啤酒发酵过程温度控制的设计
啤酒发酵工厂的工艺设计
啤酒发酵工厂的工艺设计
啤酒发酵工厂的工艺设计包括以下几个方面:
1. 发酵设备的选择:根据生产规模和需求选择适合的发酵设备,常见的包括发酵罐、发酵槽和发酵桶等。
同时要考虑设备的耐用性、卫生要求和操作便捷性等因素。
2. 温度控制:发酵过程需要控制温度,通常在15-25摄氏度之间。
可以通过安装恒温设备、加热器和冷却器等来实现温度控制,并且要保持温度的稳定性。
3. 氧气供给:酵母在发酵过程中需要氧气来进行代谢,因此需要提供充足的氧气。
可以通过通风系统或者使用氧气石来增加氧气供应。
4. pH控制:发酵过程中要维持适宜的pH值,通常在4.2-4.5之间。
可以通过添加酸或者碱来调节pH值,也可以使用pH自动控制系统进行调节。
5. 酵母投放控制:酵母的投放量对发酵过程有重要影响,需要根据啤酒种类和生产要求进行控制。
可以通过自动投料系统实现精确的酵母投放控制。
6. 发酵时间控制:发酵时间的长短会影响啤酒的口感和风味,一般情况下需要7-10天左右。
可以通过监测发酵液的密度和酒精含量来确定发酵时间。
此外,还需要注意工艺的卫生要求,定期对设备进行清洁和消毒,以确保啤酒的品质和安全。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计本文针对啤酒发酵过程中的自动控制问题,设计了一种基于PLC的啤酒发酵自动控制系统。
本文分别就控制系统的硬件选型、软件设计、控制策略和系统运行等方面进行详细介绍和分析。
1、控制系统硬件选型本系统采用三菱PLC FX2N-32MR作为控制器,配合三菱触摸屏进行操作界面设计和参数设置。
控制器和触摸屏之间通过RS232进行通信,以实现数据传输和数据显示功能。
此外,本系统还选用了温度、液位、气压和流量等传感器进行数据采集。
2、软件设计本系统主要采用ST语言进行软件编写,根据实际需求设计了三个主程序:数据采集程序、PID控制程序和触摸屏控制程序。
其中,数据采集程序主要负责对传感器数据进行采集和处理,PID控制程序负责控制发酵罐内的温度、液位、气压和流量等参数,使其始终处于最优状态。
触摸屏控制程序则是用户与系统之间的交互平台,通过触摸屏可以进行参数设置和操作控制等功能。
3、控制策略本系统采用经典的PID控制算法进行参数控制。
具体而言,对于发酵罐的温度控制,系统通过温度传感器对温度进行实时监测,并将监测到的温度值与设定的目标温度进行比较,以计算出误差值。
接着,根据PID控制算法的控制策略,对比例、积分和微分三个参数进行计算,并通过控制电路将控制信号传输到加热器或冷却器上,以实现对温度的有效控制。
4、系统运行通过对系统进行实验测试,可以发现本系统具有运行可靠、控制精确、响应速度快等优点。
在实际应用中,只需设置不同的控制参数就可以实现针对不同类型啤酒的发酵控制,可广泛应用于啤酒生产企业中。
综上所述,本文基于PLC的啤酒发酵自动控制系统设计已经基本实现,具有较高的设计实用性和研究价值。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计
啤酒发酵是一个复杂的过程,需要精确的控制和监测参数。
为了实现自动化控制,可以利用可编程逻辑控制器(PLC)来设计一个基于PLC的啤酒发酵自动控制系统。
我们需要明确发酵过程中需要控制和监测的参数。
这些参数包括温度、压力、酵母浓度、麦芽使用量等。
通过传感器和仪表,我们可以实时监测这些参数,并将其输入到PLC 系统中进行处理和控制。
PLC系统的设计应考虑以下几个方面:
1. 输入输出模块选择:根据需要监测和控制的参数,选择适合的输入输出模块。
温度传感器可以选择模拟输入模块,电磁阀可以选择数字输出模块。
2. 控制程序编写:根据发酵过程的要求,编写PLC的控制程序。
程序中应包括对输入信号的采集、处理和控制信号的输出。
当温度过高时,PLC可以控制冷却系统降低温度。
3. 开关控制:根据自动控制需求,设计开关控制电路。
当发酵过程结束时,PLC可以自动控制排液泵的开关,将发酵液排出。
4. 报警系统:在发酵过程中,应设置合适的报警机制。
当出现异常情况时,PLC可以通过报警装置进行提示。
5. 通信系统:为了方便监控和远程控制,可以设置PLC与上位机或其他设备之间的通信接口。
这样可以实现对发酵过程的远程监测和控制。
6. 人机界面设计:设计一个友好的人机界面,方便操作者进行参数设定和监测。
可以使用触摸屏或键盘等设备,提供直观的操作界面。
通过上述设计,基于PLC的啤酒发酵自动控制系统可以实现对发酵过程的全面控制和监测。
这样可以提高生产效率和产品质量,同时减少人工操作的繁琐和错误。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计随着现代工业的发展,啤酒生产的自动化程度逐渐提高,传统的手工操作转变为自动控制。
本文将介绍一种基于可编程逻辑控制器(PLC)的啤酒发酵自动控制系统设计。
啤酒的发酵过程是一个复杂的化学反应过程,需要维持一定的温度、压力和PH值等参数。
传统的发酵过程需要人工监控和控制,不仅耗时耗力,而且容易产生人为误差。
采用PLC控制系统可以实现对啤酒发酵过程的自动化控制,提高生产效率和产品质量。
设计一个PLC控制器,负责监测和控制发酵过程中的各个参数。
该控制器可以通过传感器实时读取温度、压力和PH值等数据,并根据设定的控制策略进行相应的控制操作。
设计一个基于人机界面(HMI)的监控系统,用于操作员与PLC控制器的交互。
该监控系统可以实时显示发酵过程中的各个参数,并提供操作员对参数设定的控制界面。
在控制策略上,可以采用PID控制算法进行温度和PH值的控制。
PID控制算法通过调节温度和PH值的设定参数,使实际参数始终接近设定参数。
也可以设置报警机制,当温度、压力或PH值超出设定范围时,立即发出报警信号。
在硬件方面,需要选择适合的传感器和执行器。
温度传感器可以选择热电偶或温度传感器,压力传感器可以选择压力传感器,PH值传感器可以选择PH值传感器。
执行器可以选择电动阀门或蠕动泵等设备,用于自动调节温度和控制发酵过程。
在软件方面,需要编写PLC控制程序和HMI监控程序。
PLC控制程序主要包括数据采集、控制算法和控制输出等功能。
HMI监控程序主要负责数据显示、参数设定和报警处理等功能。
这些程序可以使用常见的编程语言如 ladder diagram(梯形图)或结构化文本进行开发。
基于PLC的啤酒发酵自动控制系统设计可以有效地实现对啤酒发酵过程的自动化控制,提高生产效率和产品质量。
在设计和实施过程中,需要考虑到实际工艺要求和设备性能,确保控制系统的稳定性和可靠性。
需要对系统进行综合测试和调试,以确保其正常运行。
啤酒发酵PLC控制系统设计
器 , 重于 温度 的控 制 研 究 , 计 理 想 的 P C 程序 , 啤酒 发 酵 控 制 着 设 L 在
啤酒 的质 感。 因 此 , 啤酒 生产过 程 中对 温度跟 压 力 的控 在
降速率 , 而是 定 Ⅱ 酒 生产质 量。 通 常在 管壁 的夹 套内 注 从 卑
系统 中完 成 温 度 、 度 和 时 间 的 模 拟 量 的 读取 处理 , 成 温度 设定 值 浓 完
酵过 程 影 响着 啤酒 的品质。以前 的啤酒生 产工 艺 已不再 适
① 主发酵阶段 : 这个阶段温控应 以上部为主, 通过对
一 应 当今 的生 产规 模和 生 产 要求 , 啤酒企 业 纷 纷采 用 现代 化 冷 媒物 流量 大小 来控 制 发酵 罐上 下温 差 , 般 温差保 持在 05— 10C, 而实 现上 下 发酵 物 更好 的 对流 , 酵 反应 . .。 从 发 工业 自动控 制 系统 来生 产 产品 , 而可 以达 到 降低 生产 成 从 本 的 目的。 随着计 算机 技 术 的发展 , L P C控 制 系统 也在 不 更 充 分 。 ② 降温 阶段 :这个 阶段 温度 的控 制应 以下部 为主 , 控 断 的发 展 和 更 新 , 功 能 日益 强 大 , 其 已成 为工 业 控 制 领 域 制 正好 与主 发酵 阶段 相反 ,上 部 温度应 高于 下部 温度 , 只 的主流控 制 设备 之~。 啤酒 发酵 是 啤酒 生产 过 程 中在 酶 的作 用 下 生 成 水跟 有 这样 才能使 酵母 更好 的沉 降。降温阶段 控制 温度 的速度 均 在 应提 前打开 或 关 二 氧化碳 。啤酒 发酵是 放 热反应 的过 程 , 随着 反应 的进行 , 要缓 慢 、 匀。 降温开 始和 降温 结束 时 ,
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计1. 引言1.1 背景介绍啤酒是一种古老的饮品,深受人们的喜爱。
随着啤酒产量的增加和品质要求的提高,传统的手工操作已经不能满足生产的需求。
自动控制技术的应用成为解决这一问题的有效途径。
基于可编程逻辑控制器(PLC)的自动控制系统由于其灵活性、稳定性、可靠性和易维护性等优势,成为工业控制领域的主流技术之一。
啤酒发酵过程是生产过程中最为关键的环节之一,发酵的温度、压力、pH值等参数对啤酒质量具有重要影响。
设计一个基于PLC的啤酒发酵自动控制系统对于提高生产效率、保证产品质量具有重要意义。
本文旨在探讨基于PLC的啤酒发酵自动控制系统设计方案,以提高啤酒生产的自动化水平,保证啤酒品质的稳定性和一致性。
通过引入PLC技术,可以实现对发酵过程的精确控制,提高生产效率,减少人工成本,并实现对生产过程的实时监控和追踪。
1.2 研究意义啤酒是一种历史悠久的饮品,受到广泛的消费者喜爱。
在啤酒的生产过程中,发酵是一个至关重要的环节,直接影响着啤酒的口感和质量。
而传统的发酵过程往往需要依靠人工操作,存在操作不稳定、效率低下、产品质量无法保证等问题。
因此,设计一种基于PLC的啤酒发酵自动控制系统具有重要的研究意义。
首先,基于PLC的自动控制系统能够实现对发酵过程的精准控制,保障啤酒的质量稳定和一致性。
PLC技术具有高精度、高可靠性的特点,能够实时监测和调节发酵参数,确保发酵过程的稳定性和可控性。
其次,基于PLC的啤酒发酵自动控制系统可以提高生产效率,减少人力成本。
传统的人工操作需要大量的人力投入,而自动控制系统能够实现全程自动化生产,节省人力资源,提高生产效率。
总之,基于PLC的啤酒发酵自动控制系统的研究对于提高啤酒生产的质量和效率具有重要的意义,有着广阔的应用前景和市场需求。
1.3 研究目的本研究旨在设计一种基于PLC的啤酒发酵自动控制系统,以提高啤酒生产过程的自动化水平,提高生产效率,保证啤酒质量稳定性和一致性。
任务书:啤酒发酵温度控制系统设计 电子信息工程
xx大学毕业设计(论文)任务书信息科学与工程学院电子信息工程专业091 班xx 同学:现给你下达毕业设计(论文)任务如下,要求你在预定时间内,完成此项任务。
一、毕业设计(论文)题目啤酒发酵温度控制系统设计二、毕业设计(论文)背景啤酒发酵温度的控制是决定产品品质的关键因素, 所以, 必须对生产过程中的温度进行严格的控制。
啤酒发酵是一个具有时变性、非线性的复杂生化反应过程, 使用冷却酒精水通过热交换器间接降温的方法控制发酵温度。
传统的手动控制不仅控制质量不稳定, 而且操作工人的劳动强度也很大, 人力资源浪费问题十分严重, 为此我们使用以51单片机为核心的控制系统,来控制啤酒发酵温度。
采用单片机对温度进行实时控制, 并采取相应的软硬件抗干扰措施,使控制系统不仅具有方便、灵活的优点,而且可以大幅度提高被控温度的技术指标,从而可以显著提高啤酒产品的品质。
三、毕业设计(论文)目标、研究内容和技术要求目标:完成基于单片机的啤酒发酵温度自动控制系统设计和控制器硬件实现。
内容:1. 了解啤酒发酵过程的温度分段控制工艺;2. 进行基于单片机的啤酒发酵温度自动控制系统设计;3. 利用STC单片机完成发酵温度控制器的硬件演示电路设计和LabVIEW远程控制界面设计。
技术要求:1. 实现发酵罐内温度的实时采样监测(精度0.1◦C)和现场液晶显示;2. 根据啤酒发酵各阶段的工艺要求,制定相应的温度设定值变化曲线;3. 手动输入各阶段发酵温度的设定值作为控制参量,并将“设定值”和“阶段”液晶显示;4. 比较设定温度和实际温度大小,显示“开/关冷却阀”,用发光二极管颜色区分两种状态。
四、课题所涉及主要参考资料[1] 邓荣. 基于单片机的啤酒发酵温度控制系统[J]. 工业控制计算机, 2008, 21(1): 58-58.[2] 向艳. C语言程序设计. [M]. 北京:电子工业出版社, 2008.[3] 徐爱钧.单片机原理应用教程-基于Proteus虚拟仿真[M]. 北京:电子工业出版社,2009.[4] 邓荣. 基于AT89S52单片机的啤酒发酵温度控制系统[J]. 国外电子测量技术, 2007, 26(11):59-61.[5] 丁元杰. 单片微机原理及应用(第3版)[M]. 北京: 机械工业出版社, 2007.五、进度安排周次工作内容预定目标13年1周查阅资料选题确定毕业设计题目13年2-3周收集相关资料并翻译基本完成外文资料的翻译13年4周下达任务书、撰写文献综述完成文献综述的撰写13年5周制定进度表、框图理解论文论证的基本思想13年6-7周研究啤酒发酵温度控制工艺掌握啤酒发酵的相关知识13年8-9周研究温度控制模块完成51单片机对温度控制模块的设计13年10-11周实现51单片机对各模块控制的整合完成51单片机对发酵温度控制的仿真13年12周对发酵温度控制流程形成论文思路并撰写论文草稿基本完成13年13周论文的修改、排版形成论文正文13年14-15周论文答辩资料收集完成资料收集,准备答辩13年16周论文答辩论文答辩六、毕业设计时间:2013 年 2 月25 日 2013 年 6 月14 日七、本毕业设计必须完成的内容1.调查研究、查阅文献和搜集资料。
基于PLC的啤酒发酵自动控制系统设计
毕业设计(论文)(成教)题目:基于PLC的啤酒发酵自动控制系统设计院(系):机电工程学院专业:机械制造与自动化姓名:学号:指导教师:二〇一四年一月二十日毕业设计(论文)任务书毕业设计(论文)进度计划表本表作评定学生平时成绩的依据之一.毕业设计(论文)中期检查记录表摘要啤酒发酵是啤酒生产中最重要的一道工序,是决定啤酒质量的最关键的一步.啤酒的发酵是把糖化的姜汁分解成乙醇,由于发酵时间长,过程机理复杂,影响发酵因素很多,对发酵过程缺乏精确的数学模型。
从原料到发酵过程,如何控制好温度,压力,让发酵满足总生产工艺曲线,决定了啤酒的生产质量和生产效率,发酵过程是啤酒生产过程中的重要环节,发酵控制系统的任务就是将发酵酒液的实际温度控制在和标准发酵曲线相差有限的误差范围内。
过去的啤酒发酵过程,啤酒发酵罐多为人工现场操作调节,手工记录。
但随着啤酒产量的不断增加,所需发酵罐也会增多,给生产啤酒带来极大的不便,造成生产质量的稳定,如何提高啤酒生产的综合自动化水平,增强啤酒产业实力成为一个好的研究课题.为此,本文通过对啤酒生产发酵过程的工艺及关键问题的分析,基于PLC设计啤酒生产过程中啤酒发酵自动控制系统。
关键词:PLC 啤酒发酵温度控制AbstractBeer fermentation is one of the most important procedure in beer production, is the most crucial step in determining the quality of beer。
Beer fermentation is the breakdown of saccharification ginger into ethanol,due to the long fermentation time, the process mechanism is complex,many factors influencing the fermentation,the fermentation process is a lack of accurate mathematical model. From raw material to the fermentation process,how to control the temperature, pressure, and make full of the total fermentation technology curve, determines the production quality and production efficiency of beer, the fermentation process is the important link in the process of beer production,fermentation control system of the task is to control the fermentation liquid of actual temperature fermentation and standard curve is limited within the error range.The beer fermentation,beer fermentation tank for artificial field operation adjustment,manual record。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计一、引言啤酒是一种古老的饮料,经过发酵产生。
在传统的啤酒生产过程中,发酵过程需要精确的控制,以保证最终产品的质量和口感。
为了提高生产效率和产品质量,采用自动控制系统对啤酒发酵过程进行控制是非常必要的。
PLC(可编程逻辑控制器)是一种用于工业自动化控制系统的控制器,它通过编程来实现逻辑控制、定时控制、计数控制等功能。
本文将设计一种基于PLC的啤酒发酵自动控制系统,以实现对啤酒发酵过程的自动控制。
二、系统设计1. 系统架构设计本系统采用了PLC作为控制器,传感器负责采集发酵过程中的温度、压力和PH值等参数,控制执行元件包括发酵罐内的搅拌器、温度控制装置和酵母添加装置。
整个系统的架构如图1所示:PLC通过传感器采集的数据进行逻辑控制,控制发酵罐内的搅拌器、温度控制装置和酵母添加装置,从而实现对发酵过程的自动控制。
2. 系统功能设计(1)温度控制在啤酒发酵过程中,温度是一个非常重要的参数。
过高或过低的温度都会影响发酵速率和产品质量。
系统需要能够对发酵罐内的温度进行实时监测,并根据预设的温度范围进行控制。
当温度过高时,系统应该能够通过控制冷却装置来降低温度;当温度过低时,系统应该能够通过控制加热装置来提高温度。
(3)压力控制在发酵罐内,产生的二氧化碳会增加罐内的压力。
系统应该能够对罐内的压力进行实时监测,并根据预设的压力范围进行控制。
当压力过高时,系统应该能够通过释放装置来释放二氧化碳,以降低罐内的压力。
3. 系统软件设计PLC的软件设计主要包括控制逻辑设计和人机界面设计。
控制逻辑设计是将控制任务分解为各个子任务,并设计每个子任务的控制逻辑;人机界面设计是设计用于监控和操作的人机界面。
(1)控制逻辑设计控制逻辑设计首先需要确定系统的控制目标,然后根据控制目标设计各个子任务的控制逻辑,最后将各个子任务的控制逻辑组合成系统的整体控制逻辑。
对于温度控制任务,可以设计如下的控制逻辑:IF 温度 < 设定温度 - 2 THEN 打开加热装置IF 温度 > 设定温度 + 2 THEN 打开冷却装置IF 设定温度 - 2 <= 温度 <= 设定温度 + 2 THEN 关闭加热装置和冷却装置(2)人机界面设计人机界面设计主要包括监控界面和操作界面。
啤酒发酵过程温度控制策略
啤酒发酵过程温度控制策略在啤酒的生产过程中,发酵是一个至关重要的步骤。
发酵过程中,酵母菌将啤酒中的糖分转化为酒精和二氧化碳,从而赋予啤酒其独特的风味和口感。
而温度对发酵过程起着至关重要的作用。
本文将介绍啤酒发酵过程中的温度控制策略。
啤酒发酵的理想温度范围通常在12°C至20°C之间。
具体的温度取决于啤酒的类型和酵母菌的品种。
一般来说,较低的温度会使发酵过程较为缓慢,但能使啤酒更干净、清爽。
而较高的温度会加快发酵速度,但可能会产生一些不良的副产物,影响啤酒的品质。
为了控制发酵过程中的温度,酿酒师通常会使用发酵箱或发酵室。
这些设备具有温度控制功能,可以根据需要调整温度。
在发酵初期,通常会将温度设置在较低的范围内,以促进酵母的活性和健康生长。
随着发酵的进行,温度会逐渐升高,以加快发酵速度。
除了使用设备控制温度外,酿酒师还可以采取其他措施来调节发酵过程中的温度。
例如,可以在发酵容器周围放置冷却设备或加热设备,以保持温度稳定。
此外,还可以使用冷却水或加热水来调节发酵液的温度。
在发酵过程中,温度的控制还需要注意以下几点。
首先,应避免温度的剧烈波动,以免对酵母菌的生长和活性产生不利影响。
其次,应避免过高的温度,以免引发酵母的过度活跃和产生不良的副产物。
最后,应根据不同的啤酒类型和酵母菌的特性,调整温度的范围和变化速度,以获得最佳的发酵效果。
发酵过程中的温度控制对于啤酒的品质至关重要。
适当的温度可以促进酵母的活性和健康生长,从而产生优质的啤酒。
然而,温度控制并非一成不变,需要根据实际情况进行调整。
酿酒师需要根据自己的经验和观察,不断优化温度控制策略,以确保啤酒的品质和口感达到最佳状态。
啤酒发酵过程中的温度控制策略是确保啤酒品质的关键之一。
通过合理调整温度范围、使用设备和采取其他措施,酿酒师可以控制发酵过程中的温度,从而获得优质的啤酒。
然而,温度控制并非一成不变,需要根据实际情况进行调整。
只有不断优化温度控制策略,才能生产出口感良好的啤酒。
啤酒发酵过程温度控制策略
啤酒发酵过程温度控制策略啤酒的发酵过程是啤酒酿造中非常重要的一步,温度控制是影响啤酒品质的关键因素之一。
下面将介绍啤酒发酵过程中的温度控制策略。
一、主发酵温度控制主发酵是啤酒发酵过程中最重要的一步,主要是将麦汁中的糖转化为酒精和二氧化碳。
主发酵温度控制的目的是保证酵母在最适宜的温度下进行发酵,从而使啤酒的口感和香味更好。
一般来说,主发酵的温度控制应该在12℃-18℃之间,不同的酵母菌株对温度的适应范围也不同。
例如,艾尔啤酒常用的酵母菌株适宜的温度范围是12℃-15℃,而拉格啤酒常用的酵母菌株适宜的温度范围是8℃-12℃。
在主发酵过程中,温度的控制可以通过以下几种方式实现:1. 空气温度控制:通过调整发酵室内的空气温度来控制主发酵的温度。
这种方式比较简单,但是对于大型啤酒厂来说,空气温度的控制比较困难。
2. 冷却管控制:在发酵桶中设置冷却管,通过控制冷却管中的冷却水的温度来控制主发酵的温度。
这种方式比较常见,但是需要消耗大量的能源。
3. 内部温度控制:在发酵桶中设置温度传感器,通过控制发酵桶内部的温度来控制主发酵的温度。
这种方式比较精确,但是需要消耗大量的能源。
二、二次发酵温度控制二次发酵是啤酒发酵过程中的另一个重要步骤,主要是将啤酒中的二氧化碳充分溶解,使啤酒具有足够的气泡和泡沫。
二次发酵温度控制的目的是保证啤酒中的二氧化碳充分溶解,从而使啤酒具有更好的口感和香味。
一般来说,二次发酵的温度控制应该在0℃-5℃之间。
在二次发酵过程中,温度的控制可以通过以下几种方式实现:1. 冷却管控制:在二次发酵桶中设置冷却管,通过控制冷却管中的冷却水的温度来控制二次发酵的温度。
这种方式比较常见,但是需要消耗大量的能源。
2. 内部温度控制:在二次发酵桶中设置温度传感器,通过控制发酵桶内部的温度来控制二次发酵的温度。
这种方式比较精确,但是需要消耗大量的能源。
总之,啤酒发酵过程中的温度控制是非常重要的,可以通过不同的方式实现。
啤酒发酵的控制系统设计
D S C 系统的管理软件采用Wi dws n o 编程,界面丰富、 操作直观、易学实用。上位机能够实现以下功能 【 :①工 作状态概览、动态测量显示 、实时阀门状态反馈;②手动
自 动控制方式无扰动切换;④所用工艺曲线、P D I 参数和报
警限等能够进行在线修改;④主要运行参数可以实时或随
pr c s e m e a i n,a o m e s o e c s t m f e o p r s n, e pe t v l o e s of f r nt t o nd c m nt n a h ys e a t r c m a i o r s c i e y.
RESE ARCH 究 研
啤酒发酵 的控制系统设计
张子军
( 东省 农业 机 械研 究所 ,广 州 5 O 5) 广 16 O
摘
要 基于啤酒发酵工艺的研究,全面介绍 了D S A , C 、C N ̄线及P C L 在发酵过程控制 中的应用,并比较了两种
系统之间的优劣。本文详细探论了P C L 模块的配置与设计 、模糊P D I 控制系统的优势和作用步骤 。
Abs r t act :Th o g t pr r u h he e—s u y o t e e m e at o t c t d n h f r nt i n e hni e o b e t e qu s f e r, h pr s nt e e pape r r undl o y i r d e t appl c t o nt o uc s he i a i n o DCS, AN us, n PLC o he o r l ng f C b ad t t c nt ol i
关键词 发酵工艺 C 总线 模块设计 模糊P D A I
啤酒发酵PLC控制系统设计
l
I
{
I
I
}
; CP l J D M Al AI
A I I D0 ; Do l
l I { i
I
… ‘ I l 玎 l … - ・ 、 孵 : 最 Z
~一 r一 {
厂一 {
i
j {
引 言
啤酒 是 世界 上 产量 及 消费 最大 的 一种 酒 ,近 年来 ,虽 然 我 国的 啤酒 装备 配套水 平有 很 大提 高 ,但 与 国外的 主要 啤 酒生 产 厂 家相 比大 部分 企 业技 术落 后 ,国内的 啤酒 行 业 迫 切要 求 进行 技 术改 造 ,提 高生 产率 ,保 证 产 品质量 ,以 确 保 在激 烈 的市 场 竞争 中立 于 不败 之地 。研 究如 何提 高 啤
t
\
~ 一
开始
… 一 ~
;
i
,
一
一
,
1
仞始 化
P L C 实现啤酒发酵温度控制 的主要任务是实时测控 发 酵罐 上 、中 、下 三 段温 度 ,通 过P I D 计 算控 制 电磁 阀开 度 ,使 罐温 与啤酒 发 酵工 艺温 度 曲线 保持 一致 ,同时 通过 控 制 发酵 罐排 气 阀 ,使罐 内压 力符 合 生产 工艺 要 求 。因啤
定时 间的低温贮 酒 ,整个 发酵过 程基 本结 束 。
2控制系统的设计
2 . 1 P L C 控 制 系统方 案 根据 啤 酒发 酵 工艺 控制 需 求 ,充分 考虑 企 业 的综 合实 力 、现状 与发 展 等 因素 ,设计 P L C 控制 系统方 案 。其控 制
结构 如 图2 所示 。
制可 以 分 为 三个 阶 段 ,如 图1 所示 :主 发酵 期 、后 发酵 期 和 成 熟期l 2 ] 。
啤酒发酵过程中的温度特性及采用的控制
温度控制:发酵罐控制冷带上的阀门以调节不同的供冷量,使大罐内温度在不同的工艺阶段按工艺要求呈不同的温度梯度状态。
目前国内啤酒厂家发酵较普遍采用低温(9~10℃)发酵,高温(12~14℃)还原双乙酰,0~-1℃贮酒成熟的工艺温度曲线。
在此温度控制曲线中,可分为自然升温期、主发酵期和双乙酰还原期、酵母回收期、降温保温期及贮酒期,温度控制应针对各阶段特点进行。
自然升温期(12-18小时)糖化冷麦汁分锅次经过麦汁充氧和酵母添加进发酵罐后自然升温,每锅的进罐温度应当逐渐递增,满罐温度的确定应考虑麦汁分锅次进罐后酵母繁殖使温度上升因素的影响,一般以满罐后低于主酵温度1℃较适宜,满罐后的自然升温段使酵母尽快增殖。
主发酵期:(4 - 5天)主发酵阶段酵母大量繁殖产生较多的热量,生成大量CO2,使罐内中下部酒体密度发生变化,为使酵母活动性增强,利于发酵,通过控制温度,促进罐内液体的循环更加充分,自下而上的对流更强。
因此,控制时,以罐内中部温度为基准,通过程序控制达到大罐内上部和靠罐壁的发酵液因温度低而下沉,下部和中间的发酵液因温度高而上升,形成合理的循环对流 (如图二所示) 。
双乙酰还原期:(2 - 3天)主发酵期结束后的保温期。
主要任务是控制双乙酰的还原情况,我们定义为双乙酰还原期。
双乙酰还原阶段发酵速度趋缓,热量产生少,对流慢,控温应缓慢、慎重,不可急剧冷却,防止罐内温度出现较大幅度下滑,酵母大量沉淀,影响双乙酰还原。
降温期(2-3天)可能包含降温段和低温保温段。
此阶段原CO2上升拖拉力等形成的自下而上对流大为减弱,酒液在不同温度下密度差形成对流的作用渐占主导,根据啤酒最大密度温度(TMD)计算公式TMD(℃)=4-(0.65E-0.24A)(A 为酒精含量,E为真正浸出物)可知,酒液最大密度时温度约3℃, 3℃上、下的酒液对流方向相反,控温时应据此区别对待。
本期有两点要注意:·在降温的末端要考虑到系统惯性太大造成的过冲,使用预估方法使温度平稳过度到保温状态;·在保温段不可采用长时期、大开度的降温措施,防止局部结冰。
啤酒发酵自动控制系统设计
啤酒发酵自动控制系统设计一、引言随着科技的不断发展,自动化控制在各个领域的应用越来越广泛。
啤酒发酵作为一项重要的食品生产过程,实现其自动化控制对于提高生产效率、产品质量和节约能源具有重要意义。
本文将介绍一种啤酒发酵自动控制系统的设计,包括传感器、执行器、控制器的设计以及实验验证。
二、系统设计啤酒发酵自动控制系统主要包括控制方案、电路设计和软件设计。
控制方案采用基于传感器反馈的闭环控制,电路设计包括传感器、执行器和控制器等模块,软件设计采用嵌入式系统实现控制算法。
三、传感器设计传感器是啤酒发酵自动控制系统的关键部分,用于检测发酵过程中的重要参数,如温度、压力、液位等。
本系统采用高精度、稳定可靠的传感器,通过嵌入式芯片进行信号处理和反馈控制。
同时,为确保传感器准确工作,采用校准和数据修正技术对传感器进行定期维护和校准。
四、执行器设计执行器是系统的另一个重要组成部分,用于执行控制算法并驱动被控对象。
本系统采用电动调节阀作为执行器,通过接收控制器的信号来调节发酵罐内的温度、压力和液位等参数。
为确保执行器快速、精确地响应,选用具有高动态性能的电动调节阀,同时对执行器进行定期维护和校准。
五、控制器设计控制器是整个系统的核心部分,负责接收传感器的反馈信号,根据预设的控制算法对执行器进行控制,以实现啤酒发酵过程的自动化。
本系统采用嵌入式控制器,具有高可靠性、快速响应和鲁棒性等特点。
控制器通过算法优化,实现精确控制和自适应调节,以满足不同工况下的控制要求。
六、实验验证为验证啤酒发酵自动控制系统的有效性和可靠性,进行了一系列实验。
实验设置包括发酵罐、传感器、执行器和控制器等关键部件。
数据采集和处理采用专业的测试仪器进行实时监测与记录。
实验结果表明,该自动控制系统能够有效地控制啤酒发酵过程,确保产品质量和生产效率的提升。
同时,实验结果还显示,系统的稳定性和可靠性得到了充分验证,为实际生产提供了可靠保障。
七、结论本文介绍的啤酒发酵自动控制系统设计在实现生产过程的自动化和智能化方面具有显著优势。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计引言啤酒是一种古老的酿造饮料,而发酵是啤酒酿造过程中其中一个最关键的步骤。
发酵过程需要严格的控制温度、压力和搅拌速度等参数,以确保最终产品的质量和风味。
开发一套自动控制系统来监测和调节发酵过程是至关重要的。
本文将介绍一种基于PLC的啤酒发酵自动控制系统设计,以及其在啤酒酿造中的应用。
一、啤酒发酵过程的控制需求啤酒发酵是在一定条件下,酵母利用麦芽中的糖类产生酒精和二氧化碳的过程。
这个过程需要严格的控制来保证啤酒的质量和口感。
发酵过程中需要控制以下参数:1.温度:酵母在不同温度下会有不同的发酵速率,过高或过低的温度都会影响发酵的效果。
2.压力:发酵过程会产生大量的二氧化碳,需要通过控制压力来避免发酵罐的爆炸。
3.搅拌速度:搅拌速度会影响酵母和麦芽的接触和传质速度,从而影响发酵效果。
一套自动控制系统需要能够实时监测发酵过程中的温度、压力和搅拌速度等参数,并且能够根据实时数据对这些参数进行调节。
二、基于PLC的啤酒发酵自动控制系统设计PLC(可编程逻辑控制器)是一种专门用于工业自动化控制的设备。
它能够接收输入信号做出相应的逻辑运算,并产生输出信号来控制设备。
基于PLC的啤酒发酵自动控制系统设计如下:1.传感器和执行元件选型:系统需要使用温度传感器、压力传感器和搅拌器执行元件来感知和控制发酵过程中的各项参数。
传感器需要选择能够适应潮湿、高温环境的工业级传感器,执行元件需要选择能够承受高温、高压的设计。
2.PLC选型:根据系统的需求,选用适合的PLC型号,能够满足系统的输入输出信号需求,并且能够稳定可靠地运行在工业环境中。
3.系统架构设计:根据发酵过程的特点和需求,设计系统的硬件架构和控制逻辑。
系统需要能够同时监测和控制多个参数,并且能够在异常情况下及时报警。
系统需要能够记录历史数据以便后续分析和追溯。
4.编程设计:根据系统的硬件架构和控制逻辑,编写PLC程序,实现对发酵过程中各项参数的实时监测和控制。
基于单片机的啤酒发酵温控系统毕业设计
基于单片机的啤酒发酵温控系统毕业设计
一、介绍
啤酒发酵是啤酒生产过程中至关重要的一步,发酵过程中的温度控制对于啤酒的质量和口感有着至关重要的影响。
因此,设计一套基于单片机的啤酒发酵温控系统是非常有必要的。
二、硬件设计
1.温度传感器:使用DS18B20数字温度传感器,能够精确测量发酵桶内的温度。
2.单片机:使用STM32F103C8T6单片机,具有较高的性能和稳定性。
3.继电器:使用继电器控制加热器和冷却器的开关,以达到温度控制的目的。
4.显示屏:使用OLED显示屏,能够直观地显示当前温度和设定温度。
三、软件设计
1.温度采集:使用单片机读取DS18B20温度传感器的数据。
2.温度控制:根据设定温度和当前温度的差值,控制继电器开关,实现加热或冷却的目的。
3.温度显示:将读取到的温度数据显示在OLED屏幕上,方便用户观察。
4.数据存储:将温度数据存储在单片机的EEPROM中,方便用户查看历史温度数据。
四、系统测试
在实际使用中,我们对系统进行了测试。
测试结果表明,该系统能够准确地控制发酵桶内的温度,达到预期的效果。
五、总结
本设计基于单片机实现了啤酒发酵温控系统,能够准确地控制发酵桶内的温度,提高啤酒的质量和口感。
该系统具有稳定性高、控制精度高等优点,是一种非常实用的啤酒发酵温控系统。
基于PLC的啤酒发酵自动控制系统设计
基于PLC的啤酒发酵自动控制系统设计全文共四篇示例,供读者参考第一篇示例:基于PLC的啤酒发酵自动控制系统设计一、引言随着科学技术的不断进步,自动化控制系统在各行各业中得到了广泛应用,啤酒生产作为重要的酿造行业也不例外。
传统的啤酒生产方式需要大量的人工操作,生产效率低下,而且容易受到人为因素的影响。
基于PLC的啤酒发酵自动控制系统设计能够有效地解决这些问题,提高啤酒生产的自动化水平和生产效率,保证啤酒的品质稳定。
二、系统功能需求分析1. 温度控制功能:啤酒发酵过程中,温度是一个非常重要的控制参数,发酵罐内的温度需要在一定的范围内保持稳定。
基于PLC的控制系统能够通过传感器实时监测发酵罐内的温度,根据预设的控制策略自动调节加热或降温设备,保持温度在合适的范围内。
2. 液位控制功能:在发酵过程中,发酵罐内的液位需要随着发酵过程的进行而逐渐降低。
PLC控制系统可以通过液位传感器监测发酵罐内的液位变化,及时发出控制信号,控制出液阀实现液位的自动控制。
3. 搅拌控制功能:在发酵过程中需要对发酵液进行搅拌以保证发酵液中的微生物得到充分的氧气供应和营养物质的均匀分布。
PLC控制系统可以通过控制搅拌器的启停和转速,实现发酵液中的搅拌控制。
4. PH值控制功能:发酵过程中PH值的变化会对发酵液中微生物的生长和代谢产生影响。
PLC控制系统可以通过PH传感器监测发酵液的PH值,自动调节酸碱液的加入量,保持发酵液的PH值在合适的范围内。
出预设范围,就能够及时发出故障报警信号,提醒操作人员进行相应的处理。
三、系统结构设计基于PLC的啤酒发酵自动控制系统由PLC控制器、传感器、执行机构和人机界面组成。
PLC控制器负责接收传感器采集的各个控制参数数据,根据预设的控制策略进行控制计算,并通过输出模块控制执行机构完成相应的控制动作。
传感器负责采集发酵过程中各个控制参数的数据,如温度传感器、液位传感器、PH传感器、氧气浓度传感器等。
过程控制课程设计——啤酒发酵罐温度控制系统
内蒙古科技大学信息工程学院过程控制课程设计报告题目:啤酒发酵罐的温度控制系统设计学生姓名:***学号:**********专业:测控技术及仪器班级:09测控2班指导教师:***前言啤酒生产是一个利用生物加工进行生产的过程,生产周期长,过程参数分散性大,传统操作方式难以保证产品的质量。
近年来,国外的各大啤酒生产厂家纷纷进军中国市场,凭借技术优势与国内的啤酒生产厂家争夺市场份额。
国内的啤酒行业迫切要求进行技术改造,提高生产率,保证产品质量,以确保在激烈的市场竞争中立于不败之地。
啤酒的发酵过程是一个微生物代谢过程。
它通过多种酵母的多种酶解作用,将可发酵的糖类转化为酒精和CO2,以及其他一些影响质量和口味的代谢物。
在发酵期间,工艺上主要控制的变量是温度、糖度和时间。
啤酒发酵对象的时变性、时滞性及其不确定性,决定了发酵罐控制必须采用特殊的控制算法。
由于每个发酵罐都存在个体的差异,而且在不同的工艺条件下,不同的发酵菌种下,对象特性也不尽相同。
因此很难找到或建立某一确切的数学模型来进行模拟和预测控制我国大部分啤酒生产厂家目前仍然采用常规仪表进行控制,人工监控各种参数,人为因素较多。
这种人工控制方式很难保证生产工艺的正确执行,导致啤酒质量不稳定,波动性大且不利于扩大再生产规模。
在啤酒生产过程中,糖度的控制是由控制发酵的温度来完成的,而在一定麦芽汁浓度、酵母数量和活性的条件下时间的控制也取决于发酵的温度。
因此控制好啤酒发酵过程的温度及其升降速率是解决啤酒质量和生产效率的关键。
在本次啤酒发酵温度控制系统设计过程中各种工艺参数的控制采用串级控制系统实现,主要控制锥形发酵罐的中部温度,采用常规自动化仪表及装置来实现温度及其他参数的检测与控制、显示。
1 工艺过程概述1.1啤酒生产工艺过程啤酒生产过程主要包括糖化、发酵以及过滤分装三个环节。
1.1.1糖化糖化过程是把生产啤酒的主要原料与温水混合,利用麦芽的水解酶把淀粉、蛋白质等分解成可溶性低分子糖类、氨基酸、脉、肤等物质,形成啤酒发酵原液-麦汁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X X X X 学院《啤酒发酵过程温度控制的设计》大作业报告专业计算机科学与技术学号姓名日期2015.12.301、作业内容及任务麦汁发酵过程是一个复杂的生物化学过程,通常在锥形发酵罐中进行。
目前的处理方法多是在麦汁发酵期间,在二十多天的发酵期间,根据酵母的活动能力,生长繁殖快慢,确定发酵曲线。
要使酵母的繁殖和衰减、麦汁中糖度的消耗等达到最佳状态,必须严格控制各阶段的温度,使其在给定的温度曲线的±0.5℃范围内。
发酵期间锥形发酵罐控制上、中、下三部分的温度,温度曲线见下图。
图1 发酵过程温度工艺曲线通过啤酒发酵过程,掌握相关步骤。
考查动手能力和对所学知识的掌握程度,以及查阅资料和收集信息能力。
使设计者熟悉本设计的相关知识及培养解决设计过程中可能遇到问题的能力。
图2 发酵罐的测控点分布及管线图2、对作业的认知或解读麦汁发酵过程是啤酒生产中的一个重要环节。
过去。
啤酒发酵过程采用传统的手工操作控制,生产效率低,劳动强度大,不易于管理;啤酒质量差,产量低,酒损多。
有些啤酒生产厂家采用常规的仪表调节系统,虽然给企业带来一些益处,但也不利于现代化管理和机动灵活地修改工艺参数。
采用计算机对啤酒发酵过程进行自动控制和现代化管理,很好地解决以上问题,获得了巨大的经济效益和社会效益。
图3 计算机控制系统原理图3、系统结构模型框图T1T30图3 啤酒发酵过程计算机控制系统硬件框图4、系统硬件元器件选型WZP-231铂热电阻、RTTB-EKT 温度变送器进行温度测量和变送、I/V 变换板、A/D板、电容式液位变送器及电动调节阀等5、硬件设计(1)模拟量输入通道设计本系统检测30个温度(T1~T30)、10个压力(p1~p10)、10个液位(H1~H10)。
对于温度,我们选用WZP-231铂热电阻30支和RTTB-EKT温度变送器30只进行温度测量和变送,即将-20~+50℃变换成4~20mA DC信号变换成1~5V DC信号,最后把1~5V DC信号送至32路12位光电隔离A/D板IPC5488,从而实现温度的数据采集。
对于压力,选用10台电容式压力变送器CECY-150G,进行压力测量变送,即将0~0.25MPa压力变换成10台电容式压力变送器4~20mA DC信号,同样经过I/V板送至A/D板。
对于液位,选用10台电容式液位变送器CECU-341G(实际上是单法兰差压变送器),进行液位测量和变送,即将0~0.2MPa的差压转换成4~20mA DC信号,同样经I/V变换送至A/D板。
(2)模拟量输出通道设计本系统自动控制30个温度,即使用30个电动调节阀ZDLP-6B,通过调节阀门开度,从而调节冷却液(单酒精)流量,达到控制发酵温度的目的。
在模拟输出通道中,采用8路12位光电隔离D/A转换板IPC5486,将计算机输出的控制量转换成4~20mA DC信号,该信号送至操作器DFQ-2100,DFQ-2100具有自动和手动切换功能,DFQ-2100输出4~20mA DC信号送至电动调节阀,从而实现控制30个调节阀,达到控制温度的目的。
另外,系统还配有+24V DC电源给变换、操作器供电。
因采用光电隔离技术,故A/D板和D/A板都采用DC/DC电源变换模板,提高光电隔离所需的工作电源。
6、数字控制器的设计(1)温度传感器工业装配式热电阻通常用来显示仪表和计算机配套,直接测量各种生产过程中-200℃~+500℃范围内液体、蒸汽和气体介质及固体表面的温度。
我厂生产热电阻全部符合ICE国际标准和国家有关规定,有铂热电阻和铜热电阻两大类,铂电阻又分为云母骨架、陶瓷骨架、厚膜电阻和薄膜电阻等。
铜电阻的骨架有聚碳酸酯制成。
铂电阻分度号Pt100,铜电阻分度号Cu50。
BA1、BA2、Pt100铂电阻和Cu100铜电阻可订做。
在此,我们选择Pt100。
(2)温度变送器HAKK-WB系列温度变送器为24V供电、二线制的一体化变送器。
产品采用进口集成电路,将热电阻的信号放大,并转换成4-20mA或0-10mA的输出电流,或0~5V的输出电压。
其中铠装变送器可以直接测量汽体或液体的温度特别适用于低温范围测量,克服了冷凝水对测温所带来的影响特点。
Pt100温度变送器用于Pt100铂电阻信号需要远距离传送、现场有较强干扰源存在或信号需要接入DCS系统使用。
铂电阻温度变送器采用独特的双层电路板结构,下层是信号调理电路,上层电路可定义传感器类型和测量范围。
(3)孔板流量计HYG系列孔板流量计(又称节流装置、差压式流量计)是测量流量的差压发生装置,配合各种差压计或差压变送器可测量管道中各种流体的流量。
孔板流量计节流装置包括环室孔板,喷嘴等。
孔板流量计节流装置与差压变送器配套使用,可测量液体、蒸汽、气体的流量,孔板流量计广泛应用于石油、化工、冶金、电力、轻工等部门。
充满管道的流体,当它们流经管道内的节流装置时,流束将在节流装置的节流件处形成局部收缩,从而使流速增加,静压力低,于是在节流件前后便产生了压力降,即压差,介质流动的流量越大,在节流件前后产生的压差就越大,所以孔板流量计可以通过测量压差来衡量流体流量的大小。
这种测量方法是以能量守衡定律和流动连续性定律为基准的。
(4)差压变送器3051X高精度差压变送器具备EJA原装表所有功能,还扩展了一些实用功能。
旋转开关可PV值清零,顺时针增大,逆时针减小,可以1μA调整,也可大范围调整。
3051X高精度差压变送器主要性能和参数:(1)输出信号:4~20mA.DC,二线制。
(2)供电电压:12V~45V.DC。
(3)电源影响:<0.005%/V。
(4)负载影响:电源稳定时无负载影响。
(5)启动时间:<2秒,不需预热。
(6)工作环境:-25℃~+70℃相对温度:0~100%。
迁移后的上下限绝对值均不应超过最大量程范围的上限值。
(7)负载特征:RL≤(u-12)/i,式中:u---供电电压,i---回路电流。
(8)振动影响:任何方向200Hz振动±0.5%/g。
(9)安装位置:膜片未垂直安装时,可能产生小于0.24Kpa的误差,但可通过调零消除。
(10)防爆类型:隔爆型ExdllCT5,本安型ExiallCT6.(5)流量积算仪新虹润NHR-5610系列流量积算控制仪针对现场温度、流量等各种信号进行采集、显示、控制、远传、通讯、打印等处理,构成数字采集系统及控制系统。
双屏LED数码显示,具有极宽的显示测量范围,可显示整五位的瞬时流量测量值、入口/出口温度测量值、流量(差压、频率)测量值等,及整11位的流量累积测量值,0.2%级测量精度,0.1%级累积精度。
具备36种信号输入功能,可配接各种差压信号(孔板装置)、线性信号(电磁流量计)及脉冲信号(涡街流量计)。
可带两路模拟量变送输出。
支持RS485、RS232串行接口,采用标准MODBUSRTU通讯协议。
仪表可带RS232C打印功能,具有手动、定时、报警打印功能。
带DC24V馈电输出,为现场变送器配电。
输入、输出、电源、通讯相互之间采用光电隔离技术。
(6)电动调节阀RC系列电动调节阀包括驱动器,接受驱动器信号(0-10V或4-20mA)来控制阀门进行调节,也可根据控制需要,组成智能化网络控制系统,优化控制实现远程监控。
(7)UP-550程序调节器液晶显示高性能程序调节器,UP550程序调节器1/4DIN型是高级程序控制仪表,具有30种程序模式、5种强大的调节功能。
还具有便于查看的大屏数字显示,用于交互式程序模式与参数设定的LCD显示特性。
标配有自动协调功能、“SUPER”抑制过冲功能以及新增加的“SUPER”hunting抑制功能。
位置比例调节与加热/冷却模式适合于多种应用。
7、程序流程图控制系统主程序的流程图8、抗干扰分析在硬件方面的抗干扰措施有:(1)在电源输入端设置低通滤波器,滤去高次谐波成份。
(2)在温度传感器两端,以及其它地方使用压敏电阻器,吸收不同极性的过电压。
(3)在运行现场进行电磁干扰试验,对试验结果进行概率统计分析,并通过精心选择元器件、采用抗干扰技术使干扰源产生的电磁干扰降至最小。
(4)采用了AT89S52中的看门狗定时器,提高系统硬件抗干扰的能力。
在软件方面的抗干扰措施有:A、在程序设计时,将各程序模块分区存放,彼此之间空出一些存储单元,在这些单元中填充FF(RST指令)。
同时对程序中重要的跳转和调用子程序指令前均加入三个NOP指令,以保证程序流向的正确性。
B、利用平均滤波法求取平均值。
将最近6次采样得到的温度值,去除最大值和最小值,求算术平均值。
9、心得体会本次设计让我深刻的理解了一些在学习中没有理解的知识。
经过多次查阅资料,使我了解了啤酒发酵过程温度控制系统的相关知识。
并通过这次设计加深了我对计算机控制这一门课程的认识,更深刻的体会到了工业自动控制究竟是什么。
开始课程设计的时候认真的研究书本的设计方案,有模糊或是不同想法的地方就又回到课本上这些内容所设计的知识点,从而使我对计算机控制的信心又开始膨胀了。
在这次课程设计中,我们结合在工厂实习以及查阅的资料,将理论与生产实际相结合,不仅了解了生产过程的复杂,更加深刻的掌握了理论知识。
这次是比较完整的一个程序的设计,我摆脱了单纯的理论知识学习状态,和实际设计的结合锻炼了我的综合运用所学的基础知识,解决实际问题的能力,同时也提高我查阅文献资料、对程序整体的把握等其他能力水平,而且通过对整体的掌控,对局部的取舍,以及对细节的斟酌处理,都使我的能力得到了锻炼,经验得到了丰富。
这是我们都希望看到的也正是我们进行课程设计的目的所在。
虽然这次设计内容繁多,过程繁琐但我的收获却更加丰富。
各种组件的运用,各种算法的应用,各种控件的利用我都是随着设计的不断深入而不断熟悉并逐步掌握的。
和老师以及同学的沟通交流更使我对程序整体的规划与设计有了新的认识也对自己提出了新的要求。
10、参考文献[1]张艳兵,王忠庆.计算机控制技术.北京:国防工业出版社,2006[2] 李文涛.过程控制[M].北京:科学出版社. 2012.[3]赖寿宏. 微型计算机控制技术.北京:机械工业出版社,2000[4] 吴勤勤.控制仪表及装置,化学工业出版社.2007.[5]胡寿松.自动控制原理.科学出版社,2007.[6] 唐文艳.传感器[M].北京:机械工业出版社.2007.[7] 杜锋,雷鸣.啤酒发酵过程温度控制策略酿酒,2002[8]王树青.发酵过程自动化.化工自动化及仪表,1993[9]刘秀强.浅谈啤酒发酵过程中的温度控制.食品工业,1998。