衡水中学高中数学人教版必修一知识点总结.doc
人教版高一数学必修一知识点总结
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B=由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即SA全册每单元每课时 2例题:1.下列四组对象,能构成集合的是()A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合{a,b,c }的真子集共有个3.若集合M={y|y=x2-2x+1,x∈R},N={x|x≥0},则M与N的关系是 .全册每单元每课时 3全册 每单元 每课时44.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
高中数学人教版必修一知识点总结梳理
一集合1、集合的含义:集合为一些确定的、不同的对象的全体。
2、集合的中元素的三个特性:确定性、互异性、无序性。
3、集合的表示:(1)用大写字母表示集合:A,B…(2)集合的表示方法:a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:集合中元素的公共属性描述出来,写在大括号内表示集合,{}3Rx∈x2>-c、维恩图:用一条封闭曲线的内部表示.4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合Φ5、元素与集合的关系:a∈A;Aa∉注意:常用数集及其记法:非负整数集:(即自然数集)N 正整数集: N*或 N+整数集:Z 有理数集:Q 实数集:R6、集合间的基本关系(1)“包含”关系—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A (2)“包含”关系—真子集如果集合BA⊆,但存在元素x∈B且x∉A,则集合A是集合B的真子集,记作A B(或B A)(3“相等”关系:A=B “元素相同则两集合相等”,如果A⊆B 同时 B⊆A 那么A=B 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
(4)集合的性质①任何一个集合是它本身的子集,A⊆A②如果 A⊆B, B⊆C ,那么 A⊆C③如果A B且B C,那么A C④有n个元素的集合,含有2n个子集,2n-1个真子集7、集合的运算运算类型交集并集补集二函数1.函数的概念:记法 y=f(x),x∈A.2.函数的三要素:定义域、值域、对应法则3.函数的表示方法:(1)解析法:(2)图象法:(3)列表法:4.函数的基本性质a、函数解析式子的求法(1)代入法:(2)待定系数法:(3)换元法:(4)拼凑法:b、定义域:能使函数式有意义的实数x的集合称为函数的定义域。
衡水高一理科数学的知识点
衡水高一理科数学的知识点衡水中学作为中国知名的重点中学,其理科数学教学有着独特的教学体系和方法。
对于衡水高一理科的学生来说,掌握好数学的知识点是至关重要的。
以下是衡水高一理科数学的主要知识点概述,帮助学生更好地理解和复习。
一、集合与函数的概念集合是数学中最基本的概念之一,它涉及到集合的表示、运算及其性质。
学生需要理解集合之间的关系,如子集、并集、交集等,并能够解决相关的集合问题。
函数是高中数学的核心内容,涵盖了定义域、值域、函数的表达式、函数的图像和性质等方面。
特别地,对于线性函数、二次函数、幂函数、指数函数和对数函数等基本初等函数,学生不仅要理解它们的概念和图像,还要学会如何运用这些函数解决实际问题。
二、数列的基本知识数列是一系列按照一定顺序排列的数。
在高一年级,学生会接触到等差数列和等比数列的概念、性质和求和公式。
通过学习数列,学生可以提高逻辑思维能力和数学运算能力。
三、解析几何的初步解析几何部分,学生将学习到如何在坐标系中表示点、直线和圆等基本图形,以及如何通过方程来解决几何问题。
这部分内容是数学与几何的结合,对于培养学生的空间想象能力和逻辑推理能力有着重要作用。
四、三角函数的基础三角函数是高中数学的重要组成部分,包括正弦、余弦、正切等函数的概念、图像和性质。
学生需要掌握三角函数的基本变换公式,以及如何应用三角函数解决实际问题。
五、概率与统计的入门概率与统计是高中数学中的另一个重要领域。
学生会学习到事件的概率计算、随机变量的概念、统计量的计算等基础知识。
这部分内容能够帮助学生理解数据的收集、处理和分析过程,为将来的学习和生活打下坚实的基础。
六、数学归纳法与逻辑推理数学归纳法是一种重要的数学证明方法,它在证明与自然数相关的命题时尤为有效。
学生需要学会如何运用数学归纳法进行证明,并能够理解和构建数学论证。
通过以上知识点的学习,衡水高一理科的学生可以建立起扎实的数学基础,为后续的学习打下坚实的基石。
人教版高中数学必修1课本知识点归纳
对数函数
定义:对数函数是指函数 y=logₐx (a>0,a≠1),其中 a 是底数,x 是自变量。
性质:对数函数在其定义域内是单调增函 数或减函数,取决于底数 a 的取值。
图像:对数函数的图像通常在第一象限 和第四象限,当底数 a>1 时,图像在第 一象限;当 0<a<1 时,图像在第四象限。
应用:对数函数在实际生活中有着广泛的 应用,如计算复利、解决声学和光学问题 等。
幂函数
定义:幂函数是 形如$y=x^n$ 的函数,其中 $n$是实数。
性质:幂函数的 图像可以通过其 指数$n$的性质 进行分类,例如 当$n>0$时,函 数为增函数;当 $n<0$时,函数
为减函数。
幂函数的图像: 幂函数的图像可 以通过描点法或 图象变换法进行
绘制。
幂函数的性质: 幂函数具有一些 重要的性质,例 如当$x>0$时, $x^n>0$;当
函数的表示方法:函数的表示方法有多种,如解析式表示、表格表示、图象表示等,这些表示方 法各有优缺点,可以根据具体情况选择合适的表示方法。
函数的实际应用:函数在实际生活中有着广泛的应用,如物理学、工程学、经济学等,掌握函数 的性质和表示方法对于解决实际问题非常有帮助。
函数的表示方法
解析法:用数学表达式表示函 数关系
01
添加章节标题
02
集合与函数
集合的表示与性质
集合的表示方 法:列举法、
描述法
集合的确定性: 集合中的元素 必须是确定的, 不能模棱两可
集合的无序性: 集合中的元素 没有顺序之分
集合的互异性: 集合中的元素
互不相同
集合的运算
并集:将两个 集合中的所有 元素合并到一
必修1高一数学人教版最全知识点(必须珍藏)
高中数学必修1知识点总结目录高中数学必修1知识点总结............................. 错误!未定义书签。
第一章集合与函数概念............................... 错误!未定义书签。
〖〗集合 ............................................ 错误!未定义书签。
【】集合的含义与表示................................. 错误!未定义书签。
【】集合间的基本关系................................. 错误!未定义书签。
【】集合的基本运算................................... 错误!未定义书签。
〖〗函数及其表示 .................................... 错误!未定义书签。
【】函数的概念 ...................................... 错误!未定义书签。
【】函数的表示法 .................................... 错误!未定义书签。
〖〗函数的基本性质................................... 错误!未定义书签。
【】单调性与最大(小)值............................. 错误!未定义书签。
【】奇偶性 .......................................... 错误!未定义书签。
【】函数周期性和对称性............................... 错误!未定义书签。
〖补充知识〗函数的图象............................... 错误!未定义书签。
第二章基本初等函数(Ⅰ) ............................. 错误!未定义书签。
高中数学(新人教版)必修一知识点归纳
高中数学(新人教版)必修一知识点归纳
本文将归纳高中数学(新人教版)必修一的主要知识点。
以下是
各个主题的简要概述:
1. 数与式
- 数的分类:自然数、整数、有理数、实数等。
- 代数式:基本概念、多项式、公式等。
- 幂与乘方:指数、乘方、幂等运算。
- 整式的加减法:同类项、整式的加减法规则。
- 分式:基本概念、分式的性质与化简等。
2. 一元一次方程与不等式
- 一元一次方程:基本概念、解方程的方法、应用问题等。
- 一元一次不等式:基本概念、解不等式的方法、应用问题等。
3. 函数及其图像
- 函数与自变量、函数与因变量的关系。
- 函数的表示与性质:映射、函数图像、奇偶性等。
- 一次函数:定义、性质、图像、方程等。
- 反函数与复合函数:定义、性质、求反函数、求复合函数等。
4. 等差数列
- 等差数列的定义与性质。
- 等差数列的前n项和与通项公式。
- 应用问题:等差数列应用于数学与生活中的实际问题。
5. 平面向量
- 向量的基本概念与表示法。
- 向量的运算:加法、数乘等。
- 向量共线与共面的判定。
- 向量的数量积与模的概念与性质。
6. 不等式与线性规划
- 不等式的基本性质与解法。
- 一元一次不等式组:基本概念、解法、应用问题等。
- 线性规划的基本概念与常见问题。
以上是高中数学(新人教版)必修一的主要知识点的简要归纳。
详细内容可以参考相关教材或课堂讲义。
希望这份归纳对你有帮助!。
高中数学必修一知识点整理【史上最全】---人教版
高中数学必修一知识点整理【史上最全】
---人教版
1. 数的性质与运算
- 自然数、整数、有理数、实数、复数的定义和性质
- 加法、减法、乘法、除法的运算法则及性质
- 乘方、开方、指数运算的基本概念和性质
2. 一元一次方程与一元一次不等式
- 一元一次方程的定义、解的概念及解法
- 一元一次不等式的定义、解的概念及解法
- 一元一次方程与一元一次不等式的应用
3. 二次根式与二次方程
- 二次根式的概念、性质及化简
- 二次方程的定义、解的概念及解法
- 二次方程与二次根式的应用
4. 几何图形的认识与性质
- 点、线、面的基本概念及性质
- 一些常见几何图形的性质,如线段、角、三角形、四边形等5. 平面向量
- 向量的定义、线性运算及性质
- 平面向量坐标与位移、相等、共线的判定
- 平面向量的加减乘法及其应用
6. 相交与平行
- 相交直线的判定
- 平行线的判定和性质
- 平行四边形的性质及判定
7. 图形的相似性和尺度
- 图形的相似性的定义和性质
- 相似三角形的判定及性质
- 尺度的概念及应用
8. 三角函数与周期性
- 三角函数的定义及常用公式
- 三角函数的图像和性质
- 三角函数的周期性和简单应用
9. 数据处理与统计
- 统计调查的基本概念和方法
- 平均数、中位数、众数的计算及应用
- 统计图的绘制和数据的分析
以上是高中数学必修一的知识点整理,希望对您有所帮助。
*以上信息为简要总结,具体内容请参考教材或课本。
人教版高中数学必修一知识点总结全
第一章集合与函数概念课时一:集合有关概念1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。
3.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
例:世界上最高的山、中国古代四大美女、教室里面所有的人……(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
例:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
1)列举法:将集合中的元素一一列举出来 {a,b,c……}2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x R| x-3>2} ,{x| x-3>2}①语言描述法:例:{不是直角三角形的三角形}②Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例:{x|x2=-5}5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a A(2)元素不在集合里,则元素不属于集合,即:a A◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R课时二、集合间的基本关系1.“包含”关系—子集(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合A⊆(或B⊇A)B的子集。
(完整版)人教版高中数学必修一第一章知识点
第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A {|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0) ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R ()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
最新人教版高一数学上册必修1第一章知识点总结
主要知识点: 1、 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数 x,在集合B中都有惟一确定的数y和它对应,那么就称f:A—B,为集合A到集合B的一个函数, 记作:.y=f(x) , x A 2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且 对应关系完全一致,则称这两个函数相等.
3、集合的三要素中的互异性是个考点,经常跟函数、不等式联系 起来作为选择题或者填空题考查。
如: 已知A={1,2a,a+b},B={4,2a-3,3},且A=B,求a,b的值。
§1.1.2集合间的基本关系
教学目的: (1)了解集合之间的包含、相等关系的含义; (2)理解子集、真子集的概念; (3)能利用Venn图表达集合间的关系; (4)了解与空集的含义。 教学重点:子集与空集的概念;用Venn图表达集合间的关系。 教学难点:弄清元素与子集 、属于与包含之间的区别;
难点攻破
1、实例体会三种表示方法的的优点与缺点。
2、分段函数的画法,实例讲解。如
3、解析式的列出引导学生学会找等量关系,根据等的基本性质 教学目的: (1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义; (2)学会运用函数图象理解和研究函数的性质; (3)能够熟练应用定义判断数在某区间上的的单调性. 教学重点:函数的单调性及奇偶性及几何意义. 教学难点:利用函数的单调性定义判断、证明函数的单调性. 主要知识点: 1、 函数单调性证明的一般格式。 2、 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(-x),那么就称 函数为偶函数.偶函数图象关于y轴对称. 3、 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么就称 函数为奇函数.奇函数图象关于原点对称.
高一数学人教版必修1知识点总结
高一数学人教版必修1知识点总结高一数学人教版必修1知识点总结(一)集合与函数概念(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,或表示正整数集,Z表示整数集,Q 表示有理数集,R表示实数集.(3)集合与元素间的关系对象a与集合M的关系是,或者,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数()fx和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,ab是两个实数,且ab,满足axb的实数x的集合叫做闭区间,记做[,]ab;满足axb的实数x的集合叫做开区间,记做(,)ab;满足axb,或axb的实数x的集合叫做半开半闭区间,分别记做[,)ab,(,]ab;满足xaxaxbxb的实数x的集合分别记做[,),(,),(,],(,)aabb。
注意:对于集合{|}xaxb与区间(,)ab,前者a可以大于或等于b,而后者必须ab.高一数学人教版必修1知识点总结(二)函数的概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.2.函数的三要素:定义域、值域、对应法则3.函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。
人教版高中数学必修一知识点总结
人教版高中数学必修一知识点总结
本文将对人教版高中数学必修一的知识点进行总结,帮助学生复和掌握这门课程的核心内容。
1. 线性方程及一元一次方程
一元一次方程是高中数学的基础,研究者需要掌握解一元一次方程的方法,包括两个方程的联立和图像法。
2. 二元一次方程组
二元一次方程组是两个一元一次方程的联立,研究者需要学会使用消元法、代入法和加减消法等方法解决方程组。
3. 函数与方程
研究者需要理解函数与方程的关系,掌握函数表示法和一些基本函数的性质。
同时,研究者还需要研究方程的根与图象的关系,以及函数与图象的关系。
4. 一元二次方程
一元二次方程是高中数学中重要的内容,研究者需要研究解一
元二次方程的方法,包括配方法、公式法和图像法等。
5. 等差数列
等差数列是数学中常见的数列形式,研究者需要了解等差数列
的概念、公式和性质,能够求解等差数列的前n项和以及通项公式。
6. 等比数列
等比数列也是常见的数列形式,研究者需要学会求解等比数列
的前n项和与通项公式,了解等比数列的性质及其在实际问题中的
应用。
7. 三角函数
研究者需要熟悉常见三角函数的定义、性质和图像,能够运用基本的三角函数关系解决问题。
以上是人教版高中数学必修一的主要知识点总结,希望对研究者复和掌握这门课程有所帮助。
(以上是一个简单的数学知识点总结,内容仅供参考。
具体的知识点以教材为准。
)。
人教A版数学必修一河北省衡水中学高一数学自助餐:1.1.2集合间的基本关系.docx
高中数学学习材料马鸣风萧萧*整理制作1.如下四个结论:①Φ⊆Φ;②Φ∈0;③{}0⊆Φ;④{}Φ=0,其中正确的是A 只有①与②B 只有①与③C 只有②与③D 全部正确2.集合{}2,,0,3π-的非空真子集的个数是A 13B 14C 15D 16二、填空题3.若{},2,0 M {}4,3,2,1,0⊆,试写出所有满足条件的集合M 4.{}0|2=-=x x x A ,{}0|2=-=x x x B ,则 A,B 之间的关系为__________. 三、解答题5. 已知A ={}d d 21,1,1++,B ={}2,,1rr ,其中1,0≠≠r d 。
当r d ,满足什么条件时A= B ?并求出这种情形下的集合A .⊂≠6.已知集合A ={}3|<x x ,B ={}a x x <|(1) 若B ⊆A ,求实数a 的取值范围.(2) 若A ⊆B ,求实数a 的取值范围.四、预习指导1.交集,并集,补集的概念,以及补集的符号和表示形式;用文氏图表示一个集合中某个集合的补集;2.补集的性质;3.会写出给定集合U 中子集A 的补集.[参考答案]:一.选择题1..B 2.B二.填空题3.{}1,2,0,{}3,2,0 ,}4,2,0{, {}4,1,2,0,{}3,1,2,0,{}4,3,2,0,{}4,3,1,2,0.4. A B三、解答题5.解: 有两种情形:Ⅰ、⎩⎨⎧=+=+)2(21)1(12r d r d 由(1)得,1-=r d ,代入(2)得0122=+-r r ,1=∴r ,与条件1≠r 矛盾,因此这种情形下A= B 不能成立.Ⅱ、⎩⎨⎧=+=+)2(21)1(12r d r d由(1)得,12-=r d 代入(2)得0122=--r r ,()()112-+r r =0.由条件1≠r ,得21-=r 代入(2)得43-=d .∴当21-=r ,43-=d 时, A= B =⎭⎬⎫⎩⎨⎧-21,41,1. 6. 解:将数集A 表示在数轴上(如图),(1)要满足B ⊆Aa 3 x需要3≤a ;(2)要满足A ⊆B ,,3 a x需要3≥a ;。
(完整)人教版数学必修1知识点总结及典型例题解析,推荐文档
人教版数学必修1知识点总结及典型例题解析第一章 集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
◆注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x ∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn 图:4、集合的分类:(1)有限集 含有有限个元素的集合(2)无限集 含有无限个元素的集合(3)空集 不含任何元素的集合 例:{x|x 2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集B A ⊆合。
反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A B 或B A ⊆/⊇/2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。
A ⊆A ②真子集:如果A ⊆B,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A)③如果 A ⊆B, B ⊆C ,那么 A ⊆C ④ 如果A ⊆B 同时 B ⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
必修高一数学人教版最全知识点必须珍藏
高中数学必修1知识点总结目录高中数学必修1知识点总结2第一章集合与函数概念2〖1.1〗集合2【1.1.1】集合的含义与表示2【1.1.2】集合间的基本关系2【1.1.3】集合的基本运算3〖1.2〗函数及其表示4【1.2.1】函数的概念4【1.2.2】函数的表示法6〖1.3〗函数的基本性质6【1.3.1】单调性与最大(小)值7【1.3.2】奇偶性8【1.3.3】函数周期性和对称性9〖补充知识〗函数的图象10第二章基本初等函数(Ⅰ)11〖2.1〗指数函数11【2.1.1】指数与指数幂的运算11【2.1.2】指数函数及其性质12〖2.2〗对数函数13【2.2.1】对数与对数运算13【2.2.2】对数函数及其性质13〖2.3〗幂函数15〖补充知识〗二次函数16第三章函数的应用19高中数学必修1知识点总结 第一章集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(4)若B A ⊆且B A ⊆,则A B =真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集) (2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)AA A =(2)A ∅=∅(3)A B A ⊆A B B ⊆BA并集A B{|,x x A ∈或}x B ∈(1)AA A =(2)A A ∅=(3)AB A ⊇A B B ⊇BA补集UA{|,}x x U x A ∈∉且1()U A A =∅2()U A A U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集()()()U U U AB A B =()()()UU U A B A B =||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质yxo【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性质定义图象判定方法 函数的 单调性如果对于属于定义域I 某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(....x .2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减) (4)利用复合函数②在公共定义域,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.【1.3.3】函数周期性和对称性一.定义:若T 为非零常数,对于定义域的任一x ,使)()(x f T x f =+恒成立则f (x )叫做周期函数,T 叫做这个函数的一个周期。
人教版高中数学必修一知识点和重难点
人教版高中数学必修一------- 各章节知识点与重难点第一章集合与函数概念1.1集合1.1.1集合的含义与表示【知识要点】1、集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
2、集合的中元素的三个特性(1)元素的确定性;(2)元素的互异性;(3)元素的无序性2、“届丁”的概念我们通常用大写的拉丁字母A,B,C, ......... 表示集合,用小写拉丁字母a,b,c, ......... 表示元素如:如果a是集合A的元素,就说a届丁集合A记作a€ A,如果a不届丁集合A记作a A3、常用数集及其记法非负整数集(即自然数集)记作:N ;正整数集记作:N*或N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R4、集合的表示法(1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
(2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x£ R| x-3>2}或{x| x-3>2}(3)图示法(Venn图)1.1.2集合问的基本关系【知识要点】1、“包含”关系一一子集一般地,对丁两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A B2、“相等”关系如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等丁集合B,即:A=B A B且B A3、真子集如果A B,且A B那就说集合A是集合B的真子集,记作A B(或B A)4、空集不含任何元素的集合叫做空集,记为①规定:空集是任何集合的子集,空集是任何非空集合的真子集.1.1.3集合的基本运算【知识要点】1、交集的定义一般地,由所有届丁A且届丁B的元素所组成的集合,叫做A,B的交集.记作A A B(读作A 交B”),即An B={x| x€ A,且x€ B}.2、并集的定义一般地,由所有届丁集合A或届丁集合B的元素所组成的集合,叫做A,B的并集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性 :集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{}(1)用大写字母表示集合: A={ 我校的篮球队员 },B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来 {a,b,c }b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x R| x-3>2} ,{x| x-3>2}②语言描述法:例:{ 不是直角三角形的三角形}③Venn 图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:(2)元素不在集合里,则元素不属于集合,即:意:常用数集及其记法:非负整数集(即自然数集)记作: N正整数集N*或 N+整数集 Z 有理数集Q实数集 Ra Aa¢A 注6、集合间的基本关系(1). “包含”关系(1)—子集定义:如果集合 A 的任何一个元素都是集合 B 的元素,我们说这两个集合有包含关系,称集合 A 是集合 B 的子集。
记作: A B (或BA)注意: A B 有两种可能(1)A 是 B 的一部分;(2)A 与 B 是同一集合。
反之 : 集合 A 不包含于集合B, 或集合 B 不包含集合 A, 记作 A B 或 B A (2). “包含”关系(2)—真子集如果集合 A B ,但存在元素x B 且 x¢A,则集合 A 是集合 B 的真子集如果 A B,且A B 那就说集合 A 是集合 B 的真子集,记作 A B(或B A)读作 A 真含与 B(3).“相等”关系:A=B“元素相同则两集合相等”如果A B同时B A那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定 : 空集是任何集合的子集,空集是任何非空集合的真子集。
(5)集合的性质①任何一个集合是它本身的子集。
A A②如果 AB,BC,那么 AC③如果 A B且B C,那么 A C④有 n 个元素的集合,含有2n个子集, 2n-1个真子集7、集合的运算运算类型交集并集定义A且属于 B A 或属由所有属于由所有属于集合的元素所组成的集合,叫于集合 B 的元素所组成做A,B 的交集.记作的集合,叫做A,B 的并补集全集:一般,若一个集合汉语我们所研究问题中这几道的所有元素,我们就称这个集合为全集,记作:U 设 S 是一个集合, A 是 S 的一个子集,由 S 中所有不属于 A 的元素组成的集合,叫做 S 中子集 A 的补集A B(读作 ,A 交 B?),集.记作: A B(读作,A即 A B= { x|x A ,且并 B?),即 AB (或余集)记作 CS A ,x B }.={x|x A ,或 x B}) .C S A= {x |x S, 且 x A}韦恩图示A B A B SA图1图2性质 A∩A=A AUA=A(C u A)∩ (C u B)= C u(AUB) A∩Φ=ΦΦ∩A U=A(C u A) U (C u B)= C u(A B)A ∩ B=B A AUB=BUA AU(C u A)=UA∩B A A AUBA A ∩(C u A)= Φ.∩B B AUB B二、函数的概念1.函数的概念:设 A 、B 是非空的数集,如果按照某个确定的对应关系 f ,使对于集合 A 中的任意一个数x,在集合 B 中都有唯一确定的数f(x) 和它对应,那么就称f: A→B为从集合 A 到集合 B 的一个函数.记作:y=f(x) , x∈A.(1)其中, x 叫做自变量, x 的取值范围 A 叫做函数的定义域;( 2)与 x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈ A } 叫做函数的值域.2.函数的三要素:定义域、值域、对应法则3.函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。
(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。
4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x ∈ A)中的 x 为横坐标,函数值 y 为纵坐标的点P(x , y) 的集合 C ,叫做函数y=f(x),(x∈A)的图象. C 上每一点的坐标(x , y)均满足函数关系y=f(x),反过来,以满足y=f(x) 的每一组有序实数对x、y 为坐标的点(x ,y),均在 C 上 .(2) 画法A 、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。
( 3)函数图像平移变换的特点:1)加左减右——————只对x2)上减下加——————只对y3)函数 y=f(x)关于X轴对称得函数4)函数 y=f(x)关于Y轴对称得函数5)函数 y=f(x)关于原点对称得函数6)函数 y=f(x)将x轴下面图像翻到y=-f(x)y=f(-x)y=-f(-x)x 轴上面去,x 轴上面图像不动得函数y=| f(x)|7)函数y=f(x) 先作x≥0的图像,然后作关于y 轴对称的图像得函数f(|x|)三、函数的基本性质1、函数解析式子的求法( 1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.( 2)、求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的 x 的值组成的集合 .(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.3、相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备 )4、区间的概念:(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示5、值域(先考虑其定义域)(1)观察法:直接观察函数的图像或函数的解析式来求函数的值域;(2)反表示法:针对分式的类型,把 Y 关于 X 的函数关系式化成 X 关于 Y 的函数关系式,由 X 的范围类似求 Y 的范围。
(3)配方法:针对二次函数的类型,根据二次函数图像的性质来确定函数的值域,注意定义域的范围。
(4)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型。
6.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.( 4)常用的分段函数有取整函数、符号函数、含绝对值的函数7.映射一般地,设 A 、B 是两个非空的集合,如果按某一个确定的对应法则f,使对于集合 A 中的任意一个元素x,在集合 B 中都有唯一确定的元素y 与之对应,那么就称对应f:A B 为从集合 A 到集合 B 的一个映射。
记作“f(对应关系):A (原象)B(象)”对于映射 f : A→ B 来说,则应满足:(1) 集合 A 中的每一个元素,在集合 B 中都有象,并且象是唯一的;(2) 集合 A 中不同的元素,在集合 B 中对应的象可以是同一个;(3) 不要求集合 B 中的每一个元素在集合 A 中都有原象。
注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的。
所以函数是映射,而映射不一定的函数8、函数的单调性( 局部性质 )及最值(1)、增减函数(1)设函数 y=f(x) 的定义域为 I,如果对于定义域 I 内的某个区间 D 内的任意两个自变量 x1, x2,当 x1<x 2时,都有 f(x 1)<f(x 2),那么就说 f(x) 在区间 D 上是增函数 .区间 D 称为 y=f(x) 的单调增区间 .(2)如果对于区间 D 上的任意两个自变量的值x 1,x2,当 x 1<x2时,都有 f(x 1) >f(x 2),那么就说 f(x) 在这个区间上是减函数 . 区间 D 称为 y=f(x) 的单调减区间 .注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种(2)、图象的特点如果函数y=f(x) 在某个区间是增函数或减函数,那么说函数y=f(x) 具有 (严格的)单调性,在单调区间上增函数的图象从左到右是上升的,象从左到右是下降的.( 3)、函数单调区间与单调性的判定方法在这一区间上减函数的图(A)定义法:○1 任取x1,x2∈D,且x1<x 2;○2 作差 f(x 1)-f(x 2);○ 3 变形(通常是因式分解和配方);○ 4 定号(即判断差f(x 1)-f(x 2)的正负);○ 5 下结论(指出函数f(x) 在给定的区间 D 上的单调性).(B)图象法 (从图象上看升降 )(C)复合函数的单调性复合函数:如果y=f(u)(u ∈ M),u=g(x)(x∈ A),则y=f[g(x)]=F(x)(x∈A)称为f、g 的复合函数。
复合函数f[ g(x)] 的单调性与构成它的函数其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间起写成其并集. u=g(x) ,y=f(u) 的单调性密切相关,,不能把单调性相同的区间和在一9:函数的奇偶性(整体性质)(1)、偶函数一般地,对于函数f(x) 的定义域内的任意一个x,都有f( - x)=f(x) ,那么f(x) 就叫做偶函数.(2)、奇函数一般地,对于函数f(x) 的定义域内的任意一个x,都有f( - x)= — f(x) ,那么 f(x) 就叫做奇函数.(3)、具有奇偶性的函数的图象的特征偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:a、首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,则是非奇非偶的函数;若对称,则进行下面判断;b、确定 f( - x) 与 f(x) 的关系;c、作出相应结论:若f( - x) = f(x)或f( - x)-f(x) = 0,则f(x)是偶函数;若f( - x) = -f(x) 或f( - x) +f(x) = 0 ,则f(x) 是奇函数.( 4)利用奇偶函数的四则运算以及复合函数的奇偶性a、在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;a、复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇。