第三讲平面的投影及平面上的点和直线PPT课件

合集下载

第2章点直线和平面的投影PPT课件

第2章点直线和平面的投影PPT课件
闽 南
第2章 点.直线和平面的投影





2.1 正投影法的基本知识

与 机
2.2 点的投影
电 工
2.3 直线的投影
程 系
2.4 平面的投影
2.5 变换投影面法
闽 南 理 工 学 院





整体


概述

一 请在这里输入您的主要叙述内容

请在这里输入您的主要 叙述内容
三 请在这里输入您的主要叙述内容
Z
院 的坐标差来确定。
b'
光 电 与
左、右位置由X坐标差 确定。XA>XB,点A在点B
a'
机 的左方;

X

前、后位置由Y坐标差
程 系
确定;YA<YB,点A在点B
的后方;
a
a"
o
上、下位置由Z坐标差 确定。ZA<ZB,点A在点B 的下方。
b YH
b" YW
2. 重影点
闽 南
当空间两点的某两个 V
Z

2.1.1 投影的概述
南 理 工
投影法:投射线通过物体,向选定的面投射,并 在该面上得到图形的方法。

院 2.1.2 投影法的分类

电 1. 中心投影法:投射
与 机
线汇交与一点的投
电 影法。
工 程
2. 平行投影法:投射

线相互平行的投影
S
投射线
投影中心
投影面 B
C
A
投影对象
D
法。
b
c

平面的投影及平面上的点和直线

平面的投影及平面上的点和直线

b
m
a
n
b m
c
n c
a
例14 已知点E 在ABC平面上,且点E距离H面15,距离V 面 10,试求点E的投影。
b
r m
e
n
a s
10 15
X
c
b
n
r
s
e
c
m
a
二、平面内对投影面的最大斜度线。
平面内垂直于该投影面内任意一条投 影面平行线的直线,称为平面内对相应投影 面的最大斜度线。
new
平面内对投影面的最大斜度线有三种
1.垂直于平面内水平线的直线,是平面 内对水平面的最大斜度线。 2.垂直于平面内正平线的直线,是平面 内对正平面的最大斜度线。 3.垂直于平面内侧平线的直线,是平面 内对侧平面的最大斜度线。
new
平面内对投影面的最大斜度线用于 一般位置平面对投影面倾角的求法
平面P对水平面H 的最大斜度线

A

1 a
a d b c
b
c
ad
2. 迹线表示法
Z
PZ
Z
PZ
PV
X
O
PX
PH
PV
PW
X PX
O
PW
PYW YW
PY
PH
Y
YH PYH
1.5.2 各种位置平面的投影特性
1.投影的垂直面 (1) 铅垂面 (2)正垂面 (3)侧垂面 2.投影的平行面 (1)水平面 (2)正平面 (3)侧平面 3.一般位置平面
V
b
a
B
A
b a
一般位置平面
b
b
b
a
c
a

土木工程制图第三章点-直线和平面的投影PPT课件

土木工程制图第三章点-直线和平面的投影PPT课件
① 铅垂线与H面垂直同时与V面、W面平行。 ② 正垂线与V面垂直同时与H面、W面平行。 ③ 侧垂线与W面垂直同时与H面、V面平行。
(3)投影面垂直线的投影特点为:在它所垂直的投 影面上的投影积聚为一点,另外两个投影垂直 于相应的投影轴,如图3.15所示。
可编辑课件PPT
24
投影面垂直线
土木工程制图
ax
a●
解法二: 用圆规直接量 取aaz=aax
a● ax
a●
az
a

可编辑课件PPT
7
例2:已知点的两面投影,求第三 投影,如下图所示。
土木工程制图
(a) 已知
(b) 作图
分析:因为根据点的任意可编两辑面课件投PPT影可以求出第三投影。 8
四、特殊位置的点
土木工程制图
注意:A点的侧面投影a"应在OYW轴上,C点的水平投影
(b) 正平线
21
(c) 侧平线
投影面平行线投影特性
土木工程制图
水平线
a b Z a
Xa β γ b YH
实长
实长
b b α
YW X
b
正平线
a Z a
γ
b
侧平线
a
Z a
β
b
α
YW X a
a
b
YH
YH
与H面的夹角:α
实长
b
YW
与V面的夹角:β
投影特性
与W面的夹角:γ
1)在其平行的那个投影面上的投影反映实长, 并反映直线与另两投影面的真实倾角。
O b
a AB实长
△Z
△Z
A0 a′
OX
B0
a
YH

工程制图(第四版)第3章 点、直线和平面的投影PPT

工程制图(第四版)第3章 点、直线和平面的投影PPT
1.投影面平行线
平行于某一投影面,与另外两个投影面倾斜的直线
(1) 水平线 (2) 正平线 (3) 侧平线
2.投影面垂直线
垂直于某一投影面的直线
(1) 铅垂线 (2) 正垂线 (3) 侧垂线
3.一般位置直线
与三个投影面都倾斜的直线
水平线 — 平行于水平投影面的直线 z
Z
a b
a
b
a
b
A
a
X
O
YW
X
B O
b
a
a
b
Y
投影特性:1. ab OX ; ab OYW 3. 反映、 角的真实大小
b YH
2. ab=AB
正平线— 平行于正面投影面的直线
Z
Z
b
b
b
a
a
a
B
a
X
O
YW
A
b
X
O
a
b
a
b
Y
YH
投影特性: 1、ab OX ; a b OZ
2、a b=AB
3、反映、角的真实大小
侧平线— 平行于侧面投影面的直线
3、 a b = a b = AB
正垂线— 垂直于正面投影面的直线
ab
Z
z a
b
ab
A
a
X
O
YW
B
b
X
O
a
a b
b
Y
YH
投影特性: 1、 ab积聚 成一点
2 、 ab OX ; ab OZ
3 、 ab = ab =AB
侧垂线— 垂直于侧面投影面的直线
Z
a
b Z
ab

点直线平面的投影课件

点直线平面的投影课件

直线的投影
根据直线的方向和投影角度,确定 其在平面上的投影线。
点的轨迹
当点在直线上移动时,其在平面上 的投影点的轨迹形成一条直线。
直线与平面的投影问题解析
直线与平面的交点
根据直线的方向和平面的法线, 确定直线与平面的交点。
平面与直线的交线
根据平面的法线和直线的方向, 确定平面与直线的交线。
直线与平面的夹角
平行关系
如果直线与平面平行,则 它们的投影也平行。
点与平面的投影性 质
点与平面的相对位置关系
垂直关系
点与平面的相对位置关系可以通过其 投影在平面上的位置关系来反映。
如果点与平面垂直,则它们的投影也 垂直。
投影的特性
点与平面在空间中的位置关系,可以 通过其投影在平面上的位置关系来反 映。
03
点、直线和平面的投影应用
感谢观看
点在直线上的投影应用
确定点的投影
通过连接直线上的两个点,与投 影面交于一点,即为该点的投影。
判断点的位置
根据投影点和直线之间的关系, 判断点是否在直线上或与直线平行。
直线在平面上的投影应用
确定直线的投影
选择直线上的两个点,与投影面连接,得到直线的投影。
判断直线的位置
根据投影线与平面的交点或平行关系,判断直线是否在平面 上或与平面平行。
01
02
03
点的投影
点在空间中确定后,其投线在空间中确定后,其 投影在平面上也唯一确定。
投影的特性
点与直线在空间中的位置 关系,可以通过其投影在 平面上的位置关系来反映。
直线与平面的投影性质
平面的投影
平面在空间中确定后,其 投影在平面上也唯一确定。
投影的特性

机械制图(第四版)第2章 点、直线、平面的投影PPT课件

机械制图(第四版)第2章 点、直线、平面的投影PPT课件

主视图、俯视图——长对正。
主视图、左视图——高平齐。
俯视图、左视图——宽相等。
上述关系统称为“三等关系”。 不论是整体还是局部,物体的
三视图都应符合三等关系,
图2-13 三视图度量的对应关系
在三等关系中,应注意理解俯视图和左视图“宽相等”的对应关系。
资讯
4. 视图间的方位对应关系 物体有上、下、前、后、左、右六个方位。 主视图反映了物体的上、下和左、右方位, 俯视图反映了左、右和前、后方位, 左视图则反映了上、下和前、后方位。
图2-14 补画左视图
图2-15 立体的空间形状与投影分析
(b) 三视图
图2-12 展开后的三投影面及物体的三视图
资讯
3.视图间的度量对应关系 根据三视图的形成可以分析出: 主视图反映物体长方向(OX)和高方向(OZ)的尺寸。 俯视图反映物体长方向(OX)和宽方向(OY)的尺寸。 左视图反映物体高方向(OZ)和宽方向(OY)的尺寸。
视图之间的度量关系为:
图2-9 三投影面体系
资讯
2.三视图的形成
如图2-10所示,将物体放在三投影面体系中用正投影方法将其向 各投影面投射,即可得到物体的三面视图。
画图时,需将相互垂直的三个投影面展平在同一平面上,规定:V 面保持不动,将H面绕OX轴向下旋转90°,W面绕OZ轴向后旋转 90°,如图2-11所示。
图2-10 三视图的形成
资讯
1. 三投影面体系
⑵ 三个投影轴
投影面之间的交线称为投影轴。
X投影轴:V与H面的交线,物体X轴方向的尺寸称为物体的长方向。 Y投影轴: H与W面的交线, 物体Y轴方向的尺寸称为物体的宽方向。 Z投影轴: V 与W面的交线,物体Z轴方向的尺寸称为物体的高方向。

教学课件PPT 点、直线、平面的投影

教学课件PPT 点、直线、平面的投影
其投影特性取决于直线与三个投影 面间的相对位置
平行于某一投影面而 与其余两投影面倾斜
正平线(平行于V面)
投影面平行线 侧平线(平行于W面)
水平线(平行于H面)
统称特殊位置直线
正垂线(垂直于V面)
垂直于某一投影面 投影面垂直线 侧垂线(垂直于W面)
铅垂线(垂直于H面)
与三个投影面都倾斜的直线
一般位置直线
② 另外两个投影,反映线段实长,且垂直 于相应的投影轴。
⑶ 一般位置直线
V
b
B b
a
βγ
W
a
X
Ab
a
aH
a
投影特性
b Z b
a
O
Y
b
Y
三个投影都倾斜于投影轴,其与投影轴的夹角 并不反映空间线段与三个投影面夹角的大小。三个 投影的长度均比空间线段短,即都不反映空间线段 的实长。
二、直线与点的相对位置
a
a
三个投影都类似。
b
a
c
例:正垂面ABC与H面的夹角为45°,已知其水平投影 及顶点B的正面投影,求△ABC的正面投影及侧面 投影。
c
c
a
a
b ● 45°
b
a
c b
思考:此题有几个解?
三、平面上的直线和点
⒈ 平面上取任意直线
位于平面上的直线应满足的条件:
若一直线过平面上 的两点,则此直线 必在该平面内。
度量性较差。
平行投影法
投影特性 投影大小与物体和投影面之间的距离无关。 度量性较好。 工程图样多数采用正投影法绘制。
画透视图
中心投影法
画斜轴测图
投影法
斜投影法
平行投影法

机械制图与计算机绘图 PPT课件第4章 点、直线和平面的投影

机械制图与计算机绘图 PPT课件第4章 点、直线和平面的投影

e"( k")
YW
4.2.3 属于直线上的点
1. 从属性
V
直线上点的投影必在该直
Z b'
线的同面投影上,且符合点的
投影规律. b' Z b"
c'
c" X
c' a'
B Co
b"W c"
a'
X
o
b c
a YH
点C的三面投影必在
a" YW
A cb a
a" Y
2. 定比性
AC:CB=ac:cb=a′c′:c′b′ =a″c″:c″b″
b
小结
1、点与直线的投影特性,尤其是特殊位置直线 的投影特性。
2、点与直线及两直线的相对位置的判断方法及 投影特性。
3、定比定理。 4、平面的投影特性,尤其是特殊位置平的投影
特性。 5、如何在平面上确定直线和点。
c
YH
4.3.2 相交两直线
空间两直线 AB,CD相交 C 于点K,则交点K是两直线的 共有点。同时K要符合点的投
影规律。
c'
Z c"
c
a'
k'
b' b"
k" a"
B
K
bD A
kd a
X
d' O
d"
c
b
YW
kd a
YH
ab 、cd交于k a′b′、c′d′交于k′ a″b″、c″d″交于k″
4.3.3 交叉两直线
A点的Y坐标Ya=A点到V面的距离Aa ' ,表示宽度;

工业设计机械制图教程点直线和平面的投影省名师优质课赛课获奖课件市赛课一等奖课件

工业设计机械制图教程点直线和平面的投影省名师优质课赛课获奖课件市赛课一等奖课件

x
ax
离影,面o 等旳于距该离点。与即相:邻投
a
a′ax=Aa, aax=Aa′。
投影图 必须清楚:(a,a′)←→A
12
二、点在三投影面体系中旳投影特征
Z
1、三投影体系旳建立 ①V⊥H,V⊥W,H⊥W (W—侧立投影面、侧面、W面,其上投影
称为侧面投影 a″、b″、c″…) ②V∩H=OX轴
v a′
英、美—Ⅲ
11
v a′
·A
X ax
O
a
v a′
ax
X
O
a
H
2、点旳两面投影旳投影特征
①符号要求Ⅰ)空间点:A、B、C……大写字母;
Ⅱ)水平投影:a、b、c ……相应小写字母;
Ⅲ)正面投影:a′b′c′……相应小写字母加“′”
②点旳投射过程及投影图旳画法
过空间点A分别向H、V面作垂线,所得垂足a即点A
X ax
O
Y = aax =a″az =oaYH=oaYW=A点到V面旳距离;
a
Z = a′ax=a″aYW=oaz=A点到H面旳距离。
例、已知A点旳坐标为(5,10,5)求作A点旳三面投影。
z
a′
x
ax o
a″
YW
a′ x ax
a
YH
a
z
az
Z
X o
Y
aYH
a″
W
aY
Y
a″
aYW
YW
YH
16
五、两点旳相对位置
x
a′ a
c′ a″ c″ bo
YW
c
YH
v
A
X
Z
B
W

画法几何及机械制图课件第三章点直线平面的投影

画法几何及机械制图课件第三章点直线平面的投影

1.一般位置平面
一般位置平面和三个投影面既不垂直也不平行,与三个 投影面都倾斜,所以,如用平面形(例如三角形)表示一般位 置平面,则它的三个投影均不是实形,但具有类似形。
2.投影面垂直面
只垂直于一个投影面的平面,称为投影面垂直面
根据其所垂直的投影面不同,可以分为三种: 1)铅垂面——垂直于H面; 2)正垂面——垂直于V面; 3)侧垂面——垂直于W面。
在右图中,虽然ab∩cd =k,a′b′∩c′d′=k′, 且k′k⊥OX,但因AB是侧平线, 察看侧面投影,a″b″和c″ d″虽然相交,但该交点与 k′的连线与Z轴不垂直,故此 两直线不相交。
若只凭V、H两投影来判断,则需看简单比(abk)与 (a′b′k′)是否相等,若相等则相交,不相等则不相交。
3.交叉两直线
若两直线既不平行又不相交,则它们是交叉直线
同面投影可能相交,但交点不符合空间一个点的投影规律。 交点是两直线上的一对重影点的投影,用其可帮助判断两 直线的空间位置。
两种特殊情况
1.当两直线有两个投 影均互相平行,且又 同时平行于第三个投 影面时,一般应观察 该两直线所平行的那 个投影面上的投影来 判断两直线是否平行。
(1)X坐标大,在左面, XA<XB,,A在右,B在左;
(2)Y坐标大,在前面, YA>YB,,A在前,B在后;
(3)Z坐标大,在上面, ZA<ZB,,A在上,B在下。
2. 重影点和可见性
当空间两点位于对投影面的同一条投影线上时,这两点在 该投影面上的投影重合,称这两点为对该投影面的重影点
点A、B在对H面的同一条投射线上,它们在H面的投影重 合,称为对H面的重影点。而点C、D则称为对V面的重影点。
二、平面对投影面的相对位置及其投影特性

第2章--投影法及点、直线、平面的投影PPT课件

第2章--投影法及点、直线、平面的投影PPT课件

Y
a
投影规律:
点的空间位置与投影的关系:
H
YH
aa′OX 长对正
点距H面的距离: a′ax和a〞ayw
aa〞OZ 高平齐
点距V面的距离:a ax和 a〞az
aax=a〞az 宽相等
点距W面的距离: a′az和 a ayH
举例:投影规律的应用
已知点A的正面投影a′和水平投影a,求其侧面投影a〞。
a'
相平行,但它们的第三组同面 三组同面投影相交,但它们的
投影是不平行的。
交点不符合点的投影规律。
例1:判断空间两直线AB、CD的相对位置。
1’
1 1′d′
1′c′
结论:
直线AB、CD是 两交叉直线。
例2 判断直线的空间相对位置
a’ c’
b’ c’
b’
d’
a’
d’
X
X
a d
d b a
c
b
c
( 交叉 ) ( 相交 )
一、三投影面体系的建立
B1
A
B2
V
b
a
H
单面投影:
点不定位,
体不定形。
三投影面体系
三个投影面:
V
水平投影面(H 面)
正立投影面(V 面)
侧立投影面(W 面)
X
三个投影轴:
两投影面相交,其交线称为投影轴。
H
V ∩ H = OX 轴
H ∩ W = OY 轴
V ∩ W = OZ 轴
Z W
O Y
二、立体三面投影的形成
a’
c’
c’
b’
d’
X
X
d
b a

工程制图---第2章-点、直线、平面的投影市公开课获奖课件省名师示范课获奖课件

工程制图---第2章-点、直线、平面的投影市公开课获奖课件省名师示范课获奖课件

a’ax-b’bx
a’
b’ V
a’ ß
X =ab a
倾角 O
X a
bH
一般位置直线旳投影不反应其空间长度 及其对投影面旳倾角,可用直角三角形 AB
法作图求出
Wang chenggang
AB
b’ O
b
a’ax-b’bx
26/86
例2-6:已知直线AB旳正面投影及端A点旳水平投影α,且已
知AB 直线对V面倾角为30°,B点在A点旳后方,求作AB
b yH
•1.a′b′= //OX,a" b" //OY。
•2. ab=AB。
•3.反应、 角旳真实大小。
Wang chenggang
b
yW
21/86
表2.1 投影面平行线
1 1)在所平行投影面上旳投影反应实长,且它与投影轴旳夹角,
分别等于直线与其他两个投影面旳倾角 。
2) 在另外两个投影面上旳投影平行于相应旳投影轴,长度缩
az
a’’
Z
a’
az
a’’
X
ax
O
Yw
X
45º
a Yh
ax
Wang chenggang
O Yh
Yw
9/86
二、点在三投影面体系第一分角中旳投影 3 点旳直角坐标
a’
a’
V
Ya A
Za
Xa
a’’
X
ax
Za O W X
Xa
Z
a’’ Za
O Ya
Yw
Ya a
H
a Yh
将投影轴视为笛卡尔坐标系旳坐标轴,, 则点旳投影与其 直角坐标一一相应.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-
6
V
P B
铅垂面
c a
W
b
c a
b
A
a b
H
C PH c
a c
b
投影特性:1、 水平投影abc积聚为一条直线
2 、正面投影 abc、 侧面投影abc为ABC的类似形
3 、 abc与OX、 OY的夹角反映、角的真实大小
-
7
铅垂面迹线表示
V P
PV
W
H PH
PH
-
PW
8
V
b
QV
a
A
c
C
正垂面
b c W a α
最大斜度 线实长
new
最大斜度线 水平投影
-
30
-
16
1.5.3 平面上的点和直线
1. 平面上取直线和点 (1) 平面上的直线
直线在平面上的几何条件是:①通过平面上的两点;②通 过平面上的一点且平行于平面上的一条直线。
(2) 平面上的点 点在平面上的几何条件是:点在平面内的某一直线上。
在平面上取点、直线的作图,实质上就是在平面内作辅助 线的问题。利用在平面上取点、直线的作图,可以解决三类问 题:判别已知点、线是否属于已知平面;完成已知平面上的点 和直线的投影;完成多边形的投影。
-
26
平面P对水平面H 的最大斜度线

A

1 a
B1 B PH
-
27
求一般位置平面对H面倾角
1.作平面内的水平线; 2.作对H面的最大斜度线; 3.用直角三角形法求最大斜度线对 H面的倾角。
-
28
例15 求 ABC平面与水平投影面的夹角α 。
b
d
a
e
e a
d
BE
c
α
be
c
b-
29
例:求三角形ABC对H面的倾角
new
-
24
平面内对投影面的最大斜度线有三种
1.垂直于平面内水平线的直线,是平面 内对水平面的最大斜度线。 2.垂直于平面内正平线的直线,是平面 内对正平面的最大斜度线。 3.垂直于平面内侧平线的直线,是平面 内对侧平面的最大斜度线。
-
25
new
平面内对投影面的最大斜度线用于 一般位置平面对投影面倾角的求法
c
H
a
投影特性:1、 侧面投影abc积聚为一条直线
2 、 水平投影abc、正面投影 abc为 ABC的类似形
3 、 abc与OZ、 OY- 的夹角反映α、β角的真实大小11
V S
侧垂面的迹线表示
SH
W X
Z
β
SH
O
α
Y
H
YH
-
12
水平面
V
a b c
a
b c
b
AB
a W
c
C
b
b
a
a
b a c
c H
-
17
(1) 平面上取直线
b e
f
B
F
d
c
E
a
D
C
c
a
A
d
f
e
b
取属于定平面的直线,要经过属于该平面的已知两点;或经过
属于该平面的一已知点,且平行于属于该平面的一已知直线。
-
18
(2) 平面上取点
b e
B
E
D
C
A
d
c
a
c a
d e
b
取属于平面的点,要取自属于该平面的已知直线
-
19
例 11
已知ABC 给定一平面,(1)判断点K是否属于该平面。 (2)已知平面上一点E的正面投影e’作出水平投影。
b
1
e
d k
c
a
X
O
c
a
e
1
d
k
-
20
b
2. 平面上的特殊位置直线 V
PV
P
水平线
PH H
正平线
(1)平面上投影面平行线—既在平面上又平行于投影面的直线。
在一个平面上对V、H、W投影面分别有三组投影面平行线。平面上的
投影面平行线既具有投影面平行线的投影性质,又与所属平面保持从属关
系。
-
21
例 13
a
b
W
a
A
a
c
b a
c
a
a
bC
c
b
Hc c
投影特性:
1. abc 、 abc 积聚为一直条线,具有积聚性
2. 侧平面投影abc 反映 ABC实形
-
15
b
a
B
A
b a
一般位置平面
b
b
b
a
c
a
b
C c
c
c
a
a c
投影特性
1. abc 、 abc 、 abc 均为 ABC的类似形
2. 不反映、、 的真实角度
c
投影特性:
1. abc、 abc积聚为一条线积聚为一直条线,具有积聚性
2. 水平投影abc反映 ABC实形
-
13
正平面
V b
b
b
a
B
b
c
W
a
a
A a
c
c
C
c
c Hb a
c
ba
投影特性:
1. abc 、 abc 积聚为一条直线,具有积聚性
2.正平面投影abc反映 ABC实形
-
14
侧平面
Vc
b
B
b
(5)任意平面图形。
-
b
a d
b c
b
c
ad 4
2. 迹线表示法
Z
PZ
Z
PZ
PV
X
O
PX
PH
PV
PW
X PX
O
PW
PYW YW
PY
PH
Y
YH PYH
-
5
1.5.2 各种位置平面的投影特性
1.投影的垂直面 (1) 铅垂面 (2)正垂面 (3)侧垂面 2.投影的平行面 (1)水平面 (2)正平面 (3)侧平面 3.一般位置平面
B
Q
c
面投影abc 积聚为一条直线 2 、 水平投影abc、侧面投影abc是 ABC的类似形 3 、 abc与OX、 OZ的- 夹角反映α、 角的真实大小9
V QV
正垂面的迹线表示
QV γ W Q
α
H
-
10
V SB
A
侧垂面
b
b
SbW a
W
c
C
b
a
c β c α a
已知 ABC给定一平面,试过点C作属于该平面的正平 线,过点A作属于该平面 的水平线。
b
m
a
n
b m
c
n c
-
22
a
例14 已知点E 在ABC平面上,且点E距离H面15,距离V 面 10,试求点E的投影。
b
r m
e
n
a s
10 15
X
c
b
n
r
s
e
c
m
a
-
23
二、平面内对投影面的最大斜度线。
平面内垂直于该投影面内任意一条投 影面平行线的直线,称为平面内对相应投影 面的最大斜度线。
例8 过点A 作EF 线段的垂线AB。
b
f
e
X e b
a
O
a
f
-
1
例9 求点E 到水平线AB的距离。
e’
d’ a’
b’
X
O
d
yD-yE e
a b
所求距离
-
2
1.5 平面的投影
1.5.1 平面的表示法
1. 几何元素表示平面
用几何元素表示平面有五种形式: (1)不在一直线上的三个点; (2)一直线和直线外一点; (3)相交两直线; (4)平行两直线; (5)任意平面图形。
2. 平面的迹线表示法
平面的迹线为平面与投影面的交线。特殊位置平面 用迹线来表示是用其具有积聚性的一条边线来表示。
-
3
1. 几何元素表示法
b
b
b
b
a
a
a
c
c
c a
c
a
a
c
a c
a c
c
b
b
b
用几何元素表示平面有五种形式:
(1)不在一直线上的三个点;
(2)一直线和直线外一点;
(3)相交两直线;
(4)平行两直线;
相关文档
最新文档