频数分布图与频数分布直方图的区别
7.4频数分布表和频数分布直方图
(2)视力在4.9及4.9以
上的同学占调查学生的比
频 60
数
()
例为_3_/8__ ;
名 50
(3)如果视力在第1,2,3 40
组范围内均属视力不良,那 30
么该校约共有_1_25_0_名学 20
生视力不良,应给予治疗、 矫正。
10
第3组
第2组 第1组
第4组 第5组 视力
3.95 4.25 4.55 4.85 5.15 5.45
()
才艺展示
1.一次统计七年级若干名学生每分跳绳次数的频数分布直方图如图. 请根据这个直方图回答下面的问题:
(1)参加测试的总人数是多少? 15人
(2)自左至右最后一组的频数、频率分别是多少?
频数是3
频率是0.2
(3)数据分组时,组距是多少?
组距是25次
频
数
七年级若干名学生每分跳绳次数的频数分布 直方图
合计
20 ___2_5__
30 10 5 100
3.每年的6月6日是全国的爱眼日,让我们行动起来, 爱护我们的眼睛!某校为了做好全校2000名学生的眼 睛保健工作,对学生的视力情况进行一次抽样调查, 如图,是利用所得数据绘制的频数分布直方图。请你 根据此图提供的信息,回答下列问题:
(1)本次调查共抽测了__16_0 _名学生;
82.5; 82.5~87.5; 87.5~92.5)
解: 20名学生每分脉搏跳动次数的频数分布表
组别(次) 67.5~72.5 72.5~77.5 77.5~82.5 82.5~87.5 87.5~92.5
频数 2 4 9 3 2
20名学生每分脉搏跳动次数的频数分布直方图
频
数 10
频数分布表与直方图
THANKS
感谢观看
均匀分布
数据在各个区间内的频数或频 率大致相等,表示数据分布较 为均匀。
双峰分布
数据呈现两个明显的峰值,表 示数据可能存在两个不同的集
中区域。
03
频数分布表与直方图关系
数据呈现方式比较
频数分布表
通过表格形式展示数据分布情况,横 轴为数据分组,纵轴为频数或频率。
直方图
通过图形形式展示数据分布情况,横 轴为数据分组,纵轴为频数或频率, 各矩形面积总和表示所有数据点的数 量。
可以是水平的。
数据表示Βιβλιοθήκη 02直方图用矩形的面积表示频数或频率,而条形图的条形长度直
接表示数据值。
数据间隔
03
直方图的矩形通常是连续的,没有间隔,而条形图的条形之间
通常有间隔。
常见直方图形状解读
钟型分布
数据呈现中间高、两边低的形 状,类似于钟的轮廓,表示数
据分布较为集中。
偏态分布
数据分布偏向一侧,可能是左 偏或右偏,表示数据在某个方 向上存在较多的极端值。
调整柱子形状
可以选择不同的柱子形状,如矩形、圆形等,以更好地展示数据 分布。
调整柱子颜色
可以通过调整柱子颜色来区分不同的数据组,使得直方图更加直 观易懂。
添加图例
为不同的数据组添加图例,以便读者更好地理解直方图。
添加标题、坐标轴标签等元素
添加标题
为直方图添加标题,简要说明数据的来源和含义。
添加坐标轴标签
05
直方图制作步骤及注意事 项
根据频数分布表绘制直方图
确定组数
根据数据的分布规律,选择合适的组数,通常组数选择在5-15之 间。
确定组距
根据数据的范围和组数,计算合适的组距,使得数据能够均匀地分 布在各个组中。
频数及其分布四种统计图
频数及其分布一:基本定义1.2.频数:我们称数据分组后落在各小组内的数据个数为频数;频数分布表:反映数据分布的统计表叫做频数分布表,也称频数表。
3.频率:一般地,每一组频数与数据总数(或实验总次数)的比,叫做这一组数据的频率.例1:填写下面这张频数分布表中未完成部分.变式:学生各组数据频率之和等于多少?所有频数Array之和呢?例2:已知一组数据的频率为0.35,数据总数为500个,则这组数据的频数为变式:已知一组数据的频数为56,频率为0.8,则数据总数为个例3 某袋装饼干的质量的合格范围为50±0.125g.抽检某食品厂生产的200袋该中饼干,质量的频数分布如下表.(1)求各组数据的频率;(2)由这批抽检饼干估计该厂生产这种饼干的质量的合格率.某食品厂生产的200袋饼干的质量的频数分布表二:频数分布直方图一:用来表示频数分布的基本统计图叫做频数分布直方图,简称直方图(Mstogram).在统计数据时,按照频数分布表,在平面直角坐标系中,横轴标出每个组的端点,纵轴表示频数,每个矩形的高代表对应的频数,我们称这样的统计图为频数分布直方图,如图12-5所示,直方图中各矩形之间没有空隙.【说明】在画频数分布直方图时,首先要列出频数分布表.在分组时要注意:(1)组数适当;(2)组距相等.同时,分组要遵循三个原则:(1)不空,即该组必须有数据;(2)不重,即一个数据只能在一个组中;(3)不漏,即不能漏掉某一个数据.思考:频数分布直方图与条形统计图的区别?(1)条形统计图中,横轴上的数据是孤立的,是一个具体的数据。
而直方图中,横轴上的数据是连续的,是一个范围。
(2)条形统计图中,各个数据之间是相对独立的,各个条形之间是有空隙的。
而在直方图中,各长方形对应的是一个范围,由于每两个相邻范围之间不重叠、不遗漏,因此在直方图中,长方形之间没有空隙。
例.请观察图,并回答下面的问题:(1)被检测的矿泉水总数有多少种?(2)被检测矿泉水的最低pH为多少?(3)组界为6.9~7.3这一组的频数、频率分别是多少(每一组包括前一个边界值,不包括后一个边界值)?(4)根据我国2001年公布的生活饮用水卫生规范,饮用水的pH应在6.5—8.5的范围内.被检测的矿泉水不符合这一标准的有多少种?占总数的百分之几?思考:图中的频数分布直方图的每一组的边界值为多少?A.10.5 B.14.5 C.12.5 D.8.5三:拆线统计图及其特点折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后用线段顺次把各点连接起来.它既可以表示出项目的具体数量,又能清楚地反映事物变化的情况.折线统计图的特点:易于显示数据的变化趋势,如图12-4所示.例.超速行驶是交通事故频发的主要原因之一.交警部门统计某日7:00~9:00经过高速公路某测速点的汽车的速度,得到如下频数分布折线图(1)这一天7:00~9:00经过该观察点的车辆总数是多少(2)数据分组的组距是多少(3)若该路段汽车限速为110km/h,请问超速行驶的汽车有多少辆?占总数的百分之几(4)简单描述折线的波动情况,并说明它所表示的实际意义四:扇形统计图用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.扇形统计图主要是反映具体问题中的部分与整体的数量关系.扇形统计图的各部分占总体的百分比之和为100%或1,如图12-2所示.例1 如图12-6所示的是扇形统计图,求扇形B占总体的百分比.例每人捐书的册数/册 5 10 15 20相应的捐书人数/人17 22 4 2(1)该班的学生共多少名?(2)全班一共捐了多少册书?(3)若该班所捐图书按图12-7所示的比例分,则送给山区学校的书比送给本市兄弟学校的书多多少册?总结:条形统计图显示每组中的具体数据;扇形图显示部分在总体中占的百分比;频数直方图显示数据的分布情况;折线图显示数据的变化趋势综合练习:1 为了了解小学生的体能情况,抽取了某小学同年级学生进行跳绳测试,将所得数据整理后,画出如图12-11所示的频率分布直方图,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5,则第四小组的频率是,参加这次测试的学生有人.2某班同学参加环保知识竞赛,将学生的成绩(得分取整数)进行整理后分成五组,绘制成频率分布直方图,如图12-12所示,图中从左到右各小组的长方形的高的比是1∶3∶6∶4∶2,最右边一组的频数是6,结合直方图提供的信息,解答下列问题.。
频数分布表和频数分布直方图(课件)
课堂练习
1.为了绘制一组数据的频数直方图,首先要算出这组 数据的变化范围,数据的变化范围是指数据的( C ) A.最大值 B.最小值 C.最大值与最小值的差 D.个数
课堂练习
2.一组数据的最小数是12,最大数是38,如果分组的组
距相等,且组距为3,那么分组后的第一组为( B )
A.11.5~13.5
为了参加全校各年级之间的广播操比赛,七年级准备从63名同学中挑出身
高相差不多的40名同学参加比赛为此收集到这63名同学的身高(单位:cm)
如下:
158 158 160 168 159 159 151 158 159 168 158 154 158 154 169 158 158 158 159 167 170 153 160 160 159 159 160 149 163 163 162 172 161 153 156 162 162 163 157 162 162 161 157 157 164 155 156 165 166 156 154 166 164 165 156 157 153 165 159 157 155 164 156
典型例题
例题1 已知一组数据,最大值为93,最小值为22,
现要把它分成6组,则下列组距合适的是( B )
A.9
B.12
C.15
D.18
典型例题Βιβλιοθήκη 例题2 在绘制频数直方图时,计算出最大值与最小值
的差为25 cm,若取组距为4 cm,则组数为( D )
A.4组
B.5组
C.6组
D.7组
典型例题
例题3 某中学部分同学参加全国初中数学竞赛,并取得了优异的成 绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试 题满分120分),并且绘制了如图的频数直方图(每组中含最低分 数,但不含最高分数),请回答: (1)该中学参加本次数学竞赛的共有多少人? (2)如果成绩在90分以上(含90分)的同学获奖, 那么该中学参赛同学的获奖率是多少? (3)图中还提供了其他信息,例如该中学没有 获得满分的同学等,请再写出两条信息.
[数学]-7.4 频数分布表与频数分布直方图(原卷版)
7.4 频数分布表与频数分布直方图同步培优讲练综合1.组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围).2.频数分布表:把各个组别中相应的频数分布用表格的形式表示出来,所得表格就是频数分布表.频数分布表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.当数据在100个以内时,按照数据的多少,常分成5~12组.在分组时,要灵活确定组距,使所分组数合适,一般组数为的整数部分+1.组距(2)制作频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表.3.频数分布直方图根据频数分布表,用横轴表示各分组数据、纵轴表示各组数据的频数,绘制条形统计图.这样的条形统计图,直观地呈现了频数的分布特征和变化规律,称为频数分布直方图.4.画频数分布直方图的步骤(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.5. 频数分布直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数分布直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数分布直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数分布直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.一、组距【例1】一个样本最大值为143,最小值为50,取组距为10,则可以分成 组.【例2】一组数据的最大值与最小值的差为2.8 cm,若取组距为0.4 cm,应将该数据分为 组.二、 频数分布直方图【例1】某校为了解学生参与“凤城悦读”的情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t (单位:)min ,然后利用所得数据绘制成如图不完整的统计图表: 课外阅读时间频数分布表:根据图表中提供的信息,回答下列问题: (1)a = ,b = ; (2)将频数分布直方图补充完整;(3)若全校有1200名学生,估计该校有多少名学生平均每天的课外阅读时间不少于50min ?【例2】小文同学统计了他所在小区部分居民每天微信阅读的时间,绘制了直方图.得出了如下结论:①样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少;②样本中每天微信阅读不足20分钟的人数大约占16%;③选取样本的样本容量是60;④估计所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右.其中正确的是()A.①②③B.①②④C.①③④D.②③④【例3】为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②三、综合应用(与条形统计图、扇形图的结合)【例1】为了了解春节晚会群众喜爱节目类型(“歌舞类”、“语言类”、“戏曲类”、“其他”)情况,对某地区的部分群众的喜爱节目类型做了调查,其中每人只能填选一项,现根据调查情况绘制了如图直方图和扇形统计图.请根据图中信息解答下列问题:(1)此次调查中一共调查了多少人?(2)求所调查的群众中,喜爱“戏曲”的人数,并补全直方图的空缺部分;(3)若该地区共有人口360万人,估计该地区喜爱“语言类”约有多少人.【例2】某校为了解九年级学生休息日时每天学习的时长情况,随机抽取了n名九年级学生进行调查,据调查每名学生休息日时每天学习时长都少于5小时.该校将所收集的数据分组整理,绘制了如图所示的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是.(填写“全面调查”或“抽样调查”)(2)求n的值.(3)若该校九年级共有450名学生,请估计该校休息日时每天学习时长在3≤t<4范围的学生人数.3≤t<43≤t<4【例3】为了得到一种零件的加工精度,从中抽出40个进行检测,其尺寸数据如下(单位:cm):161 165 164 166 160 158 163162 168 159 147 170 167 151164 159 152 159 149 172 162157 162 169 156 164 163 157163 165 173 159 157 169 165154 153 163 168 169将数据适当分组,并绘制相应的频数分布直方图,图中所反映出这种零件的尺寸在哪个范围内的最多?1.某校组织部分学生参加安全知识竞赛,并将成绩整理后绘制成频数分布直方图,图中从左至右前四组的百分比分别是4%,12%,40%,28%,第五组的频数是8.则:①参加本次竞赛的学生共有100人;②第五组的百分比为16%;③成绩在70-80分的人数最多;④80分以上的学生有14人.其中正确的有( )A.1个B.2个C.3个D.4个2.某校在举办的“优秀小作文”评比活动中,共征集到小作文若干篇,对小作文评比的分数(分数均为整数)整理后,画出如图所示的频数分布直方图.已知从左到右5个小长方形的高的比为1∶3∶7∶6∶3,如果分数大于或等于80分以上的小作文有72篇,那么这次评比中共征集到的小作文有篇.3、三台县某中学“五.四”青年节举行了“班班有歌声”歌咏比赛活动.比赛聘请了10位教师和10位学生担任评委,其中甲班的得分情况如统计表和统计图.老师评委评分统计表:学生评委评分折线统计图师生评委评分频数分布直方图(1)补全频数分布直方图.(2)计分办法规定:老师评委、学生评委的评分各去掉一个最高分、一个最低分,并且按教师、学生各占60%、40%的方法计算各班最后得分,知甲班最后得分94.4分,试求统计表中的x.4、扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.每天课外阅读时间t/h 频数频率0<t≤0.5 240.5<t≤1 36 0.31<t≤1.5 0.41.5<t≤2 12 b合计 a 1根据以上信息,回答下列问题:(1)表中a= ,b= ;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1h的人数5、为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩的分布情况进行处理分析,制成如下图表(成绩得分均为整数):组别成绩分组频数A 47.5-59.5 2B 59.5-71.5 4C 71.5-83.5 aD 83.5-95.5 10E 95.5-107.5 bF 107.5-120 6图7-4-7根据图表中提供的信息解答下列问题:(1)在频数分布表中,a= ,b= ;在扇形统计图中,m= ,n= .(2)补全频数分布直方图.(3)已知全区八年级共有200个班(平均每班有40人),用这份试卷进行检测,108分及以上为优秀,预计优秀的人数约为人,72分及以上为及格,预计及格的人数约为人.。
统计学中的频率分布和直方图
统计学中的频率分布和直方图统计学是一门研究数据收集、分析和解释的学科。
频率分布和直方图是统计学中常用的工具,用于展示变量的分布情况。
本文将介绍频率分布和直方图的概念、用途以及如何创建它们。
一、频率分布频率分布是指将数据按照数值大小划分为若干个区间,并统计每个区间内数据出现的次数或频数。
频率分布可以展示数据的分布情况和密度,帮助我们了解数据的特征和规律。
创建频率分布的步骤:1. 确定数据的范围和区间大小:根据数据的取值范围和数量,选择合适的区间大小,一般要求每个区间的范围相等。
2. 划分区间:将数据按照区间的范围进行划分,并计算每个区间的频数。
3. 绘制频率分布表:按照区间和频数的顺序,列出每个区间和对应的频数。
4. 绘制频率分布图:根据频率分布表绘制柱状图或折线图,以展示数据的分布情况。
二、直方图直方图是一种用矩形条表示数据频率的图表。
它将数据按照区间划分,以矩形高度表示频率或频数,矩形的宽度表示区间的范围。
直方图可以直观地显示数据的频数分布,帮助我们分析数据的集中趋势、偏态和离散程度。
创建直方图的步骤:1. 确定数据的范围和区间大小:与频率分布相同,根据数据的取值范围和数量选择合适的区间大小。
2. 划分区间:将数据按照区间的范围进行划分,并计算每个区间的频数。
3. 绘制直方图:以区间为横轴,频数为纵轴,绘制矩形条来表示数据的频数。
4. 添加标签和标题:为直方图添加横轴和纵轴的标签,以及图表的标题,使图表更具可读性。
频率分布和直方图的应用:1. 数据分析和解释:通过频率分布和直方图,我们可以看出数据的集中趋势、分散情况和偏态。
这有助于我们对数据进行更深入的分析和解释。
2. 数据比较:通过比较不同数据的频率分布和直方图,我们可以看出它们之间的差异和相似性,进而进行数据的比较和对比。
3. 预测和决策:统计学中的频率分布和直方图可以帮助我们理解问题背后的规律和趋势,从而为预测和决策提供依据。
总结:统计学中的频率分布和直方图是展示数据分布情况和密度的重要工具。
频数及其分布
第三章频数的分布与应用知识回顾:1. 频数和频率频数:表示对象出现的次数。
频率:表示对象出现的次数与总次数的比值(或百分比)2. 频数与频率的关系式:频率频数样本容量=注:此处各对象的频率总和等于1。
3. 频数分布表、频数分布直方图和频数折线图。
频数分布表:是一个关注样本数据在各小范围内所占比例多少的统计图。
频数分布直方图:是一个用一个个小矩形将频数分布表中的结果直观表现出来的统计图,其中矩形的宽表示组距,矩形的高表示频数。
频数折线图:将频数分布直方图中每一个小矩形宽的中点顺次连接所成的统计图。
4. 绘制频数分布直方图的步骤①计算极差②确定组距与组数以及分点③列频数分布表④画频数分布直方图【典型例题】例2. 为了解某市九年级男生的身高情况,先从该市的一所中学选取容量为60的样本(单位:cm),然后分组如下(1)求出表中的数据a、m的值。
(2)画出频数分布直方图。
解:(1)根据频率频数样本容量=,频数频率样本容量=⨯,可求得m=⨯=60016.,a=-⨯-=60622160045.。
(2)频率分布直方图如下图所示:cm)例3. 某校在5月1日到30日期间对各年级各班推荐的政治小论文评比中,按各班上交论文数(件)按5天一组来分组统计,绘制了频数分布直方图。
已知该图从左到右各矩形的高之比为2∶3∶4∶6∶4∶1,并且第二组的频数为18,问:(1)本次评比中,共有多少篇论文参加?(2)哪组上交的数量最多?有多少篇?(3)经过评比,得知第四、六组分别有20篇和4篇论文获奖,则这两组中哪个组的获奖率较高?解:(1)∵各矩形的高之比为:2∶3∶4∶6∶4∶1。
∴频数之比为:2∶3∶4∶6∶4∶1又,第二组的频数为18,∴各组的频数分布可依次求得为:12,18,24,36,24,6。
∴本次评比共有120篇小论文参加评选。
(2)易求得第四小组上交的小论文最多,有36篇。
(3)第四组的获奖率为%573620=÷;第六组的获奖率为%57%6764>≈÷∴第六组的获奖率更高。
频数练习题
一、单选题1. 一个数据集共有50个数据,其中数值为10的频数为:A. 5B. 10C. 15D. 202. 下列哪个选项不是频数的定义?A. 数据集中某个数值出现的次数B. 数据集中最大数值与最小数值之差C. 数据集中数值的分布情况D. 数据集中某个数值出现的频率3. 在一组数据中,数值为5的频数为8,数值为7的频数为3,那么这组数据的总频数为:A. 11B. 15C. 18D. 204. 下列哪个选项不是频数分布表的基本组成部分?A. 数值范围B. 频数C. 频率D. 数据总和5. 一个班级有30名学生,其中有10名男生,20名女生,那么男生的频数为:A. 10B. 20C. 30D. 50二、多选题1. 频数分布表的作用包括:A. 显示数据集中数值的分布情况B. 分析数据集中数值的集中趋势C. 计算数据集中数值的离散程度D. 判断数据集中数值的分布类型A. 离散型频数分布B. 连续型频数分布C. 累计频数分布D. 累计频率分布3. 下列哪些是计算频数的步骤?A. 确定数据集B. 确定数值范围C. 统计每个数值出现的次数D. 计算频率4. 频率与频数的关系包括:A. 频率是频数除以数据总数B. 频率表示数据集中某个数值出现的概率C. 频率是频数与数据总数的比值D. 频率与频数成正比A. 频数分布表B. 频率分布表C. 频数分布直方图D. 频率分布直方图三、判断题1. 频数是指数据集中某个数值出现的次数。
()2. 频率与频数是相同的概念。
()3. 频数分布表可以直观地展示数据集中数值的分布情况。
()4. 频率分布直方图可以用来展示数据集中数值的分布类型。
()5. 频数分布图可以用来比较不同数据集的分布情况。
()四、填空题1. 频数的计算公式为:频数 = _______。
2. 频率是频数与 _______ 的比值。
3. 频数分布直方图的横轴表示 _______,纵轴表示 _______。
4. 在频数分布表中,累计频数是指从最小数值到当前数值的_______。
频数及其分布
课题频数及其分布教学目标1.了解极差、组距、组数之间的关系,会将数据分组;2.理解样本容量、频数、频率之间的相互关系,会计算频率.3、会列频数分布表。
4、会画频数分布直方图和折线图重点、难点频数和频率的概念;频数分布直方图和频数分布折线图。
考点及考试要求教学内容知识框架1. 频数和频率频数:表示对象出现的次数。
频率:表示对象出现的次数与总次数的比值(或百分比)2. 频数与频率的关系式:频率频数样本容量注:此处各对象的频率总和等于1。
3. 频数分布表、频数分布直方图和频数折线图。
频数分布表:是一个关注样本数据在各小范围内所占比例多少的统计图。
频数分布直方图:是一个用一个个小矩形将频数分布表中的结果直观表现出来的统计图,其中矩形的宽表示组距,矩形的高表示频数。
频数折线图:将频数分布直方图中每一个小矩形宽的中点顺次连接所成的统计图。
4. 绘制频数分布直方图的步骤①计算极差②确定组距与组数以及分点③列频数分布表④画频数分布直方图5.频数分布折线图是反映频数分布的另一种形式的统计图.画频数分布折线图的主要步骤:①计算极差,确定组距、组数,并将数据分组;②列出频数分布表,并确定组中值;③根据组中值所在的组的频数在坐标系中描点,依次用线段把它们连成折线(画频数分布折线图,并不一定要先画频数分布直方图).【基础知识回顾】1、统计图是表示统计数据的图形,是数据及其关系的直观表现的反映,几种常见的统计图有统计图统计图统计图2、频数分布直方图:⑴频数:在统计数据中落在不同小组中的个数,叫做频数⑵频率:=⑶绘制频数直方图的步骤:a:计算与的差,b:决定和c:确定分点d:列出f:画出【名师提醒:1、各类统计图的特点:条形统计图可以反映折线统计图能够显示从扇形统计图能够看出,扇形的圆心角= 3600X2、频数分布直方圆中每个长方形的高时就有小长方形高的和为】【典型例题解析】考点一:用样本估计总体例1 (2012•资阳)某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A、B、C三个级别,其中A级30棵,B级60棵,C级10棵,然后从A、B、C三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是千克.苹果树长势A级B级C级随机抽取棵数(棵) 3 6 1所抽取果树的平均产量(千克)80 75 70考点:用样本估计总体;加权平均数.:80×30+75×60+70×10=7600.对应训练1.(2012•苏州)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.考点:用样本估计总体;条形统计图;加权平均数.专题:数形结合.1550=30%,故全校坐公交车到校的学生有:720×30%=216人.极差、方差、标准差例 2 (2012•徐州)如图是某地未来7日最高气温走势图,这组数据的极差为℃.(32-25=7)3(2012•株洲)市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表.请你根据表中数据选一人参加比赛,最合适的人选是.甲乙丙丁平均数8.2 8.0 8.0 8.2方差 2.1 1.8 1.6 1.4考点:方差;算术平均数故答案为:丁.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.对应训练4.(2012•宁波)我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别为()A.2,28 B.3,29 C.2,27 D.3,28考点:极差;众数.(2012•襄阳)在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:植树株数(株) 5 6 7小组个数 3 4 3则这10个小组植树株数的方差是.考点:方差.分析:首先求出平均数,再利用方差计算公式:s2= 1n[(x1- x)2+(x2- x)2+…+(x n-x)2]求出即可.0.6统计图表的综合运用例3 (2012•镇江)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.考点:条形统计图;用样本估计总体;扇形统计图.(2012•朝阳)某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从乒乓球、羽毛球、篮球和排球四个方面调查了若干名学生,在还没有绘制成功的“折线统计图”与“扇形统计图”中,请你根据已提供的部分信息解答下列问题.1)在这次调查活动中,一共调查了名学生,并请补全统计图.(2)“羽毛球”所在的扇形的圆心角是度.(3)若该校有学生1200名,估计爱好乒乓球运动的约有多少名学生?考点:折线统计图;用样本估计总体;扇形统计图.如图所示:对应训练6.(2012•湛江)中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果.请你估计我市城区80000名中学生家长中有多少名家长持反对态度?考点:条形统计图;用样本估计总体;扇形统计图.(2012•聊城)为进一步加强中小学生近视眼的防控工作,市教育局近期下发了有关文件,将学生视力保护工作纳入学校和教师的考核内容,为此,某县教育组管部门对今年初中毕业生的视力进行了一次抽样调查,并根据调查结果绘制如下频数分布表和频数分布直方图的一部分.视力频数(人)频率4.0~4.2 15 0.054.3~4.5 45 0.154.6~4.8 105 0.354.9~5.1 a 0.255.2~5.4 60 b请根据图表信息回答下列问题:(1)求表中a、b的值,并将频数分布直方图补充完整;(2)若视力在4.9以上(含4.9)均属正常,估计该县5600名初中毕业生视力正常的学生有多少人?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)先求出这次调查的人数,则a=300×0.25,b=60÷300,即可将频数直方图补充完整;(2)用总人数乘以视力在4.9以上(含4.9)的人数的频率,即可求出答案.解答:解:(1)这次调查的人数是:15÷0.05=300(人),所以a=300×0.25=75,b=60÷300=0.2,因为a=75,所以4.9~5.1的人数是75,如图:(2)根据题意得:5600×(0.25+0.2)=2520(人).答:该县初中毕业生视力正常的学生有2520人.点评:本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.(2012•黄石)某校从参加计算机测试的学生中抽取了60名学生的成绩(40~100分)进行分析,并将其分成了六段后绘制成如图所示的频数分布直方图(其中70~80段因故看不清),若60分以上(含60分)为及格,试根据图中信息来估计这次测试的及格率约为.考点:频数(率)分布直方图;用样本估计总体.专题:计算题.分析:先根据频率分布直方图,利用频数= 频数组距×组距,求出每一阶段内的频数,然后让60减去已求的每一阶段内的人数,易求70≤x<80阶段内的频数,再把所有大于等于60分的频数相加,然后除以60易求及格率.解答:解:∵频数=频数组距×组距,∴当40≤x<50时,频数=0.6×10=6,同理可得:50≤x<60,频数=9,60≤x<70,频数=9,80≤x<90,频数=15,90≤x<100,频数=3,∴70≤x<80,频数=60-6-9-9-15-3=18,∴这次测试的及格率=91815360+++×100%=75%,故答案是75%.点评:本题考查了频率分布直方图,解题的关键是利用公式频数= 频数组距×组距,求出每一阶段内的频数.(2012•深圳)为了了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作图表如下:分数段频数频率60≤x<70 30 0.170≤x<80 90 n80≤x<90 m 0.490≤x≤10060 0.2请根据以上图表中提供的信息,解答下列问题:(1)本次调查的样本容量为;(2)在表中:m= ,n= ;(3)补全频数分布直方图;(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在分数段内;(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.专题:计算题.分析:(1)利用第一组的频数除以频率即可得到样本容量;(2)90÷300即为70≤x<80组频率---n的值;300×0.4即为80≤x<90组频数,m的值.(3)根据80≤x<90组频数即可补全直方图;(4)根据中位数定义,找到位于中间位置的两个数所在的组即可.(5)将比赛成绩80分以上的两组数的频率相加即可得到计该竞赛项目的优秀率.解答:解:(1)此次调查的样本容量为30÷0.1=300;(2)n=90300=0.3;m=0.4×300=120;(3)如图:(4)中位数为第150个数据和第151个数据的平均数,而第150个数据和第151个数据位于80≤x<90这一组,故中位数位于80≤x<90这一组;(5)将80≤x<90和90≤x≤100这两组的频率相加即可得到优秀率,优秀率为60%.点评:本题考查了频数分布直方图、用样本估计总体、频率分布表、中位数等知识,要具有读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.三:【课后训练】1.天籁音乐行出售三种音乐CD,即古典音乐、流行音乐、民族音乐,为了表示这三种唱片的销售量占总销售的百分比,应该用( ) A .扇形统计图 B .折线统计图 C .条形统计图 D .以上都可以2.为了了解本校九年级学生的体能情况,随机抽查了其中30名学生, 测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直 方图,请根据图示计算,仰卧起坐次数在25~30次的频率为( ) A .0.1 B .0.2 C .0.3 D .0.43.某校初中二年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以统一标准划分成“不合格”、“合格”、“优秀”三个 等级。
频数分布表和频率分布直方图课件
Excel制作频数分布表和频率分布直方图方法总结
频数分布表和频率分布直 方图
频数分布表和频率分布直方图是数据分析中常用的工具。通过本课件,我们 将介绍它们的定义、制作方法以及应用范围和重要性。
为什么需要频数分布表和频率 分布直方图?
频数分布表和频率分布直方图帮助我们更好地理解和解释数据。通过可视化 数据,我们可以发现模式、趋势和异常值,从而做出有意义的数据分析。
Excel提供了便捷的功能和工具来制作频数分布表和频率分布直方图。学习如 何使用Excel进行制作,并注意一些细节,可以更高效地进行数据分析。
结论
频数分布表和频率分布直方图在数据分析中应用广泛且具有重要性。它们帮助我们理解数据、发现规律,并为 数据分析提供有力支持。
参考资料
频数分布表知识点总结
频率分布直方图知识点总结
频数பைடு நூலகம்布表
频数是指某个数值或区间在数据集中出现的次数。制作频数分布表可以帮助 我们了解数据的分布情况和集中程度,从而更好地进行统计分析。
频率分布直方图
频率是指某个数值或区间在数据集中出现的频率或概率。通过制作频率分布 直方图,我们可以直观地展示数据的分布情况和集中程度。
使用Excel绘制频数分布表和频 率分布直方图
频数分布表和频数分布直方图
频数分布表和频数分布直方图(1)教学目标知识目标1•掌握频数、频率的概念.2•会求一组数据的频数与频率.能力目标1•通过统计数据,制成各种图表,增强学生对生活中所见到的统计图表进行数据处理和评判的主动意识.2•培养学生利用图表获取信息的能力/吏学生能初步把数字信息、图形和语言之间相互转化,并作出合理推断.情感与价值观目标培养学生实事求是的科学态度,并通过对数据的整理,提高学生的责任心与耐心细致的工作态度.■教学重点频臺与频数的概念,选择数据表示方式.教学难点各洛统计图表的绘制,识别各种图表所含的信息,各自优缺点.教学方法合作探讨法教具准备投影片教学过程一、导入新课$上节课我们主要学习了数据的收集,并探讨了抽样调查时要注意的问题.(1)样本的大小.(2)样本的代表性.(3)样本的广泛性•使所抽取的样本尽可能准确地反映总体的真实情况•本节课我们继续学习统讣初步中反映数据出现频繁程度的两个量频数与频率.二、讲授新课1•例题讲解我们不仅要学好基础知识,还要强健自己的体呱长大后才能更好地工作•同学们,你们平时最喜爱的体育运动是什么乒乓球、篮球、足球、游泳、羽毛球、跳绳、踢毬子……・你最喜爱的体育明星是谁下面是小亮调查的七(1)班50位同学喜欢的足球明星,结果如下:(投影片)A BC D A B AC 呂 d A C 呂 C A A 呂 CA A EA C D A A C DB A.CD A A AC D A C& AAC C (-?D AA CA 代表贝兗汶姆 昌代我费戈 C 代表罗纳尔多 D 代表巴乔根据上面结果,你能很快说出该班同学最喜欢的足球明星吗他的数据表示 方式是什么这些数据没有经过统计、整理,必须把A 、B 、C 、D 的个数全部数清,才 能比较出哪位球星是该班同学最喜欢的•数据越多越不方便,所以我认为小亮的 数据表示方式不太好. (你能设计出一个比较好的表示方式吗小组相互交流,共同探讨. 我们小组用如下方式表示:(二)此种表示方式的优点是什么简单明了,一眼可以看岀哪个最多、哪个最少. 我们小组采用如下方式表示数据.此种表示方式的优点是什么直观,一目了然•不仅可以很快判断出哪个最多,哪个最少,还可比较出 差别是否悬殊很大.从上表可以看出,A 、B 、C 、D 出现的次数有的多,有的少,或者说它们 出现的频繁程度不同•我们称每个对象出现的次数为频数(absolute,frequency )・ 而每个对象出现的次数与总次数的比值为频率(relative frequency )・ 分别计算A 、B 、C 、D 的频数与频率. A 的频数为23, A 的频率为兰.50 B 的频数为& B 的频率为殳.25 C 的频数为13, C 的频率为 D 的频数为6, D 的频率为箱.三、课堂练习1. 设汁一个方案,了解你们班同学最喜欢的科目是哪科,为什么喜欢 分析:先列表,再统计,调查探讨喜欢的原因.调查不爱学的那门科目的原 因.(课后完成)[生]可以用上例中的图(三)表示的形式.[师]这种图叫频数分布直方图•可不可以用频率分布来表示,2•议一议:(投影片)小明、小亮从同一本书中分别随机抽取了 6页,在统计了 1页、2页.3页、 4页、5页、6页的“的”和“了”出现的次数后,分别求出了它们出现的频率, 并绘制了下图[师]随着统计页数的增加,这两个字岀现的频率是如何变化的[生]频率在至之间变化的字是“的”字•“了”字的频率在至之间变化.的”字 0.10 0. 09 0. 08 0. 07 0. 06 0. 05讹0. 02 0.01卄了”字1 2 3 4 5 6图5-1[师]你认为该书中“的”和“了”两个字使用的频率哪个高[生]我认为是“的"字.3•做一做(1)为了了解中学生的身体发育情况,对某中学同年龄的60名女学生的身高进行了测量•结果如下.(单位:厘米)(投影片)158167154■159166169159156166162159156166164160157156160157161158158153158164158163158153157162162159154165166157151146151158160165158163162161154163165162162159157159149164168159153[师]我们知道,这组数据的平均数,反映了这些学生的平均身高•但是,有时只知道这一点还不够,还希望知道身高在哪个范11内的学生多,在哪个小范围内的学生少,也就是说,希望知道这60名女学生的身高数据在各个小范用内所占的比的大小.(学生填下表)落在各个小组内的数据的个数叫做频数. 小结:整理数据时,可以按照下面的步骤进行.1••计算最大值与最小值的差.2.决定组距与组数.3.决定分点4 •列频率分布表.下节课我们将继续学习对各种数据的统讣表的处理.四、课时小结本节课主要学习了如下内容.1・频数与频率两个基本概念.2 •会求一组数据的频数与频率,并会选择合理的表示方式来表示数据•例用频数分布直方图、图表、扇形区域分布图等表示所收集的数据情况.五、课后作业习题六、活动与探究为了提高学生的数学实践能力、提高学生学习数学的兴趣,课堂内、外多让学生去观察分析自己身边的事情•提出问题、探讨解决问题的方法•写一些实习作业,逐步掌握统讣里的实习作业的问题如何表述,完成的步骤、实习报告的写法. 例如要了解当地初中八年级男生的身高情况.[过程]具体要求包括:(1)如何选取样本、样本容量多大.(2)计算哪些统计量(平均数、中位数、众数、频数、频率等).(3)数据如何整理.(4)如何估计总体情况.[结果]具体步骤包括:(1)确定抽取样本的对象•在统计里,所要了解的情况涉及的范围往往很大,为了使样本对总体的佔讣更加精确,所确定的抽取样本的对象力求具有代表性•例如想要了解一个城市的初中某年级某门学科的学习情况,如果要选一个学校作为抽取样本的对象,那么这个学校不应是学习成绩较好或较差的学校,而应是成绩较为适中的学校•可见抽取样本对象的确定直接关系到所得结果的可靠程度.(2)确定抽取样本的方法并抽取样本(随机抽样、系统抽样、分层抽样)(3)讣算和分析数据,写出书面报告•为了保证所得结论具有参考价值,所以要求数据来源于实际且真实,计算准确无误•为此,必须提高学生的责任心,用高度认真负责的态度对待身边每一个细小的问题,以小见大,逐步提高自身能力.板书设计频数分布表与频数分布直方图(2)教学目标知识目标1•如何收集与处理数据.2•会绘制频数分布直方图与频数分布折线图.3•了解频数分布的意义,会得出一组数据的频数分布.能力H标[•初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2•通过经历调查、统讣、研讨等活动,发展学生实践能力与合作意识. 情感与价值观目标通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1•决定组距与组数.2.数据分布规律.教学方法交流探讨式教具准备投影片教学过程一、导入新课请大家一起回忆一下,我们如何收集与处理数据.1•首先通过确定调查H的,确定调查对象.2•收集有关数据.3•选择合理的数据表示方式统计数据.4•根据所收集的数据进行数据计算•根据特征数字,估讣总体情况,设计可行的计划与方案,并不断实施与改进方案.大家能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少首先应开展调查•统计一下李大爷每天卖出的A、B、C、D、E五个牌子雪糕的数量.二、讲授新课(出示投影片)这是小丽统讣的最近一个星期李大爷平均每天能卖出的久B、C、D、E五个牌子雪糕的数量.雪糕A 数量131频数131频率B182182C6868D3939E9898合计518518根据上表绘制一张频数分布直方图.(如下)(投影片)根据小丽的统计结果,请你为李大爷设讣一个进货方案.A、B两种雪糕卖出的较多,可以多进些,D种雪糕卖出的少,可以少进些. A多进多少B多进多少D进多少如何通过比例确定A占总数的25%, B占总数的35%, C占总数的13%, D占总数的8%, E占总数的19%.如何确定进货的总数,还应考虑哪些因素还应考虑当天气温情况,天气凉,气温低时少进货•天气热,气温高时多进货,即进雪糕总数应考虑当天气温变化•不能每天都进518支雪糕.2•做一做[例]学校要为同学们订制校服,为此小明调查了他们班50名同学的身高, 结果(单位cm)•如下:(投影片)141165144171145145158150157150154168168155155169157157157158149150150160152152159152159144154155157145160160160158162155162163155163148163168155145172(表一)填写下表,并将上述数据用适当的统计图表示出来.(表二)同学们想一想,你同父母一起去商丿占买衣服时,衣服上的号码都有哪些,标志是什么我看到有些衣服上标有M、S、L. XL、XXL等号码•但我不清楚代表的具体范用・适合什么人穿•但肯定与身高、胖瘦有关.这位同学很善动脑,也爱观察・S代表最小号,身髙在150-155 cm的人适合穿S 号・M号适合身高在155-160 cm的人群着装……•厂家做衣服订尺寸也并不是按所有人的尺寸定做,而是按某个范圉分组批量生产.如何确定组距与组数呢分组组数的确定,不仅与数据多少有关,还与数据的取值情况有关•在实际决定组数时,常有一个尝试过程:先定组距,再计算出相应的组数•看看这个组数是否大致符合确定组数的经验法则•在尝试中,往往要比较相应于儿个组距的组数,然后从中选定一个较为合适的组数.我们一起看下表:小亮的做法.144 cm 以下145T49 cm 150754 cm3 6 9155^159 cm 160764 cm 165769 cm16 9 5170 cm以上2小亮是怎么做的先分组,再得到相应各组的学生人数. 根据上表绘制统计图(如下)(投影片)半收集的数据连续取值时,我们通常将数据分组,然后再绘制频数分布直方注:数据越多,分的组数也应越多,当数据在100以内时,通常按照数据的多少,分成5~12组.为了更好地刻画数据的总体规律,我们还可以在得到的频数分布直方图上取 点、连线,得到如下的频数分布折线图.(投影片)比较一下各种统计图各自的优缺点. 表一是没有经过整理的数据•数据多,而且数量表示上不简单、不直观•各个 数据所占人数多少也没有直接给岀,还需要计算.表二,优点:数量表示上确切•即准确表示出各个数据所占的人数•缺点:不 能直观反映数据的总体规律•数据也较多.图5 — 3、图5 — 4能直观形象地将数据表示出来,而且能刻画岀数据的总体 规律•中间人数较集中,两边较少.小结•我们在收集到一些数据后,一定要选择合理的表示方式表示所收集的 数据•常用表格与图表两种方式•何时用哪种方式,应根据我们研究问题的侧重点 来定•具体问题具体分析•不要生搬硬套,应多总结、提炼硏究问题的思想和方法. 不要一味去模仿•只要多动脑去思考•我相信同学们会创新岀更好的方法.三、课堂练习-~1•储蓄所太多必将增加银行支出,太少乂难以满足顾客的需求.为此,银行在 某逆蓄所抽样调查了 50名顾客,他们的等待时间(进入银行到接受受理的时间 间隔,单位mi 门)如下:1520 18 3 25 34 6 024 23 30 35 42 37 24 21 1 14 12 34 22 13 34 8 22 31 24 17 33 4 14 23 32 33 28 42 25 14 22 31 42 34 26 14 25 40 14 24 11(1) 将数据适当分组,并绘制相应的频数分布直方图.(2) 这50名顾客的平均等待时间是多少根据这个数据,你认为应该给银行 提什么建议分析:①先计算最大值与最小值的差•在上面的数据中,最大值为42,最 小值为16-9//\\.9_--、7715 10馳分布臓图学生人数 20身高图5 —450. A42-0=42.®决定组距与组数•③决定分点列表如下.绘制频数分布直方图(如下图)学生完成下图.四、课时小结本节课学习了如下内容.1•如何整理所收集的数据.2•将数据用适当的统计图表示出来.(1)表格形式.(2)频数分布直方图(3)频数分布折线图.3•各种统计图、表的优缺点.4•根据统计图表信息,提出合理化建议.今后我们还要学习一些统计知识,一些图表的制作•例如频率分布直方图, 以及它的意义.五、课后作业习题六、活动与探究1.将一批数据分组时,每个小组的频数与频率各指什么2 •分组时应注意哪些问题。
频数分布表、直方图概念
一、数据的分组整理将一组数据分成若干个数段,每个分数段是一个“组区间”,分数段两端的数值是“组限”,在一组两端数值中最大的数值为上限,最小的数值为下限,分数段的最大值与最小值的差为“组距” ,分数段的个数是“组数”小结:分组整理的方法 -⑴确定分组的方法并分组141 165 144 171 145 145 158 150 157 150①计算极差;154 168 168 155 155 169 157 157 157 158②确定组距和组数,组数极差,组数取大于商的最小整数;组距149 150 150 160 152 152 159 152 159 144 ③决定组限并分组。
注意各分数段中的分数, 通常包括分154 155 157 145 160 160 160 158 162 155162 163 155 163 148 163 168 155 145 172二、频数、频率与频数分布表频数:落在各个小组内的数据的个数是这一小组的频数。
(每个分数段的分数的个数)频率:每个小组的频数与数据总数的比值叫做这一小组的频率。
计算公式:想一想:根据上表,回答以下问题 ⑴组数是多少?举例说明组区间是什么? ⑵在“80~90 ”这一组中,组限各是什么?哪个是下限,哪个是上限?组距是多少?频数是多少?频率有多大?⑶假设在“ 70~80 ”这一组中,如果频数已知,频率漏掉,怎样补上? 如果频数漏掉,怎样补上?如果频数、频率都漏掉,又怎样补上? 小结规律:① 各小组的频数之和等于数据总数; ② 各小组的频率之和等于 1。
观察频数分布表,从以下几方面对数据分布信息进行分析: ⑴数据在哪个组分布最多最集中(称该组为众数组) ,在哪个组分布最少,各占总数的比值(或百分比)是多少。
⑵各组数据分布的数量变化趋势是什么。
⑶测算中位数在哪个组(该组称为中位数组),获得数据分布状态的信息。
⑷测算平均数=各组组中值X 该组频率的积之和 (组中值=上限 下限),从2中体会频数分布的作用。
频数分布表和频数分布直方图
63 84 91 53 69 81 61 69 91 78 75 81 81 67 76 81 79 94 61 69 89 70 70 87 88 86 90 88 85 67 71 82 87 75 87 95
这就是频数分布表
53 65 74 77
成绩段 49.5~ 59.5~ 69.5~ 79.5~ 89.5~
(2)定组距与组数;
(2)决定组距与组数;
1.组距是指每个小组的两个端点之间的距离.实践中 通常要求各组的组距相等;
2.数据越多,分组应越多.当数据在100个以内时,通 常按照数据的多少分成5~12组.
在实际分组中,往往要有一个尝试的过程, 最后选择一个比较合适的组距与组数.
(3)确定分点; 确定分点的方法有多 种。通常为了使得每 个数据都落在相应的 组内,可取比数据多 一位小数来分组;
13
89 5 3 2
7 2 1
某班一次数学测验成绩如下:
63 84 91 53 69 81 61 69 91 78 75 81 81 67 76 81 79 94 61 69 89 70 70 87 88 86 90 88 85 67 71 82 87 75 87 95 53 65 74 77
若想了解大部分同学处于哪个分数段? 成绩的整体分布情况如何?
从图你可以看出:
这就是频1生.-最数---7多--9折-.?-5-~-线-8--9-.-图5-----分数段的学
2.---不---及---格-----------最小?
3数.及频是格率---分---2以样 -9--上-频 本--(人数 容满?量分100)人
频率为--32--08-----11---45--- 0.94
1.频数是什么? 某个对象出现的次数 2.频率是什么? 频数与总次数的比值(频数÷总次数=频率)
频数分布表和频率分布直方图课件
在医学领域,频数分布表和频率分布直方图可以用于分析病例数据 、药物疗效等,为医学研究和临床诊断提供支持。
05
制作频数分布表和频率分布直方图 的注意事项
数据来源的可靠性
确保数据来源可靠
在制作频数分布表和频率分布直 方图时,应确保所使用数据的来 源可靠,避免使用不准确或过时
的数据。
验证数据准确性
作用
方便地展示数据的分布情况,帮助我们了解数据的集中趋势、离散程度以及分布形态等特征,为进一步的数据 分析提供基础。
制作步骤
01
02
03
04
收集数据
首先需要收集需要分析的数据 。
数据分组
将数据按照一定的分类标准进 行分组,分组的方法可以根据
实际需求进行选择。
统计频数
统计每组数据的数量,即频数 。
制作表格
应用场景
频数分布表
适用于需要详细了解数据各组频数的场景,如人口普查、销 售数据统计等。
频率分布直方图
适用于需要直观展示数据分布的场景,如市场调研、产品质 量检测等。
实例对比
频数分布表
一个班级的考试成绩统计,可以得出各分数段的学生人数。
频率分布直方图
同个班级的考试成绩分布图,可以直观地看出成绩的集中区域和离散程度。
数据收集
收集需要分析的数据,并进行必要的整理 和筛选,确保数据的质量和准确性。
添加图表元素
在直方图中添加必要的图表元素,如坐标 轴、标题、图例等,以便更好地解释和展 示数据。
数据分组
将数据按照一定的规则进行分组,分组的 方法可以根据实际需求选择,常见的分组 方式有等距分组和等频分组等。
绘制直方图
根据频数和频率数据,绘制条形图来表示 每个数据组的分布情况,பைடு நூலகம்形图的高度代 表频率,宽度代表组距。
第4课时7.4频数分布表和频数分布直方图
解:(1)计算极差: 32-23=9 (2)决定组距为2, 因为9/2=4.5,所以组数为5 (3)决定分点: 22.5~24.5,24.5~26.5, 26.5~28.5,28.5~30.5,30.5~32.5.
例1: 已知一个样本:27,23,25,27,29,
31,27,30,32,23,28,26,27,29, 28,24,26,27,28,30。 列出频数分布表, 并绘出频数分布直方图和频数折线图。
频率
0.025 0.050 0.300 0.450 0.150 0.025
合计
40
1.000
(3)约占90%的学生平均每天参加课外体育活动时间都在哪 个范围内?
40×90%=36, 约占90%的学生平均每天参加课外体育活动时间都在29.5~59.5 范围内
练习6
国家卫生部信息统计中心根据国务院新闻办公室发布的全 国内地2003年5月21日至5月25日非典型性肺炎发病情况,按年龄段进 行统计,如图所示(每组包括前一个边界值,不包括后一个边界值)
频数(人)
1、全国内地2003年5月21 日至5月25日共有 非典型性肺炎;
108人患
40 35 30 25 20 15 10 5 0
38
25 14
2、年龄在10~20(岁) 这一组的人数是 11 人, 占发病总人数的百分比
11 1
5 15 25 35
8
是
10.2% ;
6
65
5
75
45
55
年龄(岁)
161.5-164.5 13 7 2 1 50 0.26 0.14 0.04 0.02 164.5-167.5 167.5-170.5
162 165 159 147 163 172 156 165 157 164
频率分布表和频率分布直方图分析
根据频数分布表绘制直方图
不及格的 学生数最 少!!!
绘制频数折线图
将直方图中每个小 长方形上面一条边 的中点顺次连结起 来,即可得到频数 折线图
2.2.1 用样本的频率分 布估计总体分布
1、用样本去估计总体,是研究统计问题的一个基本思想
2、前面我们学过的抽样方法有:简单随机抽样、系统抽样、 分层抽样。要注意这几种抽样方法的联系与区别。
2.是用样本的数字特征(如平均 数、标准差等)估Байду номын сангаас总体特征。
通过抽样,我们获得了100位居民某年的月 平均用水量(单位:t) ,如下表:
思考:由上表,大家可以得到什么信息?
3.1 3.4 3.2 3.3 3.2 3.0 2.5 2.6 2.5 2.8
2.5 2.6 2.7 2.8 2.9 2.9 2.8 2.7 2.6 2.5
分 组 [0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4) [4,4.5] 合计
频数 4 正 8 正 正 正 15 正 正 正 正 22 正 正 正 正 正 25 正 正 14 正 一 6 4 2 100
频数累计
频率 0.04 0.08 0.15 0.22 0.25 0.14 0.06 0.04 0.02 1.00
频率 0.04 0.08 0.15 0.22 0.25 0.14 0.06
频率/组距 0.50 0.40 0.30 0.20 0.10 0
0.04 0.02 1
0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量/t
问题 如果当地政府希望使80% 以上的居 民每月的用水量不超出标准,根据频率分 布表和频率分布直方图,你能对制定月用 水量标准提出建议吗?
频数分布表与频数分布直方图
大数据整合与共享
未来将有更多的数据整合和共享平台出现,频数分布表与频数分布直方图将作为重要的数据分析工具, 为全球范围内的数据共享和分析提供支持。
谢谢
THANKS
频数分布直方图的优点
可以直观地看出数据的分布趋势和异常值,便于进行定性分析;通过颜色的深浅、柱子的高低可以快 速判断数据的集中和离散程度。缺点:无法详细记录每个数据值的频数,定量分析时需要结合其他工 具或方法。
04 频数分布表与频数分布直方图的应用
CHAPTER
在统计学中的应用
描述数据分布特征
频数分布表和直方图可以清晰地展示数据的 分布情况,帮助我们了解数据集中和离散的 程度。
数据探索和可视化
通过频数分布直方图,我们可以直观地了解数据 的分布情况,进一步探索数据之间的关系和规律。
3
对比不同数据集
通过比较不同数据集的频数分布表和直方图,我 们可以发现它们之间的差异和相似之处,进而进 行数据分析和解释。
在实际生活中的应用
人口普查数据统计
在人口普查中,频数分布表和直 方图被广泛应用于展示不同地区、
03 频数分布表与频数分布直方图的比较
CHAPTER
特点比较
频数分布表
以表格形式展示数据的频数分布情况 ,可以清晰地看出数据的数量和分布 特征。
频数分布直方图
以图形方式展示数据的频数分布情况 ,可以直观地看出数据的分布趋势和 异常值。
应用场景比较
频数分布表
适用于需要详细了解数据分布情况,进行定量分析的场景。例如,在市场调研中,可以使用频数分布表来分析不 同年龄段、性别等人群的数量分布情况。
解读频数分布表和频数分布直方图
解读频数分布表和频数分布直方图频数分布表和频数分布直方图是两种常见的统计表现形式,在实际问题中应用非常广泛.为帮助同学们更好地任何认识这两种统计方式,现从以下几个方面加以分析,供参考.一、正确理解频数的概念频数是记录数据时某个对象出现的次数,它能反映每个对象出现的频繁程度.二、作频数分布表和频数分布直方图的一般步骤在整理和描述数据时,往往把数据按照范围进行分组.先用频数分布表整理数据,然后用横轴表示数据范围,纵轴表示各小组的频数,以各组的频数为高画出与这一组对应的矩形,得到频数分布直方图.画频数分布直方图的一般步骤如下:1.计算出数据中最大值与最小值的差;2.确定组距与组数,100个以内数据一般分为5~12组;3.决定分点,常使分点比所统计数据多一位小数,并且把第一组的起点稍微减少一点;4.列频数分布表,用唱票法对数据进行频数累计;5.建立平面直角坐标系,用横轴表示数据范围,纵轴表示频数,画出频数分布直方图,这样画出的长方形的高就代表频数,各小组的频数之和等于数据总数.如果取直方图中每一个长方形上边的中点,然后在横轴上直方图的左右两边取两个频数为0的点,它们分别与直方图左右相距半个组距,将这些点用线段依次连接起来,就得到频数分布折线图.频数分布折线图可以更好地刻画数据的总体规律.三、画频数分布直方图的注意事项1.分组时,不能出现数据中同一数据在两个组的情况,为了避免出现这种情况,通常在分组时,每组两端的两个数据要比题中数据单位多一位,比如题中所给数据都是整数,分组时加或减0.5即可.2.组距和组数的确定没有固定的标准,这要凭借经验和研究的具体问题来决定.通常数据越多,分的组也越多,当数据在100个以内时,根据数据的多少通常分成5~12组.例 2008年5月12日,四川汶川发生里氏8.0级特大地震,举国震惊.一方有难,八方支援,某学校开展了向灾区“希望小学”捐赠图书的活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例的扇形统计图如图1所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生,进行了捐赠情况的统计调查,绘制成图2所示的频数分布直方图.根据以上信息解答下列问题:(1)从图2中我们可以看出人均捐赠图书最多的是 .(2)九年级约捐赠图书多少册?(3)全校大约共捐赠图书多少册?图 2九年级八年级 七年级年级人数捐赠数/册654.5图 1 九年级35%八年级 30%七年级35%解析:(1)从统计图中可以看出,人均捐赠图书最多的是八年级.(2)九年级的学生有1200×35%=420(人),估计九年级共捐赠图书420×5=2100(册).(3)七年级的学生有1200×35%= 420(人),估计七年级共捐赠图书420×4.5=1890(册).八年级的学生有1200×30%=360(人),估计八年级共捐赠图书360×6=2160(册).全校大约共捐赠图书1890+2160+2100=6150(册).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、基本概念
1.频数:落在不同小组中的数据个数为该组的频数.各组的频数之和等于这组数据的总数.注:在统计频数多少的时候,我们一般通过数“正”字的方法累计.
2.频率:频数与数据总数的比,即频率=各组频率之和为1.频率大小反映了各组频数在数据总数中所占的份量
3.组数:把全体样本分成的组的个数称为组数.
4.组距:把所有数据分成若干个组,每个小组的两个端点的距离。
5.极差:用样本数据中的最大值减去最小值。
组距=极差除以组数
二、列频数分布表的注意事项
运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数.画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来,其中组距、组数起关键作用,分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征,当数据在100以内时,一般分5~12组.
编辑本段三、直方图的特点
通过长方形的高代表对应组的频数与组距的比(因为比是一个常数,为了画图和看图方便,通常直接用高表示频数),这样的统计图称为频数分布直方图.它能:①清楚显示各组频数分布情况;②易于显示各组之间频数的差别.
编辑本段四、制作频数分布直方图的步骤
1.找出所有数据中的最大值和最小值,并算出它们的差.2.决定组距和组数.3.确定分点4.列出频数分布表.5.画频数分布直方图.
编辑本段五、频数分布折线图的制作
我们可以在直方图的基础上来画,先取直方图各矩形上边的中点,然后在横轴上取两个频数为0的点,这两点分别与直方图左右两端的两个长方形的组中值(矩形宽的中点)相距一个组距,将这些点用线段依次联结起来,就得到了频数分布折线图.
编辑本段六、条形图和直方图的区别
1.条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,可以用矩形的的高表示频数;2.条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围;3.条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙;编辑本段七、与统计图有关的数学思想方法
1.数形结合:从统计图中,能看出各组数据的特点,可进一步应用这些数据特点解决实际问题.通过整理数据,根据要求绘制统计图,可进一步分析数据、做出决策.2.类比:绘制频数分布直方图和绘制条形图类似,如果长方形的宽一样,那么长方形的高度之比就是各组内数据个数之比.
编辑本段八、如何画频数分布直方图
①集中和记录数据,求出其最大值和最小值。
数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。
②将数据分成若干组,并做好记号。
分组的数量在5-12之间较为适宜。
③计算组距的宽度。
用组数去除最大值和最小值之差,求出组距的宽度。
④计算各组的界限位。
各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去组距的一半,第一组的上界为其下界值加上组距。
第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。
⑤统计各组数据出现频数,作频数分布表。
⑥作直方图。
以组距为底长,以频数为高,作各组的矩形图。
根据最大数据与最小数据的差值,决定组距的大小,组距和组数的确定没有固定的标准,一般数据
越多,分成的组数就越多,当数据不超过50个,可以分5~7组;当数据在50~100之间时,一般分8~12组。
一、基本概念
1.频数:落在不同小组中的数据个数为该组的频数.各组的频数之和等于这组数据的总数.注:在统计频数多少的时候,我们一般通过数“正”字的方法累计.
2.频率:频数与数据总数的比,即频率=各组频率之和为1.频率大小反映了各组频数在数据总数中所占的份量
3.组数:把全体样本分成的组的个数称为组数.
4.组距:把所有数据分成若干个组,每个小组的两个端点的距离。
5.极差:用样本数据中的最大值减去最小值。
组距=极差除以组数
二、列频数分布表的注意事项
运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数.画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来,其中组距、组数起关键作用,分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征,当数据在100以内时,一般分5~12组.
编辑本段三、直方图的特点
通过长方形的高代表对应组的频数与组距的比(因为比是一个常数,为了画图和看图方便,通常直接用高表示频数),这样的统计图称为频数分布直方图.它能:①清楚显示各组频数分布情况;②易于显示各组之间频数的差别.
编辑本段四、制作频数分布直方图的步骤
1.找出所有数据中的最大值和最小值,并算出它们的差.2.决定组距和组数.3.确定分点4.列出频数分布表.5.画频数分布直方图.
编辑本段五、频数分布折线图的制作
我们可以在直方图的基础上来画,先取直方图各矩形上边的中点,然后在横轴上取两个频数为0的点,这两点分别与直方图左右两端的两个长方形的组中值(矩形宽的中点)相距一个组距,将这些点用线段依次联结起来,就得到了频数分布折线图.
编辑本段六、条形图和直方图的区别
1.条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,可以用矩形的的高表示频数;2.条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围;3.条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙;编辑本段七、与统计图有关的数学思想方法
1.数形结合:从统计图中,能看出各组数据的特点,可进一步应用这些数据特点解决实际问题.通过整理数据,根据要求绘制统计图,可进一步分析数据、做出决策.2.类比:绘制频数分布直方图和绘制条形图类似,如果长方形的宽一样,那么长方形的高度之比就是各组内数据个数之比.
编辑本段八、如何画频数分布直方图
①集中和记录数据,求出其最大值和最小值。
数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。
②将数据分成若干组,并做好记号。
分组的数量在5-12之间较为适宜。
③计算组距的宽度。
用组数去除最大值和最小值之差,求出组距的宽度。
④计算各组的界限位。
各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去组距的一半,第一组的上界为其下界值加上组距。
第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。
⑤统计各组数据出现频
数,作频数分布表。
⑥作直方图。
以组距为底长,以频数为高,作各组的矩形图。
根据最大数据与最小数据的差值,决定组距的大小,组距和组数的确定没有固定的标准,一般数据越多,分成的组数就越多,当数据不超过50个,可以分5~7组;当数据在50~100之间时,一般分8~12组。