扫描电镜经典总结材料

合集下载

扫描电镜实验报告

扫描电镜实验报告

扫描电镜实验报告扫描电镜(Scanning Electron Microscope,SEM)是一种应用广泛的高分辨率显微镜,能够对样品进行表面形貌和微观结构的观测和分析。

本实验旨在通过扫描电镜对不同样品的表面形貌和微观结构进行观察和分析,从而加深对扫描电镜原理和应用的理解。

首先,我们准备了几种不同的样品,包括金属材料、植物组织和昆虫外骨骼等。

在实验过程中,我们首先对样品进行了表面处理,包括金属样品的金属镀膜处理、植物组织的冷冻干燥处理以及昆虫外骨骼的金属喷镀处理,以保证样品在扫描电镜下的观察效果。

接下来,我们将样品放置在扫描电镜的样品台上,并调整好合适的观察条件。

在观察过程中,我们发现扫描电镜能够清晰地显示样品的表面形貌和微观结构,包括金属样品的晶粒结构、植物组织的细胞结构以及昆虫外骨骼的纹理结构等。

通过对这些结构的观察和分析,我们不仅可以直观地了解样品的表面特征,还可以深入地研究样品的微观结构和性质。

在实验中,我们还发现扫描电镜具有较高的分辨率和深度信息,能够对样品进行三维观察和分析。

通过调整扫描电镜的工作参数,我们成功地获得了不同角度和深度的样品图像,进一步揭示了样品的微观结构和表面形貌。

这为我们深入理解样品的微观特征提供了重要的信息和依据。

总的来说,通过本次实验,我们深入了解了扫描电镜的原理和应用,掌握了样品的表面形貌和微观结构的观察方法,提高了对样品性质和特征的认识。

扫描电镜作为一种重要的分析工具,将在材料科学、生物学、医学等领域发挥重要作用,为科学研究和工程应用提供有力支持。

通过本次实验,我们不仅提高了对扫描电镜的认识,还对不同样品的表面形貌和微观结构有了更深入的理解。

扫描电镜的高分辨率和深度信息为我们提供了更多的观察和分析角度,有助于我们更全面地认识样品的特性和性能。

希望通过今后的实践和研究,能够更好地利用扫描电镜这一强大的工具,为科学研究和工程应用做出更多的贡献。

扫描电镜实验报告

扫描电镜实验报告

扫描电镜实验报告扫描电镜是一种高分辨率的显微镜,能够对样品进行高分辨率成像。

在本次实验中,我们使用了扫描电镜对样品进行了观察和分析。

本报告将对实验的目的、方法、结果和结论进行详细的描述和分析。

实验目的。

本次实验的主要目的是利用扫描电镜对样品进行表面形貌和微观结构的观察和分析,了解扫描电镜在材料科学和生物科学领域的应用,掌握扫描电镜的操作技巧和注意事项。

实验方法。

1. 样品制备,首先,我们准备了需要观察的样品,如金属材料、生物组织等,并对样品进行表面处理和固定。

2. 扫描电镜操作,接下来,我们将样品放入扫描电镜的样品台上,并根据仪器操作手册进行电镜的开机、预热和调试,确保仪器处于正常工作状态。

3. 观察和记录,在样品放置好并仪器调试完成后,我们通过调整扫描电镜的参数,如放大倍数、对焦等,对样品进行观察,并记录观察到的表面形貌和微观结构。

实验结果。

经过扫描电镜的观察,我们得到了样品的高分辨率图像,并对样品的表面形貌和微观结构进行了分析。

我们观察到样品表面的微观结构非常复杂,有许多微小的颗粒和纹理,这些结构对样品的性能和功能具有重要影响。

通过扫描电镜的观察,我们能够更加深入地了解样品的微观特征,为进一步的研究和分析提供了重要的参考。

实验结论。

本次实验通过扫描电镜的观察和分析,我们对样品的表面形貌和微观结构有了更加深入的了解。

扫描电镜作为一种高分辨率的显微镜,能够为材料科学和生物科学领域的研究提供重要的技术支持。

通过本次实验,我们掌握了扫描电镜的操作技巧和注意事项,为今后的科研工作打下了良好的基础。

总结。

通过本次实验,我们不仅学习了扫描电镜的操作和应用,还对样品的表面形貌和微观结构有了更深入的了解。

扫描电镜在材料科学和生物科学领域具有重要的应用价值,能够为科研工作提供重要的技术支持。

希望通过本次实验,能够对大家对扫描电镜的应用有更深入的了解,为今后的科研工作提供帮助和指导。

在本次实验中,我们通过扫描电镜对样品进行了观察和分析,了解了扫描电镜在科研领域的重要应用价值。

扫描电镜试验报告资料(1)

扫描电镜试验报告资料(1)

实验一扫描电子显微镜的结构及原理分析1.表面形貌观察与分析
图1 F1号样品
图2 F2号样品
图3 F3号样品
图4 F4号样品
图1-1 F1号样品能谱图及成分数据表
图2-1 F2号样品能谱图及成分数据表
图3-1 F3号样品能谱图及成分数据表
图4-1 F4号样品能谱图及成分数据表
2. 根据所观察的22Cr双相不锈钢断口(D1号样品)的背散射图像,分析其析出相和基体相特征
图5为22Cr双相不锈钢断口(D1号样品)的背散射像,基体相为___相和___相,析
出相为___相和___相。

x相呈___色。

σ相呈___色:γ相呈___色:α相呈___色;
图5 D1号样品(22Cr钢)背散射像
3.复制22Cr双相不锈钢断口(D1号样品)各相的能谱图,分析各相的成分差别。

22Cr双相不锈钢断口(D1号样品)各相的能谱及各相的成分如图6、图7、图8、图9、
所示。

对比元素表中各相数据可知: x相中Mo含量最___,Fe含量最___,故图像颜色最明亮;σ相中Mo含量仅___于x相,故图像呈浅灰色;γ相中Ni含量最___, Cr含量最___,故图像呈深灰色;α相中Cr含量与Fe含量之和最___, Ni含量较γ相中___,故图像颜色最暗。

图6 D1号样品(22Cr钢)x相(001点)能谱图及成分数据表
图7 D1号样品(22Cr钢)σ相(002点)能谱图及成分数据表
图8 D1号样品(22Cr钢)γ相(003点)能谱图及成分数据表
图9 D1号样品(22Cr钢)α相(004点)能谱图及成分数据表。

扫描电镜知识汇总

扫描电镜知识汇总

扫描电镜(SEM)超全知识汇总真空技术扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器,被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。

如图1所示,是扫描电子显微镜的外观图。

▲图1. 扫描电子显微镜特点制样简单、放大倍数可调范围宽、图像的分辨率高、景深大、保真度高、有真实的三维效应等,对于导电材料,可直接放入样品室进行分析,对于导电性差或绝缘的样品则需要喷镀导电层。

基本结构从结构上看,如图2所示,扫描电镜主要由七大系统组成,即电子光学系统、信号探测处理和显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。

电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。

通常会装配两组:汇聚透镜和物镜,汇聚透镜仅仅用于汇聚电子束,与成象会焦无关;物镜负责将电子束的焦点汇聚到样品表面。

扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。

样品室内除放置样品外,还安置信号探测器。

2、信号探测处理和显示系统电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生二次电子、背散射电子、俄歇电子以及X射线等一系列信号。

所以需要不同的探测器譬如二次电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。

虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。

有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用二次电子探测器代替,但需要设定一个偏压电场以筛除二次电子。

3、真空系统真空系统主要包括真空泵和真空柱两部分。

真空柱是一个密封的柱形容器。

真空泵用来在真空柱内产生真空。

有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨灯丝枪的扫描电镜的真空要求,但对于装置了场致发射枪或六硼化镧及六硼化铈枪的扫描电镜,则需要机械泵加涡轮分子泵的组合。

扫描电镜经典总结

扫描电镜经典总结

• 扫描电镜(SEM)• 透射电镜(TEM)• 原子力显微镜(AFM)• X射线衍射(XRD)• 元素分析(EA)显微分析技术——电子显微镜一束电子射到试样上,电子与物质相互作用,当电子的运动方向被改变,称为散射。

透射电子直接透射电子,以及弹性或非弹性散射的透射电子用于透射电镜(TEM)的成像和衍射二次电子 入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,成为真空中的自由电子,此即二次电子。

在电场的作用下它可呈曲线运动进入检测器,使表面凹凸的各个部分都能清晰成像。

二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌;二次电子的分辨率可达5~10nm,即为扫描电镜的分辨率。

二次电子的强度主要与样品表面形貌相关。

二次电子和背景散射电子共同用于扫描电镜(SEM)的成像。

当探针很细,分辨高时,基本收集的是二次电子而背景电子很少,称为二次电子成像(SEI)。

背景散射电子 入射电子穿达到离核很近的地方被反射,没有能量损失;既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子,前者的份额远大于后者。

背散射电子反映样品表面的不同取向、不同平均原子量的区域差别,产额随原子序数的增加而增加;利用背散射电子为成像信号,可分析形貌特征,也可显示原子序数衬度而进行定性成分分析。

特征X射线入射电子和原子中的层电子发生非弹性散射作用而损失一部分能量(几百个eV),激发层电子发生电离,形成离子,该过程称为芯电子激发。

除了二次电子外,失去层电子的原子处于不稳定的较高能量状态,将依一定的选择定则向能量较低的量子态跃迁,跃迁过程中发射出反映样品中元素组成信息的特征X射线,可用于材料的成分分析。

俄歇(Auger)电子如果入射电子把外层电子打进层,原子被激发了.为释放能量而电离出次外层电子,叫俄歇电子。

材料电镜扫描透射分析实验报告范文透射电镜实验报告范文

材料电镜扫描透射分析实验报告范文透射电镜实验报告范文

材料电镜扫描透射分析实验报告范文透射电镜实验报告范文实验一材料的电镜(扫描透射)分析扫描电镜一实验目的1了解扫描电镜的基本结构和原理2掌握扫描电镜样品的准备与制备方法3了解扫描电镜图片的分析与描述方法二扫描电镜结构与原理(一)结构1.镜筒镜筒包括电子枪、聚光镜、物镜及扫描系统。

其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面扫描,同时激发出各种信号。

2.电子信号的收集与处理系统在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、某射线、吸收电子、俄歇(Auger)电子等。

在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm至几十nm的区域,其产生率主要取决于样品的形貌和成分。

通常所说的扫描电镜像指的就是二次电子像,它是研究样品表面形貌的最有用的电子信号。

检测二次电子的检测器(图15(2)的探头是一个闪烁体,当电子打到闪烁体上时,1就在其中产生光,这种光被光导管传送到光电倍增管,光信号即被转变成电流信号,再经前置放大及视频放大,电流信号转变成电压信号,最后被送到显像管的栅极。

3.电子信号的显示与记录系统扫描电镜的图象显示在阴极射线管(显像管)上,并由照相机拍照记录。

显像管有两个,一个用来观察,分辨率较低,是长余辉的管子;另一个用来照相记录,分辨率较高,是短余辉的管子。

4.真空系统及电源系统扫描电镜的真空系统由机械泵与油扩散泵组成,其作用是使镜筒内达到10(4~10(5托的真空度。

电源系统供给各部件所需的特定的电源。

(二)工作原理从电子枪阴极发出的直径20(m~30(m的电子束,受到阴阳极之间加速电压的作用,射向镜筒,经过聚光镜及物镜的会聚作用,缩小成直径约几毫微米的电子探针。

在物镜上部的扫描线圈的作用下,电子探针在样品表面作光栅状扫描并且激发出多种电子信号。

这些电子信号被相应的检测器检测,经过放大、转换,变成电压信号,最后被送到显像管的栅极上并且调制显像管的亮度。

扫描电镜要点总结(蔡司Gemini450电镜各模式和探头使用参数介绍)

扫描电镜要点总结(蔡司Gemini450电镜各模式和探头使用参数介绍)

扫描电镜要点总结(蔡司Gemini450电镜各模式和探头使用参数介绍)扫描电子显微镜(Scanning Electron Microscope, SEM)是一种高分辨率的显微镜,能够通过扫描样品表面的电子束来获取高清晰度的图像。

蔡司Gemini 450是一种常见的扫描电子显微镜,拥有多种模式和探头,下面将对其各模式和探头的使用参数进行介绍。

1.高真空模式:-工作距离:3-20毫米之间可调。

-放大倍率:高达1,000,000倍。

-检测器:二次电子检测器、能量分散X射线(EDX)探测器等。

高真空模式适用于大多数样品,特别是金属、半导体等导电材料。

该模式下的电子束会扫描样品表面,从而产生二次电子图像。

EDX探测器可用于进行元素成分分析。

2.低真空模式:-气压范围:从10到130帕斯卡(Pa)。

-工作距离:5-25毫米之间可调。

-放大倍率:高达100,000倍。

低真空模式适用于非导电材料以及生物样品等需要避免高真空环境的样品。

低真空模式下,可以使用水冷样品冷凝器来减少样品的水膜蒸发。

3.非接触模式:-工作距离:约为30微米。

-放大倍率:高达100,000倍。

非接触模式使用非接触方式扫描样品表面,减少了对样品的损伤。

它适用于对样品表面要求严格的情况下,如软性材料或纳米材料等。

4.电子背散射模式:-工作距离:约为3毫米。

-放大倍率:高达300,000倍。

电子背散射模式用于观察样品的表面形态和材料本身的晶体结构。

通过背散射电子来获取高对比度的图像。

探头是扫描电镜中十分重要的组成部分,蔡司Gemini 450电镜提供了多种探头供选择,具有不同的特点和应用范围。

1.热阴极电子枪:-适用于常规高真空模式下的成像。

-具有较高的亮度和小的发射面积。

2.场发射电子枪:-适用于较低真空模式下的成像。

-具有更小的亮度和更小的发射面积。

3.高抛射场发射电子枪:-适用于非接触模式。

-具有更大的发射面积,可以提供更高的电子流,为非接触模式下的成像提供更好的性能。

扫描电镜实验报告

扫描电镜实验报告

实验报告
学院:专业:班级:
工作原理:右图是扫描电镜的原理示意图。

由最上边电子枪发射出来的电子束,经栅极聚
扫描电镜原理示意图
焦后,在加速电压作用下,经过二至三个电磁透镜所组成的电子光学系统,电子束会聚成一个细的电子束聚焦在样品表面。

在末级透镜上边装有扫描线圈,在它的作用下使电子束在样品表面扫描。

由于高能电子束与样品物质的交互作用,结果产生了各种信息:二次电子、背反射电子、吸收电子、X射线、俄歇电子、阴极发光和透射电子等。

这些信号被相应的接收器接收,经放大后送到显像管的栅极上,调制显像管的亮度。

由于经过扫描线圈上的电流是与显像管相应的亮度一一对应,也就是说,电子束打到样品上一点时,在显像管荧光屏上就出现一个亮点。

扫描电镜就是这样采用逐点成像的方法,把样品表面不同的特征,按顺序,成比例地转换为视频信号,完成一帧图像,从而使我们在荧光屏上观察到样品表面的各种特征图像。





电子扫描显微镜、试样、导电胶




一、制作好试样、打开电子扫描电镜
二、用导电胶固定试样在载物台上
三、放好试样后,抽真空,调整试样的距离、扫描的衬度和最佳倍数
四、选择不同倍数,照像
实验数据

验总结
可以不同程度的看到试样的外观形貌和表面组织,对断裂的不同区域可以看清楚。

纤维区、放射区、瞬断区三个区域中,放射区占得比例大为脆断。

韧涡的中心一般是第二相粒子。

不同的程度表现出表面不同的形貌组织。






见签名:年月日。

扫描电镜分析实验报告

扫描电镜分析实验报告

扫描电镜分析实验报告一、实验目的本次扫描电镜分析实验的主要目的是通过使用扫描电子显微镜(SEM)对样品的微观形貌、结构和成分进行观察和分析,以获取有关样品的详细信息,为进一步的研究和应用提供依据。

二、实验原理扫描电子显微镜是一种利用电子束扫描样品表面,产生二次电子、背散射电子等信号,通过检测这些信号来成像和分析样品的仪器。

其工作原理基于电子与物质的相互作用。

当电子束照射到样品表面时,会与样品中的原子发生相互作用,产生多种信号。

二次电子是由样品表面原子的价电子被激发出来形成的,其能量较低,主要反映样品表面的形貌特征。

背散射电子是被样品原子散射回来的入射电子,其能量较高,与样品的成分和原子序数有关。

通过收集和检测这些电子信号,并将其转换为图像,我们可以获得样品表面的微观结构、形貌和成分分布等信息。

三、实验设备与材料1、扫描电子显微镜(型号:_____)2、样品制备设备:切割工具、研磨设备、抛光机等3、样品:_____(具体样品名称)四、实验步骤1、样品制备对样品进行切割,获得合适大小的块状或片状试样。

使用研磨设备对试样进行粗磨和细磨,以去除表面的划痕和损伤。

进行抛光处理,使样品表面光滑平整,以提高成像质量。

对样品进行清洗和干燥,去除表面的杂质和污染物。

2、样品安装将制备好的样品安装在扫描电镜的样品台上,使用导电胶或其他固定方式确保样品稳定。

3、仪器调试打开扫描电镜主机和相关附属设备,如真空泵、电源等。

进行真空抽气,使镜筒内达到所需的真空度。

调整电子枪的加速电压、束流等参数,以及物镜光阑的大小和位置。

4、图像采集选择合适的放大倍数和扫描模式,对样品进行扫描。

观察和调整图像的亮度、对比度等参数,以获得清晰、准确的图像。

对感兴趣的区域进行多次扫描和图像采集,以获取足够的信息。

5、数据分析使用扫描电镜自带的分析软件或其他图像处理软件,对采集到的图像进行分析和测量。

例如,测量颗粒的大小、形状、分布,观察表面的微观结构和缺陷等。

扫描电镜测试相关知识点总结

扫描电镜测试相关知识点总结

扫描电镜测试相关知识点总结1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。

光学显微镜放大倍率最高只有约1500倍,扫描式显微镜可放大到10000倍以上。

2. 根据de Broglie波动理论,电子的波长仅与加速电压有关:λe=h / mv=h / (2qmV)1/2=12.2 / (V)1/2 (Å)在 10 KV 的加速电压之下,电子的波长仅为0.12Å,远低于可见光的4000 - 7000Å,所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100Å之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。

3. 扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。

4. 扫描式电子显微镜,其系统设计由上而下,由电子枪 (Electron Gun) 发射电子束,经过一组磁透镜聚焦 (Condenser Lens) 聚焦后,用遮蔽孔径(Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜 (Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子 (Secondary Electron) 或背向散射电子(Backscattered Electron) 成像。

5. 电子枪的必要特性是亮度要高、电子能量散布 (Energy Spread) 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。

扫描电镜成分分析实验报告

扫描电镜成分分析实验报告

扫描电镜成分分析实验报告一、实验目的本实验旨在通过使用扫描电子显微镜(Scanning Electron Microscope,SEM)对材料的成分进行分析与表征,探究扫描电镜在材料科学研究中的应用。

二、实验原理扫描电镜是一种利用电子束与物质相互作用产生的信号来观察样品表面形貌和成分的高性能显微镜。

它不仅能提供高分辨率的图像,还可以通过能谱仪分析不同元素的含量。

三、实验器材和试剂1. 扫描电子显微镜2. 样品3. 金和银溅射镀膜刀具4. 研磨纸(各种粒度)5. 丙酮6. 无水乙醇7. 电子导电胶布8. 剪刀四、实验步骤1. 样品处理a. 将待分析样品切割成合适尺寸并用研磨纸磨光表面。

b. 使用丙酮清洗样品,去除表面油脂等污染。

c. 使用无水乙醇反复清洗样品,使其干燥。

d. 使用金或银溅射镀膜刀具,在样品表面均匀切割一层金(或银)薄膜。

e. 使用剪刀将样品切割成合适大小并粘贴在电子导电胶布上。

2. SEM成像a. 将样品放入扫描电镜样品舱中。

b. 开始真空抽气,调节电压和电流至合适数值。

c. 调整焦距和亮度,选取合适的观察位置。

d. 利用附带的摇杆,调节样品位置,使待观察的区域位于镜头中心。

e. 点击扫描按钮,获取样品的图像。

3. 成分分析a. 运用能谱仪获取样品的X射线能谱信息。

b. 分析能谱图,得到样品中不同元素的相对含量,并记录下来。

c. 结合成像结果,分析样品中特定成分在不同区域的分布情况。

五、实验结果与讨论在本次实验中,我们选择了一块具有复杂结构的材料进行分析。

通过SEM观察到,材料表面具有许多微小的颗粒,且表面呈现出较粗糙的特征。

通过能谱分析发现,样品主要含有铁、硅、氧和碳等元素,其中铁元素相对含量最高。

这与材料的使用环境和预期的组成相吻合。

进一步分析样品不同区域的成分分布,发现在某些区域,铁元素含量明显较高,与材料的颜色和纹理变化相对应。

此外,硅元素在整个样品表面均有分布,而氧和碳元素则主要集中在较粗糙的表面区域。

扫描电镜测试相关知识点总结

扫描电镜测试相关知识点总结

扫描电镜测试相关知识点总结扫描电镜(Scanning Electron Microscope,SEM)是一种利用电子束扫描物体表面并获取显微图像的仪器。

相比于传统光学显微镜,扫描电镜可以提供更高的分辨率和放大倍率,可以观察到更为详细的细节结构。

以下是与扫描电镜测试相关的一些知识点总结:1.SEM的工作原理:扫描电镜利用电子枪产生的高速电子束照射样品表面,样品与电子束发生相互作用后产生的不同信号被探测器接收并转化为电信号,进而生成二维或三维显微图像。

2.SEM的分辨率:扫描电镜的分辨率受到电子束的精细程度、样品的尺寸和形状、探测器的性能等因素的影响。

一般情况下,扫描电镜的分辨率可达到亚纳米级别。

3.SEM的样品制备:由于扫描电镜对样品的表面必须是导电性的,并且要求样品表面干净,因此在进行SEM观察前需要对样品进行适当的处理。

常见的制备方法包括金属喷镀、碳喷镀、薄层沉积、低温冷冻破碎等。

4.SEM观察模式:扫描电镜观察样品时可采用不同的观察模式,包括二次电子显微镜(SEI)模式和反射电子显微镜(BEI)模式。

SEI模式观察到的图像反映了样品表面的形貌特征,而BEI模式则主要反映了样品的晶体结构信息。

5.SEM的探测器:SEM内常配备有不同类型的探测器,常见的有二次电子探测器(SE)和反射电子探测器(BSE)。

SE探测器主要用于观察样品表面形貌特征,BSE探测器则用于获得样品的元素分布和晶体结构信息。

6.SEM的配套设备:SEM通常还配备有能量散射谱仪(EDS)和电子背散射衍射仪(EBSD)等附属设备。

EDS可用于分析样品中不同元素的含量和分布情况,而EBSD则可用于分析样品的晶体取向和晶界性质。

7.SEM在材料科学领域的应用:扫描电镜在材料科学领域广泛应用于材料的微观表征和分析。

通过SEM可以观察到材料的孔隙结构、晶格形貌、晶粒尺寸和形态、裂纹和缺陷等细节结构信息,为材料设计和性能优化提供重要参考。

薄片鉴定与扫描电镜图片观察自我总结

薄片鉴定与扫描电镜图片观察自我总结

砂岩中的成岩成分
1、原生胶结物:它所占据的空间是被它首次占据的
常见的有:石英、方解石、铁质、海绿石、石膏、白云石等 较少见的有:玉髓、菱铁矿、重晶石、天青石、沸石等等 ◆原生胶结物重结晶的产物仍被看成是原生的 ◆同一砂岩可以有一种或多种胶结物
2、次生矿物:交代碎屑、基质或原生胶结物形成的矿物
常见的有:方解石、白云石、石膏、菱铁矿等等
亮晶生屑
泥晶生屑
螺壳
双壳
头足
粗枝藻
海松藻
海松藻 珊瑚藻
正交偏光
0.25mm
珊瑚藻
亮晶砂屑 亮晶砂屑
核形石
返回要点
成岩结构
渗滤粉砂 石膏假晶
残鲕 白云环带 硅化腕足 硅化叠层
压碎鲕
结束
硅化藻粘结结构硅化叠层源自灰岩沉积结构成岩结构
亮晶生屑
渗滤粉砂
泥晶生屑 螺壳 双壳
单偏光
单偏光
石膏假晶 残鲕
头足 粗枝藻 海松藻
螺壳
双壳
头足
粗枝藻
海松藻 海松藻
单偏光 0.25mm
珊瑚藻
珊瑚藻
亮晶砂屑 亮晶砂屑
核形石
返回要点
成岩结构
渗滤粉砂 石膏假晶
残鲕 白云环带 硅化腕足 硅化叠层
压碎鲕
结束
核形石
沉积结构
亮晶生屑
泥晶生屑
螺壳
双壳
头足
粗枝藻
海松藻
海松藻
珊瑚藻
珊瑚藻
亮晶砂屑
单偏光 5mm
亮晶砂屑
核形石
返回要点
成岩结构
渗滤粉砂 石膏假晶
2. 共同特征: 板状,无色,两组解理完全(夹角近90度), 突起低(±),干涉色一级灰,,轴晶(+)。

扫描电镜经典总结

扫描电镜经典总结

扫描电镜经典总结(总14页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除• 扫描电镜(SEM)• 透射电镜(TEM)• 原子力显微镜(AFM)• X射线衍射(XRD)• 元素分析(EA)显微分析技术——电子显微镜一束电子射到试样上,电子与物质相互作用,当电子的运动方向被改变,称为散射。

透射电子直接透射电子,以及弹性或非弹性散射的透射电子用于透射电镜(TEM)的成像和衍射二次电子 入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,成为真空中的自由电子,此即二次电子。

在电场的作用下它可呈曲线运动进入检测器,使表面凹凸的各个部分都能清晰成像。

二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌;二次电子的分辨率可达5~10nm,即为扫描电镜的分辨率。

二次电子的强度主要与样品表面形貌相关。

二次电子和背景散射电子共同用于扫描电镜(SEM)的成像。

当探针很细,分辨高时,基本收集的是二次电子而背景电子很少,称为二次电子成像(SEI)。

背景散射电子 入射电子穿达到离核很近的地方被反射,没有能量损失;既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子,前者的份额远大于后者。

背散射电子反映样品表面的不同取向、不同平均原子量的区域差别,产额随原子序数的增加而增加;利用背散射电子为成像信号,可分析形貌特征,也可显示原子序数衬度而进行定性成分分析。

特征X射线入射电子和原子中的内层电子发生非弹性散射作用而损失一部分能量(几百个eV),激发内层电子发生电离,形成离子,该过程称为芯电子激发。

除了二次电子外,失去内层电子的原子处于不稳定的较高能量状态,将依一定的选择定则向能量较低的量子态跃迁,跃迁过程中发射出反映样品中元素组成信息的特征X射线,可用于材料的成分分析。

扫描电镜实验报告

扫描电镜实验报告

扫描电镜实验报告
本次实验我们使用了扫描电镜来观察各种微观结构。

扫描电镜是一种高分辨率的显微镜,可以观察到小至0.01微米的结构。

首先,我们观察了一些有机物样品。

我们先将其放入扫描电镜中,并用电子束来激发样品表面的电子。

随后,样品表面的电子会被电子束所控制,造成电子的放出。

这些漫反射的电子就会被探测器拾取,最终转化成二维图像。

通过实验,我们所得到的图像结果十分有趣,有的组织结构长得像秋天的银杏叶,有的则如竹子一般,细长有弧度等。

我们可以清楚地看到它们的外形和细节。

接下来,我们观察了一些无机物样品,如一些金属纳米颗粒、各种晶体颗粒和非晶态颗粒等等。

我们不仅在超微结构方面能够看到一些非常细微的特征,如晶界(grain boundaries)、晶缺陷(lattice vacancies)、位错(dislocations)等等,我们还能观察到传统光学显微镜无法看到的微观特征,如金属内部结构的形态、非晶态的颗粒等等。

同时,我们还使用扫描电镜观察了一些细胞和细胞器的结构。

我们清楚地看到了生物组织中的微观结构,如细胞膜、微绒毛、高尔基体等等。

我们不仅仅看到了它们的外形,而且还能够通过结构上的细微变化来了解细胞的生理和病理状态。

最后,我们在实验中使用了一些特殊技术来进一步增强图像的细节,如图像增强、三维图像重建等等。

总的来说,本次扫描电镜实验让我们更加深入地了解了微观结构以及它们的性质和形态。

这样的结果对于探究材料科学、生物学、病理学等领域都有很大的意义。

同时,这也让我们更加深入了解了扫描电镜这种高级显微镜,它成为了化学科学和工程领域的重要工具之一。

【实验】扫描电镜实验报告

【实验】扫描电镜实验报告

【关键字】实验扫描电镜实验报告篇一:扫描电镜实验报告扫描电镜实验报告班级:材化11学号:姓名:李彦杰日期:XX 05 16一、实验目的1. 了解扫描电镜的构造及工作原理;2. 扫描电镜的样品制备;3. 利用二次电子像对纤维纵向形貌进行观察;4. 了解背散射电子像的应用。

二、实验仪器扫描电子显微镜(热发射扫描型号JSM-5610LV)、真空镀金装置。

扫描电镜原理是由电子枪发射并经过聚焦的电子束在样品表面扫描,激发样品产生各种物理信号,经过检测、视频缩小和信号处理,在荧光屏上获得能反映样品表面各种特征的扫描图像。

扫描电镜由下列五部分组成,主要作用简介如下:1.电子光学系统。

其由电子枪、电磁透镜、光阑、样品室等部件组成。

为了获得较高的信号强度和扫描像,由电子枪发射的扫描电子束应具有较高的亮度和尽可能小的束斑直径。

常用的电子枪有三种形式:普通热阴极三极电子枪、六硼化镧阴极电子枪和场发射电子枪。

前两种属于热发射电子枪;后一种则属于冷发射电子枪,也叫场发射电子枪,其亮度最高、电子源直径最小,是高分辨本领扫描电镜的理想电子源。

电磁透镜的功能是把电子枪的束斑逐级聚焦缩小,因照射到样品上的电子束斑越小,其分辨率就越高。

扫描电镜通常有三个磁透镜,前两个是强透镜,缩小束斑,第三个透镜是弱透镜,焦距长,便于在样品室和聚光镜之间装入各种信号探测器。

为了降低电子束的发散程度,每级磁透镜都装有光阑;为了消除像散,装有消像散器。

样品室中有样品台和信号探测器,样品台还能使样品做平移、倾斜、转动等运动。

2. 扫描系统。

扫描系统的作用是提供入射电子束在样品表面上以及阴极射线管电子束在荧光屏上的同步扫描信号。

3. 信号检测、缩小系统。

样品在入射电子作用下会产生各种物理信号、有二次电子、背散射电子、特征X射线、阴极荧光和透射电子。

不同的物理信号要用不同类型的检测系统。

它大致可分为三大类,即电子检测器、阴极荧光检测器和X射线检测器。

4. 真空系统。

扫描电镜介绍范文

扫描电镜介绍范文

扫描电镜介绍范文扫描电子显微镜(Scanning Electron Microscope, SEM)是一种常用的高分辨率成像工具,可以在微观范围内观察样品的表面形貌和显微结构。

相比传统的光学显微镜,扫描电子显微镜具有更高的分辨率和更大的深度信息。

扫描电子显微镜的工作原理是利用电子束对样品表面进行扫描,通过探针电子显微镜和信号探测系统获取样品表面的信号,从而得到高分辨率的图像。

扫描电子显微镜由四个主要部分组成:电子枪、透镜系统、扫描系统和探测系统。

电子枪是扫描电子显微镜的核心部件,它产生高能电子束。

电子枪中的热阴极产生电子,然后通过加速极加速到很高的速度。

这些高能电子束经过聚焦系统进行聚焦,并通过调节电压和电流来控制电子束的强度和直径。

透镜系统通过控制电子束的聚焦和形状,将电子束聚焦在样品表面上。

透镜系统中包括电子透镜和扫描线圈,通过调整透镜的电压和扫描线圈的电流,可以控制电子束的聚焦和扫描范围。

扫描系统用于控制电子束在样品表面上的扫描。

它通过改变扫描线圈的电流,控制电子束的位置和速度。

扫描系统可以按照一定的模式(如线性、环形或斜线)扫描样品表面,以获取更全面的信息。

探测系统用于收集和转换电子束与样品交互作用的信号。

常见的探测器包括二次电子和反射电子探测器。

二次电子探测器用于检测电子束与样品表面的相互作用,生成成像信号。

反射电子探测器检测电子束中被样品散射的电子,可以提供更多的表面和成分信息。

扫描电子显微镜的工作原理是通过扫描电子束,获取样品表面反射或二次电子的强度和分布信息,然后通过信号处理和数据分析,生成高分辨率的图像。

扫描电子显微镜的分辨率通常可以达到纳米级别,可以观察到微观结构和表面形貌。

扫描电子显微镜的应用非常广泛。

在材料科学领域,它可以用于研究材料的晶体结构、表面形貌和成分分析。

在生物科学领域,它可以用于观察细胞和组织的微观结构。

在地质学和环境科学领域,它可以用于研究岩石和土壤的粒度和成分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•扫描电镜(SEM)•透射电镜(TEM)•原子力显微镜(AFM)• X射线衍射(XRD)•元素分析(EA)显微分析技术——电子显微镜一束电子射到试样上,电子与物质相互作用,当电子的运动方向被改变,称为散射。

透射电子直接透射电子,以及弹性或非弹性散射的透射电子用于透射电镜(TEM)的成像和衍射二次电子 入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,成为真空中的自由电子,此即二次电子。

在电场的作用下它可呈曲线运动进入检测器,使表面凹凸的各个部分都能清晰成像。

二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌;二次电子的分辨率可达5~10nm,即为扫描电镜的分辨率。

二次电子的强度主要与样品表面形貌相关。

二次电子和背景散射电子共同用于扫描电镜(SEM)的成像。

当探针很细,分辨高时,基本收集的是二次电子而背景电子很少,称为二次电子成像(SEI)。

背景散射电子 入射电子穿达到离核很近的地方被反射,没有能量损失;既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子,前者的份额远大于后者。

背散射电子反映样品表面的不同取向、不同平均原子量的区域差别,产额随原子序数的增加而增加;利用背散射电子为成像信号,可分析形貌特征,也可显示原子序数衬度而进行定性成分分析。

特征X射线入射电子和原子中的层电子发生非弹性散射作用而损失一部分能量(几百个eV),激发层电子发生电离,形成离子,该过程称为芯电子激发。

除了二次电子外,失去层电子的原子处于不稳定的较高能量状态,将依一定的选择定则向能量较低的量子态跃迁,跃迁过程中发射出反映样品中元素组成信息的特征X射线,可用于材料的成分分析。

俄歇(Auger)电子如果入射电子把外层电子打进层,原子被激发了.为释放能量而电离出次外层电子,叫俄歇电子。

主要用于轻元素和超轻元素(除H和He)的分析,称为俄歇电子能谱仪。

阴极荧光如果入射电子使试样的原于电子发生电离,高能级的电子向低能级跃迁时发出的光波长较长(在可见光或紫外区),称为阴极荧光,可用作光谱分析,但它通常非常微弱。

各种信号的深度与区域大小高能电子束受到物质原子的散射作用偏离入射方向,向外发散;随着深度的增加,分布围增大,动能不断降低、直至为0,形成一个作用区。

“梨形作用体积”:对轻元素样品,入射电子经多次小角散射,在未达到较大散射角之前已深入样品部;最后散射角增大,达到漫散射的程度。

“半球形作用体积”:对重元素样品,入射电子在样品表面不很深的位置就达到漫反射的程度。

电子在样品散射区域的形状主要取决于原子序数,改变电子能量只引起作用体积大小的改变而不会显著改变形状。

深度能逸出材料表面的俄歇电子距表面的深度:0.4~2nm,为表面信号;能逸出材料表面的二次电子距表面的深度:5~10nm;能逸出材料表面的X射线距表面的深度:500nm~5μm。

:分辨率:俄歇电子与二次电子的空间分辨率最高;背散射电子的空间分辨率次之;X射线信号的空间分辨率最低。

二次电子像的分辨率主要取决于电子探针束斑尺寸和电子枪的亮度。

二次电子的最高分辨率可达0.25nm。

扫描电镜的分辨率指的是二次电子的分辨率。

扫描电镜的特点★景深大,图像富有立体感,特别适合于表面形貌的研究.★放大倍数围广,从十几倍到2万倍,几乎覆盖了光学显微镜和TEM的围.★制样简单,样品的电子损伤小.这些方面优于TEM,所以SEM成为材料常用的重要剖析手段.扫描电镜(SEM)的几大要素(1)分辨率影响扫描电镜的分辨本领的主要因素有:(a) 入射电子束束斑直径:为扫描电镜分辨本领的极限。

一般,热阴极电子枪的最小束斑直径可缩小到6nm,场发射电子枪可使束斑直径小于3nm。

(b) 入射电子束在样品中的扩展效应:扩散程度取决于入射束电子能量和样品原子序数的高低。

入射束能量越高,样品原子序数越小,则电子束作用体积越大,产生信号的区域随电子束的扩散而增大,从而降低了分辨率(c) 成像方式及所用的调制信号:当以二次电子为调制信号时,由于其能量低(小于50 eV),平均自由程短(10~100 nm左右),只有在表层50~100 nm的深度围的二次电子才能逸出样品表面,发生散射次数很有限,基本未向侧向扩展,因此,二次电子像分辨率约等于束斑直径。

当以背散射电子为调制信号时,由于背散射电子能量比较高,穿透能力强,可从样品中较深的区域逸出(约为有效作用深度的30%左右)。

在此深度围,入射电子已有了相当宽的侧向扩展,所以背散射电子像分辨率要比二次电子像低,一般在500~2000nm左右。

如果以吸收电子、X射线、阴极荧光、束感生电导或电位等作为调制信号的其他操作方式,由于信号来自整个电子束散射区域,所得扫描像的分辨率都比较低,一般在l 000 nm或l0000nm以上不等。

(2)放大倍数扫描电镜的放大倍数可表示为M =Ac/As式中,Ac—荧光屏上图像的边长;As—电子束在样品上的扫描振幅。

一般地,Ac 是固定的(通常为100 mm),则可通过改变As 来改变放大倍数。

目前,大多数商品扫描电镜放大倍数为20~20,000倍,介于光学显微镜和透射电镜之间,即扫描电镜弥补了光学显微镜和透射电镜放大倍数的空挡。

(3)景深景深是指焦点前后的一个距离围,该围所有物点所成的图像符合分辨率要求,可以成清晰的图像;也即,景深是可以被看清的距离围。

扫描电子显微镜的景深比透射电子显微镜大10倍,比光学显微镜大几百倍。

由于图像景深大,所得扫描电子像富有立体感。

电子束的景深取决于临界分辨本领d0和电子束入射半角αc。

其中,临界分辨本领与放大倍数有关,因人眼的分辨本领约为0.2 mm, 放大后,要使人感觉物像清晰,必须使电子束的分辨率高于临界分辨率d0 :电子束的入射角可通过改变光阑尺寸和工作距离来调整,用小尺寸的光阑和大的工作距离可获得小的入射电子角。

(4) 衬度包括:表面形貌衬度和原子序数衬度表面形貌衬度由试样表面的不平整性引起。

原子序数衬度原子序数衬度指扫描电子束入射试祥时产生的背散射电子、吸收电子、X射线,对微区原子序数的差异相当敏感二次电子来自试样表面层5~10nm的深度围,表面形貌特征对二次电子的发射系数影响可由下式表示:δ=δ0/Cosαδ0——物质的二次电子发射系数,与具体物质有关的常数。

可见,二次电子的发射系数随α角的增大而增大。

事实上,α角大,入射电子束的作用体积较靠近试样表面,由于二次电子主要来自试样表层5~10nm深度,因此,作用体积产生的大量二次电子离开表面的机会增加;其次,α角大,入射电子束的总轨迹增长,引起电子电离的机会增多。

因此,在试样表面凸凹不平的部位,入射电子束作用产生的二次电子信号的强度要比在试样表面平坦的部位产生的信号强度大,从而形成表面形貌衬度。

原子序数越大,图像越亮。

二次电子受原子序数的影响较小。

高分子中各组分之间的平均原子序数差别不大;所以只有—些特殊的高分子多相体系才能利用这种衬度成像。

背散射电子像背散射电子也称为反射电子或初级背散射电子,其能量在50eV, 接近于入射电子能量。

利用背散射电子的成像,称为背散射电子像。

背散射电子像既可以用来显示形貌衬度,也可以用来显示成分衬度。

形貌衬度类似二次电子,样品表面的形貌也影响背散射电子的产率,在α角较大(尖角)处,背散射电子的产率高;在α角较小(平面)处,背散射电子的产率低。

由于背反射电子是来自一个较大的作用体积,用背反射信号进行形貌分析时,其分辨率远比二次电子低。

由试样微区的原子序数或化学成分的差异所形成的像。

成分衬度背散射电子是受原子反射回来的入射电子,受核效应的影响比较大。

由经验公式,对原子序数大于10的元素,背散射电子发射系数可表示为∴背散射电子发射系数随原子序数Z 的增大而增加。

η = ln Z/6 -1/4但是,二次电子大部分是由价电子激发出来的,所以原子序数的影响不大明显:当原子序数Z<20时,δ随着Z的增加而增大;当Z>20时,δ与Z几乎无关。

(如图3一15所示)。

若试样表面存在不均匀的元素分布,平均原子序数较大的区域产生较强的背散射电子信号,因而在背散射电子像上显示出较亮的衬度;反之,平均原子序数较小的区域在背散射电子图像上是暗区。

因此,可根据背散射电子像的亮暗程度,判别出相应区域的原子序数的相对大小,由此可对金属及其合金的显微组织进行成分分析。

扫描电子显微镜的样品制备(1)导电性好,以防止表面积累电荷而影响成像;(2)具有抗辐射损伤的能力,在高能电子轰击下不分解、不变形;(3)具有高的二次电子和背散射电子系数,以保证图像良好的信噪比。

扫描电镜试样一般要求具有以下特点:对不满足以上要求的试样(瓷、玻璃、塑料等绝缘材料,导电性差的半导体,热稳定性不好的有机材料,二次电子、背散射电子系数较低的材料等),需要表面涂层处理。

表面涂层处理的常用方法有真空蒸发和离子溅射镀膜法。

二次电子像的样品制备方法(1)导电样品。

将允许尺寸的样品放入样品室观察前先需用丙酮、酒精或甲苯这类溶剂清洗掉样品表面的油污,或在超声波清洁器中去除油污,也可用复型剥离及化学刻蚀等方法去除在高放大倍数下易分解的碳氢化物等的玷污,因为这些物质分解后会在样品表面沉积一层碳和其他产物,当放大倍数缩小时,图像中原视域就成为暗色的方块。

(2)绝缘体或导电性能较差的样品。

如瓷、半导体,高分子、不需固定脱水处理的生物样品及一些无机材料等,只需清洁样品之后,用离子喷镀仪在样品表面喷镀一层金产生导电层就可观察了。

(3)不论样品导不导电,块状样品都得借助于双面胶带将样品粘在铜或铝样品台上,并用银粉导电胶连通样品与样品台,或直接用石墨导电双面胶带粘贴样品,使吸收电子能流入接地的样品架,以尽量减少因表面充电效应或热损伤引起的起泡、龟裂、像漂移、像散不稳定等现象,尤其是生物样品、聚合物等。

(4)颗粒样品,如果是干燥的粉末,可直接撒在粘有双面胶带的样品台上,抖去或用洗耳球吹去松散的颗粒,并用导电胶涂在胶带四周再喷金。

(5)如果是含水或含有挥发性物质的样品,必须先去除水分或挥发性物质,再喷金观察。

去除水分的方法有很多种:烘箱干燥、湿度干燥、置换干燥、真空干燥、冷冻干燥、临界点干燥等,根据样品的不同特点和要求选择不同的方法。

温度干燥是将样品保持在一定的温度下干燥,真空干燥与冷冻干燥都是用真空喷镀仪抽真空,使水分挥发。

不同的是后者将样品投入液氮或其他骤冷剂然后再抽真空,水分从固态直接升华,使得通常的液相蒸发带来的表面力减小,减少样品损伤。

透射电镜(TEM)基本原理透射电镜基本构造与光学显微镜相似,主要由光源、物镜和投影镜三部分组成,只不过用电子束代替光束,用磁透镜代替玻璃透镜。

相关文档
最新文档