最小时,DH的长度最小.值为其他两线段之差.4/ 14巩固练习类型一、将军饮马问题1.如图,在Rt△ABC中∠ACB=90°,AC=BC=8,CD=2,点P是AB上的一的动点,求:PC+PD的最小值。
中考数学专题复习-例说线段的最值问题 (共62张)
MA MD 1 AD 1,FDM 60. 2
A
N
B
解答过程:
F M D 3 0 , F D = 1 M D = 1 .
2
2
FM =MD cos30= 3 . 2
MC = FM 2+CF 2 = 7.
A 'C = M C M A ' = 7 1.
FD
C
M
A‘'
A
N
B
小结:
“关联三角形”的另外两条边尽可能长度已知(或 可求),再利用三角形三边关系求解,线段取得最值时 ,“关联三角形”不存在(三顶点共线).
解答过程:
连接OC交e O于点P,此时PC最小. 在RtBCO中, Q BC=4,OB=3, OC=5,PC=OC OP=2. 即PC最小值为2.
小结:
此道作业题构造“辅助圆”的突破口在于发现动点与 两定点连线的夹角为确定值;若点P在△ABC外部,则CP 长存在最大值;若∠APB为非直角时,则作△ABP的外接 圆,此时AB为非直径的弦.
'
2
2
2
在 R t C D D '中 ,
C D '= C D 2 D D '2 3 2 4 2 5 , 即 PC PD的 最 小 值 为 5.
小结:
1. 本题从形的角度得到点P的位置,再从数的角度计算 出点P的坐标,进而得到最小值.这正是体现了数形结合 的重要性.
典型例题2:
D
C
M
A‘'
,52
),B(4,m)两点,点P是线段AB上异于A,B的动点
,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的表达式.
y
线段最值问题
AB C D N M【通过做对称求出最小值】1.在边长为2cm 的正方形ABCD 中, 点Q 为BC 边的中点, 点P 为对角线AC 上一动点, 连接PB.PQ, 则△PBQ 周长的 最小值为 cm.2.如图所示, 正方形ABCD 的面积为12, △ABE 是等边三角形, 点E 在正方形ABCD 内, 在对角线AC 上有一点P, 使PD +PE 的和最小, 则这个最小值为________3.已知四边形ABCD 为菱形, ∠BAD =60°, E 为AD 中点, AB =6㎝, P 为AC 上任一点.求PE+PD 的最小值是 .【变式】在菱形ABCD 中, 对角线AC=6, BD=8, 点E 、F 分别是边 AB.BC 的中点, 点P 在AC 上运动, 在运动过程中, 存在PE+PF 的最小值, 则这个最小值是 .【模拟练习】1.如图, 在锐角△ABC 中, AB=4, ∠BAC=45°, ∠BAC 的平分线交BC 于点D, M 、N 分别是AD 和AB 上的动点, 则BM+MN 的最小值是 .第1题 DE BPA2.如图, 在五边形ABCDE 中, ∠BAE =120°, ∠B =∠E =90°, AB =BC =1, AE =DE =2, 在BC.DE 上分别找一点M 、N, 使△AMN 的周长最小, 则△AMN 的最小周长为__________3.如图6, AB 是⊙O 的直径, AB=8, 点M 在⊙O 上, ∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点, 若MN=1, 则△PMN 周长的最小值为__________4.如图, 点P 是∠AOB 内任意一点, OP=5cm, 点M 和点N 分别是射线OA 和射线OB 上的动点, △PMN 周长的最小值是5cm, 则∠AOB 的度数是( )A. 25°B. 30°C. 35°D. 40°5.菱形ABCD 在平面直角坐标系中的位置如图所示, 顶点B (2, 0), ∠DOB=60°, 点P 是对角线OC 上一个动点, E (0, ﹣1), 当EP+BP 最短时, 点P 的坐标为 .6.如图, 在边长为2的等边△ABC 中, D 为BC 的中点, E 是AC 边上一点, 则BE+DE 的最小值为___________BADE MCN第2题7、如图, ∠AOB=30°, 点M、N分别是射线OA.OB上的动点, OP平分∠AOB, 且OP=6, 当△PMN 的周长取最小值时, 四边形PMON的面积为.8、如图, ∠AOB=30°, 点M、N分别在边OA.OB上, 且OM=1, ON=3, 点P、Q分别在边OB.OA 上, 则MP+PQ+QN的最小值是_________9、如图, 矩形ABCD中, AB=2, BC=3, 以A为圆心, 1为半径画圆, E是⊙A上一动点, P是BC上的一动点, 则PE+PD的最小值是.【通过三角形三边关系或圆求最值】如图, ∠MON=90°, 矩形ABCD的顶点A.B分别在边OM, ON上, 当B在边ON上运动时, A随之在边OM上运动, 矩形ABCD的形状保持不变, 其中AB=2, BC=1, 运动过程中, 点D到点O的最大距离为_________2.如图, ∠MON=90°, 边长为2的等边三角形ABC的顶点A.B分别在边OM, ON上当B在边ON上运动时, A随之在边OM上运动, 等边三角形的形状保持不变, 运动过程中, 点C到点O的最大距离为_______3.如图, 正方形ABCD中, AB=2, 动点E从点A出发向点D运动, 同时动点F从点D出发向点C运动, 点E、F运动的速度相同, 当它们到达各自终点时停止运动, 运动过程中线段AF、BE相交于点P, M 是线段BC上任意一点, 则MD+MP的最小值为.4.如图, 在平行四边形ABCD中, ∠BCD=30°, BC =4, CD= , M是AD边的中点, N是AB边上的一动点, 将△AMN沿MN所在直线翻折得到△A′MN, 连接A′C, 则A′C长度的最小值是__________.5.如图, 在矩形中, AB=4, AD=6, E是AB边的中点, F是线段BC边上的动点, 将△EBF沿EF所在直线折叠得到△EB’F, 连接B’D, 则B’D的最小值是____________6.如图, 在△ABC中, ∠ACB=90°, AB= 5, BC=3, P是AB边上的动点(不与点B重合), 将△BCP 沿CP所在的直线翻折, 得到△B′CP, 连接B′A, 则B′A长度的最小值是.1、【通过点到直线距离, 垂线段最短求最小值】已知点D与点A(8, 0), B(0, 6), C(a, ﹣a)是一平行四边形的四个顶点, 则CD长的最小值为___________2、如图, 已知直线与x轴、y轴分别交于A、B两点, P是以C(0, 1)为圆心, 1为半径的圆上一动点, 连结PA、PB.则△PAB面积的最大值是()A. 8B. 12C.D.3、如图, 在平面直角坐标系xOy中, 直线AB经过点A(-4, 0)、B(0, 4), ⊙O的半径为1(O为坐标原点), 点P在直线AB上, 过点P作⊙O的一条切线PQ, Q为切点, 则切线长PQ的最小值为()2A. 15B. 3C. 7D.24.如图, 在△ABC中, AB = 10, AC = 8, BC = 6, 经过点C且与AB相切的动圆与CB.CA分别相交于点E、F, 则线段EF长度的最小值是( )A. B. 4.75 C. 4.8 D. 5【将图形展开后求线段最短】1.如图, 圆柱形玻璃杯高为12cm、底面周长为18cm, 在杯内离杯底4cm的点C处有一滴蜂蜜, 此时一只蚂蚁正好在杯外壁, 离杯上沿4cm与蜂蜜相对的点A处, 则蚂蚁到达蜂蜜的最短距离为___________cm【高中基本不等式】1.张华在一次数学活动中, 利用“在面积一定的矩形中, 正方形的周长最短”的结论, 推导出“式子(x>0)的最小值是2”. 其推导方法如下: 在面积是1的矩形中设矩形的一边长为x, 则另一边长是, 矩形的周长是2();当矩形成为正方形时, 就有x= (x>0), 解得x=1, 这时矩形的周长2()=4最小, 因此(x>0)的最小值是2. 模仿张华的推导, 你求得式子(x>0)的最小值是___________【其它】1.如图, 已知直线l与⊙O相离, OA⊥l于点A, OA=5, OA与⊙O相交于点P, AB与⊙O相切于点B, BP 的延长线交直线l于点C, 若在⊙O上存在点Q, 使△QAC是以AC为底边的等腰三角形, 则⊙O的半径的最小值是()A....B.....C...D.2、如图, 正方形ABCD的边长为1, 中心为点O, 有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转, 在旋转过程中, 这个正六边形始终在正方形ABCD内(包括正方形的边), 当这个六边形的边长最大时, AE的最小值为____________3.如图, AB=10, C是线段AB上一点, 分别以AC.CB为边在AB的同侧作等边△ACP和等边△CBQ, 连结PQ, 则PQ的最小值是()A. 5B. 6C. 3D. 44、如图, 点A, B的坐标分别为(1, 4)和(4, 4), 抛物线y=a (x﹣m)2+n的顶点在线段AB上运动, 与x轴交于C、D两点(C在D的左侧), 点C的横坐标最小值为﹣3, 则点D的横坐标最大值为.5.如图, △ABC.△EFG均是边长为2的等边三角形, 点D是边BC.EF的中点, 直线AG、FC相交于点M. 当△EFG绕点D旋转时, 线段BM长的最小值是()A.B.C.D.136.在平面直角坐标系xOy中, 以原点O为圆心的圆过点A(13, 0), 若直线y=kx-3k+4与⊙O交于B, C两点, 则弦BC的长的最小值为_______.7、在⊙O中, 圆的半径为6, ∠B=30°, AC是⊙O的切线, 则CD的最小值是()A. 1B. 3C.D. 28、如图, 已知A.B两点的坐标分别为(2, 0)、(0, 2), ⊙C的圆心坐标为(﹣1, 0), 半径为1. 若D是⊙C上的一个动点, 线段DA与y轴交于点E, 则△ABE面积的最小值是()A. 2B. 1C.D.9、如图, AB是⊙O的一条弦, 点C是⊙O上一动点, 且∠ACB=30°, 点E、F分别是AC、BC的中点, 直线EF与⊙O交于G、H两点.若⊙O的半径为7, 则GE+FH的最大值为.第7题第8题第9题【构造三角形】1.如图, 一条笔直的公路l 穿过草原, 公路边有一消防站A, 距离公路5千米的地方有一居民点B, A.B 的直线距离是13千米.一天, 居民点B 着火, 消防员受命欲前往救火, 若消防车在公路上的最快速度是80千米/小时, 而在草地上的最快速度是40千米/小时, 则消防车在出发后最快经 小时可到达居民点B.(友情提醒: 消防车可从公路的任意位置进入草地行驶.)2.如图, 菱形ABCD 的对角线AC 上有一动点P, BC =6, ∠ABC =150°, 则线段AP +BP +PD 的最小值为3.问题情境:如图1, P 是⊙O 外的一点, 直线PO 分别交⊙O 于点A.B, 则PA 是点P 到⊙O 上的点的最短距离. 探究:请您结合图2给予证明; 归纳:圆外一点到圆上各点的最短距离是: 这点到连接这点与圆心连线与圆交点之间的距离. 图中有圆, 直接运用:如图3, 在Rt △ABC 中, ∠ACB=90°, AC=BC=2, 以BC 为直径的半圆交AB 于D, P 是弧CD 上的一个动点, 连接AP, 则AP 的最小值是 . 图中无圆, 构造运用:如图4, 在边长为2的菱形ABCD 中, ∠A=60°, M 是AD 边的中点, N 是AB 边上一动点, 将△AMN 沿MN 所在的直线翻折得到△A ′MN, 连接A ′C, 请求出A ′C 长度的最小值.解: 由折叠知A ′M=AM, 又M 是AD 的中点, 可得MA=MA'=MD, 故点A'在以AD 为直径的圆上. 如图8, 以点M 为圆心, MA 为半径画⊙M, 过M 作MH ⊥CD, 垂足为H, (请继续完成下列解题过程) 迁移拓展, 深化运用:如图6, E, F 是正方形ABCD 的边AD 上两个动点, 满足AE=DF. 连接CF 交BD 于点G, 连接BE 交AG 于点H. 若正方形的边长为2, 则线段DH 长度的最小值是 .2.如图, 在△ABC 中, AB =13, BC =14, AC =15.(1)探究: 如图1, 作AH ⊥BC 于点H, 则AH = , △ABC 的面积 = .(2)拓展:如图2, 点D 在边AC 上(可与点A, C 重合), 分别过点A 、C 作直线BD 的垂线, 垂足为E, F, 设BD =x, AE +CF =y.①求 y 与x 的函数关系式, 并求y 的最大值和最小值;②对给定的一个x 值, 有时只能确定唯一的点D, 请求出这样的x 的取值范围.AAD F EABCD P(第2题)3.如图, 等腰梯形ABCD中, AD∥BC, ∠B=45°, P是BC边上一点, △PAD的面积为, 设AB=x, AD =y(1)求y与x的函数关系式;(2)若∠APD=45°, 当y=1时, 求PB•PC的值;(3)若∠APD=90°, 求y的最小值.4.图1, 图2为同一长方体房间的示意图, 图2为该长方体的表面展开图.(1)蜘蛛在顶点处①苍蝇在顶点B处时, 试在图1中画出蜘蛛为捉住苍蝇, 沿墙面爬行的最近路线;②苍蝇在顶点C处时, 图2中画出了蜘蛛捉住苍蝇的两条路线, 往天花板ABCD爬行的最近路线和往墙面爬行的最近路线, 试通过计算判断哪条路线更近?(2)在图3中, 半径为10dm的⊙M与相切, 圆心M到边的距离为15dm, 蜘蛛P在线段AB上, 苍蝇Q在⊙M的圆周上, 线段PQ为蜘蛛爬行路线。
中考数学压轴题专项汇编专题旋转之求线段最值
专题7 旋转之求线段最值破解策略用旋转思想解决线段最值问题的本质用三角形三边关系解决问题如图,线段OA , OB 为定长,则A , B , O 三点共线时,AB 取得最值: 当点B 位于处B 1时,AB 取得最小值OA -OB ;当点B 位于B 2处时,AB 取得最大值OA +O B .最大值最小值B 1OB 2AB常见的题型有:1. 如图,Rt △ABC 大小固定,其中∠ABC =90°,点A , B 分别在互相垂直的直线m , n 上滑 动.n mO BAC取AB 中点D , 连接OD , C D . 当O , C , D 三点共线时,OC 取得最大值OD +C D .mn D OBAC2. 如图,等边△ABC 大小固定,点A , B 分别在互相垂直的直线m , n 上滑动.mn CO BA取AB 中点D , 连接OD , C D . 当O , C , D 三点共线时,OC 取得最大值OD +C D .n mD CO B A3. 如图,Rt △ABC 大小固定,其中∠ABC =90°,点A , B 分别在互相垂直的直线m , n 上滑动.n OB AC取AB 中点D , 连接OD , C D . 当O , C , D 三点共线时,OC 取得最小值|CD –OD |.mn D OB AC例题讲解例1.已知Rt△ABC中,∠ACB=90°,tan∠BAC=12.若BC=6,点D在边AC的三等分点处,将线段AD绕A点旋转,E始终为BD的中点,求线段CE长度的最大值.解:在Rt△ABC中,AC=tan BCBAC=12,AB=①如图1,当AD=13AC时,取AB的中点F,连接EF和CF,则CF=12AB=,EF=12AD=2.所以当且仅当C,E,F三点共线且点F在线段CE上时,CE最大,此时CE=CF+EF=2+图1②如图2,当AD=23AC时,同理可得CE的最大值为4+.综上可得,当点D在靠近点C的三等分点处时,线段CE的长度的最大值为4+图2例2 以平面上一点O 为直角顶点,分别画出两个直角三角形,记作△AOB 和△COD ,其中∠ABO =30°.如图,若BO =33,点N 在线段OD 上,且NO =2,P 是线段AB 上的一个动点,在将△AOB 绕点O 旋转的过程中,线段PN 长度的最小值为________,最大值为________.BCDPNO A解:332-2;33+2. 过点O 作OE ⊥AB 于点E ,则OE =12OB =332.故当点P 在点E 处时,OP 长度取最小值332;当点P 在点B 处时,OP 长度取最大值33.A O NPDBCE①当△AOB 绕点O 旋转到O ,E ,D 三点共线,且点E 在线段OD 上时,PN 取最小值,即OE -ON =332-2; E (P )CDO A BN②当△AOB 绕点O 旋转到O ,B ,D 三点共线,且点B 在线段DO 的延长线上时,PN 取最大值,OB +ON =332.所以线段PN 长度的最小值为33-2,最大值为332.B (P )ODC AN进阶训练1. 已知△AOB 和△COD 是等腰三角形,其中BA =BO =2,CD =CO =3,∠ABO =∠DCO .连结AD ,BC ,M ,N 分别为OA ,BC 的中点.若固定△AOB ,将△COD 绕点O 旋转,求MN 的最大值.NMABCDO【答案】52. 【提示】如图,取OB 的中点E ,连结EM ,EN ,则EM ,EN 为定值,当点E 在线段MN 上时,MN 取最大值.EODCBAM N2. 已知:在R t △ABC 中,∠BAC =90°,AC =AB =4,D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE 绕点A 旋转,得到等腰Rt △AD 1E 1,记直线BD 1与CE 1的交点为P . (1)设BC 的中点为M ,求线段PM 的长; (2)求点P 到AB 所在直线的距离的最大值.E 1D 1A BC DEP【答案】(1)22;(2)13【提示】(1)易证△E 1AC ≌△D 1AB ,所以∠E 1CA =∠D 1BA ,从而可得∠BPC =∠BAC =90°,所以PM =12BC =22. MPEDC BA D 1E 1(2)由题意知,点D 1,E 1在以A 为圆心、AD 为半径的圆上,而点P 在直线BD 1上,所以当直线BD 1与⊙A 相切时,点P 到AB 的距离最大.此时四边形AD 1PE 1是正方形,即PD 1=AD 1=2.如图,作PG ⊥AB 于点G ,解Rt △PGB 即可.G P EDC BA D 1E 13. 已知:正方形ABCD 的边长为1,P 为正方形内的一个动点,若点M 在AB 延长线上,且满足△PBC ∽△PAM ,延长BP 交AD 的延长线于点N ,连结CM ,是否存在满足条件的点P ,使得PC =12?请说明理由. A B CDPMN【答案】不存在满足条件的点P ,使得PC =12. 【提示】因为△PBC ∽△PAM ,可得∠ABP +∠PAM =∠ABP +∠PBC =90°,所以AP ⊥BN .以AB 为直径,作半圆O ,连结OC ,OP ,则OP +PC ≥OC ,从而PC ≥512,所以不存在满足条件的点P ,使得PC =12.O N MPDCB A。
2020年中考数学选择填空压轴题汇编最值问题含解析
2020年中考数学选择填空压轴题汇编:最值问题1.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2 2 .【解答】解:如图,连接BE,BD.由题意BD2,∵∠MBN=90°,MN=4,EM=NE,∴BE MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为22.故答案为22.2.(2020•玉林)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A.﹣4 B.0 C.2 D.6【解答】解:∵把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y =﹣a(x﹣1)2+4a,∴原二次函数的顶点为(1,﹣4a),∴原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,∴b=﹣2a,c=﹣3a,∵(m﹣1)a+b+c≤0,∴(m﹣1)a﹣2a﹣3a≤0,∵a>0,∴m﹣1﹣2﹣3≤0,即m≤6,∴m的最大值为6,故选:D.3.(2020•河南)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′2,的长l,∴阴影部分周长的最小值为2.故答案为:.4.(2020•鄂州)如图,已知直线y x+4与x、y轴交于A、B两点,⊙O的半径为1,P为AB上一动点,PQ切⊙O于Q点.当线段PQ长取最小值时,直线PQ交y轴于M点,a为过点M的一条直线,则点P到直线a的距离的最大值为2.【解答】解:如图,在直线y x+4上,x=0时,y=4,当y=0时,x,∴OB=4,OA,∴tan∠OBA,∴∠OBA=30°,由PQ切⊙O于Q点可知:OQ⊥PQ,∴PQ,由于OQ=1,因此当OP最小时PQ长取最小值,此时OP⊥AB,∴OP OB=2,此时PQ,BP2,∴OQ OP,即∠OPQ=30°,若使点P到直线a的距离最大,则最大值为PM,且M位于x轴下方,过点P作PE⊥y轴于点E,∴EP BP,∴BE3,∴OE=4﹣3=1,∵OE OP,∴∠OPE=30°,∴∠EPM=30°+30°=60°,即∠EMP=30°,∴PM=2EP=2.故答案为:2.5.(2020•荆门)在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动,A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为()A.2B.2C.6D.3【解答】解:设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴AC+BD,∴要求AC+BD的最小值,相当于在x轴上找一点P(m,0),使得点P到M(0,2)和N(﹣2,4)的距离和最小,(PM+PN),如图1中,作点M关于原点O的对称点Q,连接NQ交x轴于P′,连接MP′,此时P′M+P′N的值最小,∵N(﹣2,4),Q(0,﹣2)P′M+P′N的最小值=P′N+P′M=P′N+P′Q=NQ2,∴AC+BD的最小值为2.故选:B.6.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为2 .【解答】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD=4,OE=3,∴DE5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴,∴,∴MN,当点C与C′重合时,△C′DE的面积最小,最小值5×(1)=2,故答案为2.7.(2020•徐州)在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为99 .【解答】解:作△ABC的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM AB3,∴OA3,∴CM=OC+OM=33,∴S△ABC AB•CM6×(33)=99.故答案为:99.8.(2020•扬州)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为9.【解答】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4,∵四边形ECGF是平行四边形,∴EF∥CG,∴△EOD∽△GOC,∴,∵DF DE,∴,∴,∴,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4,∴GO=5,∴EG的最小值是,故答案为:9.9.(2020•聊城)如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为4+2.【解答】解:∵点A(1,1),点C的纵坐标为1,∴AC∥x轴,∴∠BAC=45°,∵CA=CB,∴∠ABC=∠BAC=45°,∴∠C=90°,∵B(3,3)∴C(3,1),∴AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,则EF=BC=2,AF=6﹣2=4,∴AE2,∴最小周长的值=AC+BC+AE=4+2,故答案为:4+2.10.(2020•泰安)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A. 1 B.C.2 1 D.2【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=21,∴OM CD,即OM的最大值为;故选:B.11.(2020•乐山)如图,在平面直角坐标系中,直线y=﹣x与双曲线y交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.B.C.﹣2 D.【解答】解:点O是AB的中点,则OQ是△ABP的中位线,当B、C、P三点共线时,PB最大,则OQ BP最大,而OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,解得:m2,∴k=m(﹣m),故选:A.12.(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15 .【解答】解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB10,∵A′H⊥AB,∴AH=HB=5,∴A′H AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.13.(2020•新疆)如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为 6 .【解答】解:如图所示,作点A关于BC的对称点A',连接AA',A'D,过D作DE⊥AC于E,∵△ABC中,∠BAC=90°,∠B=60°,AB=2,∴BH=1,AH,AA'=2,∠C=30°,∴Rt△CDE中,DE CD,即2DE=CD,∵A与A'关于BC对称,∴AD=A'D,∴AD+DE=A'D+DE,∴当A',D,E在同一直线上时,AD+DE的最小值等于A'E的长,此时,Rt△AA'E中,A'E=sin60°×AA'23,∴AD+DE的最小值为3,即2AD+CD的最小值为6,故答案为:6.。
高思导引--四年级第二十三讲-最值问题一教师版汇编
学习-----好资料第23讲最值问题一内容概述求最大值与最小值的问题,解题时宜首先考虑起主要作用的量,有时还需要局部调整或者枚举各种可能情形.和为定值的两数的乘积随着两数之差的增大而减小.典型问题兴趣篇1.3个连续奇数相乘,所得乘积的个位数字最小可能是多少?答案:3分析:乘积的个位数字是由这三个奇数的个位数字决定的。
个位数字可能是:1、3、5、7、9。
通过试验个位是7、9、1的三个连续奇数相乘满足条件,7×9×1=63个位最小是3.2. 用1、2、4可以组成6个没有重复数字的三位数,这些三位数中相差最小的两个数之差是多少?答案:9分析:要使两个数差最小百位数字相同十位与个位数字相近。
满足条件的是412和421.差是421-412=9.3. 用24根长l厘米的火柴棒围成一个矩形,这个矩形的面积最大是多少?如果用22根火柴棒呢?答案:36平方厘米;30平方厘米。
分析:(1)矩形的周长是24厘米。
长和宽的和:24÷2=12(厘米)和为定值的两数的乘积随两数之差的增大而减少。
和是12更多精品文档.学习-----好资料的两数差为0是积最大。
这两个数相等都是6.即长和宽相等面积是6×6=36(平方厘米)。
(2)周长是22厘米。
长和宽的和是22÷2=11(厘米)和是11差是0时,这样的两个数不是整数。
差是1时两数分别为6和5.积是30.4.三个自然数的和是19,它们的乘积最大可能是多少?答案:252分析:和一定差越小积越大。
19÷3=6……1,6+6+6=18再加1得19,三个数分别是6、6、7时积最大。
最大是6×6×7=252. 5.(1)请将l、2、3、4填人算式“口口×口口”的方格中.要使得算式结果最大,应该怎么填?(2)请将1、2、3、4、5、6填人算式“口口口×口口口”的方格中.要求5、6分别填在百位,4、3分别填在十位,1、2分别填在个位,并使得算式结果最大.应该怎么填?答案:(1)41×32 (2)542×631分析:(1)要使积最大,两个数应尽量大所以4、3分别在十位,1、2在个位。
线段的最大值与最小值的解题策略
中点,求线段 CF 长度的最大值.
A
A
A
D
E
E
D
F F
C
B
图1
C
B
C
B
图2
备图
课堂练习 (西城 8)如图,在△ ABC 中,∠ C=90 °, AC=4,BC=2 ,点 A、C
分别在 x 轴、 y 轴上,当点 A 在 x 轴上运动时,点 C 随之在 y 轴 上运动,在运动过程中,点 B 到原点的最大距离是
A. 2 2 2
B. 2 5 C。 2 6
D. 6
三、线段差的问题
已知两点 A 、 B 与直线 l ( AB 与 l 不平行且在 l 同侧),动点 P
在 l 上,求 PA PB 。 max
连接 AB 并延长交直线 l 于点 P,则点 P 为所求最大值时所取的点, AB PA PB 。 max
先阅读下面材料,然后解答问题: (本小题满分 10 分)
2)为双曲线上的一点, Q 为坐标平面上一动点, PA 垂直于 x 轴, QB 垂直于 y 轴,垂足分
别是 A、B.
( 1)写出正比例函数和反比例函数的关系式;
( 2)当点 Q 在直线 MO 上运动时,直线 MO 上是否存在这样的点 Q,使得 △ OBQ 与
△OAP 面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
大,求出点 M 的坐标。
变式 11、如图,已知点
A(- 4, 8)和点 B(2, n)在抛物线 y
2
ax
上.
(1) 求 a 的值及点 B 关于 x 轴对称点 P 的坐标,并在 x 轴上找一点 Q,使得 AQ+QB 最短,
中考数学线段最值问题常见的解题方法及步骤
中考数学线段最值问题常见的解题方法及步骤
当前,我们在解决线段最值问题时,困难主要有两个方面:一是对解决这类问题常用的几种数学模型认识不充分,掌握不到位;二是这类问题一般是以动态形式呈现的,使我们难以掌握运动中的数量关系而导致无法入手.下面我们主要探究如何利用数学模型求线段最值的问题.
其中,最常用的三种数学模型:从“形”的角度构造“两点之间线段最短”和“垂线段最短”这两种几何模型;从“数”的角度建立函数模型来进行分析.
类型一、运用“两点之间线段最短”模型
类型二、运用“垂线段最短”模型
类型三、建立函数模型探究
运动问题中的一些量是有关联的,运动中总隐含有常量和变量,可以通过函数来捕捉运动中的各个量,建立函数模型来准确刻画量与量之间的关系.
“模型思想”新课程标准新增的核心概念,“模型思想”作为核心概念之一,第一次以“基本数学思想”的身份出现.这意味着“建立数学模型”这一意识和要求被明显强化,模型思想作为一种基本的数学思想更是会与目标、内容、考查紧密关联。
所以,我们要深刻体会模型思想,了解数学模型的“形成—建立—求解”全过程,在过程中体会和掌握数学中常用的、重要的基本模型.。
直线与圆中最值问题全梳理
直线与圆中最值问题全梳理教师专用模块一、题型梳理题型一 直线与圆与平面向量相结合的最值问题例题1: 已知等边△ABC 内接于圆τ:x 2+ y 2=1,且P 是圆τ上一点,则()PA PB PC ⋅+的最大值是( )AB .1CD .2【分析】如图所示建立直角坐标系,设()cos ,sin P θθ,则(1)cos PA PB PC θ⋅+=-,计算得到答案.【解析】如图所示建立直角坐标系,则1,0A ,12⎛- ⎝⎭B ,1,2C ⎛- ⎝⎭,设()cos ,sin P θθ,则(1cos ,sin )(12cos ,2si (n ))PA PB PC θθθθ=--⋅--⋅+-222(1cos )(12cos )2sin 2cos cos 12sin 1cos 2θθθθθθθ=---+=--+=-≤.当θπ=-,即()1,0P -时等号成立.故选:D .【小结】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.例题2: 已知在平面直角坐标系xOy 中,O 为坐标原点,()0,2A ,2220OB OA +=,若平面内点P 满足3PB PA =,则PO 的最大值为( ) A .7B .6C .5D .4【分析】设(),P x y ,(),B m n ,根据3PB PA =可得262m x n y=-⎧⎨=-⎩,再根据2220OB OA +=可得点P 的轨迹,它一个圆,从而可求PO 的最大值.【解析】设(),P x y ,(),B m n ,故(),PB m x n y =--,(),2PA x y =--.由3PB PA =可得363m x xn y y-=-⎧⎨-=-⎩,故262m x n y=-⎧⎨=-⎩,因为2220OB OA +=,故()22443420x y +-+=,整理得到()2234x y +-=,故点P 的轨迹为圆,其圆心为()0,3,半径为2,故PO 的最大值为325+=,故选:C.【小结】本题考查坐标平面中动点的轨迹以及圆中与距离有关的最值问题,一般地,求轨迹方程,可以动点转移法,也可以用几何法,而圆外定点与圆上动点的连线段长的最值问题,常转化为定点到圆心的距离与半径的和或差,本题属于中档题.题型二 直线与圆与基本不等式相结合的最值问题例题3: 直线240ax by ++=与圆224210x y x y ++++=截得的弦长为4,则22a b +的最小值是( )A .3B .2CD .1【分析】根据题意知直线过圆心得到2a b +=,再利用均值不等式计算得到答案.【解析】224210x y x y ++++=,即()()22214x y +++=,圆心为()2,1--,半径为2.弦长为4,则直线过圆心,即2240a b --+=,即2a b +=.()()()22222222a b a b ab a a b b +=+-≥+-=+,当1a b ==时等号成立.故选:B .例题4: 点(),M x y 在曲线C :224210x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若,a b R +∈,则111a b++的最小值为( ) A .2B .12C .3D .1【分析】首先可确定曲线C 表示圆心为2,0,半径为5的圆;令d =2222t d a =--;d 的最大值为半径与圆心到点()6,6-的距离之和,利用两点间距离公式求得max d ,代入t 中利用最大值为b 可求得14a b ++=,将所求的式子变为()111111141a b a b a b ⎛⎫+=+++ ⎪++⎝⎭,利用基本不等式求得结果.【解析】曲线C 可整理为:()22225x y -+=,则曲线C 表示圆心为2,0,半径为5的圆()()2222+121215066222t x y x y a x y a =+---=++---,设d =d 表示圆上的点到()6,6-的距离,则max 515d ==,2max 15222t a b ∴=--=,整理得:14a b ++=,()111111*********b a a b a b a b a b +⎛⎫⎛⎫∴+=+++=⨯+++ ⎪ ⎪+++⎝⎭⎝⎭又121b a a b ++≥=+(当且仅当11b a a b +=+,即1a =,2b =时取等号) 1114114a b ∴+≥⨯=+,即111a b++的最小值为1,本题正确结果:1 题型三 直线与圆与抛物线相结合的最值问题例题5: 已知以圆()22:14C x y -+=的圆心为焦点的抛物线1C 与圆C 在第一象限交于A 点,B 点是抛物线:2:C 28x y =上任意一点,BM 与直线2y =-垂直,垂足为M ,则BM AB -的最大值为( )A .1B .2C .1-D .8【解析】因为()22:14C x y -+=的圆心()1,0,所以,可得以()1,0为焦点的抛物线方程为24y x =,由()222414y x x y ⎧=⎪⎨-+=⎪⎩,解得()1,2A ,抛物线22:8C x y =的焦点为()0,2F ,准线方程为2y =-, 即有1BM AB BF AB AF -=-≤=,当且仅当,,(A B F A 在,B F 之间)三点共线,可得最大值1。
2020中考数学复习分类汇编专题3:二次函数与线段及其最值问题(含答案)
专题:二次函数中的线段问题(含最值问题)1. 如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A ,B (1,0),与y 轴交于点C ,直线y = x -2经过点A 、C .抛物线的顶点为D ,对称轴为直线l .(1) 求抛物线的表达式、顶点D 的坐标及对称轴l ; (2) 设点E 为x 轴上一点,且AE =CE ,求点E 的坐标;(3) 设点G 是y 轴上一点,是否存在点G ,使得GD +GB 的值最小,若存在,求出点G 的坐标;若不存在,请说明理由;(4) 在直线l 上是否存在一点F ,使得△BCF 的周长最小,若存在,求出点F 的坐标及△BCF 周长的最小值;若不存在,请说明理由;(5) 点S 为y 轴上任意一点,K 为直线AC 上一点,连接BS ,BK ,是否存在点S ,K 使得△BSK 的周长最小,若存在,求出S ,K 的坐标,并求出△BSK 周长的最小值;若不存在,请说明理由;(6) 在y 轴上是否存在一点S ,使得SD -SB 的值最大,若存在,求出点S 的坐标;若不存在,请说明理由; (7) 若点H 是抛物线上位于AC 上方的一点,过点H 作y 轴的平行线,交AC 于点K ,设点H 的横坐标为h ,线段HK =d .①求d 关于h 的函数关系式; ②求d 的最大值及此时H 点的坐标.122. 如图,抛物线y=-x2-2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点D(m,0)为线段OA上一个动点(与点A,O不重合),过点D作x轴的垂线与线段AC交于点P,与抛物线交于点Q,连接BP,与y轴交于点E.(1)求A,B,C三点的坐标;(2)当点D是OA的中点时,求线段PQ的长;(3)在点D运动的过程中,探究下列问题:①是否存在一点D,使得PQ+22PC取得最大值?若存在,求此时m的值;若不存在,请说明理由;②连接CQ,当线段PE=CQ时,直接写出m的值.3. 如图,直线y =-34x +1与x 轴、y 轴分别交于A 、B 两点,抛物线y =-12x 2+bx +c 经过点B ,且与直线AB 的另一交点为C (4,n ).(1)求该抛物线的表达式及点C 的坐标;(2)设抛物线上的一个动点P 的横坐标为t (0<t <4),过点P 作PD ⊥AB 交直线AB 于点D ,作PE ∥y 轴交直线AB 于点E .①求线段PD 的长的最大值; ②当t 为何值时,点D 为BE 的中点.4. 已知抛物线y =ax 2+bx +2经过A (-1,0),B (2,0),C 三点.直线y =mx +12交抛物线于A ,Q 两点,点P 是抛物线上直线AQ 上方的一个动点,过点P 作PF ⊥x 轴,垂足为点F ,交AQ 于点N .(1)求抛物线的表达式;(2)如图①,在点P 运动过程中,当PN =2NF 时,求点P 的坐标;(3)如图②,线段AC 的垂直平分线交x 轴于点E ,垂足为点D ,点M 为抛物线的顶点,在直线DE 上是否存在一点G ,使△CMG 的周长最小?若存在,请求出点G 的坐标;若不存在,请说明理由.参考答案1. (1)解:对于直线y =21x -2, 令y =0,得x =4,令x =0,得y =-2, ∴点A (4,0),点C (0,-2),抛物线的解析式为y = -21x 2+25x -2 ∴顶点D 的坐标为(25,98 ),对称轴l 为直线x = 25(2)要求点E 的坐标,已知AE =CE ,设E 点坐标为(e ,0),用含e 的式子分别表示出AE 和CE ,建立等量关系求解即可.点E 的坐标为( 23,0)(3)要使GD +GB 的值最小,一般是通过轴对称作出对称点来解决. 解:存在.如解图②,要使GD +GB 的值最小,取点B 关于y 轴的对称点B ′,点B ′的坐标为(-1,0).连接B ′D ,直线B ′D 与y 轴的交点G 即为所求的点,点G 的坐标为(0, 289);(4)要使△BCF 周长最小,BC 长为定值,即要使CF +BF 的值最小.△BCF 周长的最小值为BC +AC =3 √5 ;(5)要求△BSK 周长的最小值,可分别作点B 关于y 轴和直线AC 的两个对称点B ′、B ″,连接B ′B ″与y 轴和直线AC 交点即为使得△BSK 的周长最小的点S 、K ,最小值即线段B ′B ″的长.存在点S (0,-43 ),点K (1, - 23 )使得△BSK 的周长最小,最小值为4;(6)当点S 在DB 的延长线上时,SD -SB 最大,最大值为BD , 即当点S 的坐标为(0,-43)时,SD -SB 的值最大;(7)平行于y 轴的直线上两点之间的距离为此两点的纵坐标之差的绝对值,如此问,由题可得点H 的横坐标为h ,①求出点H ,K 的纵坐标,再由点H 在点K 的上方,可得到d 关于h 的函数关系式;②利用二次函数的性质求最值,即可得d 的最大值及H 点的坐标.(1)d 关于h 的函数关系式为d =-21h 2+2h ; (2)当h =2时,d 最大,最大值为2,此时点H 的坐标为(2,1).参考答案2. 解:(1)在y =-x 2-2x +3中, 令y =0,得-x 2-2x +3=0, 解得x 1=-3,x 2=1. ∵点A 在点B 的左侧, ∴A (-3,0),B (1,0). 令x =0,得y =3, ∴点C 的坐标为(0,3);(2)设直线AC 的表达式为y =kx +b .将A ,C 两点的坐标(-3,0),(0,3)代入表达式,得⎩⎪⎨⎪⎧-3k +b =0,b =3,解得⎩⎪⎨⎪⎧k =1,b =3,∴直线AC 的表达式为y =x +3.(4分) ∵点D 是OA 的中点,∴OD =12OA =32,∴点D 的横坐标m =-32.∵PQ ⊥x 轴,∴把m =-32分别代入y =x +3和y =-x 2-2x +3,得P ,Q 两点的坐标分别为(-32,32)、(-32,154),∵DQ ⊥OA ,∴PQ =DQ -DP =y Q -y P . ∴PQ =154-32=94;(3)①存在点D ,使得PQ +22PC 取得最大值. 理由:∵点D 的横坐标为m ,PQ ⊥x 轴,且点P ,Q 分别在直线AC 和抛物线上, ∴P ,Q 两点的坐标分别为(m ,m +3),(m ,-m 2-2m +3). ∵DQ ⊥OA ,∴PQ =DQ -DP =y Q -y P ,∴PQ =-m 2-2m +3-(m +3)=-m 2-3m . 如解图,过点P 作PF ⊥y 轴于点F ,则PF =-m . 在Rt △AOC 中,OA =OC =3, ∴∠CAO =∠OCA =45°.∴sin ∠OCA =PF PC =22.∴PF =22PC ∴PQ +22PC =-m 2-3m -m =-m 2-4m =-(m +2)2+4, ∵PQ +22PC 是m 的二次函数,其中a =-1<0,而-3<m <0. ∴当m =-2时,PQ +22PC 取得最大值;②m =-1或m =- 5.【解法提示】∵△PFE ∽△BOE ,∴PF BO =EFEO.∵PF =-m ,OF =m +3,OB =1,∴EF =-mOE .∵OF =EF +OE ,∴m +3=(-m +1)OE ,则OE =m +3-m +1,EF =-m (m +3)-m +1,又∵CQ =PE ,PQ ∥CE ,∴|y Q -y C |=|y P -y E |=EF .∵|y Q -y C |=|-m 2-2m +3-3|=|m 2+2m |,∴-m (m +3)-m +1=|m 2+2m |.又∵-3<m <0,解得m =-1或m =- 5.3. 解:(1)把x =4,y =n 代入y =-34x +1中,得n =-34×4+1=-2∴点C 的坐标为(4,-2).将点C (4,-2)和点B (0,1)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧-8+4b +c =-2,c =1, 解得⎩⎪⎨⎪⎧b =54,c =1,∴抛物线的表达式为y =-12x 2+54x +1;(2)①∵PE =-12t 2+54t +1-(-34t +1)=-12t 2+2t ,如解图,过点E 作QE ⊥y 轴于点Q ,则QE =t , QB =1+34t -1=34t ,BE =QB 2+QE 2=(34t )2+t 2=54t ∵PE ∥y 轴, ∴∠PEB =∠EBQ , ∵∠BQE =∠PDE =90°, ∴△PED ∽△EBQ ,∴PE EB =PD EQ ,得-12t 2+2t 54t =PDt, PD =-25t 2+85t .∵-25<0,∴PD 有最大值, PD 最大=0-(85)24×(-25)=85;②∵点D 为BE 的中点,∴由PE EB =DE QB ,DE =12BE ,得12BE 2=PE ·QB ,代入得12×(54t )2=(-12t 2+2t )×34t ,整理得2532=-38t +32,解得t =2312,∴当t =2312时,点D 为BE 的中点.4. 解:(1)∵抛物线y =ax 2+bx +2经过A (-1,0),B (2,0),∴将点A 和点B 的坐标代入得⎩⎪⎨⎪⎧a -b +2=0,4a +2b +2=0,解得⎩⎪⎨⎪⎧a =-1,b =1,∴抛物线的表达式为y =-x 2+x +2;(2)直线y =mx +12交抛物线于A 、Q 两点,把A (-1,0)代入解析式得m =12,∴直线AQ 的表达式为y =12x +12.设点P 的横坐标为n ,则P (n ,-n 2+n +2),N (n ,12n +12),F (n ,0),∴PN =-n 2+n +2-(12n +12)=-n 2+12n +32,NF =12n +12.∵PN =2NF ,即-n 2+12n +32=2×(12n +12),解得n =-1或n =12,当n =-1时,点P 与点A 重合,不符合题意舍去.∴点P 的坐标为(12,94);(3)在直线DE 上存在一点G ,使△CMG 的周长最小;此时G (-38,1516).理由如下:∵y =-x 2+x +2=-(x -12)2+94,∴M (12,94).如解图,连接AM 交直线DE 于点G ,连接CG 、CM ,此时,△CMG 的周长最小. 设直线AM 的函数表达式为y =kx +b ,且过A (-1,0),M (12,94).根据题意得⎩⎪⎨⎪⎧-k +b =0,12k +b =94,解得⎩⎨⎧k =32,b =32.∴直线AM 的表达式为y =32x +32.∵D 为AC 的中点,∴D (-12,1).设直线AC 的表达式为y =kx +2,将点A 的坐标代入得-k +2=0,解得k =2, ∴AC 的表达式为y =2x +2.设直线DE 的表达式为y =-12x +c ,将点D 的坐标代入得:14+c =1,解得c =34,∴直线DE 的表达式为y =-12x +34.联立⎩⎨⎧y =-12x +34,y =32x +32,解得⎩⎨⎧x =-38,y =1516.∴在直线DE 上存在一点G ,使△CMG 的周长最小,此时G (-38,1516).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线段最值问题解法汇编
一、定点到定点⇒连线段
点P在直线l上,AP+BP何时最小?
二、定点到定线⇒作垂线
点P在直线l上,AP何时最小?
三、定点到定圆⇒连心线
点P在圆O上,AP何时最小?
线段最值问题一般转化为上述三个问题.
例题赏析:
1.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN的周长最小值为.
思路:把点P分别沿OA、OB翻折得P1、P2,周长即为P1M+MN+P2N,转化为求P1、P2两点之间最小值,得△PMN最小值为P1P2=OP=6.
2.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC 于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.
思路:点N沿AD翻折至AC上,BM+MN=BM+MN',转化为求点B到直线AC的连线最小值,即BN'⊥AC时,最小值为2√2.
3.如图,矩形ABCD中,AB=2,BC=3,以A为圆心、1为半径画圆,E是⊙A
上一动点,F是BC上的一动点,则FE+FD的最小值是.
思路:点D沿BC翻折至D',DF+EF=D'F+EF,转化为求点D'到圆A上各点的最小距离,易求D'E=4.
4.在菱形ABCD中,对角线AC=8,BD=6,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF 的最小
值,则这个最小值是 .
思路:点E沿AC翻折,转化为点到点的距离.(将军饮马问题实质就是通过翻折转化为定点到定点的问题)
5.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON 上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为 .
思路:取AB中点E,连接DE、OE,由两点间线段最短,得OD≤OE+DE,最大为1+√2.
6.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是.
思路:B'点运动路径为以C为圆心,BC为半径的圆弧,转化为点到圆的最短距离AC-B'C=1.
7.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是 .
思路:D是定点,C是直线AC上的动点,转化为求点到线的最短距离.
8.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上的动点,在△A'B'C绕点C顺时针旋转过程中,点F的对应点是F',求线段EF'长度的最大值与最小值的差.
思路:先确定线段A'B'的运动轨迹是圆环,外圆半径为BC,内圆半径为AB边上的高,F'是A'B'上任意一点,因此F'的运动轨迹是圆环内的任意一点,由此转化为点E到圆环的最短和最长距离.
E到圆环的最短距离为EF2=CF2-CE=4.8-3=1.8,E到圆环的最长距离为EF1=EC+CF1=3+6=9,其差为7.2.
问:何时需要作辅助线翻折其中的定点(定线或定圆)?
答:当动点所在直线不在定点(定线或定圆)之间时,需把定点(定线或定圆)沿动点所在直线翻折以使定点(定线或定圆)处于动点所在直线的两侧,从而便于连接相关线段或作垂线与动点所在直线找到交点.如上述例3,动点F所在直线不在定圆A和定点D之间,因而需把D点沿BC翻折至D',即可转化为定点D'到定圆A的最短距离,另外亦可把圆A沿BC翻折至另一侧,同样可以转化为定点D到定圆A'的最短距离,如下图.
关键方法:动中求定,动点化定线;以定制动,定点翻两边. (1)动中求定,动点化定线:如例7、例8、例10,动点所在路径未画出时需先画出动点所在轨迹,一般动点所在轨迹为线或圆. (2)以定制动,定点翻两边:如例1、例2、例3、例5,定点(线或圆)在动点所在直线同侧时需翻折至两侧,转化为上述三种关系.。