第六章氧化还原滴定法
分析化学 氧化还原滴定法
a 与 C的关系为:
aOx
Ox
Ox
C Ox Ox Ox
aRed
Red
Re d
C Red Red Red
-活度系数 -副反应系数
Ox / Re d
Ox / Re d
RT ln γOx Red cOx nF γ c Red Ox Red
Ox / Re d
RT ln γOxRed
Red
增大,
0
值增大。
Eg. 2Fe3+ + 2I = I2 + 2Fe2+
Fe3+ + e = Fe2+ φFe3+/Fe2+ =0.771V I2 + 2e = 2I- ΦI2/I- =0.54V
例如,用间接碘量法测定Cu2+时,反应为
2Cu2 4I
2CuI I2
若试液中有Fe3+共存时,Fe3+也可以氧化I-生成I2,
0' 0 0.059lg OxRed
n
Red Ox
从条件电位的定义式知道,影响条件电位的因素 就是影响电对物质的活度系数和副反应系数的因素。
主要包括:盐效应 酸效应 生成沉淀 生成配合物
活度系数 副反应系数
1.盐效应:溶液中的电解质浓度对条件电位 的影响作用。
电解质浓度 离子强度 活度系数
*以标准氢电极为参照电极的相对值。
2、书写Nernst方程式时注意的问题:
(1)固体、溶剂的活度为1mol/L;
(2)气体以大气压为单位;
(3)如果半电池中除了氧化态和还原态外, 还有其他组分如:H+、OH参加, 活度也要包 括到Nernst方程式中;
氧化还原滴定法
例1 计算1mol/LHCl溶液,cCe(IV)=1.00×10-2 mol/L, cCe(III)=1.00×10-3mol/L 时Ce(IV)/Ce(III) 电对的电极电位。 解:查附录,半反应Ce(IV)+e = Ce(III) 在1mol/LHCl介质中的条件电位=1.28V,则
E = 1.28V+0.059lg1.00×10-2/1.00×10-3
二、 条件电位
0.059 aOX EE lg n aRed
0.059 OX [OX] E lg n Red [Red]
如果考虑有副反应发生,还需引进相应的副反应系 数Ox,Red: Ox=cOx/[Ox] Red=cRed /[Red] 副反应系数是分布系数的倒数。
1mol/LH2SO4 中 , 以 0.1000mol/LCe(SO4)2 标 准溶液滴定20.00ml0.1000mol/LFe2+溶液。 Fe3++e = Fe2+ E0’ Fe3+/Fe2+=0.68V Ce4++e = Ce3+ E0’ Ce4+/Ce3+=1.44V 滴定反应: Ce4++Fe2+ = Ce3++Fe3+ 滴定过程中电位的变化可计算如下:
其反应过程可能是: Mn(Ⅶ)+Mn(Ⅱ)→Mn(Ⅵ)+Mn(Ⅲ) ↓Mn(Ⅱ) 2Mn(Ⅳ) ↓Mn(Ⅱ) 2Mn(Ⅲ)(中间产物) Mn(Ⅲ)与C2O42—反应生成一系列配合物, 如MnC2O4+(红)、Mn(C2O4)2-(黄)、Mn(C2O4)32- (红) 等。 随后,它们慢慢分解为Mn(Ⅱ)和CO2: MnC2O4+→ Mn2++ CO2↑+·COO- (自由基) Mn(Ⅲ)+·COO-→ Mn2++ CO2↑
第六章 氧化还原滴定法
lg
COx2 CRe d2
反应达平衡时:1 2
1
'
0.059 n1
lg
COx1 CRe d1
2 '
0.059 n2
lg
COx2 CRe d2
lg
K
'
lg
C n2 Re d1
C n2 Ox1
n1
COx2 n1 CRe d2
n(1 ' 2 ' )
0.059
n '
0.059
n:为两半反应电子得失数n1与n2的最小公
解:已知φθ’Fe3+/Fe2+=0.68V, φθ’Sn4+/Sn2+=0.14V
对于反应 2Fe3++Sn2+=2Fe2++Sn4+ 则,
lg K ' n1 n2 1 ' 2 ' 2 0.68 0.14 18.3
0.059
0.059
解:溶液的电极电位就是Cr2O72-/Cr3+电极电 位 。 其 半 反 应 为 : Cr2O72+14H++6e=2Cr3++7H2O 当0.100mol/LK2Cr2O7被还原至一半时:
cCr(VI)c=CC(0VrI().II/5IC)×=(III02) .×1010..030m35V0o0l/mL=ol0/.L0=500.01m00oml/Lol/L
HAsO2
[H ] Ka [H ]
HAsO2的Ka 5.11010
27
[H ] 5mol / L
HAsO2 1.0,H3AsO4 1.0
0.60V ' H3AsO4 HAsO2
水分析化学6 氧化还原滴定法
的大小由电对的氧化态和还原态的材料自身性质及温度 决定。当二者一定时, 为常数。
第六章 氧化还原滴定法
2、条件电极电位
以HCl溶液中Fe(Ⅲ)/Fe(Ⅱ)这一电对为例,在298.15K时,由能 斯特方程式可得:
在盐酸溶液中,Fe(Ⅲ)以Fe3+、FeOH2+、FeCl2+、FeCl63-等形 式存在;而Fe(Ⅱ)也以Fe2+、FeOH+、FeCl+、FeCl42-等形式 存在。那么,Fe(Ⅲ)与Fe(Ⅱ)的分析浓度与游离Fe3+和Fe2+的 平衡浓度之间的关系并不相等。
第六章 氧化还原滴定法
生成沉淀的影响
在氧化还原反应中,当加入一种可以与氧化态或者还原态生成 沉淀的沉淀剂时,会改变电对的电极电位。根据能斯特方程式, 若电对的氧化态生成沉淀,则电位降低;反之,还原态生成沉 淀则使电对的电位增高。 例如,碘量法测铜是基于以下反应:
从标准电极电位看,应该是I2氧化Cu+,但是由于Cu2+/ Cu+中 Cu+生成的了CuI沉淀使得电对的电位升高,超过了0.54V,从而 氧化还原反应的方向发生了转变。
第六章 氧化还原滴定法
第六章 氧化还原滴定法
主要内容:
氧化还原平衡
氧化还原反应的速度
氧化还原滴定过程及滴定曲线
氧化还原滴定的指示剂
氧化还原滴定法在水质分析中的应用
第六章 氧化还原滴定法
氧化还原滴定法:是以氧化还原反应为基础的滴定 方法。 氧化还原反应的特点:
是电子转移反应(反应机理复杂); 反应常分步进行; 反应速率慢,且多有副反应。
发生氧化还原反应的两个电对的条件电极电位相差 得越大,其K’越大,说明反应进行得越完全。还可 以根据两电对的 ' 以及各自转移的电子数n1、n2 推导出用于判别可否用于氧化还原滴定分析的通式。
第六章氧化还原滴定法
§6.2 氧化还原反应进行的程度
§6.2.1 条件平衡常数 n2Ox1 + n1Red2 n2Red1 + n1Ox2
氧化还原反应进行的程度,可用什么来衡量? 氧化还原反应进行的程度,可用什么来衡量?
Ox1 + n1eOx2 + n2eRed1 Red2
Ε1 = Ε
O' 1
c Ox1 0 . 059 + lg c Red1 n1 c 0 . 059 lg Ox2 n2 c Red2
4+ 3+ θ′
(1mol·L-1 H2SO4) ϕ (Fe /Fe )=0.68 V
3+ 2+
θ′
滴定反应: 滴定反应: Ce4+ + Fe2+ = Ce3+ + Fe3+ 对于滴定的每一点,达平衡时有: 对于滴定的每一点,达平衡时有:
ϕ(Fe3+/Fe2+)=ϕ(C 4+/C 3+) e e
分析 滴定前, 未知, 滴定前,Fe3+未知,不好计算
第六章 氧化还原滴定法
§6.1 氧化还原反应平衡 §6.2 氧化还原反应进行的程度 §6.3 氧化还原反应的速率与影响因素 §6.4 氧化还原滴定曲线及终点的确定 §6.5 氧化还原滴定法中的预处理 §6.6 高锰酸钾法 §6.7 重铬酸钾法 §6.8 碘量法 §6.9 其它氧化还原滴定法 §6.10 氧化还原滴定结果的计算
HClO4 0.75
HCl 0.70
ϕθ'(Fe3+ /Fe2+)
与Fe3+的络合作用增强
氧化态形成的络合物更稳定, 氧化态形成的络合物更稳定,结果是电位降低 计算pH pH为 NaF浓度为 浓度为0.2 mol/l时 P136 例2 计算pH为3.0, NaF浓度为0.2 mol/l时, Fe3+/ Fe 的条件电位。在此条件下,用碘量法测 Fe2+的条件电位 在此条件下, 的条件电位。 Fe 铜时,会不会干扰测定? pH改为 改为1.0 铜时,会不会干扰测定?若pH改为1.0 时,结果又 如何? 如何?
第六章氧化还原滴定法(制药专业)
该反应的lgK´=24>9, =0.7>0.4V,从化学平衡看,此反应
进行得非常完全,但事实上,不采取措施就不能用Ce4+直接滴 定As(Ⅲ)。 三、氧化还原滴定计量点电位 n2Ox1 + n1Red2 计量点时: Ox1 n1e
Ox 2 n 2e Re d1 Re d 2
n2Red1 + n1Ox2
7
H3AsO4 / HAsO 2
H 3 AsO 4 / HAsO 2
0.059 lg 2
H3AsO4 [H ]2 HAsO 2
0.059 c H3AsO4 lg 2 c HAsO 2
当cH3AsO4=cHAsO2=1mol/L时
H 3 AsO 4 / HAsO 2 H 3 AsO 4 / HAsO 2 2 0.059 H3AsO4 [H ] lg 2 HAsO 2
Fe2
Fe 3 Fe 2 Fe 2 Fe 3
c(Fe 3 ) 0.059 lg c(Fe 2 )
[Fe 2 ]
c(Fe 2 ) [Fe ] Fe2
2
当c(Fe3+)=c(Fe2+)=1mol/L时,
Fe 3 / Fe 2
Fe 3 / Fe 2
lg K 3(n1 n 2 )
n1=n2=1 lgk´≥6 ; n1=1,n2=2 lgK´≥9 满足滴定分析的要求。
11
例:计算在1mol/LHClO4溶液中,用KMnO4标准溶液滴定 FeSO4时的条件平衡常数,并说明该反应是否满足滴定分析的 要求。
MnO4− + 5Fe2+ + 8H+ Mn2+ + 5Fe3+ + 4H2O
第六章 氧化还原滴定法
条件电位
条件电位是校正了各种外界因素影响后得到的电对电 位,反映了离子强度及各种副反应影响的总结果。
当缺乏相同条件下的值时,可采用条件相近的值。在 无 φө′ 值时,可根据有关常数估算值,以便判断反应 进行的可能性及反应进行方向和程度。
五、电极电位的应用
1、判断氧化还原反应的方向
电对1 :Ox1 + ne = Red1 电对2:Red2 - ne = Ox2 φ1ө> φ2ө ,当体系处于标准状态时,电对1 中的氧化 态是较强的氧化剂,电对2中的还原态是较强的还原 剂,它们之间能够发生氧化还原反应,氧化还原反 应的方向为: Ox1 + Red2 = Red1 + Ox2
2Cu2+ + 4I-⇌2CuI↓ + I2 有关反应电对为:Cu2+ + e ⇌ Cu+ φCu2+/Cu+ө = 0.16V I2 + 2e ⇌ 2IφI2/I-ө = 0.54V 从电对的标准电极电位来判断,应当是I2氧化Cu+。 但事实上,Cu2+氧化I-的反应进行的很完全。这是由 于CuI沉淀的生成,使溶液中[Cu+]极小,Cu2+/Cu+电 对的条件电位显著升高, Cu2+ 的氧化能力显著增强 的结果。
3、催化剂对反应速率的影响 催化剂可以从根本上改变反应机制和反应速率,使用 催化剂是改变反应速率的有效方法。能加快反应速率 的催化剂称为正催化剂,能减慢反应速率的催化剂称 为负催化剂。
第三节 氧化还原滴定原理
一、氧化还原滴定曲线
1、滴定开始前 FeSO4 溶液中可能有极小量的 Fe2+ 被空气和介质氧化 生成 Fe3+ ,组成 Fe3+/Fe2+ 电对,但 Fe3+ 的浓度未知, 故滴定开始前的电位无法计算。
第 六 章 氧化还原滴定法
1 故 = 0.77 + 0.059 lg —— = 0.32 V 7.7 10 因加入 F - 使 0 Fe3+/Fe2+ < 0 I /I2
2018/10/8
0
**加入NH4HF2:维持pH=3.2 掩蔽Fe3+
电对的电极电位。表征氧化剂和还原剂的强弱。
4
结论:
1)电对的 高,其氧化型的氧化能力强,可氧化电位比它低的 还原剂。
0
2)电对的 低,其还原型的还原能力强,可还原电位比它高的 氧化剂。
0
3) 随[H+]而改变,随 cOx和 cRed而变化,随介质条件变。
4.条件电位 0 '
当氧化型,还原型存在副反应时,其有效浓度发生 值发生变。 变化, 2+ 例如: Fe3+ +eFe aFe3 0 Fe3 / Fe2 0.059 lg aFe2 3 [ Fe ] 0 Fe Fe / Fe 0.059 lg Fe [ Fe 2 ]
德拜-休克尔(Debye-Hü ckel)公式
德拜-休克尔(Debye-Hü ckel)极限公式
2018/10/8
8
2. 副反应的影响
(1)生成沉淀的影响
Ox / Re d
0.059 cOx 'Ox / Re d lg n cRe d
0
[Ox]生成沉淀, 降低; [Red]生成沉淀, 升高
n1, n2 的最小公倍数
0.059 cOx1 0.059 cOx 2 0 ' lg 2 ' lg n1 cRe d1 n2 cRe d 2
氧化还原滴定
1
0.059 n1
lg
aOx1 aRe d1
2
n n
0.059 n2
lg
aOx2 aRe d 2
重点
lg K lg
2 aRe d1
aOx1
n2
1 aOx2
n(1 2 ) 0.059
aRe d 2
'
n1
(无副反应)
1
'
0.059 n1
lg
COx
1
Fe2 ( F ) Fe3 ( F )
Fe
2
0.059 lg
1 1 b1[ F ] b 2 [ F ] b 3 [ F ]
2 3
[ F ] 1mol / L Fe3 / Fe2 0.06V
'
Fe 不再干扰测定
3
形成配合物:
与氧化型形成配合物
将 a(Fe3+)= (Fe3+)· c(Fe(III))/(Fe(III) 代入
ox/Red
O ox/Red
RT nF
ln
aox aRed
φ = φӨ +0.0592lg(Fe3+)/(Fe2+)· (Fe(II))/
(Fe(III))+0.0592lg[c(Fe(III))/c(Fe(II)]
CRe d
n
2
1 COx2
0.059 n2
lg
'
COx
2
1
CRe d
'
2
lg K ' lg
第六章氧化还原滴定法
1.20V ' 1.00V
'
0.059 3 0.059 3 ' ~ 1 n2 n1
' 0.80V
' 0.60V
17
根据条件电位判断滴定突跃范围(电位范围)
' 0.3 ~ 0.4V 氧化还原指示剂指示终 点 ' 0.2 ~ 0.3V 电位法指示终点
'
0.059 Ox Re d 令 lg n Re d Ox
条件电位
6
(二)影响因素
1.盐效应(离子强度) 2.酸效应 3.生成沉淀 4.形成配合物
7
1. 离子强度(盐效应)
离子强度改变 改变 '发生改变
2. 生成沉淀
氧化态生成沉淀 '
S2O32- + 2H+
若
SO2 ↑+ S↓+ H2O 2I2+2H2O
IO3-+5I- + 3H2O
4I-+O2+4H+
3 I2 +6 OH碱性
4 I2 + S2O32- + 10 OH-
8I- + 2SO42-+5H2O
32
二、指示剂
1、自身指示剂
碘液自身呈黄色在直接碘量法中可自身作为指示剂指示终点, 100ml水中加1滴碘液(0.05mol/L)即可看见黄色
还原态生成沉淀
'
8
3. 形成配合物: ' 与氧化态形成配合物
与还原态形成配合物
与两者均形成配合物
'
分析化学:氧化还原滴定法
c
a Ox
a Ox
b Red
c
b Red
Ox/Red
θ Ox / Re d
0.059 lg n
c aOx
a Ox
b Red
c
b Red
∴忽略盐效应后的 Ox/Red 计算式:
Ox/Red
θ
0.059 lg n
b Red
a Ox
⑵酸效应
H+或OH 参加电极反应时
Ox或 Red 为弱酸、弱碱时 pH影响极大!
(25ο C)
aOx
Ox [Ox ]
OxcOx Ox
;
aRed
Red [Re
d]
Red c Red Red
Ox / Red
θ Ox /Red
0.059 lg n
a Ox
b Red
c aOx
a Ox
b Red
c
b Red
Ox / Red
θ Ox /Red
0.059 lg n
a Ox
与还原态生成配合物,φ’↑
利用此影响可消除某些离子对主反应的干扰
例:φ’Fe3+/Fe2+= 0.77V,Fe3+可氧化I 干扰其与
Cu2+的反应。加入NaF,使[F ]=1.0mol/L
Fe3/Fe 2
θ Fe3 / Fe2
0.059 lg Fe2
1
Fe3
Fe3/Fe 2
θ Fe3 / Fe2 0.059 lg 1
Ox1+Red2→Red1+Ox2
φOx/Red大者为氧化剂,发生还原反应; φOx/Red小者为还原剂,发生氧化反应。
➢ 氧化还原方程式配平(离子-电子法)
第六章 氧化还原滴定法
Cu2/Cu 0.87 V
• 5-3.氧化还原反应进行的程度 一平衡常数与电极电位的关系
在氧化还原滴定反应过程中,需要判断:
(1) 反应是否进行完全,即终点误差是否满足要求;
(2) 如果两个电对反应完全,应满足什么条件?
n2 Ox1 + n1 Red2 = n2 Red1 + n1 Ox2
两个半电池反应的电极电位为:
增加反应物浓度可以加速反应的进行; (2) 催化剂
改变反应过程,降低反应的活化能; (3) 温度
通常,温度每升高10度,反应速度可提高2-3倍。 反应机理复杂, 需要综合考虑各种因素
• 例如:在高锰酸钾法滴定中 (1) KMnO4与C2O42-的滴定反应需要在75-85C下
进行,以提高反应速度。但温度太高将使草酸分 解。
• 4.3 氧化还原滴定法的应用
• 1 高锰酸钾法 (permanganate titration) 高锰酸钾法优点:氧化能力强,可以直接、间接地测定多种
无机物和有机物;Mn2+近于无色,一般无需另加指示剂。 1)直接滴定法:适用于还原性物质测定FeSO4、H2C2O4、
H2O2、As(Ⅲ)、NO2- 等 • (2)返滴定法:适用于氧化性物质测定 MnO2、PbO2、
• =1.06V
• 3 滴定突跃范围 从滴定分析的误差要求小于-0.1~+0.1%出
发,可以由能斯特公式导出滴定的突跃范围。取 决于两电对的电子转移数与电势差,与浓度无关。
• 两电对的电子转移数相等,Esp正好位于突跃范 围的中点。若不相等,偏向电子转移数大的电对 一方。 与氧化剂和还原剂两电对ΔφØ差值大,滴定 突跃就大,差值小,滴定突跃就小 滴定突跃的大小与氧化剂和还原剂的浓度无关。
第六章 氧化还原滴定法
例6-1 计算1mol/LHCl溶液,cCe(IV)=1.00×10-2 mol/L, cCe(III)=1.00×10-3mol/L 时Ce(IV)/Ce(III)电对的电极电位。 解:查附表11,半反应Ce(IV)+e-=Ce(III)在1mol/LHCl介 质中的E0f=1.28V,则
E=E0fCe(IV)/Ce(III)+0.059lg[cCe(IV)/cCe(III)] =1.28V+0.059lg1.00×10-2/1.00×10-3
=1.34V
例 6-2 计 算 在 2.5mol/LHCl 溶 液 中 , 用 固 体 亚 铁 盐 将 0.100mol/LK2Cr2O7还原至一半时溶液的电极电位。 解:溶液的电极电位就是Cr2O72-/Cr3+电极电位。其半反应 为:Cr2O72-+14H++6e-=2Cr3++7H2O 附录一及表11中没有该电对相应的条件电位值,可采 用 相 近 3mol/L 的 介 质 中 的 E0f 代 替 , E0f=1.08V 。 当 0.100mol/LK2Cr2O7 被 还 原 至 一 半 时 : cCr(VI)=0.5×0.100mol/L=0.0500mol/L cCr(III)=2×0.0500mol/L=0.100mol/L 故 E=E0fCe(VI)/Cr(III)+(0.059/6)×lgcCr(VI)/c2Cr(III) =1.08+(0.059/6)×lg0.0500/(0.100)2
在氧化还原反应中,氧化剂和还原剂的浓度不 同,电位也就不同。因此,改变氧化剂或还原剂的 浓度,可能改变氧化还原反应的方向。
第六章氧化还原滴定法
2)反应温度与滴定速度 温度应在15℃以下。 温度高:
HNO2分解与逸失。可采用“快速滴定法”
3)苯环上取代基团的影响
在苯胺环上:有吸电子基团取代 如: -NO2、-SO3H、-COOH等 使反应加速;
有斥电子基团(-OH、 -OR)使反应 减慢。
三、亚硝酸钠法的指示剂
•高锰酸钾法
标准溶液:高锰酸钾。 指示剂:自身指示剂。 测定条件:控制在1~2mol/L H2SO4溶液测定
还原性物质。
•亚硝酸钠法
(1)重氮化滴定法:在酸性介质中,用亚硝酸 钠标准溶液滴定芳伯胺化合物,发生重氮化反 应; (2)亚硝化滴定法:用亚硝酸钠标准溶液滴定
芳仲胺化合物,发生亚硝基化反应。
氧化还原反应的程度也是用平衡常数 的大小来衡量。氧化还原反应的平衡常数 与有关电对的电极电位有关。
(二)氧化还原反应进行的速度
氧化还原反应平衡常数的大小,可以 表示反应进行的程度,但不能说明反应的 速度。有许多氧化还原反应,虽然从理论 上看可以进行完全,但实际上由于反应速 度太慢而几乎觉察不出反应的进行。例如, 水溶液中的溶解氧:
2、书写Nernst方程式时注意几点:
(1)固体、溶剂的活度为1mol/L (2)气体以大气压为单位 (3)半反应中有其它组分参加,其它组分的
活度应包括在Nernst方程式中
3、条件电极电位 为了讨论方便,我们以下式为例来
进行讨论:
Ox + n e Red
• 二、氧化还原反应进行的程度和速度 (一)氧化还原反应进行的程度
101.0 110.0 150.0 200.0
100.0 95.0 90.0 80.0 60.0 50.0 40.0 10.0 1.0 0.1
第六章氧化还原滴定法
§6-1 氧化还原反应平衡
一、 条件电极电位
在较稀的弱电解质或极稀的强电解质溶液中,离子的总浓
度很低,离子间力很小,离子的活度系数≈1,可以认为活度等
于浓度。 在一般的强电解质溶液中,离子的总浓度较高,离子间力较 大,活度系数就<1,因此活度就小于浓度,在这种情况下, 严格地讲,各种平衡常数的计算就不能用离子浓度,而应用活 度。
例:判断二价铜离子能否与碘离子反应
2Cu 2 4I 2CuI I 2
Cu
2
/Cu
0.16 V ;
I
2 /I
0.54 V
从数据看,不能反应,但实际上反应完全。 原因:反应生成了难溶物CuI,改变了反应的方向。 Ksp(CuI) = [Cu+][I-] = 1.1 10-12
一、 条件电极电位
实际溶液中的作用力问题:
不同电荷的离子之间存在着相互吸引的作用力
电荷相同的离子之间存在着相互排斥的作用力
离子与溶剂分子之间也可能存在着相互吸引或相互排斥的作
用力 由于这些离子间力的影响,使得离子参加化学反应的有 效浓度要比实际浓度低,为此, 引入活度这个概念.
§6-1 氧化还原反应平衡
在 5mol/L HCl中
=0.70 V =0.64 V
在 0.5mol/L H2SO4中 =0.68 V 在 1mol/L HClO4中 =0.76 V 在 1mol/L H3PO4中 在 2mol/L H3PO4中
=0.44 V =0.46 V
§6-1 氧化还原反应平衡
不同的酸度还会影响反应物、产物的存在形式:
H 3 AsO4
HAsO 2
pKa 1=2.2
第6章氧化还原滴定法
氧化态+zeOx + ze还原态 Red
(其中氧化态与还原态称为氧化还原电 对,一般以Ox/Red表示)
有机物测定
甲醇、甘油、甲酸等有机化合物可用高锰酸钾法在碱 性溶液中进行测定。如甲醇的测定,将一定量且过量 的高锰酸钾标准溶液加入待测物质的试液中,反应为 : 6MnO4-+CH3OH+8OH-=CO32-+6MnO42++6H2O 反应结束后,将溶液酸化,MnO42+歧化为MnO4-和 MnO2。再加入准确过量的FeSO4溶液,将所有的高价 锰还原为Mn2+,最后以KMnO4溶液返滴定剩余的Fe2+
实验证明,一般温度升高10℃,反 应速度可增加2~4倍。如高锰酸钾 氧化草酸,在室温下,该反应较慢, 不利于滴定,可以加热到70-80℃来 提高反应速率。 由于不同反应物所需的温度各不相 同,必须根据具体情况确定反应的 适宜温度
影响氧化还原反应速率的因素
浓度 温度 催化剂
影响氧化还原反应速率的因素
氧化还原滴定曲线
滴定曲线的特点 滴定的双平台及滴定突跃
被滴定物质和滴定剂电对的条件电极电 位 介质
滴定突跃的影响因素
被滴定物质和滴定剂电对的条件电极电 位的差值
氧化还原滴定终点的指示方法 电位计法
通过电位仪测定滴定 过程中溶液电极电位 的变化情况,并从滴 定曲线上确定滴定终 点
RT [Ox ] EE ln nF [Re d ]b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章氧化还原滴定法第四章氧化还原滴定法一、填空题1.下列现象各属什么反应(填 A , B , C , D )(1)用KMnO 4滴定Fe 2+ 时Cl - 的氧化反应速率被加速。
(2) 用KMnO 4滴定C 2O 42- 时,红色的消失由慢到快。
(3) Ag + 存在时,Mn 2+ 被 S 2O 82- 氧化为MnO -- _____ _______。
A 催化反应B 自动催化反应C 副反应D 诱导反应。
2. 若两对电子转移数均为1,为使反应完全程度达到99.9%,则两电对的条件电位差至少应大于。
若两对电子转移数均为2,则该数值应为。
3. 0.1978 g 基准As 2O 3 在酸性溶液恰好与 40.00mLKMnO 4溶液反应完全,该KMnO 4溶液的浓度为。
[Mr (As 2O 3)=197.8]4. 已知在 1 mol ·L - 1 HCl 介质 E Θ'Fe 3+/ Fe 2 + = 0.68V ; E Θ'Sn 4+/Sn 2+ = 0.14V ,则下列滴定反应; 2 Fe 3+ + Sn 2+ == 2 Fe 2+ + Sn4+ 平衡常 ;化学计量点电位为 ;反应进行的完全程度 c ( Fe 2+ ) / c ( Fe 3+ ) 为。
5. 氧化还原滴定计量点附近的电位突跃的长短和氧化剂与还原剂两电对的标准电极电势有关,它们相差愈 ,电位突跃愈 ;若两电对转移的电子数相等,计量点正好在突跃的 ;若转移的电子数不等,则计量点应偏向。
6.常用的氧化还原方法有、和。
7. 用KMnO 4法间接测定钙或直接滴定Fe 2+时,若滴定反应用HCl 调节酸度,测定结果会 ;这主要是由于 ,反应为。
8. 如果溶液同时存在HgCl 2和Cl 2,加入还原剂SnCl 2时, 先被还原。
(已知V 14.024/=Θ++Sn Sn ϕ,V 62.0222/=Θ+Cl Hg Hg ϕ,V 36.1/2=Θ-Cl Cl ϕ)二、选择题1. 已知在 1 mol · L - 1 HCl 介质, E Θ’Cr 2O 72-/Cr 3+ = 1.00 V; E Θ’Fe 3+/ Fe 2 + = 0.68V ;以K 2Cr 2O 7滴定Fe 2+时,选择下列指示剂的哪一种最合适?( )A. 二苯胺(E Θ’In = 0.76V );B.二甲基邻二氮菲- Fe 3+ (E Θ’In = 0.97V);C. 次甲基蓝(E Θ’In = 0.53V );D.性红(E Θ’In = 0.24V )。
2. 对于2A + + 3B 4+ = 2A 4+ + 3B 2+ 这个滴定反应,等量点时的电极电位是( ) A.53ΘB ΘA ϕϕ+ B .623ΘB ΘAϕϕ+ C.523ΘB ΘA ϕϕ- D .523ΘB ΘA ϕϕ+ 3. 在1mol/L 的HCl ,V 14.024/=Θ++Sn Sn ϕ,V70.023/=Θ++Fe Fe ϕ,在此条件下,以Fe3+滴定Sn 2+,计量点的电位为( )。
A.0.25VB.0.23VC.0.33VD.0.52V4. 在1mol/L 的H 2SO 4溶液,用0.1000 mol/LCe 4+滴定0.1000mol/L Fe 2+溶液,最恰当的氧化还原指示剂是( )。
A.次甲基蓝B.邻苯氨基苯甲酸C.邻二氮菲—亚铁 D .KSCN5 在1 mol ·L - 1 H 2SO 4溶液,E Θ'Ce 4+/Ce 3+ = 1.44V ;E Θ'Fe 3+/ Fe 2 + = 0.68V ;以Ce 4+ 滴定Fe 2 +时,最适宜的指示剂为()A. 二苯胺磺酸钠(E Θ'In = 0.84V );B. 邻苯氨基本甲酸(E Θ'In = 089V );C. 邻二氮菲—亚铁(E Θ'In =1.06V );D.硝基邻二氮菲—亚铁(E Θ'In =1.25V )。
6. 用碘量法测定Cu 2+时,加入KI 是作为( )A.氧化剂B.还原剂C.络合剂D.沉淀剂三、计算题1. 将等体积的0.40 mol ⋅L -1 的Fe 2+溶液和0.10 mol ⋅L -1Ce 4+溶液相混合,若溶液H 2SO 4浓度为0.5 mol ⋅L -1,问反应达平衡后,Ce 4+的浓度是多少?2.根据Θ+Hg Hg /22ϕ和Hg 2Cl 2的K sp ,计算ΘH g Cl H g /22ϕ。
若溶液Cl -的浓度为0.010mol/L 时,Hg 2Cl 2/Hg 电对的电极电位是多少?3.K 3Fe(CN)6在强酸溶液能定量地氧化I -为I 2,因此可用它为基准物标定Na 2S 2O 3溶液。
试计算2 mol ⋅L -1 HCl 溶液Fe(CN)63-/Fe(CN)64-电对的条件电位。
4..计算1mol/L 的HCl 溶液用Fe 3+滴定Sn 2+时计量点的电位,并计算滴定至99.9%和100.1%时的电位。
说明为什么计量点前后同样变化0.1%,但电位的变化不相同。
5. 用一定体积(毫升)的KMnO 4溶液恰能氧化一定质量的KHC 2O 4·H 2C2O 4·2H 2O ;如用0.2000mol ⋅L -1NaOH 和同样质量的KHC 2O 4·H 2C 2O 4·2H 2O, 所需NaOH 的体积恰为KMnO 4的一半。
试计算KMnO 4溶液的浓度。
6.用碘量法测量钢硫时,先使硫燃烧成SO2,被含有淀粉的水溶液吸收后、用标准碘溶液滴定。
若称取含硫0.051%的标准样品和待测样品各500.00mg ,滴定前者用去碘溶液11.60mL ,滴定后者则用去7.00mL ,试用滴定度来表示碘溶液的浓度,并计算待测样品S 的百分含量。
滴定反应为: +--++=++H SO I O H SO I 422242227.称取含有KI 的试样0.5000克,溶于水后先用Cl 2水氧化I-为IO -3,煮沸除去过量Cl 2;再加入过量KI 试剂, 滴定I 2时消耗了0.02082 mol ⋅L -1Na 2S 2O 321.3 0mL 。
计算试样KI 的质量分数。
8.有一批铁矿样,含铁量约为50%,现用0.01667mol/L 的K 2Cr 2O 7溶液滴定,欲使所用的标准溶液的体积在20—30mL 之间,应称取试样质量的范围是多少?9.称取含NaIO 3和NaIO 4的混合试样 1.000g ,溶解后定容于250mL 容量瓶;准确移取试液50.00mL ,调至弱碱性,加入过量KI ,此时IO 4-被还原为IO 3-( IO 3-不氧化I -); 释放出的I 2用0.04000mol·L -1Na 2S 2O 3溶液滴定至终点时,消耗10.00mL 。
另移取试液20.00mL,用HCl调节溶液至酸性,加入过量的KI; 释放出的I 2用0.04000mol·L -1 Na 2S 2O 3溶液滴定,消耗30.00mL 。
计算混合试样w (NaIO 3)和w (NaIO 4)。
10.某土壤样品 1.000克,用重量法获得Al 2O 3和Fe 2O 3共0.1100g ,将此混合氧化物用酸溶解并使铁还原后,以0.0100mol/L 的KMnO 4进行滴定,用去8.00mL 。
试计算土壤样品Al 2O 3和Fe 2O 3的百分含量。
11.银还原器(金属银浸于 1 mol ⋅L -1 HCl 溶液)只能还原Fe 3+而不能还原Ti(Ⅳ),计算此条件下Ag +/Ag 电对的条件电位并加以说明。
12.准确吸取25.00mLH 2O 2样品溶液,置于250mL 容量瓶,加入水至刻度,摇匀,再准确吸取25.00mL ,置于锥形瓶,加H 2SO 4酸化,用0.02532mol/L 的KMnO 4标准溶液滴定,到达终点时,消耗27.68mL ,试计算样品H 2O 2的百分含量。
13. 计算在pH3.0、c (EDTA)=0.01 mol ⋅L -1时Fe 3+/Fe 2+电对的条件电位。
14.现有As 2O 3和As 2O 5及少量杂质的混合物,溶解后,在微碱性溶液用0.02500mol/L 碘液滴定,耗去20.00mL 。
滴定完毕后,试溶液呈强酸性,加入过量KI ,析出的碘用0.1500mol/L Na 2S 2O 3溶液30.00mL 滴定至终点,试计算试样As 2O 3和As 2O 5各多少克。
15 称取软锰矿0.3216克,分析纯的Na 2C 2O 4 0.3685克,共置于同一烧杯,加入H 2SO 4,并加热; 待反应完全后,用0.02400 mol ⋅L -1 KMnO 4溶液滴定剩余的Na 2C 2O 4,消耗KMnO 4溶液11.26mL 。
计算软锰矿MnO 2的质量分数。
16. 用KIO 3标定Na 2S 2O 3的浓度,称取KIO 30.3567g ,溶于水并稀释至100.0mL ,移取所得溶液25.00mL ,加入H 2SO 4及KI 溶液,用24.98mLNa 2S 2O 3滴定折出的I 2, 求Na 2S 2O 3的浓度。
取上述Na 2S 2O 3溶液25.00mL ,用碘溶液24.83mL 滴定至终点。
求碘溶液的浓度。
17 在1 mol ⋅L -1 HCl 溶液,用Fe 3+滴定Sn 2+,计算下列滴定百分数时的电位:9,50,91,99,99.9,100.0,100.1,101,110,200%,并绘制滴定曲线。
18..今有不纯的KI 试样0.3500g ,在H 2SO 4溶液加人纯K 2CrO 4 0.1940g 处理,煮沸赶出生成的碘。
然后,又加入过量的KI ,使与剩余的K 2CrO 4作用,折出的I 2用0.1000mol/L ,Na 2S 2O 3标准溶液滴定,用去Na 2S 2O 3溶液10.00mL ,问试样含KI%。
19 为测定试样的K +, 可将其沉淀为K 2NaCo(NO 2)6, 溶解后用KMnO 4滴定(NO 2-→NO 3-, Co 3-→Co 2-), 计算K +与MnO 4-的物质的量之比, 即n (K) : n (KMnO 4)。
20. 丁基过氧化氢(C4H9OOH )的摩尔质量90.08g/moL ,它的测定是在酸性条件下使它与过量碘化钾反应,折出定量的碘,再用硫代硫酸钠标准溶液滴定;反应为:O H I OOH H C H I OOH H C 22949422++=+++----+=+264232222O S I O S I 今称取含丁基过氧化氢的试样0.3150g ,滴定析出的碘时用去0.1000mol/LNa2S2O3溶液18.20mL 。