山东省泰安市2019-2020学年高二上学期期末数学试题
2022-2023学年高二上学期期末考试数学(文)试题
2022-2023学年度上学期期末考试高二数学试卷(文科)第Ⅰ卷(选择题,满分60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,则“1a >”是“21a >”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件2.直线1:30l x ay ++=和直线()2:230l a x y a -++=互相平行,则a 的值为( ). A .1-或3B .3-或1C .1-D .3-3、设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ). A .若m α∥,n α∥,则m n ∥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m αβ⋂=,n α⊂,n m ⊥,则n β⊥D .若m α⊥,m n ∥,n β⊂,则αβ⊥4.已知圆的方程为2260x y x +-=,则过点()1,2的该圆的所有弦中,最短弦长为( ).A .12B .1C .2D .45.函数()1sin f x x =+,其导函数为()f x ',则π3f ⎛⎫'=⎪⎝⎭( ). A .12B .12-C .32 D 36.已知抛物线24x y =上一点M 到焦点的距离为3,则点M 到x 轴的距离为( ). A .12B .1C .2D .47.已知命题:p x ∀∈R ,210ax ax ++>;命题:q x ∃∈R ,20x x a -+=.若p q ∧是真命题,则a 的取值范围是( ).A .(),4-∞B .[]0,4C .10,4⎛⎫ ⎪⎝⎭D .10,4⎡⎤⎢⎥⎣⎦8.若函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ). A .12a <≤B .4a ≥C .2a ≤D .03a <≤9.已知长方体1111ABCD A B C D -中,4AB BC ==,12CC =,则直线1BC 和平面1DBBD 所成角的正弦值等于( ). A .32B .52C .105D .101010.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5AB =,7BC =,2AC =.则此三棱锥的外接球的体积为( ). A .8π3B .82π3C .16π3D .32π311.已知函数()21,12,1ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( ). A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-12.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( ). A .6B .3C .6D .3第Ⅱ卷(非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.曲线21y x x=+在点()1,2处的切线方程为__________. 14.当直线()24y k x =-+和曲线24y x =-有公点时,实数k 的取值范围是__________. 15.点P 是椭圆221169x y +=上一点,1F ,2F 分别是椭圆的左,右焦点,若1212PF PF ⋅=.则12F PF ∠的大小为__________.16.若方程22112x y m m+=+-所表示曲线为C ,则有以下几个命题: ①当()1,2m ∈-时,曲线C 表示焦点在x 轴上的椭圆; ②当()2,m ∈+∞时,曲线C 表示双曲线; ③当12m =时,曲线C 表示圆; ④存在m ∈R ,使得曲线C 为等轴双曲线. 以上命题中正确的命题的序号是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知2:280p x x --+≥,()22:2100q x x m m -+=≤>.(1)若p 是q 的充分条件,求实数m 的取值范围.(2)若“p ⌝”是“q ⌝”的充分条件,求实数m 的取值范围. 18.(本小题12分)求下列函数的导数:(1)sin xy e x =; (2)2311y x x x x ⎛⎫=++ ⎪⎝⎭; (3)(3)sin cos 22x xy x =-. 19.(本小题12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒.(1)证明:直线BC ∥平面PAD ;(2)若PCD △的面积为7P ABCD -的体积. 20.(本小题12分)已知抛物线()21:20C y px p =>过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为12k k ,求证:12k k 为定值. 21.(本小题12分)已知若函数()34f x ax bx =-+,当2x =时,函数()f x 有极值43-. (1)求函数解析式; (2)求函数的极值;(3)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围. 22.(本小题12分)已知椭圆()2222:10x y C a b a b+=>>3. (1)求椭圆C 的离心率;(2)点33,M ⎭在椭圆C 上,不过原点O 与直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求OAB △的最大值.四平市第一高级中学2019-2020学年度上学期期末考试高二数学试卷(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCACDACBCC13.10x y -+= 14.3,4⎡⎫+∞⎪⎢⎣⎭15.π316.②③ 三、解答题17.解:(1)因为2:280p x x --+≥,()22:2100q x x m m -+-≤>.故:42p x -≤≤,:11q m x m -≤≤+.若p 是q 的充分条件,则[][]4,21,1m m --⊆-+, 故4121mm-≥-⎧⎨≤+⎩,解得5m ≥.(2)若“p ⌝”是“q ⌝”的充分条件,即q 是p 的充分条件,则[][]1,14,2m m -+⊆-,即14120m m m -≥-⎧⎪+≤⎨⎪>⎩,解得01m <≤.即实数m 的取值范围为(]0,1.18.解:(1)()()sin sin sin cos xxxx y ex e x ex e x '''=+=+.(2)因为3211y x x =++,所以2323y x x '=-. (3)因为1sin 2y x x =-,所以11cos 2y x '=-. 19.解:(1)四棱锥P ABCD -中,因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以直线BC ∥平面PAD . (2)由12AB BC AD ==,90BAD ABC ∠=∠=︒. 设2AD x =,则AB BC x ==,2CD x =.设O 是AD 的中点,连接PO ,OC . 设CD 的中点为E ,连接OE ,则22OE x =.由侧面PAD 为等边三角形,则3PO x =,且PO AD ⊥.平面PAD ⊥底面ABCD ,平面PAD ⋂底面ABCD ,且PO ⊂平面PAD . 故PO ⊥底面ABCD .又OE ⊂底面ABCD ,故PO OE ⊥,则2272x PE PO OE =+=, 又由题意可知PC PD =,故PE CD ⊥.PCD △面积为271272PE CD ⋅=,即:1722722x x =, 解得2x =,则3PO = 则()()111124223433232P ABCD V BC AD AB PO -=⨯+⨯⨯=⨯⨯+⨯⨯=. 20.解:(1)由题意抛物线22y px =过点()1,1A ,所以12p =. 所以抛物线的方程为2y x =.(2)设过点()3,1P -的直线l 的方程为()31x m y -=+, 即3x my m =++,代入2y x =得230y my m ---=,设()11,M x y ,()22,N x y ,则12y y m +=,123y y m =-, 所以()()1212122212121211111111111y y y y k k x x y y y y ----⋅=⋅=⋅=----++ ()()12121111312y y y y m m ===-++++--+.所以12k k ⋅为定值.21.解:(1)()23f x ax b '=-.由题意知()()2120428243f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩,解得134a b ⎧=⎪⎨⎪=⎩. 所以所求的解析式为()31443f x x x =-+. (2)由(1)可得()()()2422f x x x x '=-=+-. 令()0f x '=得2x =或2x =-.当x 变化时,()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2 ()2,+∞()f x ' + 0 - 0 + ()f x↑极大值↓极小值↑所以当2x =-时,函数()f x 有极大值()23f -=; 当2x =时,函数()f x 有极小值()423f =-. (3)由(2)知,可得当2x <-或2x >时,函数()f x 为增函数; 当22x -<<时,函数()f x 为减函数. 所以函数()31443f x x x =-+的图象大致如图,由图可知当42833k -<<时,()f x 与y k =有三个交点,所以实数k 的取值范围为428,33⎛⎫-⎪⎝⎭. 22.解:(1)由题意,得3a c -=,则()2213a cb -=. 结合222b ac =-,得()()22213a c a c -=-,即22230c ac a -+=. 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12. (2)由(1)得2a c =,则223b c =.将33,2M ⎭代入椭圆方程2222143x y c c +=,解得1c =. 所以椭圆方程为22143x y +=. 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上, 故直线l 的斜率存在.设直线l 的方程为()0y kx m m =+≠,与22143x y +=联立, 消y 得()2223484120k x kmx m +++-=, 所以()()()2222226443441248340k m k mk m ∆=-+-=+->.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+,212241234m x x k -=+.由()121226234m y y k x x m k +=++=+,得AB 的中点2243,3434km m N k k ⎛⎫- ⎪++⎝⎭, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =. 所以()248120m ∆=->,得1212m -<<,且0m ≠.则()222212121313412394122236m AB x x x x m m -=+-=-=-又原点O 到直线l 的距离213m d =所以()2222221393312121232666213AOBm m m S m m m -+=-=-⋅=△. 当且仅当2212m m -=,即6m =时等号成立,符合1212m -<<0m ≠.所以AOB △3。
2019-2020学年山东省泰安市高三上期末数学测试卷(理)(含答案)
山东省泰安市高三(上)期末测试数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为( )A .{2}B .{4,6}C .{1,3,5}D .{4,6,7,8}2.设{a n }是公差为正数的等差数列,若a 1+a 3=10,且a 1a 3=16,则a 11+a 12+a 13等于( ) A .75 B .90 C .105 D .1203.已知p :0<a <4,q :函数y=x 2﹣ax+a 的值恒为正,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.下列命题错误的是( )A .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γD .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β 5.不等式|x ﹣5|+|x+1|<8的解集为( ) A .(﹣∞,2) B .(﹣2,6) C .(6,+∞)D .(﹣1,5)6.已知点F 1、F 2分别是椭圆的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于 M 、N 两点,若△M NF 2为等腰直角三角形,则该椭圆的离心率e 为( )A .B .C .D .7.设f (x )在定义域内可导,其图象如图所示,则导函数f ′(x )的图象可能是( )A. B.C.D.8.已知实数a,b满足2a=3,3b=2,则函数f(x)=a x+x﹣b的零点所在的区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)9.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π.若f(x)>1对任意x∈(﹣,)恒成立,则φ的取值范围是()A.[,] B.[,] C.[,] D.(,]10.已知函数f(x)=,若a<b,f(a)=f(b),则实数a﹣2b的取值范围为()A.B.C.D.二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置.11.若α∈(0,)且cos2α+cos(+2α)=,则tanα= .12.直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,则实数a的值是.13.如果实数x,y满足条件,则z=x+y的最小值为.14.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为.15.规定记号“*”表示一种运算,a*b=a 2+ab ,设函数f (x )=x*2,且关于x 的方程f (x )=ln|x+1|(x ≠﹣1)恰有4个互不相等的实数根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4= .三、解答题:本大题共有6小题,满分75分,解答应写出文字说明、证明过程或演算步骤.16.△ABC 的内角A 、B 、C 所对的边a 、b 、c ,且(Ⅰ)求角A(Ⅱ)若,求a 的最小值.17.如图,多面体ABCDEF 中,四边形ABCD 是矩形,EF ∥AD ,FA ⊥面ABCD ,AB=AF=EF=1,AD=2,AC 交BD 于点P(Ⅰ)证明:PF ∥面ECD ; (Ⅱ)求二面角B ﹣EC ﹣A 的大小.18.已知正项等比数列{a n }的前n 项和为S n ,且S 2=6,S 4=30,n ∈N *,数列{b n }满足b n •b n+1=a n ,b 1=1 (I )求a n ,b n ;(Ⅱ)求数列{b n }的前n 项和为T n .19.如图,是一曲边三角形地块,其中曲边AB 是以A 为顶点,AC 为对称轴的抛物线的一部分,点B 到边AC 的距离为2km ,另外两边AC ,BC 的长度分别为8km ,2km .现欲在此地块内建一形状为直角梯形DECF的科技园区.(Ⅰ)求此曲边三角形地块的面积; (Ⅱ)求科技园区面积的最大值.20.已知椭圆C :的右顶点A (2,0),且过点(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (1,0)且斜率为k 1(k 1≠0)的直线l 于椭圆C 相交于E ,F 两点,直线AE ,AF 分别交直线x=3于M ,N 两点,线段MN 的中点为P ,记直线PB 的斜率为k 2,求证:k 1•k 2为定值. 21.已知函数f (x )=lnx+ax 在点(t ,f (t ))处切线方程为y=2x ﹣1 (Ⅰ)求a 的值(Ⅱ)若,证明:当x >1时,(Ⅲ)对于在(0,1)中的任意一个常数b ,是否存在正数x 0,使得:.2019-2020学年山东省泰安市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为( )A .{2}B .{4,6}C .{1,3,5}D .{4,6,7,8}【考点】Venn 图表达集合的关系及运算.【分析】由韦恩图可知阴影部分表示的集合为(C U A )∩B ,根据集合的运算求解即可. 【解答】解:全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6}, 由韦恩图可知阴影部分表示的集合为(C U A )∩B , ∵C U A={4,6,7,8}, ∴(C U A )∩B={4,6}. 故选B .2.设{a n }是公差为正数的等差数列,若a 1+a 3=10,且a 1a 3=16,则a 11+a 12+a 13等于( ) A .75 B .90 C .105 D .120 【考点】等差数列的通项公式.【分析】由已知得a 1<a 3,且a 1,a 3是方程x 2﹣10x+16=0的两个根,解方程x 2﹣10x+16=0,得a 1=2,a 3=8,由此求出公差,从而能求出a 11+a 12+a 13的值.【解答】解:∵{a n }是公差为正数的等差数列,a 1+a 3=10,且a 1a 3=16, ∴a 1<a 3,且a 1,a 3是方程x 2﹣10x+16=0的两个根, 解方程x 2﹣10x+16=0,得a 1=2,a 3=8, ∴2+2d=8,解得d=3,∴a 11+a 12+a 13=3a 1+33d=3×2+33×3=105. 故选:C .3.已知p :0<a <4,q :函数y=x 2﹣ax+a 的值恒为正,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据函数的性质结合充分条件和必要条件的定义进行判断即可.【解答】解:若函数y=x2﹣ax+a的值恒为正,即x2﹣ax+a>0恒成立,则判别式△=a2﹣4a<0,则0<a<4,则p是q的充要条件,故选:C4.下列命题错误的是()A.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β【考点】平面与平面之间的位置关系.【分析】命题A,B可以通过作图说明;命题C可以直接进行证明;命题D可以运用反证法的思维方式说明是正确的.【解答】解:A、如图,平面α⊥平面β,α∩β=l,l⊂α,l不垂直于平面β,所以不正确;B、如A中的图,平面α⊥平面β,α∩β=l,a⊂α,若a∥l,则a∥β,所以正确;C、如图,设α∩γ=a,β∩γ=b,在γ内直线a、b外任取一点O,作OA⊥a,交点为A,因为平面α⊥平面γ,所以OA⊥α,所以OA⊥l,作OB⊥b,交点为B,因为平面β⊥平面γ,所以OB⊥β,所以OB⊥l,又OA∩OB=O,所以l⊥γ.所以正确.D 、若平面α内存在直线垂直于平面β,根据面面垂直的判定,则有平面α垂直于平面β,与平面α不垂直于平面β矛盾,所以,如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β,正确; 故选:A .5.不等式|x ﹣5|+|x+1|<8的解集为( ) A .(﹣∞,2) B .(﹣2,6) C .(6,+∞)D .(﹣1,5)【考点】绝对值不等式的解法.【分析】由条件利用绝对值的意义,求得绝对值不等式|x ﹣5|+|x+1|<8的解集. 【解答】解:由于|x ﹣5|+|x+1|表示数轴上的x 对应点到5、﹣1对应点的距离之和, 而数轴上的﹣2和6对应点到5、﹣1对应点的距离之和正好等于8, 故不等式|x ﹣5|+|x+1|<8的解集为(﹣2,6), 故选:B .6.已知点F 1、F 2分别是椭圆的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于 M 、N 两点,若△M NF 2为等腰直角三角形,则该椭圆的离心率e 为( )A .B .C .D .【考点】椭圆的简单性质.【分析】把x=﹣c 代入椭圆,解得y=±.由于△MNF 2为等腰直角三角形,可得=2c ,由离心率公式化简整理即可得出.【解答】解:把x=﹣c 代入椭圆方程,解得y=±,∵△MNF 2为等腰直角三角形,∴=2c ,即a 2﹣c 2=2ac ,由e=,化为e 2+2e ﹣1=0,0<e <1. 解得e=﹣1+.故选C .7.设f (x )在定义域内可导,其图象如图所示,则导函数f ′(x )的图象可能是( )A .B .C .D .【考点】利用导数研究函数的单调性.【分析】由f (x )的图象可得在y 轴的左侧,图象下降,f (x )递减,y 轴的右侧,图象先下降再上升,最后下降,即有y 轴左侧导数小于0,右侧导数先小于0,再大于0,最后小于0,对照选项,即可判断. 【解答】解:由f (x )的图象可得,在y 轴的左侧,图象下降,f (x )递减, 即有导数小于0,可排除C ,D ;再由y 轴的右侧,图象先下降再上升,最后下降, 函数f (x )递减,再递增,后递减, 即有导数先小于0,再大于0,最后小于0, 可排除A ; 则B 正确. 故选:B .8.已知实数a ,b 满足2a =3,3b =2,则函数f (x )=a x +x ﹣b 的零点所在的区间是( ) A .(﹣2,﹣1) B .(﹣1,0)C .(0,1)D .(1,2)【考点】函数的零点;指数函数的图象与性质.【分析】根据对数,指数的转化得出f (x )=(log 23)x +x ﹣log 32单调递增,根据函数的零点判定定理得出f (0)=1﹣log 32>0,f (﹣1)=log 32﹣1﹣log 32=﹣1<0,判定即可. 【解答】解:∵实数a ,b 满足2a =3,3b =2, ∴a=log 23>1,0<b=log 32<1, ∵函数f (x )=a x +x ﹣b ,∴f (x )=(log 23)x +x ﹣log 32单调递增, ∵f (0)=1﹣log 32>0f (﹣1)=log 32﹣1﹣log 32=﹣1<0,∴根据函数的零点判定定理得出函数f (x )=a x +x ﹣b 的零点所在的区间(﹣1,0), 故选:B .9.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π.若f(x)>1对任意x∈(﹣,)恒成立,则φ的取值范围是()A.[,] B.[,] C.[,] D.(,]【考点】正弦函数的图象.【分析】由题意求得sin(ωx+φ)=﹣1,函数y=sin(ωx+φ)的图象和直线y=﹣1邻两个交点的距离为π,根据周期性求得ω的值,可得f(x)的解析式.再根据当x∈(﹣,)时,f(x)>1,可得sin(2x+φ)>0,故有﹣+φ≥2kπ,且+φ≤2kπ+π,由此求得φ的取值范围.【解答】解:函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤)的图象与直线y=﹣1相邻两个交点的距离为π,令2sin(ωx+φ)+1=﹣1,即sin(ωx+φ)=﹣1,即函数y=sin(ωx+φ)的图象和直线y=﹣1邻两个交点的距离为π,故 T==π,求得ω=2,∴f(x)=2sin(2x+φ)+1.由题意可得,当x∈(﹣,)时,f(x)>1,即 sin(2x+φ)>0,故有﹣+φ≥2kπ,且+φ≤2kπ+π,求得φ≥2kπ+,且φ≤2kπ+,k∈Z,故φ的取值范围是[2kπ+,2kπ+],k∈Z,结合所给的选项,故选:B.10.已知函数f(x)=,若a<b,f(a)=f(b),则实数a﹣2b的取值范围为()A.B.C.D.【考点】函数的值.【分析】由已知得a≤﹣1,a﹣2b=a﹣e a﹣1,再由函数y=﹣e x+a﹣1,(x≤﹣1)单调递减,能求出实数a﹣2b的范围.【解答】解:∵函数f(x)=,a<b,f(a)=f(b),∴a≤﹣1,∵f(a)=e a,f(b)=2b﹣1,且f(a)=f(b),∴e a=2b﹣1,得b=,∴a﹣2b=a﹣e a﹣1,又∵函数y=﹣e x+a﹣1(x≤﹣1)为单调递减函数,∴a﹣2b<f(﹣1)=﹣e﹣1=﹣,∴实数a﹣2b的范围是(﹣∞,﹣).故选:B.二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置.11.若α∈(0,)且cos2α+cos(+2α)=,则tanα= .【考点】三角函数中的恒等变换应用;同角三角函数基本关系的运用.【分析】首先根据诱导公式和同角三角函数的关系式进行恒等变换,整理成正切函数的关系式,进一步求出正切的函数值.【解答】解:cos2α+cos(+2α)=,则:,则:,整理得:3tan2α+20tanα﹣7=0,所以:(3tanα﹣1)(tanα+7)=0解得:tan或tanα=﹣7,由于:α∈(0,),所以:.故答案为:12.直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,则实数a的值是﹣2 .【考点】直线与圆的位置关系.【分析】由圆的方程,得到圆心与半径,再求得圆心到直线的距离,利用勾股定理解.【解答】解:圆x2+y2﹣2ax+a=0可化为(x﹣a)2+y2=a2﹣a∴圆心为:(a,0),半径为:圆心到直线的距离为:d==.∵直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,∴a2+1+1=a2﹣a,∴a=﹣2.故答案为:﹣2.13.如果实数x,y满足条件,则z=x+y的最小值为.【考点】简单线性规划.【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(),化目标函数z=x+y为y=﹣x+z,由图可知,当直线y=﹣x+z过A时,直线在y轴上的截距最小,z有最小值为.故答案为:.14.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为.【考点】由三视图求面积、体积.【分析】根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的数据可求得底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,把数据代入圆锥的体积公式计算. 【解答】解:由三视图知几何体是圆锥的一部分, 由正视图可得:底面扇形的圆心角为120°, 又由侧视图知几何体的高为4,底面圆的半径为2,∴几何体的体积V=××π×22×4=.故答案为:15.规定记号“*”表示一种运算,a*b=a 2+ab ,设函数f (x )=x*2,且关于x 的方程f (x )=ln|x+1|(x ≠﹣1)恰有4个互不相等的实数根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4= ﹣4 . 【考点】根的存在性及根的个数判断.【分析】由题意可得f (x )=x 2+2x ,可得图象关于x=﹣1对称,由函数图象的变换可得函数y=ln|x+1|(x ≠﹣1)的图象关于直线x=﹣1对称,进而可得四个根关于直线x=﹣1对称,由此可得其和. 【解答】解:由题意可得f (x )=x*2=x 2+2x , 其图象为开口向上的抛物线,对称轴为x=﹣1, 函数y=ln|x+1|可由y=ln|x|向左平移1个单位得到, 而函数函数y=ln|x|为偶函数,图象关于y 轴对称, 故函数y=ln|x+1|的图象关于直线x=﹣1对称,故方程为f (x )=ln|x+1|(x ≠﹣1)四个互不相等的实数根x 1,x 2,x 3,x 4, 也关于直线x=﹣1对称,不妨设x 1与x 2对称,x 3与x 4对称, 必有x 1+x 2=﹣2,x 3+x 4=﹣2,故x1+x2+x3+x4=﹣4,故答案为:﹣4.三、解答题:本大题共有6小题,满分75分,解答应写出文字说明、证明过程或演算步骤.16.△ABC的内角A、B、C所对的边a、b、c,且(Ⅰ)求角A(Ⅱ)若,求a的最小值.【考点】正弦定理.【分析】(Ⅰ)由正弦定理化简已知可得sinAsinB=sinBcosA,又sinB≠0,从而可求tanA,由于0<A <π,即可解得A的值.(Ⅱ)利用平面向量数量积的运算和余弦定理化简已知等式可得bc=8,利用余弦定理及基本不等式即可求得a的最小值.【解答】(本题满分为12分)解:(Ⅰ)因为,由正弦定理,得sinAsinB=sinBcosA,又sinB≠0,从而tanA=,由于0<A<π,所以A=.…4分(Ⅱ)由题意可得:=+•(﹣)﹣=+﹣•﹣=c2+b2﹣bccosA﹣a2=2bccosA﹣bccosA=bc=4,∵bc=8,由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2﹣bc≥2bc﹣bc=bc=8,∴a≥2,∴a的最小值为.…12分17.如图,多面体ABCDEF中,四边形ABCD是矩形,EF∥AD,FA⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD 于点P(Ⅰ)证明:PF∥面ECD;(Ⅱ)求二面角B﹣EC﹣A的大小.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)取CD中点G,连结EG、PG,推导出四边形EFPG是平行四边形,由此能证明FP∥平面ECD.(Ⅱ)以AB所在直线为x轴,AD所在直线为y轴,AF所在直线为z轴,建立空间直角坐标系,利用向量法能求出二面角B﹣EC﹣A的大小.【解答】证明:(Ⅰ)取CD中点G,连结EG、PG,∵点P为矩形ABCD对角线交点,∴在△ACD中,PG AD,又EF=1,AD=2,EF∥AD,∴EF PG,∴四边形EFPG是平行四边形,∴FP∥EG,又FP⊄平面ECD,EG⊂平面ECD,∴FP∥平面ECD.解:(Ⅱ)由题意,以AB所在直线为x轴,AD所在直线为y轴,AF所在直线为z轴,建立空间直角坐标系,则F(0,0,1),B(1,0,0),C(1,2,0),E(0,1,1),∴=(0,2,0),=(1,1,﹣1),=(1,2,0),取FB中点H,连结AH,则=(),∵=0, =0,∴AH⊥平面EBC,故取平面AEC法向量为=(),设平面AEC 的法向量=(x ,y ,1),则,∴=(2,﹣1,1),cos <>===,∴二面角B ﹣EC ﹣A 的大小为.18.已知正项等比数列{a n }的前n 项和为S n ,且S 2=6,S 4=30,n ∈N *,数列{b n }满足b n •b n+1=a n ,b 1=1 (I )求a n ,b n ;(Ⅱ)求数列{b n }的前n 项和为T n . 【考点】数列的求和;数列递推式.【分析】(I )设正项等比数列{a n }的公比为q (q >0),由等比数列的通项公式,解方程可得首项和公比均为2,可得a n =a 1q n ﹣1=2n ;再由n 换为n+1,可得数列{b n }中奇数项,偶数项均为公比为2的等比数列,运用等比数列的通项公式,即可得到所求b n ;(Ⅱ)讨论n 为奇数和偶数,运用分组求和和等比数列的求和公式,化简整理即可得到所求和. 【解答】解:(I )设正项等比数列{a n }的公比为q (q >0), 由题意可得a 1+a 1q=6,a 1+a 1q+a 1q 2+a 1q 3=30, 解得a 1=q=2(负的舍去), 可得a n =a 1q n ﹣1=2n ; 由b n •b n+1=a n =2n ,b 1=1, 可得b 2=2,即有b n+1•b n+2=a n =2n+1,可得=2,可得数列{b n }中奇数项,偶数项均为公比为2的等比数列,即有b n =;(Ⅱ)当n 为偶数时,前n 项和为T n =(1+2+..+)+(2+4+..+)=+=3•()n ﹣3;当n 为奇数时,前n 项和为T n =T n ﹣1+=3•()n ﹣1﹣3+=()n+3﹣3.综上可得,T n =.19.如图,是一曲边三角形地块,其中曲边AB 是以A 为顶点,AC 为对称轴的抛物线的一部分,点B 到边AC 的距离为2km ,另外两边AC ,BC 的长度分别为8km ,2km .现欲在此地块内建一形状为直角梯形DECF的科技园区.(Ⅰ)求此曲边三角形地块的面积; (Ⅱ)求科技园区面积的最大值.【考点】扇形面积公式;弧度制的应用.【分析】(Ⅰ)以AC 所在的直线为y 轴,A 为坐标原点建立平面直角坐标系,求出曲边AB 所在的抛物线方程,利用积分计算曲边三角形ABC 地块的面积;(Ⅱ)设出点D 为(x ,x 2),表示出|DF|、|DE|与|CF|的长,求出直角梯形CEDF 的面积表达式,利用导数求出它的最大值即可.【解答】解:(Ⅰ)以AC 所在的直线为y 轴,A 为坐标原点,建立平面直角坐标系xOy ,如图所示;则A(0,0),C(0,8),设曲边AB所在的抛物线方程为y=ax2(a>0),则点B(2,4a),又|BC|==2,解得a=1或a=3(此时4a=12>8,不合题意,舍去);∴抛物线方程为y=x2,x∈[0,2];又x2=x3=,∴此曲边三角形ABC地块的面积为﹣x2=×(8+4)×2﹣=;S梯形ACBM(Ⅱ)设点D(x,x2),则F(0,x2),直线BC的方程为:2x+y﹣8=0,∴E(x,8﹣2x),|DF|=x,|DE|=8﹣2x﹣x2,|CF|=8﹣x2,直角梯形CEDF的面积为S(x)=x[(8﹣2x﹣x2)+(8﹣x2)]=﹣x3﹣x2+8x,x∈(0,2),求导得S′(x)=﹣3x2﹣2x+8,令S′(x)=0,解得x=或x=﹣2(不合题意,舍去);当x∈(0,)时,S(x)单调递增,x∈(,2)时,S(x)单调递减,∴x=时,S(x)取得最大值是S ()=﹣﹣+8×=;∴科技园区面积S 的最大值为.20.已知椭圆C :的右顶点A (2,0),且过点(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (1,0)且斜率为k 1(k 1≠0)的直线l 于椭圆C 相交于E ,F 两点,直线AE ,AF 分别交直线x=3于M ,N 两点,线段MN 的中点为P ,记直线PB 的斜率为k 2,求证:k 1•k 2为定值. 【考点】椭圆的简单性质.【分析】(Ⅰ)由题意可得a=2,代入点,解方程可得椭圆方程;(Ⅱ)设过点B (1,0)的直线l 方程为:y=k (x ﹣1),由,可得(4k 12+1)x 2﹣8k 12x+4k 12﹣4=0,由已知条件利用韦达定理推导出直线PB 的斜率k 2=﹣,由此能证明k •k ′为定值﹣.【解答】解:(Ⅰ)由题意可得a=2, +=1,a 2﹣b 2=c 2, 解得b=1,即有椭圆方程为+y 2=1;(Ⅱ)证明:设过点B (1,0)的直线l 方程为:y=k 1(x ﹣1), 由,可得:(4k 12+1)x 2﹣8k 12x+4k 12﹣4=0,因为点B (1,0)在椭圆内,所以直线l 和椭圆都相交, 即△>0恒成立.设点E (x 1,y 1),F (x 2,y 2),则x 1+x 2=,x 1x 2=.因为直线AE 的方程为:y=(x ﹣2),直线AF的方程为:y=(x﹣2),令x=3,得M(3,),N(3,),所以点P的坐标(3,(+)).直线PB的斜率为k2==(+)=•=•=•=﹣.所以k1•k2为定值﹣.21.已知函数f(x)=lnx+ax在点(t,f(t))处切线方程为y=2x﹣1(Ⅰ)求a的值(Ⅱ)若,证明:当x>1时,(Ⅲ)对于在(0,1)中的任意一个常数b,是否存在正数x,使得:.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出f(x)的导数,可得切线的斜率和切点,解方程可得a的值;(Ⅱ)求出f(x)=lnx+x,要证原不等式成立,即证xlnx+x﹣k(x﹣3)>0,可令g(x)=xlnx+x﹣k(x ﹣3),求出导数,判断符号,可得单调性,即可得证;(Ⅲ)对于在(0,1)中的任意一个常数b,假设存在正数x,使得:.运用转化思想可令H(x)=(x+1)•e﹣x+x2﹣1,求出导数判断单调性,可得最小值,即可得到结论.【解答】解:(Ⅰ)函数f(x)=lnx+ax的导数为f′(x)=+a,在点(t,f(t))处切线方程为y=2x﹣1,可得f′(t)=+a=2,f(t)=2t﹣1=lnt+at,解得a=t=1;(Ⅱ)证明:由(Ⅰ)可得f (x )=lnx+x ,要证当x >1时,,即证lnx >k (1﹣)﹣1(x >1), 即为xlnx+x ﹣k (x ﹣3)>0,可令g (x )=xlnx+x ﹣k (x ﹣3),g ′(x )=2+lnx ﹣k ,由,x >1,可得lnx >0,2﹣k ≥0,即有g ′(x )>0,g (x )在(1,+∞)递增, 可得g (x )>g (1)=1+2k ≥0,故当x >1时,恒成立;(Ⅲ)对于在(0,1)中的任意一个常数b ,假设存在正数x 0,使得:.由e f (x0+1)﹣2x0﹣1+x 02=e ln (x0+1)﹣x0+x 02=(x 0+1)•e ﹣x0+x 02.即对于b ∈(0,1),存在正数x 0,使得(x 0+1)•e ﹣x0+x 02﹣1<0, 从而存在正数x 0,使得上式成立,只需上式的最小值小于0即可.令H (x )=(x+1)•e ﹣x +x 2﹣1,H ′(x )=e ﹣x ﹣(x+1)•e ﹣x +bx=x (b ﹣e ﹣x ), 令H ′(x )>0,解得x >﹣lnb ,令H ′(x )<0,解得0<x <﹣lnb , 则x=﹣lnb 为函数H (x )的极小值点,即为最小值点.故H (x )的最小值为H (﹣lnb )=(﹣lnb+1)e lnb +ln 2b ﹣1=ln 2b ﹣blnb+b ﹣1,再令G (x )=ln 2x ﹣xlnx+x ﹣1,(0<x <1),G ′(x )=(ln 2x+2lnx )﹣(1+lnx )+1=ln 2x >0,则G (x )在(0,1)递增,可得G (x )<G (1)=0,则H (﹣lnb )<0.故存在正数x 0=﹣lnb ,使得.。
人教A版数学高二弧度制精选试卷练习(含答案)1
人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。
2019-2020学年山东省泰安市东平县七年级(下)期末数学试卷(五四学制)
2019-2020学年山东省泰安市东平县七年级(下)期末数学试卷(五四学制)一、选择题(本大题共12小题,共48.0分)1. 下列方程组中,是二元一次方程组的是()a (3x 2 + y=lR (xy = 4* llOx 一 8y = -9+ 2y = 6j'—y = 2 (x + 2y = 4C. 1 o 7 D. X c u —3y =-- (7x — 9y = 5XT 42. 在某个常规春季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A. 科比罚球投篮2次,一定全部命中B. 科比罚球投篮2次,不一定全部命中C. 科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小已知直线y = —x+4与y =x+2的图象如图,则方程组跑 的 +2X +-X == 84.A.x = 3y=i B.C.下列命题中,是权命题的是()x = 1y = 3% = 0y = 4A.若匕or 与匕乃是同位角,则3 =邓B.若匕1 +匕2 = 90%则匕1与匕2互余C.两条边和一个角分别相等的两个三角形全等D. 一个事件发生的概率为0.则这个事件是不确定事件S.已知关于队y 的方程+ y m +n + l = 6是二元一次方程,贝lj ” 〃的值为()A. m = 1, n = —1B. m = —1> n = 1厂1 4C・ n=-ic 1 4D. m = n=-6.如图,AD. CE 分别是DABC 的中线和角平分线.^AB=AC.匕CAD = 20%贝I^ACE 的度数是()7.A. 20°B. 35°C. 40°如图所示,一个大正方形的面上,编号为1, 2, 3, 4的地块,是四个全等的等腰直角三角形空地.中间是小正方形绿色草坪,一名训练有素的跳伞运动员,每次跳伞都能落在大正方形弛面上,则跳伞运动员一次跳伞落在草坪上的概率是 D. 70°()B*cjD捎8.如图,= 90% ^l ABC = BE 平分4BC 交 AC 于 E, AD 1 BE于D,下列结论:①AC -BE= AE\②点E 在线段BC 的垂直平分线上:③UME =ZC :④BC = 4/4D ,其中正确的个数有()A. 1个 C.3个B.2个 D.4个9.如图,在△ ABCtj^ DEF ip,己有条件AB = DE,还需添加两个条件才能使△ ABC*DEF,不能添加的一组条件是()A.乙B =匕E. BC = EFB. BC = EF. AC = DFC. Zi4 = ZD. ZB = LED. /-A = BC = EF10.新冠病毒疫情发生以来,牵动全国人民的心,为此东平县某中学】00名教师进行献爱心活动共捐款11000元,其中党员干部 '人,每人捐款200元:普通教师y 人.每人捐款100元,则党员干部,普通教师分别多少人()A. 20 A : 80 AB. 10 人:90 人C. 80 人:20 人D. 90 人:10 A用反证法证明命题“在直角三角形中,至少有一个锐角不大于45。
山东省泰安市2023-2024学年高二上学期11月期中考试数学试题
21.如图,在矩形 ABCD 中, AB 4 , AD 2 ,E 为线段 CD 中点,现将V ADE 沿 AE 折起,使得点 D 到点 P 位置,且 AP BE .
(1)求证:平面 AEP 平面 ABCD ; (2)已知点 M 是线段 CP 上的动点(不与点 P,C 重合),若使平面 MAE 与平面 APE 的夹 角为 π ,试确定点 M 的位置.
则 OP 的最小值为
.
四、解答题
17.已知空间三点 A1, 2, 2 , B 2,1, 2 , C 3, 2,1 .
(1)若向量 m 分别与 AB , AC
垂直,且
m
2
6 ,求向量 m 的坐标;
(2)求点 C 到直线 AB 的距离.
18.已知 ABC 三个顶点分别为 A1,1 , B 1, 3 , C 3,1 .
山东省泰安市 2023-2024 学年高二上学期 11 月期中考试数学 试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题 1.已知圆的一般方程为 x2 y2 4x 2 y 4 0 ,其圆心坐标是( )
A. (1, 2)
A.若 BM
5 2
,则
M
的轨迹长度为
π 4
B.若 BM 5 ,则 M 到直线 A1D 的距离的最小值为 2
2
4
C.若 B1N AC1 ,则 N CD1,且直线 B1N / / 平面 A1BD
D.若 M A1D ,则 B1M 与平面 A1BD 所成角正弦的最小值为
3 3
潍坊市高二数学下学期期末考试试题含解析
学生
甲
乙
丙
丁
戊
己
庚
辛
壬
癸
平均
标准差
数学
88
62
物理
75
63
若这10位同学的成绩能反映全班的成绩状况,且全班成绩服从正态分布,用实线表示全班数学成绩分布曲线,虚线表示全班物理成绩分布曲线,则下列正确的是( )
∴ 面 ,又 面 ,即有 ,故B正确
选项C中,点 运动到 中点时,即在△ 中 、 均为中位线
∴Q为中位线的交点
∴根据中位线的性质有: ,故C错误
选项D中,由于 ,直线 与 所成角即为 与 所成角:
结合下图分析知:点 在 上运动时
当 在 或 上时, 最大为45°
当 在 中点上时, 最小为
∴ 不可能是30°,故D正确
故选:B
【点睛】本题主要考查利用棱柱侧面展开图求解距离最值问题,意在考查学生对该知识的理解掌握水平.
8. 在桌面上有一个正四面体 .任意选取和桌面接触的平面的三边的其中一条边,以此边为轴将正四面体翻转至另一个平面,称为一次操作.如图,现底面为 ,且每次翻转后正四面体均在桌面上,则操作3次后,平面 再度与桌面接触的概率为( )
二、多项选择题:
9。 已知复数 的共轭复数为 ,且 ,则下列结论正确的是( )
A。 B。 虚部为 C。 D.
【答案】ACD
【解析】
【分析】
先利用题目条件可求得 ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.
【详解】由 可得, ,所以 , 虚部为 ;
2019-2020学年山东省泰安市七年级(上)期末数学试卷(五四学制)
2019-2020学年山东省泰安市七年级(上)期末数学试卷(五四学制)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列图形不是轴对称图形的是()A .B .C .D .2.(4分)在实数227-,π,0.1010010001中,是无理数的是()A .227-BC .πD .0.10100100013.(4分)如图,//B C E F,//A C D F,添加下列一个条件后,仍无法判断A B CD E F∆≅∆的是()A .B CE F= B .A CD F= C .A DB E= D .CF∠=∠4.(4分)如图,在C D 上求一点P ,使它到O A 、O B 的距离相等,则P 点是( )A .线段C D 的中点B .O A 与CD B ∠的平分线的交点 C .O B 与D C A ∠的平分线的交点D .C D 与A O B ∠的平分线的交点5.(4分)已知点(,1)A a 与点(4,)B b -关于原点对称,则ab+的值为()A .5B .5-C .3D .3-6.(4的算术平方根是()A .4B .4±C .2D .2±7.(4分)如图,一个底面圆周长为24m ,高为5m 的圆柱体,一只蚂蚁沿侧表面从点A 到点B 所经过的最短路线长为()A .12mB .15mC .13mD .9.13m8.(4分)正比例函数(0)y kx k =≠的函数值y 随x 的增大而减小,则一次函数y x k=-的图象大致是()A .B .C .D .9.(4分)下列运算中:5112=;2==-;3=;8=,错误的个数有( )A .1个B .2个C .3个D .4个10.(4分)如图,在平面直角坐标系中,A B C ∆位于第二象限,点A 的坐标是(2,3)-,先把A B C ∆向右平移4个单位长度得到△111A B C ,再作与△111A B C 关于x 轴对称的△222A B C ,则点A 的对应点2A 的坐标是()A.(3,2)--D.(1,2)-C.(1,2)-B.(2,3)11.(4分)如图,有一个直角三角形纸片,两直角边6B C c m=,现将直角边A C=,8A C c m沿直线A D折叠,使它落在斜边A B上,且与A E重合,则C D等于()A.3c m B.4c m C.5c m D.6c m12.(4分)如图,A B C=,D是B C的中点,A C的垂直平分线分别交A C、∆中,A B A CA D、A B于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对二、填空题(本大题共8个小题,每小题4分,共32分,将答案填在答题纸上)13.(4分)一个等边三角形的对称轴有条.14.(4分)若2425x=,则x=.15.(4分)点(3,1)++在直角坐标系的y轴上,则点P的坐标为.P m m16.(4分)如图,在A B C∠∠=︒,B D平分A B C∠交A C于点D,则A D BA=.36∆中,A B A C的度数是.17.(4分)已知一次函数y k x b=+的图象经过点(0,3)A -和(1,1)B -,则此函数的表达式为 .18.(4分)在A B C ∆中,50A∠=︒,30B∠=︒,点D 在A B 边上,连接C D ,若A C D ∆为直角三角形,则B C D ∠的度数为 度. 19.(4分)如图,A B C ∆与A E F ∆中,A B A E=,B CE F=,BE∠=∠,A B 交E F 于D .给出下列结论:①A F CA F E∠=∠;②B FD E=:③B F EB A E∠=∠;④B F D C A F∠=∠.其中正确的结论是 .(填写所正确结论的序号).20.(4分)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445O A A A A A A A A A →→→→⋯”的路线运动,设第n 秒运动到点(n P n 为正整数),则点2020P 的坐标是 .三、解答题:本大题共7个小题,满分70分..解答应写出文字说明、证明过程或演算步骤.21.(15分)(1+-(2)|2||1||--+(3)已知2(21)90x--=,求x 的值.22.(7分)我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形A B C D 是一个筝形,其中A BC B=,A DC D=.请说明:(1)A B DC B D∆≅∆;(2)B D 垂直平分线段A C .23.(8分)如图,在平面直角坐标系中,已知A B C ∆的三个顶点坐标分别是(1,1)A ,(4,1)B ,(3,3)C .(1)画出A B C ∆关于y 轴对称的△111A B C ;(2)A B C ∆的三个顶点的横坐标与纵坐标同时乘以1-,得到对应的点2A ,2B ,2C .请画出△222A B C .24.(8分)如图所示,已知A B C ∆中,8A Bc m=,6A Cc m=,10B Cc m=.分别以三边A B ,A C及B C 为直径向外作半圆,求阴影部分的面积.25.(10分)如图,在A B C ∆中.A BA C=,120A∠=︒,6B C=,A B 的垂直平分线交B C于M ,交A B 于E ,A C 的垂直平分线交B C 于N ,交A C 于F .请说明:B MM N N C==.26.(10分)如图,在A B C=,过B C上一点D作B C的垂线,交B A的延长线∆中,A B A C于点P.交A C于点Q.试判断A P Q∆的形状,并证明你的结论.27.(12分)某校为表彰在“创文明城,点赞泰城”书画比赛中表现优秀的同学,决定购买水彩盒或钢笔作为奖品.已知1个水彩盒28元、1支钢笔30元.(1)恰逢“十一”商店举行“优惠促销”活动,具体办法如下:水彩盒”九折”优惠:钢笔10支以上超出部分“八折”优惠.若买x个水彩盒需要y元,买x支钢笔需要2y元,求1y,2y关于x的函数关系式.1(2)当购买数量为多少时,购买两种奖品的费用相同;(3)当购买数量为80时,购买两种奖品的费用差距是多少?2019-2020学年山东省泰安市七年级(上)期末数学试卷(五四学制)参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列图形不是轴对称图形的是()A.B.C.D.【解答】解:A不是轴对称图形;B是轴对称图形;C是轴对称图形;D是轴对称图形;故选:A.2.(4分)在实数22-,π,0.1010010001中,是无理数的是()7A.22-B C.πD.0.1010010001 7【解答】解:22A-是分数,属于有理数;.7B=,是整数,属于有理数;3C.π是无理数;D是有限小数,属于有理数..0.1010010001故选:C.3.(4分)如图,//∆≅∆A C D F,添加下列一个条件后,仍无法判断ABCDE FB C E F,//的是()A .B CE F=B .ACD F= C .A DB E= D .CF∠=∠【解答】解://B C E F,A B C E ∴∠=∠,//A C D F, A E D F ∴∠=∠, ∴添加B CE F=,A CD F=可以根据()A A S 证得全等;添加A DB E=(推知)A BD E =可以根据()A S A 证得全等. 添加CF∠=∠时,没有边的参与,无法证得全等.故选:D .4.(4分)如图,在C D 上求一点P ,使它到O A 、O B 的距离相等,则P 点是()A .线段C D 的中点B .O A 与CD B ∠的平分线的交点 C .O B 与D C A ∠的平分线的交点D .C D 与A O B ∠的平分线的交点【解答】解:点P 到O A 、O B 的距离相等,∴点P 在A O B ∠平分线上,∴点P 是C D 与A O B ∠平分线的交点,故选:D .5.(4分)已知点(,1)A a 与点(4,)B b -关于原点对称,则ab+的值为()A .5B .5-C .3D .3-【解答】解:由(,1)A a 关于原点的对称点为(4,)B b -,得4a =,1b=-,3a b +=,故选:C .6.(4的算术平方根是()A .4B .4±C .2D .2±【解答】解:4=,4的算术平方根2,∴的算术平方根是2,故选:C .7.(4分)如图,一个底面圆周长为24m ,高为5m 的圆柱体,一只蚂蚁沿侧表面从点A 到点B 所经过的最短路线长为()A .12mB .15mC .13mD .9.13m【解答】解:将圆柱体的侧面展开,连接A B .如图所示: 由于圆柱体的底面周长为24m , 则124122A Dm=⨯=.又因为5A C m=,所以13A Bm==.即蚂蚁沿表面从点A 到点B 所经过的最短路线长为13m . 故选:C .8.(4分)正比例函数(0)y kx k =≠的函数值y 随x 的增大而减小,则一次函数yx k=-的图象大致是()A .B .C .D .【解答】解:正比例函数(0)ykx k =≠的函数值y 随x 的增大而减小,k ∴<,一次函数yx k =-的一次项系数大于0,常数项大于0,∴一次函数yx k=-的图象经过第一、三象限,且与y 轴的正半轴相交.故选:A .9.(4分)下列运算中:5112=;2==-;3=;8=,错误的个数有( )A .1个B .2个C .3个D .4个【解答】解:1312==,原计算错误;=,这个式子没有意义,原计算错误;3=-,原计算错误;4=,原计算错误,错误的个数有4个, 故选:D .10.(4分)如图,在平面直角坐标系中,A B C ∆位于第二象限,点A 的坐标是(2,3)-,先把A B C ∆向右平移4个单位长度得到△111A B C ,再作与△111A B C 关于x 轴对称的△222A B C ,则点A 的对应点2A 的坐标是()A .(3,2)-B .(2,3)-C .(1,2)-D .(1,2)-【解答】解:如图所示:点A 的对应点2A 的坐标是:(2,3)-. 故选:B .11.(4分)如图,有一个直角三角形纸片,两直角边6A Cc m=,8B Cc m=,现将直角边A C沿直线A D 折叠,使它落在斜边A B 上,且与A E 重合,则C D 等于( )A .3c mB .4c mC .5c mD .6c m【解答】解:在R t A B C ∆中,由勾股定理可知:10A B ===,由折叠的性质可知:D CD E=,6A CA E ==,90D E AC ∠=∠=︒,1064B E A B A E ∴=-=-=,90D E B∠=︒,设D Cx=,则8B Dx=-,D E x=,在R t B E D ∆中,由勾股定理得:222B E D EB D+=,即2224(8)xx +=-,解得:3x=,3C D ∴=.故选:A .12.(4分)如图,A B C ∆中,A BA C=,D 是B C 的中点,A C 的垂直平分线分别交A C 、A D、A B 于点E 、O 、F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对【解答】解:A B A C=,D 为B C 中点,C D B D∴=,90B D OC D O ∠=∠=︒,在A B D ∆和A C D ∆中,A B A C A D A D B D C D=⎧⎪=⎨⎪=⎩,A B D A C D∴∆≅∆;E F垂直平分A C ,O A O C∴=,A EC E=,在A O E ∆和C O E ∆中,O A O C O E O E A E C E=⎧⎪=⎨⎪=⎩,A O E C O E∴∆≅∆;在B O D ∆和C O D ∆中,B DCD B D O C D O O D O D =⎧⎪∠=∠⎨⎪=⎩,B O DC O D∴∆≅∆;在A O C ∆和A O B ∆中,A C AB O A O A OC O B=⎧⎪=⎨⎪=⎩,A O C A O B∴∆≅∆;故选:D .二、填空题(本大题共8个小题,每小题4分,共32分,将答案填在答题纸上)13.(4分)一个等边三角形的对称轴有3条.【解答】解:如图:一个等边三角形的对称轴有3条,故答案为:3.14.(4分)若2425x=,则x=52±.【解答】解:2425x=,可得:52x=±,故答案为:52±15.(4分)点(3,1)P m m++在直角坐标系的y轴上,则点P的坐标为(0,2)-.【解答】解:点(3,1)P m m++在直角坐标系的y轴上,30m∴+=,解得:3m=-,故12m+=-,则点P的坐标为:(0,2)-.故答案为:(0,2)-.16.(4分)如图,在A B C∆中,A B A C=.36A∠=︒,B D平分A B C∠交A C于点D,则A D B∠的度数是108︒.【解答】解:A B A C=,36A∠=︒,1(18036)722A B C C ∴∠=∠=⨯︒-︒=︒,B D平分A B C ∠,36A B D D B C ∴∠=∠=︒,180()180236108A D B A A D B ∴∠=︒-∠+∠=︒-⨯︒=︒,故答案为:108︒. 17.(4分)已知一次函数yk x b=+的图象经过点(0,3)A -和(1,1)B -,则此函数的表达式为23y x =- .【解答】解:由题意可得方程组31b k b =-⎧⎨+=-⎩,解得23k b =⎧⎨=-⎩,则此函数的解析式为:23y x =-,故答案为23yx =-.18.(4分)在A B C ∆中,50A ∠=︒,30B∠=︒,点D 在A B 边上,连接C D ,若A C D ∆为直角三角形,则B C D ∠的度数为 60或10 度. 【解答】解:分两种情况: ①如图1,当90A D C∠=︒时,30B ∠=︒,903060B C D ∴∠=︒-︒=︒; ②如图2,当90A C D∠=︒时,50A ∠=︒,30B∠=︒,1803050100A C B ∴∠=︒-︒-︒=︒,1009010B C D ∴∠=︒-︒=︒,综上,则B C D ∠的度数为60︒或10︒; 故答案为:60或10;19.(4分)如图,A B C ∆与A E F ∆中,A B A E=,B CE F=,BE∠=∠,A B 交E F 于D .给出下列结论:①A F CA F E∠=∠;②B FD E=:③B F EB A E∠=∠;④B F D C A F∠=∠.其中正确的结论是 ①③④ .(填写所正确结论的序号).【解答】解:A B A E=,B CE F=,BE∠=∠,()A B C A E F S A S ∴∆≅∆,C A F E ∴∠=∠,E A F B A C∠=∠,A FA C=,A F C C∴∠=∠,A F C A F E∴∠=∠,故①符合题意,A FBC F A C A F E B F E ∠=∠+∠=∠+∠,B F E F AC ∴∠=∠,故④符合题意, E A F B A C ∠=∠, E A B F A C∴∠=∠,E A B BF E∴∠=∠,故③符合题意,由题意无法证明B F D E=,故②不合题意,故答案为:①③④.20.(4分)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445O A A A A A A A A A →→→→⋯”的路线运动,设第n 秒运动到点(n P n 为正整数),则点2020P 的坐标是(1010,0).【解答】解:每6202,0,2-0,202063364÷=⋯,∴点2020P 的纵坐标为0,点的横坐标规律:12,1,32,2,52,3,⋯,2n ,∴点2020P 的横坐标为1010, ∴点2020P 的坐标(1010,0),故答案为(1010,0).三、解答题:本大题共7个小题,满分70分..解答应写出文字说明、证明过程或演算步骤.21.(15分)(1+-(2)|2||1||--+(3)已知2(21)90x--=,求x 的值.【解答】解:(1-16322=-+-32=(2)|2||1||--+21=--+-3=-(3)2(21)9x -=,213x ∴-=±, 解得:2x=或1x=-.22.(7分)我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形A B C D 是一个筝形,其中A BC B=,A DC D=.请说明:(1)A B DC B D∆≅∆;(2)B D 垂直平分线段A C .【解答】解:(1)在A B D ∆和C B D ∆中,A B C B A D C D D B D B=⎧⎪=⎨⎪=⎩()A B D C B D S S S ∴∆≅∆(2)由(1)知,A B DC BD ∆≅∆A DBCD B∴∠=∠,且A D C D=B D∴垂直平分线段A C23.(8分)如图,在平面直角坐标系中,已知A B C ∆的三个顶点坐标分别是(1,1)A ,(4,1)B ,(3,3)C .(1)画出A B C ∆关于y 轴对称的△111A B C ;(2)A B C ∆的三个顶点的横坐标与纵坐标同时乘以1-,得到对应的点2A ,2B ,2C .请画出△222A B C .【解答】解:(1)如图所示,△111A B C 即为所求; (2)如图所示,△222A B C 即为所求.24.(8分)如图所示,已知A B C ∆中,8A Bc m=,6A Cc m=,10B Cc m=.分别以三边A B ,A C及B C 为直径向外作半圆,求阴影部分的面积.【解答】解:2228610+=,222A BA CB C∴+=90B A C ∴∠=︒∴以A B 为直径的半圆的面积2211()8()22A B S c m ππ==以A C 为直径的半圆的面积22219()()222A C S c m ππ==以B C 为直径的半圆的面积223125()()222B C S c m π==2118624()22A B C S A B A C c m ∆==⨯⨯=∴()212324A B C S S S S S c m∆=++-=阴影25.(10分)如图,在A B C ∆中.A B A C=,120A∠=︒,6B C=,A B 的垂直平分线交B C于M ,交A B 于E ,A C 的垂直平分线交B C 于N ,交A C 于F .请说明:B M M N N C==.【解答】解:连接A M ,A NA B A C=,120B A C∠=︒,30B C ∴∠=∠=︒E M垂直平分A BB M A M∴=,30M A B B ∴∠=∠=︒120A M B ∴∠=︒,60A M N ∴∠=︒同理:C NA N=,6060A N MA M N M A N A N M ∠=︒∠=∠=∠=︒A N M∴∆是等边三角形B M M NC N∴==.26.(10分)如图,在A B C ∆中,A BA C=,过B C 上一点D 作B C 的垂线,交B A 的延长线于点P .交A C 于点Q .试判断A P Q ∆的形状,并证明你的结论.【解答】解:A P Q ∆是等腰三角形.证明:Q D B D Q C C∠=∠+∠,P D CB P∠=∠+∠,又A B A C=,B C∴∠=∠,P D Q C A Q P∴∠=∠=∠,A P A Q ∴=,A P Q∴∆是等腰三角形.27.(12分)某校为表彰在“创文明城,点赞泰城”书画比赛中表现优秀的同学,决定购买水彩盒或钢笔作为奖品.已知1个水彩盒28元、1支钢笔30元.(1)恰逢“十一”商店举行“优惠促销”活动,具体办法如下:水彩盒”九折”优惠:钢笔10支以上超出部分“八折”优惠.若买x 个水彩盒需要1y 元,买x 支钢笔需要2y 元,求1y ,2y 关于x 的函数关系式.(2)当购买数量为多少时,购买两种奖品的费用相同; (3)当购买数量为80时,购买两种奖品的费用差距是多少? 【解答】解:(1)根据题意得:1280.925.2y x x=⨯=,230(010)2460(10)x x y x x ⎧=⎨+>⎩剟;(2)根据题意得:25.22460x x =+,解得50x=,即当购买数量为50时,购买两种奖品的费用相同;(3)购买数量为80时, 购买水彩盒需要花费为:25.2802016⨯=(元); 购买钢笔需要花费为:2480601980⨯+=(元);2016198036-=(元),答:当购买数量为80时,购买两种奖品的费用差距是36元.。
山东省泰安市2022-2023学年高二上学期期中考试数学试题及答案
高二数学试题第页(共4页)试卷类型:A高二年级考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
2022.111.经过A (0,3-1),B (3,-1)两点的直线的倾斜角为A.π6 B.π3C.2π3D.5π62.若a =(-2,4,1)与b =(2,m ,-1)共线,则m =A.-4B.-2C.2D.43.已知圆M 的方程为x 2+y 2+2x -4y +1=0,则圆心M 的坐标为A.(1,-2)B.(-1,2)C.(2,-4)D.(-2,4)4.两条平行直线l 1:3x -4y +6=0与l 2:3x -4y -9=0间的距离为A.13B.35 C.3 D.55.已知平面α的一个法向量为n =(-1,-2,2),点A (0,1,0)是平面α内一点,则点P (1,0,1)到平面α的距离为A.1B.2C.3D.46.已知圆M :(x -2)2+y 2=4内有点P (3,1),则以点P 为中点的圆M 的弦所在的直线方程为A.x +y -2=0B.x -y -2=0C.x +y -4=0D.x -y +2=07.已知m ,n 为两条异面直线,在直线m 上取点A 1,E ,在直线n 上取点A ,F ,使AA 1⊥m ,且AA 1⊥n (称AA 1为异面直线m ,n 的公垂线).已知A 1E =2,AF =3,EF =5,AA 1=32,则异面直线m ,n 所成的角为1高二数学试题第页(共4页)A.π6B.π3C.2π3D.5π68.若直线kx +y +k =0与曲线y =1+2x -x 2仅有一个公共点,则实数k 的取值范围是二、选择题:本题共4小题,每小题5分,共20分。
2019-2020年高二下学期期末数学试卷(文科)含解析
2019-2020年高二下学期期末数学试卷(文科)含解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>04.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.45.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.58.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=_______.12.函数y=的值域为_______.13.若P=﹣1,Q=﹣,则P与Q的大小关系是_______.14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.15.已知函数则的值为_______.16.按程序框图运算:若x=5,则运算进行_______次才停止;若运算进行3次才停止,则x的取值范围是_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.2015-2016学年北京市东城区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)【考点】交集及其运算.【分析】先求出不等式x(x﹣2)<0的解集,即求出A,再由交集的运算求出A∩B.【解答】解:由x(x﹣2)<0得,0<x<2,则A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩B═{x|1<x<2}=(1,2),故选D.2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式an2=2+(n﹣1)×3=3n﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n2﹣a n﹣12=3,又∵a12=2,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0 C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D4.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.4【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:∵y′=,∴y′|x=1==1.故选:A.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】a=30.2>1,利用换底公式可得:b=log64=,c=log32=,由于1<log26<log29,即可得出大小关系.【解答】解:∵a=30.2>1,b=log64=,c=log32==,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【考点】函数奇偶性的性质;函数的值.【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=﹣1+i.【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】由条件利用两个复数相除,分子和分母同时乘以分母的共轭复数,计算求得结果.【解答】解:∵复数z满足(1﹣i)z=2i,则z====﹣1+i,故答案为:﹣1+i.12.函数y=的值域为{y|y≠2} .【考点】函数的值域.【分析】函数y===2+,利用反比例函数的单调性即可得出.【解答】解:函数y===2+,当x>1时,>0,∴y>2.当x<1时,<0,∴y<2.综上可得:函数y=的值域为{y|y≠2}.故答案为:{y|y≠2}.13.若P=﹣1,Q=﹣,则P与Q的大小关系是P>Q.【考点】不等式比较大小.【分析】利用作差法,和平方法即可比较大小.【解答】解:∵P=﹣1,Q=﹣,∴P﹣Q=﹣1﹣+=(+)﹣(+1)∵(+)2=12+2,( +1)2=12+2∴+>+1,∴P﹣Q>0,故答案为:P>Q14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.15.已知函数则的值为﹣.【考点】函数的值;函数迭代.【分析】由题意可得=f(﹣)=3×(﹣),运算求得结果.【解答】解:∵函数,则=f(﹣)=3×(﹣)=﹣,故答案为﹣.16.按程序框图运算:若x=5,则运算进行4次才停止;若运算进行3次才停止,则x 的取值范围是(10,28] .【考点】循环结构.【分析】本题的考查点是计算循环的次数,及变量初值的设定,在算法中属于难度较高的题型,处理的办法为:模拟程序的运行过程,用表格将程序运行过程中各变量的值进行管理,并分析变量的变化情况,最终得到答案.【解答】解:(1)程序在运行过程中各变量的值如下表示:x x 是否继续循环循环前5∥第一圈15 13 是第二圈39 37 是第三圈111 109 是第四圈327 325 否故循环共进行了4次;(2)由(1)中数据不难发现第n圈循环结束时,经x=(x0﹣1)×3n+1:x 是否继续循环循环前x0/第一圈(x0﹣1)×3+1 是第二圈(x0﹣1)×32+1 是第三圈(x0﹣1)×33+1 否则可得(x0﹣1)×32+1≤244且(x0﹣1)×33+1>244解得:10<x0≤28故答案为:4,(10,28]三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.【考点】函数奇偶性的判断;函数的定义域及其求法.【分析】(1)使函数各部分都有意义的自变量的范围,即列出不等式组,解此不等式组求出x范围就是函数的定义域;(2)根据函数奇偶性的定义进行证明即可.【解答】解:(1)由题得,使解析式有意义的x范围是使不等式组成立的x范围,解得﹣1<x<1,所以函数f(x)的定义域为{x|﹣1<x<1}.(2)函数f(x)为奇函数,证明:由(1)知函数f(x)的定义域关于原点对称,且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣log a(1+x)+log a(1﹣x)=﹣[log a(1+x)﹣log a (1﹣x)]=﹣f(x)所以函数f(x)为奇函数.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】先设箱底边长为xcm,则箱高cm,得箱子容积,再利用导数的方法解决,应注意函数的定义域.【解答】解:设箱底边长为xcm,则箱高cm,得箱子容积(0<x<60).(0<x<60)令=0,解得x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm320.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣﹣﹣﹣﹣﹣②当a<0时,由f'(x)=0,得.在区间上,f'(x)>0,在区间上,f'(x)<0,所以,函数f(x)的单调递增区间为,单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由已知,转化为f(x)max<g(x)max.g(x)=(x﹣1)2+1,x∈[0,1],所以g (x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.【考点】数列的求和;数列的应用.【分析】(I)由{a n}伴随数列{b n}的定义可得前5项为1,1,1,2,3.(II)由a n=3n﹣1≤m,可得n≤1+log3m,m∈N*,分类讨论:当1≤m≤2时,m∈N*,b1=b2=1;当3≤m≤8时,m∈N*,b3=b4=…=b8=2;当9≤m≤20时,m∈N*,b9=b10=…=3;即可得出数列{a n}的伴随数列{b n}的前20项和.【解答】解:(Ⅰ)数列1,4,5,…的伴随数列{b n}的前5项1,1,1,2,3;(Ⅱ)由,得n≤1+log3m(m∈N*).∴当1≤m≤2,m∈N*时,b1=b2=1;当3≤m≤8,m∈N*时,b3=b4=…=b8=2;当9≤m≤20,m∈N*时,b9=b10=…=b20=3.∴b1+b2+…+b20=1×2+2×6+3×12=50.2016年9月9日。
2019-2020年高二下学期期末数学试卷(理科) 含解析
2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。
2023-2024学年山东省泰安市高二上学期期末数学试题(含解析)
2023-2024学年山东省泰安市高二上学期期末数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若直线1:1l y kx =+与直线2:3l y x =平行,则实数k 的值为()A.13-B.13C.3D.3【正确答案】D【分析】利用两直线平行斜率相等,求出实数k 的值.【详解】因为直线1:1l y kx =+与直线2:3l y x =平行,所以两直线斜率相等,即3k =.故选:D.2.已知等差数列{}n a 的首项13a =,公差2d =,则5a =()A.7B.9C.11D.13【正确答案】C【分析】根据等差数列的通项公式可算出答案.【详解】因为等差数列{}n a 的首项13a =,公差2d =,所以5143811a a d =+=+=故选:C本题考查的是等差数列的通项公式,较简单.3.已知椭圆2212516x y +=上的点P 到椭圆一个焦点的距离为7,则P 到另一焦点的距离为()A.2B.3C.5D.7【正确答案】B【分析】根据椭圆的定义列方程,求得P 到另一个焦点的距离.【详解】根据椭圆定义可知,P 到两个焦点的距离之和为22510a =´=,所以P 到另一个焦点的距离为1073-=.故选:B.本小题主要考查椭圆的定义,属于基础题.4.已知空间向量()2,1,2a =- ,()4,2,b x =- 满足a b ⊥,则实数x 的值是()A.5-B.4- C.4 D.5【正确答案】D【分析】由已知条件得出0a b ⋅=,结合空间向量数量积的坐标运算可求得实数x 的值.【详解】由已知条件得出()241222100a b x x ⋅=⨯--⨯+=-=,解得5x =.故选:D.5.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1 B.2C.3D.4【正确答案】B【分析】当直线和圆心与点(1,2)的连线垂直时,所求的弦长最短,即可得出结论.【详解】圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3,设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,此时||CP ==根据弦长公式得最小值为2==.故选:B.本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.6.我国古代数学著作《九章算术》中有如下问题:“今有女子善织,日自倍,五日织五尺…”其大意为:“有一位善于织布的女子,每天织的布都是前一天的2倍,5天共织了5尺布…”.那么该女子第一天织布的尺数为()A.431B.531C.631D.1031【正确答案】B【分析】设第一天织布的尺数为x ,则由题意有()234122225x ++++=,据此可得答案.【详解】设第一天织布的尺数为x ,则()234122225x ++++=52153152131x x x -⇒⋅==⇒=-.故选:B7.设A 、B 是y 轴上的两点,点P 的横坐标为2,且PA PB =,若直线PA 的方程为10x y -+=,则直线PB 的方程为()A.50x y +-= B.210x y --=C.270x y +-= D.30x y +-=【正确答案】A【分析】根据直线PA 的方程,确定出PA 的倾斜角,利用PA PB =且A 、B 在y 轴上,可得PB 的倾斜角,求出P 的坐标,然后求出直线PB 的方程.【详解】解:由于直线PA 的方程为10x y -+=,故其倾斜角为45︒,又||||PA PB =,且A 、B 是y 轴上两点,故直线PB 的倾斜角为135︒,又当2x =时,3y =,即(2,3)P ,∴直线PB 的方程为3(2)y x -=--,即50x y +-=.故选:A .8.,,PA PB PC 是从点P 出发的三条射线,每两条射线的夹角均为60︒,那么直线PC 与平面PAB 所成角的余弦值是() A.63B.33C.2D.12【正确答案】B【分析】作图,找到直线PC 在平面PAB 上的投影在构建多个直角三角形,找出边与角之间的关系,继而得到线面角;也可将,,PA PB PC 三条射线截取出来放在正方体中进行分析.【详解】解法一:如图,设直线PC 在平面PAB 的射影为PD,作CG PD ⊥于点G ,CH PA ⊥于点H ,连接HG ,易得CG PA ⊥,又,,CH CG C CH CG ⋂=⊂平面CHG ,则PA ⊥平面CHG ,又HG ⊂平面CHG ,则PA HG ⊥,有cos cos cos PH CPA PC PG PH PH CPD APD PC PG PC ⎧∠=⎪⎪⎨⎪∠⨯∠==⎪⎩故cos cos cos CPA CPD APD ∠=∠⨯∠.已知60,30APC APD ∠=︒∠=︒,故cos cos60cos cos cos303CPA CPD APD ∠︒=∠︒∠==为所求.解法二:如图所示,把,,PA PB PC 放在正方体中,,,PA PB PC 的夹角均为60︒.建立如图所示的空间直角坐标系,设正方体棱长为1,则(1,0,0),(0,0,1),(1,1,1),(0,1,0)P C A B ,所以(1,0,1),(0,1,1),(1,1,0)PC PA PB =-==-,设平面PAB 的法向量(,,)n x y z = ,则0n PA y z n PB x y ⎧⋅=+=⎪⎨⋅=-+=⎪⎩令1x =,则1,1y z ==-,所以(1,1,1)n =-,所以6cos ,3||||23PC n PC n PC n ⋅-〈〉===⋅⨯.设直线PC 与平面PAB 所成角为θ,所以6sin |cos ,|3PC n θ=〈〉=,所以23cos 1sin 3θθ=-=故选B .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.直线()24R y ax a a =-+∈必过定点()2,4B.直线310x y --=在y 轴上的截距为1C.过点()2,3-且垂直于直线230x y -+=的直线方程为210x y ++=D.直线310x +=的倾斜角为120°【正确答案】AC【分析】对于A ,整理直线方程,合并出参数的系数,令其等于零,建立方程,可得答案;对于B ,将0x =代入直线方程,结合截距的定义,可得答案;对于C ,根据直线之间的垂直关系,设未知直线方程,代入点,可得答案;对于D ,根据直线的一般式方程,明确直线的斜率,可得答案.【详解】对于A ,由直线方程24y ax a =-+,整理可得()24y a x =-+,当2x =时,4y =,故A 正确;对于B ,将0x =代入直线方程310x y --=,可得10y --=,解得1y =-,故B 错误;对于C ,由直线方程230x y -+=,则其垂线的方程可设为20x y C ++=,将点()2,3-代入上式,可得()2230C ⨯-++=,解得1=C ,则方程为210x y ++=,故C 正确;对于D,由直线方程10x ++=,可得其斜率为33-,设其倾斜角为θ,则3tan 3θ=-,解得150θ= ,故D 错误.故选:AC.10.已知椭圆22:142x y C +=内一点11,2M ⎛⎫ ⎪⎝⎭,过点M 的直线l 与椭圆C 交于A ,B 两点,且M是线段AB 的中点,椭圆的左,右焦点分别为1F ,2F ,则下列结论正确的是()A.椭圆C 的焦点坐标为()2,0,()2,0-B.椭圆C 的长轴长为4C.直线1MF 与直线2MF 的斜率之积为14- D.2153AB =【正确答案】BCD【分析】根据椭圆的几何性质、点差法、以及弦长公式求得正确答案.【详解】依题意,椭圆22:142x y C +=,所以2,a b c ===,所以焦点坐标为)()12,F F ,A 选项错误.长轴长24a =,B 选项正确.12111224MF MF k k ⋅==-,C 选项正确.设()()1122,,,A x y B x y ,则222211221,14242x y x y +=+=,两式相减并化简得12121212121212121212,,1412y y y y y y y y x x x x x x x x +----=⋅⋅=-=-+---,即直线AB 的斜率为1-,直线AB 的方程为()131,22y x y x -=--=-+,由2232142y x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 并化简得261210x x -+=,所以121212,6x x x x +=⋅=,所以3AB ==.故选:BCD11.已知数列{}n a 的前n 项和()2*123N 43n S n n n =++∈,则下列结论正确的是()A.数列{}n a 是递增数列 B.数列{}n a 不是等差数列C.2a ,4a ,6a 成等差数列D.63S S -,96S S -,129S S -成等差数列【正确答案】BCD【分析】由n a 与n S 的关系推导出数列{}n a 的通项公式,判断选项A ,B ,分别计算出2a ,4a ,6a 和63S S -,96S S -,129S S -,结合等差数列的定义判断选项C ,D.【详解】()2*12S 3N 43n n n n =++∈ ,2n ∴≥时,()()22112121531134343212n n n a S S n n n n n -⎡⎤=-=++--+-+=+⎢⎥⎣⎦,1n =时,114712a S ==,即47,11215,2212n n a n n ⎧=⎪⎪=⎨⎪+≥⎪⎩,*N n ∈.2117471212a a =<= ,因此数列{}n a 不是单调递增数列,故A 错误;又1n =时,不满足15212n a n =+,∴数列{}n a 不是等差数列,故B 正确;21712a =,42912a =,64112a =,因此2a ,4a ,6a 成等差数列,故C 正确;()63456153545632124S S a a a -=++=⨯+++⨯=,()96789155378932124S S a a a -=++=⨯+++⨯=,()129101112157110111232124S S a a a -=++=⨯+++⨯=.6396129,,S S S S S S ∴---成等差数列,故D 正确.故选:BCD.12.平行六面体ABCD A B C D -''''中,各棱长均为2,设A AB A AD DAB θ''∠=∠=∠=,则下列结论中正确的有()A.当2πθ=时,AC '=B.AC '和BD 总垂直C.θ的取值范围为2(0,3πD.θ=60°时,三棱锥C C B D -'''的外接球的体积是【正确答案】ABC【分析】对于A ,求正方体对角线即可判断;对于B ,利用空间向量数量积运算即可判断;对于C ,由正三棱锥A A BD '-的高与斜高的关系即可计算判断;对于D ,求出正四面体C CB D -'''外接球体积判断作答.【详解】平行六面体ABCD A B C D -''''中,各棱长均为2,设A AB A AD DAB θ''∠=∠=∠=,对于A ,2πθ=时,该平行六面体为正方体,其体对角线长AC '=,A 正确;对于B ,AC AB AA AD '=++' ,BD AD AB =-,因此,22()()AC BD AB AA AD AD AB AD AB AA AD AA AB '⋅++--⋅'''=-⋅⋅=+ 22224cos 4cos 0θθ=-+=-,B 正确;对于C ,连接,,BD A B A D '',如图,依题意,A A BD '-为正三棱锥,取BD 中点E ,令O 为正A BD ' 的中心,连,,AE AO EO ,有AO ⊥平面A BD ',正三棱锥A A BD '-的斜高cos2cos 22AE AB θθ==,2sin 4sin 22BD AB θθ==,则33sin 632OE BD θ==,显然,AE OE >,即232cos sin232θθ>,则tan 32θ<锐角(0,)23θπ∈,从而得2(0,)3πθ∈,C 正确;对于D ,当60θ= 时,三棱锥C C B D -'''为正四面体,三棱锥A A BD '-也是正四面体,它们全等,由C 选项知,2222322(3)()33AO AE OE =-=-=A A BD '-的外接球球心在线段AO 上,设球半径为r ,则有222()r AO r OB =-+,整理得222(2)AO r AO OE ⋅=+,解得62r =,于是得三棱锥C C B D -'''外接球的体积346632V ππ=⨯=,D 不正确.故选:ABC关键点睛:几何体的外接球的表面积、体积计算问题,借助球的截面小圆性质确定出球心位置是解题的关键.三、填空题:本题共4小题,每小题5分,共20分.13.准线方程为2x =的抛物线的标准方程是_______.【正确答案】28y x=-【详解】抛物线的准线方程为2x =,说明抛物线开口向左,且224p =⨯=,所以抛物线的标准方程是28y x =-.14.已知双曲线C 的对称轴为坐标轴,中心是坐标原点,渐近线方程为43y x =±,请写出双曲线C 的一个离心率______.【正确答案】53(答案不唯一)【分析】分类讨论双曲线C 的焦点在x 轴、y 轴两种情况,结合双曲线的渐近线方程及离心率公式计算可得.【详解】当双曲线C 的焦点在x 轴时,其渐近线为by x a =±,则43b a =,所以离心率53c e a ====,当双曲线C 的焦点在y 轴时,其渐近线为a y x b =±,则43a b =,即34b a =,所以离心率54c e a ====,综上,可得双曲线的离心率为53或54.故53(答案不唯一).15.如图甲是第七届国际数学教育大会(简称7ICME -)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中11223781OA A A A A A A ===== ,如果把图乙中的直角三角形继续作下去,记12,,,n OA OA OA ⋅ 的长度构成数列{}n a ,则此数列的通项公式为n a =_____.【分析】由图可知1122378...1OA A A A A A A =====,由勾股定理可得2211n n a a -=+,利用等差数列的通项公式求解即可.【详解】根据图形1122378...1OA A A A A A A =====,因为122378...OA A OA A OA A ∆∆∆、都是直角三角形,2211n n a a -∴=+,2n a ∴是以1为首项,以1为公差的等差数列,()2111n a n n ∴=+-⨯=,n a ∴=.本题主要考查归纳推理的应用,等差数列的定义与通项公式,以及数形结合思想的应用,意在考查综合应用所学知识解答问题的能力,属于与中档题.16.已知过点()4,1P 的直线与椭圆22:142x y C +=相交于不同的两点A 和B ,在线段AB 上存在点Q ,满足AP QB AQ PB ⋅=⋅,则OQ 的最小值为______.【分析】设()11,A x y ,()22,B x y ,(),Q x y ,由,,,A P B Q 四点共线,用向量共线关系表示,A B 两点坐标,又点,A B 在椭圆上,把坐标代入椭圆方程,得出Q 点在一条定直线上,再求最短距离即可.【详解】设()11,A x y ,()22,B x y ,(),Q x y ,由AP QB AQ PB ⋅=⋅,记AP PB AQ QB =,又,,,A P B Q 四点共线,设PA AQ λ= ,则由已知0λ>,且1λ≠,PB BQ λ=-.由PA AQ λ=,得()()11114,1,x y x x y y λ--=--,解得114111x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,同理PB BQ λ=- ,得()()22224,1,x y x x y y λ--=---,解得224111x x y y λλλλ-⎧=⎪⎪-⎨-⎪=⎪-⎩,因为点A 在椭圆上,所以224111142x y λλλλ++⎛⎫⎛⎫ ⎪ ⎪++⎝⎭⎝⎭+=,即()()()22241142x y λλλ+++=+,①同理点B 在椭圆上,所以224111142x y λλλλ--⎛⎫⎛⎫⎪ ⎪--⎝⎭⎝⎭+=,即()()()22241142x y λλλ--+=-,②①-②得164442x yλλλ+=,因为0λ>所以220x y +-=,故点Q 在定直线220x y +-=上,OQ 的最小值为点O 到直线220x y +-=的距离255d ==.故答案为.5解析几何中线段定比分点问题方法点睛:1.在平面直角坐标系中,已知()11,A x y ,()22,B x y ,(),P x y ,且AP PB λ=,0λ≠,且1λ≠-,那么我们就说P 分有向线段AB 的比为λ,则有:121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,这就是定比分点坐标公式.当P 为内分点时,0λ>;当P 为外分点时,0λ<(1λ≠-).2.这个公式在解决解析几何中向量共线或者点共线问题有着很强大的作用,运用好往往可以几步就解决一个大题.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.如图,直线2y x =-与抛物线22y x =相交于A ,B两点.(1)求线段AB 的长;(2)证明:OA OB ⊥.【正确答案】(1);(2)证明见解析.【分析】(1)联立直线的方程和抛物线的方程,结合根与系数关系求得AB .(2)根据根与系数关系、向量数量积等知识证得结论成立.【小问1详解】设()11,A x y ,()22,B x y ,由222y x y x=-⎧⎨=⎩,得2640x x -+=.126x x +=,124x x =,所以AB ==.【小问2详解】由(1)知:126x x +=,124x x =,所以()121212122240OA OB x x y y x x x x ⋅=+=-++=,所以OA OB ⊥ ,所以OA OB ⊥.18.如图,在三棱锥O ABC -中,OA ,OB ,OC 两两垂直,3OA OC ==,2OB =.(1)求点B 到直线AC 的距离;(2)求直线OB 与平面ABC 所成角的正弦值.【正确答案】(1)342(2)17【分析】(1)建立空间直角坐标系,利用点与直线距离的空间向量法计算可得.(2)利用直线与平面夹角的空间向量法计算可得【小问1详解】解:以O 为坐标原点,OB ,OC ,OA方向分别为x ,y ,z 轴正方向,建立如图所示的空间直角坐标系,则()0,0,3A ,()2,0,0B ,()0,3,0C ,所以()2,0,3AB =- ,()0,3,3AC =-,()2,0,0OB = .取()2,0,3a AB ==- ,220,,22AC u AC ⎛⎫==- ⎪ ⎪⎝⎭,则213a = ,322a u ⋅= ,所以点B 到直线AC ()229341322a a u-⋅=-=.【小问2详解】解:设(),,n x y z = 是平面ABC 的一个法向量,则00AB n AC n ⎧⋅=⎪⎨⋅=⎪⎩,所以230330x z y z -=⎧⎨-=⎩,取2z =,解得32x y =⎧⎨=⎩,所以()3,2,2n = .设直线OB 与平面ABC 所成角为θ,则317sin cos ,17217OB n OB n OB nθ⋅===⨯⋅ ,所以直线OB 与平面ABC 所成角的正弦值为31717.19.在数列{}n a 的首项为11a =,且满足132nn n a a ++=⋅.(1)求证:{}2nn a -是等比数列.(2)求数列{}n a 的前n 项和n S .【正确答案】(1)证明见解析;(2)1122,23,n n n n S n ++⎧-=⎨-⎩为偶数为奇数.【分析】(1)由132nn n a a +=-+⋅,化简得到11212n n nn a a ++-=--,结合等比数列的定义,即可求解;(2)由(1)求得(1)2nnn a =-+,分当n 为偶数和当n 为奇数,两种情况讨论,结合等比数列的求和公式,即可求解.【详解】(1)由题意,数列{}n a 满足132nn n a a ++=⋅,即132nn n a a +=-+⋅,则111232221222n n n n n n nn n nn n n a a a a a a +++--+⋅--===----,又由11a =,可得1121a -=-,所以数列{}2nn a -表示首项为1-,公比为1-的等比数列.(2)由(1)知121(1)(1)nn n n a --=-⨯-=-,所以(1)2n n n a =-+,所以12=222(1)1(1)nnn S ++++-+++- ,当n 为偶数时,可得12(12)=02212nn n S +-+=--;当n 为奇数时,可得12(12)=12312nn n S +--=--,综上可得,1122,23,n n n n S n ++⎧-=⎨-⎩为偶数为奇数.20.已知两个定点()1,0M -,()1,0N ,动点P满足MP =.(1)求点P 的轨迹方程;(2)若点N 到直线PM 的距离为1,求直线PN 的方程.【正确答案】(1)22610x y x +-+=(2)1y x =-或1y x =-+【分析】(1)设点(),P x y,后由MP =结合两点间距离公式可得轨迹方程;(2)由点N 到直线PM 的距离为1,可得30PMN ∠=︒,则可得直线PM 方程为()313y x =+或()313y x =-+,将直线方程与轨迹方程联立可得点P 坐标,后可得直线PN 方程.【小问1详解】设点P 的坐标为(),x y,因为MP =,=整理得22610x y x +-+=,所以点P 的轨迹方程为22610x y x +-+=.【小问2详解】因为点N 到直线PM 的距离为1,2MN =,所以30PMN ∠=︒,直线PM 的斜率为33或33-,所以直线PM 的方程为()313y x =+或()313y x =-+.联立轨迹方程与()13y x =±+,可得()222610410313x y x x x y x ⎧+-+=⎪⇒-+=⎨=+⎪⎩,解得2x =或2x =-.得直线PM 的方程为()313y x =+时,P的坐标为(2++或(21-.直线PM 的方程为()313y x =-+时,P 的坐标为(21+--或(2.当P的坐标为(2+时,直线PN的方程为:11y x ==-,即1y x =-.P的坐标为(21-+时,直线PN的方程为:11y x ==--,即1y x =-+.P的坐标为(21+--时,直线PN的方程为:11y x ==--,即1y x =-+.P的坐标为(2-时,直线PN的方程为:11y x ==-,即1y x =-.综上可得直线PN 的方程为1y x =-或1y x =-+21.歇山顶,即歇山式屋顶,为古代汉族建筑屋顶样式之一,宋朝称九脊殿、曹殿或厦两头造,清朝改称歇山顶,又名九脊顶,其屋顶(上半部分)类似于五面体形状.如图所示的五面体EF ABCD -的底面ABCD 为一个矩形,28AB EF ==,6AD =,//EF AB ,棱5EA ED FB FC ====,M ,N 分别是AD ,BC 的中点.(1)求证:平面EFNM ⊥平面ABCD ;(2)求平面BFC 与平面EFCD 夹角的余弦值.【正确答案】(1)证明见解析(2)2114【分析】(1)证明EM AD ⊥以及MN AD ⊥,根据面面垂直的判定定理即可证明结论;(2)建立空间直角坐标系,求得相关点坐标,求得平面BFC 与平面EFCD 法向量,根据向量的夹角公式即可求解.【小问1详解】因为EA ED =,M 为AD 的中点,所以EM AD ⊥.在矩形ABCD 中,M ,N 分别是AD ,BC 的中点,所以MNAD ⊥.又EM MN M ⋂=,EM ,MN ⊂平面EFNM ,所以AD ⊥平面EFNM .又AD ⊂平面ABCD ,所以平面EFNM ⊥平面ABCD .【小问2详解】在平面EFNM 中,过F 作FH MN ⊥,H 为垂足.因为平面EFNM ⊥平面ABCD ,平面EFNM ⋂平面ABCD MN =,FH ⊂平面EFNM ,所以FH ⊥平面ABCD .过H 作BC 的平行线,交AB 于点S ,则3HS =,2HN =,3HF =,以H 为坐标原点,以HS ,HN ,HF方向分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系,则()3,2,0B ,()3,2,0C -,()3,6,0D --,(0,0,23F ,所以(3,2,3BF =-- ,()6,0,0BC =- ,(3,2,23CF =- ,()0,8,0CD =-.设平面EFCD 的一个法向量为(),,m x y z = ,则00CF m CD m ⎧⋅=⎪⎨⋅=⎪⎩,所以3223080x y z y ⎧-+=⎪⎨-=⎪⎩,取3z =,解得2x y =-⎧⎨=⎩,所以(3m =- ,同理可得平面BFC 的一个法向量为()3,1n =.设平面BFC 与平面EFCD 夹角为θ.则21cos cos ,14m n m n m nθ⋅=<>==⋅ ,所以平面BFC 与平面EFCD 夹角的余弦值为2114.22.已知双曲线()2222:10,0x y C a b a b-=>>的左,右顶点分别为A ,B ,过点()6,0D 且不与x 轴重合的动直线交双曲线C 于P ,Q 两点,当直线PQ 与x 轴垂直时,4PD BD ==.(1)求双曲线C 的标准方程;(2)设直线AP ,AQ 和直线x t =分别交于点M ,N ,若MD ND ⊥恒成立,求t 的值.【正确答案】(1)22142x y -=(2)14t =或103t =【分析】(1)由4PD BD ==可得a 的值,再将点()6,4P 代入即可求解;(2)设直线PQ 的方程为6x my =+,与双曲线方程联立,利用韦达定理求出直线AP 的方程,求出点,M N 的坐标,利用MD ND ⊥即可求出结果.【小问1详解】由题知,当PQ 与x 轴垂直时,4PD BD ==,所以642a OD BD =-=-=,()6,4P ,所以2236414b -=,解得22b =,所以双曲线C 的方程为22142x y -=.【小问2详解】设直线PQ 的方程为6x my =+,()11,P x y ,()22,Q x y ,由226142x my x y =+⎧⎪⎨-=⎪⎩,得()22212320m my y -++=,所以122122m y y m +=--,122322y y m =-.直线AP 的方程为()1122y y x x =++,与x t =联立,解得()112,2t y M t x +⎛⎫⎪+⎝⎭.同理可得()222,2t y N t x +⎛⎫⎪+⎝⎭.所以()1126,2t y DM t x +⎛⎫ ⎪⎝⎭=-+ ,()2226,2t y DN t x +=-+⎛⎫⎪⎝⎭,因为MD ND ⊥恒成立,所以0DM DN ⋅=恒成立,又()()()()2212126222y y DM DN t t x x ⋅=-++++ ()()()()2212126288y y t t my my =-++++()()()21222112262864m y y m y y y y t t ++=++-+()()221624t t =--+所以()()22462t t -=+,解得14t =或103t =.。
山东省泰安市2024-2025学年高二上学期11月期中考试数学试题
山东省泰安市2024-2025学年高二上学期11月期中考试数学试题一、单选题1.直线2y x =在y 轴上的截距是()A .BC .D 2.下列方程所表示的直线中,倾斜角为120︒的是()A10y -+=B .1y x =+C .1y x +D .1x =3.已知点()1,2,3P 沿着向量()1,2,2v =-的方向移动到点Q ,且6PQ =,则点Q 的坐标为()A .()0,0,1-B .()3,2,1--C .()1,6,7-D .()2,4,4-4.已知圆()()22:114C x y +++=,则过点()1,2的圆C 的切线方程为()A .512290x y +-=B .512290x y +-=或1x =C .512190x y -+=D .512190x y -+=或1x =5.已知正方体1111ABCD A B C D -中,1,O O 分别为上底面1111D C B A 和下底面ABCD 的中心,则下列与1AD uuu r 和11AC 共面的向量是()A .1BO B .1AA C .1AO D .1B O6.已知正三棱柱111ABC A B C -的底面边长为1,侧棱长为2,D 为1BB 的中点,则1A D 与平面11AAC C 所成的角的正弦值为()A B C D 7.已知点(),P m n 在直线20x y --=上,若以P 为圆心,以3为半径的圆与圆22:2210A x y x y ++-+=有公共点,则m 的取值范围是()A .[]1,1-B .[]1,3-C .[]2,4-D .⎡-⎣8.已知椭圆()2222:10x y E a b a b+=>>的左,右焦点分别为1F ,2F ,E 上两动点M ,N 均位于x 轴上方,且12//MF NF ,若2MF 与1NF 的交点在y 轴上,且纵坐标为3b,则椭圆E 的离心率为()A .13B C .223D 二、多选题9.已知直线()1:1210l a x y -+-=,直线2:620l x ay a ++-=,若12l l //或12l l ⊥,则a 的值可能为()A .4B .3-C .34D .110.已知圆22:4210C x y x y +--+=,则()A .点()0,2在圆C 内B .若点(),P x y在圆C 上,则x y -的最大值为1C .若圆C 上恰有三个点到直线0x y m ++=的距离为1,则实数m 的值为3-D .若点P 在直线20x y ++=上,点Q 在圆C 上,()0,2A ,则PA PQ +的最小值为211.在直三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,且满足11AB BC AA ===,若点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则下列说法正确的是()A .当13μ=时,三棱锥1C A BP -的体积为定值B .当12λ=时,ABP 的面积S C .当12λ=时,有且仅有一个点P ,使得1A P BP⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 三、填空题12.定义2a b a a b ⊗=-⋅r r r r r,若向量)3a =- ,向量b 的模为2,向量a 与向量b的夹角为6π,则a b ⊗= .13.已知()30A -,,()3,0B ,点C ,D 满足3AC =,2133AD AB AC =+,则D 点的轨迹方程为.14.“若点P 为椭圆上的一点,1F ,2F 为椭圆的两个焦点,则椭圆在点P 处的切线平分12F PF ∠的外角”,这是椭圆的光学性质之一.已知椭圆22:1164x y C +=,点P 是椭圆上的点,在点P处的切线为直线l ,过左焦点1F 作l 的垂线,垂足为M ,则1MF 的最小值为.四、解答题15.已知点()1,2A -,()1,0B -,点A 关于直线10x y -+=的对称点为C .(1)求ABC V 的外接圆E 的标准方程;(2)若过点()1,3M 的直线l 被圆E 截得的弦长为2,求直线l 的方程.16.如图,在三棱锥A BCD -中,3AB AC BD CD AD =====,2BC =,M 在线段AD 上,且2AM =,N 为BC 的中点.(1)证明:BC AD ⊥;(2)求异面直线AN ,CM 所成角的余弦值.17.已知椭圆()2222:10x y C a b a b +=>>的上顶点为()0,1B 1F .(1)求椭圆C 的方程;(2)若过点()1,0M 的直线l 与椭圆C 相交于P ,Q 两点,且1PFQ △的面积为52,求直线l 的方程.18.如图,在四面体ABCD 中,AD ⊥平面BCD ,M ,P 分别是线段AD ,BM 的中点,点Q 在线段AC 上,且3AQ QC =.(1)求证://PQ 平面BCD ;(2)当BC DC ==2AD BD ==时,求平面PQM 与平面BCD 夹角的余弦值;(3)在(2)的条件下,若G 为ABD △内的动点,//AB 平面QGM ,且QG 与平面ABD 所成的角最大,试确定点G 的位置.19.定义:若椭圆()222210+=>>x y a b a b 上的两个点()11,M x y ,()22,N x y 满足1212220x x y y a b +=,则称M ,N 为该椭圆的一个“共轭点对”,记作[],M N ,已知四点2A ⎛ ⎝⎭,()1,1B ,()0,1C ,D ⎛- ⎝⎭中恰有三点在椭圆E 上.(1)求椭圆E 的标准方程;(2)证明:有两个点G 满足“共轭点对”[],A G ,并求点G 的坐标;(3)设(2)中的两个点G 分别为1G ,2G ,设O 为坐标原点,点P ,Q 在椭圆E 上,满足//PQ OA且点P ,Q 在直线12G G 两侧,求四边形12G PG Q 的面积的最大值.。
山东省泰安市2019-2020学年高二数学上学期末考试题答题卡
高二年级考试数学试题答题卡请在各题目的答题区域内作答,超出矩形边框的答案无效学校姓名班级准考证号一、单项选择题(共40分)非选择题答题区共分1 [A ][B ][C ][D ]2 [A ][B ][C ][D ]3 [A ][B ][C ][D ]4 [A ][B ][C ][D ]5 [A ][B ][C ][D]6 [A ][B ][C ][D ]7 [A ][B ][C ][D ]8 [A ][B ][C ][D ]18.(12分)请在各题目的答题区域内作答,超出矩形边框的答案无效请在各题目的答题区域内作答,超出矩形边框的答案无效数学二[1]请在各题目的答题区域内作答,超出矩形边框的答案无效注意事项1.答题前,考生先将自己的学校、班级、姓名、准考证号填写清楚,并将准考证号填涂在相应位置。
2.选择题使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题使用黑色碳素笔书写,字体工整、笔迹清楚,按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
3.保持卡面清洁,不要折叠、不要弄破。
贴条形码处二、多项选择题(共20分)9 [A ][B ][C ][D ]10 [A ][B ][C ][D ]11 [A ][B ][C ][D ]12 [A ][B ][C ][D ]20.(12分)请在各题目的答题区域内作答,超出矩形边框的答案无效请在各题目的答题区域内作答,超出矩形边框的答案无效请在各题目的答题区域内作答,超出矩形边框的答案无效请在各题目的答题区域内作答,超出矩形边框的答案无效请在各题目的答题区域内作答,超出矩形边框的答案无效请在各题目的答题区域内作答,超出矩形边框的答案无效22.(12分)21.(12分)数学二[2]。
山东省泰安市新泰第一中学老校区(新泰中学)2024-2025学年高二上学期第一次月考数学试题
山东省泰安市新泰第一中学老校区(新泰中学)2024-2025学年高二上学期第一次月考数学试题一、单选题1.已知直线1l 过(A ,()4,0B 两点,且12l l ⊥,则直线2l 的倾斜角为( )A .π6B .π3C .2π3D .5π6 2.已知向量(1,3,),(2,1,3),(1,4,2),p a b λ==-=--u r r r 若p u r 与a r 、b r 共面,则实数λ=( ) A .2- B .1- C .1 D .23.在空间直角坐标系中,已知点()1,1,2P -,则下列说法错误..的是( ) A .点P 关于坐标原点对称点的坐标为()1,1,2--B .点P 关于Oyz 平面对称点的坐标为()1,1,2C .点P 在Oyz 平面上的射影点的坐标为()0,1,2D .点P 在x 轴上的射影点的坐标为()1,0,04.设平面α内不共线的三点A ,B ,C 以及平面外一点P ,若平面α内存在一点D 满足()2PD xPA x =+-u u u r u u u r 3PB xPC +u u u r u u u r ,则x 的值为( )A .0B .19-C .13-D .23- 5.已知直线l 过定点(1,2,3)A ,向量(1,0,1)n =r 为其一个方向向量,则点(4,3,2)P 到直线l 的距离为( )A B C .3 D .6.过点()0,4M -作圆C :22+2660x x y y -+=+的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y -+=B .7180x y -+=C .2550x y -+=D .550++=x y7.设直线l 与圆221:(2)(5)49C x y ++-=交于A ,B 两点,若线段AB 的中点为(1,1)M ,则圆222:(3)(4)1C x y -+-=上的点到直线l 的距离的最大值为( )A .15B .35C .65D .1158.在平行六面体1111ABCD A B C D -中,2AB =,2AD =,14AA =,1160BAD BAA DAA ∠=∠=∠=o ,则1BC 与1CA 所成角的正弦值为( )A .42BC D二、多选题9.下列结论正确的有( )A .直线2y x =关于1y x =+对称的直线为230x y -+=B .若一直线的方向向量为),则此直线倾斜角为60oC .若直线10x ay ++=与直线20x y a -+=垂直,则12a =D .已知点()()4,2,1,1A B ,若直线()2y k x =-与线段AB 相交,则k 的取值范围是[]1,1- 10.以下四个命题表述正确的是( )A .直线()()34330m x y m m R ++-+=∈恒过定点()3,3--B .圆224x y +=上有且仅有3个点到直线:0l x y -的距离都等于1C .圆22120C :x y x ++=与圆222480C :x y x y m +--+=恰有三条公切线,则4m =D .已知圆22:4C x y +=,点P 为直线142xy +=上一动点,过点P 向圆C 引两条切线PA 、PB ,A 、B 为切点,则直线AB 经过定点()1,211.在棱长为2的正方体1111ABCD A B C D -中,点P 满足1BP BC BB λμ=+u u u r u u u r u u u r ,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,AP BD ⊥B .当1μ=时,三棱锥P ABD -的体积为83C .当1λμ+=时,AP ∥平面11AC DD .当12λμ==时,P 到平面11AC D三、填空题12.直线1:60l x ay ++=与()2:2320l a x y a -++=平行,则a 的值为. 13.直线30x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆()2232x y -+=上,则ABP V 面积的取值范围.14.若直线1:20l x my +-=与2:20()l mx y m -+=∈R 相交于点P ,过点P 作圆22:(2)(2)1C x y +++=的切线,切点为M ,则|PM |的最大值为.四、解答题15.已知ABC V 的顶点B 的坐标为()1,2-,AB 边上的中线CM 所在的直线方程为210x y -+=,BAC ∠的平分线所在的直线方程为7120x y +-=.(1)求点A 的坐标;(2)求直线AC 的方程16.已知圆C :22680x y x y m +--+=,其中R m ∈.(1)已知圆C 与圆:221x y +=外切,求m 的值;(2)如果直线30x y +-=与C 相交所得的弦长为m 的值. 17.已知空间三点()0,2,3A ,()2,1,6B -,()1,1,5C -.(1)已知点()2,3,D m ,且AB CD ⊥uu u r uu u r ,求m 的值;(2)求以BA ,BC 为邻边的平行四边形的面积.18.在如图所示的六面体ABCDEF 中,矩形ADEF ⊥平面ABCD ,1AB AD AF ===,2CD =,CD AD ⊥,//AB CD .(1)设H为CF中点,证明://BH平面ADEF;--大小的正弦值.(2)求二面角B CF E19.如图所示,等腰梯形ABCD中,AB∥CD,2===,4CD=,E为CD中AD AB BC点,AE与BD交于点O,将A D EV沿AE折起,使得D到达点P的位置(P∉平面ABCE).(1)证明:AE⊥平面POB;(2)若PB=PB上是否存在一点Q(不含端点),使得直线PC与平面AEQ,若存在,确定Q点位置;若不存在,说明理由.。
学易金卷:段考模拟君之2019学年高二理科数学上学期期末原创卷04(考试版)
高二理科数学试题 第1页(共6页) 高二理科数学试题 第2页(共6页)绝密★启用前|学科网试题命制中心2018-2019学年上学期期末原创卷04高二理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教必修3+选修2-1。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某学校准备调查高三年级学生完成课后作业所需的时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24名同学进行调查;第二种由教务处对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,则这两种抽样方式依次为 A .分层抽样,简单随机抽样 B .简单随机抽样,分层抽样 C .分层抽样,系统抽样D .简单随机抽样,系统抽样2.若点(1,2)P --在抛物线y =ax 2(a ∈R ,a ≠0)的准线上,则实数a 的值为 A .8B .18C .4D .143.用秦九韶算法计算多项式6532()25238103,4f x x x x x x x =++-+-=-时,4v 的值为 A .92B .1529C .602D .148-4.已知变量x 与y 负相关,且由观测数据算得样本平均数4, 5.6x y ==,则由该观测的数据算得的线性回归方程可能是 A .0.44y x =+B . 1.20.7y x =+C .0.68y x =-+D .0.78.2y x =-+5.已知命题p :方程22153x y k k+=+-表示椭圆,命题q :-5<k <3,则p 是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.小明每天上学都需要经过一个有交通信号灯的十字路口.已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒.如果小明每天到路口的时间是随机的,则小明上学时到十字路口需要等待的时间不少于20秒的概率是 A .34B .23C .12D .137.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线与x 2+(y -2)2=1没有公共点,则双曲线离心率的取值范围是 A .(1,2)B .(1,2]C .(1,+∞)D .(2,+∞)8.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,通过分层抽样抽取一些样本进行数据分析,如果在区间[2,4)内抽取2个样本,那么在区间[10,12)内应抽取的样本个数为A .2B .4C .6D .99.2018年平昌冬季奥运会于2月9日~2月25日举行,为了解奥运会五环所占面积与单独五个环面积和的比例P ,某学生设计了如下的计算机模拟,通过计算机模拟在长为8,宽为5的长方形内随机取了N 个点,经统计,落入五环及其内部的点数为,圆环半径为1,则比值的近似值为A .325πnNB .32πnNC .8πnND .5π32nN。
山东省泰安市2022-2023学年高三上学期期末考试数学试题及答案
试卷类型:A高三年级考试 数学试题2023.01一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若()12i i 1i a b +=-,其中,R a b ∈,则1i a b ++=( )A 13B 5C .5D 102.设集合{}24A x x x =<≥或,{}1B x a x a =≤≤+,若()RA B ⋂=∅,则实数a 的取值范围是( ) A .1a ≤或4a > B .1a <或4a ≥C .1a <D .4a >3.“sin 0θ>”是“θ为第一或第二象限角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知等比数列{}n a 的前n 项和为n S ,且4S ,2S ,3S 成等差数列,23418a a a ++=-,则5a =( )A .96-B .48-C .48D .965.已知函数()2sin 4cos f x x x =+在x ϕ=处取得最大值,则cos ϕ=( )A .55 B .55 C .55-D .255-6.在轴截面顶角为直角的圆锥内,作一内接圆柱,若圆柱的表面积等于圆锥的侧面积,则圆柱的底面半径与圆锥的底面半径的比值为( ) A .14B .24C .12D .227.已知抛物线C :24yx =的焦点为F ,过点()5,0P 的直线l 交C 于A ,B 两点,O 为坐标原点,记ABO △与AFO △的面积分别为1S 和2S ,则123S S +的最小值为( ) A .82B .202C .242D .3228.设15a =,11ln 9b =,1sin 5c =,则( ) A .a b c << B .b c a <<C .c b a<<D .c a b <<二、选择题:本题共4小题,每小题5分,共20分。