matLAB经典例题及答案
MATLAB编程练习(含答案很好的)
001双峰曲线图:z=peaks(40);mesh(z);surf(z)002解方程:A=[3,4,-2;6,2,-3;45,5,4];>> B=[14;4;23];>> root=inv(A)*B003傅里叶变换load mtlb ;subplot(2,1,1);plot(mtlb);>> title('原始语音信息');>> y=fft(mtlb);>> subplot(2,1,2);>> yy=abs(y);>> plot(yy);>> title('傅里叶变换')004输入函数:a=input('How many apples\n','s')005输出函数a=[1 2 3 4 ;5 6 7 8;12 23 34 45;34 435 23 34]a =1 2 3 45 6 7 812 23 34 4534 435 23 34disp(a)a =1 2 3 45 6 7 812 23 34 4534 435 23 34b=input('how many people\n' ,'s')how many peopletwo peopleb =two people>> disp(b)two people>>006求一元二次方程的根a=1;b=2;c=3;d=sqrt(b^2-4*a*c);x1=(-b+d)/(2*a)x1 =-1.0000 + 1.4142i>> x2=(-b-d)/(2*a)x2 =-1.0000 - 1.4142i007求矩阵的相乘、转置、存盘、读入数据A=[1 3 5 ;2 4 6;-1 0 -2;-3 0 0];>> B=[-1 3;-2 2;2 1];>> C=A*BC =3 142 20-3 -53 -9>> C=C'C =3 2 -3 314 20 -5 -9>> save mydat C>> clear>> load mydat C008编写数学计算公式:A=2.1;B=-4.5;C=6;D=3.5;E=-5;K=atan(((2*pi*A)+E/(2*pi*B*C))/D) K =1.3121009A=[1 0 -1;2 4 1;-2 0 5];>> B=[0 -1 0;2 1 3;1 1 2];>> H=2*A+BH =2 -1 -26 9 5-3 1 12>> M=A^2-3*BM =3 3 -62 13 -2-15 -3 21>> Y=A*BY =-1 -2 -29 3 145 7 10>> R=B*AR =-2 -4 -1-2 4 14-1 4 10>> E=A.*BE =0 0 04 4 3-2 0 10>> W=A\BW =0.3333 -1.3333 0.66670.2500 1.0000 0.25000.3333 -0.3333 0.6667 >> P=A/BP =-2.0000 3.0000 -5.0000-5.0000 3.0000 -4.00007.0000 -9.0000 16.0000>> Z=A.\BWarning: Divide by zero.Z =0 -Inf 01.0000 0.2500 3.0000-0.5000 Inf 0.4000>> D=A./BWarning: Divide by zero.D =Inf 0 -Inf1.0000 4.0000 0.3333-2.0000 0 2.5000010a=4.96;b=8.11;>> M=exp(a+b)/log10(a+b)M =4.2507e+005011求三角形面积:a=9.6;b=13.7;c=19.4;>> s=(a+b+c)/2;>> area=sqrt(s*(s-a)*(s-b)*(s-c))area =61.1739012逻辑运算A=[-1 0 -6 8;-9 4 0 12.3;0 0 -5.1 -2;0 -23 0 -7]; >> B=A(:,1:2)B =-1 0-9 40 00 -23>> C=A(1:2,:)C =-1.0000 0 -6.0000 8.0000 -9.0000 4.0000 0 12.3000>> D=B'D =-1 -9 0 00 4 0 -23>> A*Bans =1.0000 -184.0000-27.0000 -266.90000 46.0000 207.0000 69.0000>> C<Dans =0 0 1 01 0 0 0>> C&Dans =1 0 0 00 1 0 1>> C|Dans =1 1 1 11 1 0 1>> ~C|~Dans =0 1 1 11 0 1 0013矩阵运算练习:A=[8 9 5;36 -7 11;21 -8 5]A =8 9 536 -7 1121 -8 5>> BB =-1 3 -22 0 3-3 1 9>> RT=A*BRT =-5 29 56-83 119 6-52 68 -21>> QW=A.*BQW =-8 27 -1072 0 33-63 -8 45>> ER=A^3ER =6272 3342 294415714 -856 52608142 -1906 2390 >> BF=A.^3BF =512 729 12546656 -343 13319261 -512 125 >> A/Bans =3.13414.9634 -0.4024-1.2561 12.5244 -3.2317-1.9878 6.4512 -2.0366>> EKV=B\AEKV =10.7195 -1.2683 3.52449.4756 1.5854 3.71954.8537 -1.4878 1.3171>> KDK=[A,B]KDK =8 9 5 -1 3 -236 -7 11 2 0 321 -8 5 -3 1 9 >> ERI=[A;B]ERI =8 9 536 -7 1121 -8 5-1 3 -22 0 3-3 1 9014一般函数的调用:A=[2 34 88 390 848 939];>> S=sum(A)S =2301>> min(A)ans =2>> EE=mean(A)EE =383.5000>> QQ=std(A)QQ =419.3794>> AO=sort(A)AO =2 34 88 390 848 939 >> yr=norm(A)yr =1.3273e+003>> RT=prod(A)RT =1.8583e+012>> gradient(A)ans =32.0000 43.0000 178.0000 380.0000 274.5000 91.0000 >> max(A)ans =939>> median(A)ans =239>> diff(A)ans =32 54 302 458 91>> length(A)ans =6>> sum(A)ans =2301>> cov(A)ans =1.7588e+005>>015矩阵变换:A=[34 44 23;8 34 23;34 55 2]A =34 44 238 34 2334 55 2>> tril(A)ans =34 0 08 34 034 55 2>> triu(A)ans =34 44 230 34 230 0 2>> diag(A)ans =34342norm(A)ans =94.5106>> rank(A)ans =3>> det(A)ans =-23462>> trace(A)ans =70>> null(A)ans =Empty matrix: 3-by-0>> eig(A)ans =80.158712.7671-22.9257>> poly(A)ans =1.0e+004 *0.0001 -0.0070 -0.1107 2.3462>> logm(A)Warning: Principal matrix logarithm is not defined for A with nonpositive real eigenvalues. A non-principal matrixlogarithm is returned.> In funm at 153In logm at 27ans =3.1909 + 0.1314i 1.2707 + 0.1437i 0.5011 - 0.2538i0.4648 + 0.4974i 3.3955 + 0.5438i 0.1504 - 0.9608i0.2935 - 1.2769i 0.8069 - 1.3960i 3.4768 + 2.4663i>> fumn(A)Undefined command/function 'fumn'.>> inv(A)ans =0.0510 -0.0502 -0.0098-0.0326 0.0304 0.02550.0305 0.0159 -0.0343>> cond(A)ans =8.5072>> chol(A)Error using ==> cholMatrix must be positive definite.>> lu(A)ans =34.0000 44.0000 23.00000.2353 23.6471 17.58821.0000 0.4652 -29.1816>> pinv(A)ans =0.0510 -0.0502 -0.0098-0.0326 0.0304 0.02550.0305 0.0159 -0.0343>> svd(A)ans =94.510622.345611.1095>> expm(A)ans =1.0e+034 *2.1897 4.3968 1.93821.31542.6412 1.16431.8782 3.7712 1.6625>> sqrtm(A)ans =5.2379 + 0.2003i 3.4795 + 0.2190i 1.8946 - 0.3869i0.5241 + 0.7581i 5.1429 + 0.8288i 2.0575 - 1.4644i3.0084 - 1.9461i4.7123 - 2.1276i 2.1454 + 3.7589i >>016多项式的计算:A=[34 44 23;8 34 23;34 55 2]A =34 44 238 34 2334 55 2>> P=poly(A)P =1.0e+004 *0.0001 -0.0070 -0.1107 2.3462>> PPA=poly2str(P,'X')PPA =X^3 - 70 X^2 - 1107 X + 23462017多项式的运算:p=[2 6 8 3];w=[32 56 0 2];>> m=conv(p,w)m =64 304 592 548 180 16 6 >> [q,r]=deconv(w,p)q =16r =0 -40 -128 -46>> dp=polyder(w)dp =96 112 0>> [num,den]=polyder(w,p)num =80 512 724 312 -16den =4 24 68 108 100 48 9>> b=polyfit(p,w,4)Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 74b =-0.6704 9.2037 -32.2593 0 98.1333>> r=roots(p)r =-1.2119 + 1.0652i-1.2119 - 1.0652i-0.5761018求多项式的商和余p=conv([1 0 2],conv([1 4],[1 1]))p =1 5 6 10 8>> q=[1 0 1 1]q =1 0 1 1>> [w,m]=deconv(p,q)w =1 5m =0 0 5 4 3>> cq=w;cr=m;>> disp([cr,poly2str(m,'x')])5 x^2 + 4 x + 3>> disp([cq,poly2str(w,'x')])x + 5019将分式分解a=[1 5 6];b=[1];>> [r,p,k]=residue(b,a)r =-1.00001.0000p =-3.0000-2.0000k =[]020计算多项式:a=[1 2 3;4 5 6;7 8 9];>> p=[3 0 2 3];>> q=[2 3];>> x=2;>> r=roots(p)r =0.3911 + 1.0609i0.3911 - 1.0609i-0.7822>> p1=conv(p,q)p1 =6 9 4 12 9>> p2=poly(a)p2 =1.0000 -15.0000 -18.0000 -0.0000 >> p3=polyder(p)p3 =9 0 2>> p4=polyval(p,x)p4 =31021求除式和余项:[q,r]=deconv(conv([1 0 2],[1 4]),[1 1 1])022字符串的书写格式:s='student's =student>> name='mary';>> s1=[name s]s1 =marystudent>> s3=[name blanks(3);s]s3 =marystudent>>023交换两个数:clearclca=[1 2 3 4 5];b=[6 7 8 9 10];c=a;a=b;b=c;ab24If语句n=input('enter a number,n=');if n<10nend025 if 双分支结构a=input('enter a number ,a=');b=input('enter a number ,b=');if a>bmax=a;elsemax=b;endmax026三个数按照由大到小的顺序排列:A=15;B=24;C=45;if A<BT=A;A=B;B=T;elseif A<CT=A;A=C;C=T;elseif B<CT=B;B=C;C=T;endABC027建立一个收费优惠系统:price=input('please jinput the price : price=') switch fix(price/100)case[0,1]rate =0;case[2,3,4]rate =3/100;case num2cell(5:9)rate=5/100;case num2cell(10:24)rate=8/100;case num2cell(25:49)rate=10/100;otherwiserate=14/100;endprice=price*(1-rate)028:while循环语句i=0;s=0;while i<=1212s=s+i;i=i+1;ends029,用for循环体语句:sum=0;for i=1:1.5:100;sum=sum+i;endsum030循环的嵌套s=0;for i=1:1:6;for j=1:1:8;s=s+i^j;end;end;s031continue 语句的使用:for i=100:120;if rem(i,7)~=0;continue;end;iend032x=input ('输入X的值x=')if x<1y=x^2;elseif x>1&x<2y=x^2-1;elsey=x^2-2*x+1;endy033求阶乘的累加和sum=0;temp=1;for n=1:10;temp=temp*n;sum=sum+temp;endsum034对角线元素之和sum=0;a=[1 2 3 4;5 6 7 8;9 10 11 12;13 14 15 16]; for i=1:4;sum=sum+a(i,i);endsum035用拟合点绘图A=[12 15.3 16 18 25];B=[50 80 118 125 150.8];plot(A,B)036绘制正玄曲线:x=0:0.05:4*pi;y=sin(x);plot(x,y)037绘制向量x=[1 2 3 4 5 6;7 8 9 10 11 12;13 14 15 16 17 18] plot(x)x=[0 0.2 0.5 0.7 0.6 0.7 1.2 1.5 1.6 1.9 2.3]plot(x)x=0:0.2:2*piy=sin(x)plot(x,y,'m:p')038在正弦函数上加标注:t=0:0.05:2*pi;plot(t,sin(t))set(gca,'xtick',[0 1.4 3.14 56.28])xlabel('t(deg)')ylabel('magnitude(v)')title('this is a example ()\rightarrow 2\pi')text(3.14,sin(3.14),'\leftarrow this zero for\pi')039添加线条标注x=0:0.2:12;plot(x,sin(x),'-',x,1.5*cos(x),':');legend('First','Second',1)040使用hold on 函数x=0:0.2:12;plot(x,sin(x),'-');hold onplot(x,1.5*cos(x),':');041一界面多幅图x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(221);plot(x,y1);title('sin(x)')subplot(222);plot(x,y2);title('cos(x)')subplot(223);plot(x,y3);title('sin(2x)')subplot(224);plot(x,y4);title('cos(2x)')042染色效果图x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(221);plot(x,y1);title('sin(x)');fill(x,y1,'r') subplot(222);plot(x,y2);title('cos(x)');fill(x,y2,'b') subplot(223);plot(x,y3);title('sin(2x)');fill(x,y3,'k') subplot(224);plot(x,y4);title('cos(2x)');fill(x,y4,'g')043特殊坐标图clcy=[0,0.55,2.5,6.1,8.5,12.1,14.6,17,20,22,22.1] subplot(221);plot(y);title('线性坐标图');subplot(222);semilogx(y);title('x轴对数坐标图');subplot(223);semilogx(y);title('y轴对数坐标图');subplot(224);loglog(y);title('双对数坐标图')t=0:0.01:2*pi;r=2*cos(2*(t-pi/8));polar(t,r)044特殊函数绘图:fplot('cos(tan(pi*x))',[-0.4,1.4])fplot('sin(exp(pi*x))',[-0.4,1.4])045饼形图与条形图:x=[8 20 36 24 12];subplot(221);pie(x,[1 0 0 0 1]);title('饼图');subplot(222);bar(x,'group');title('垂直条形图');subplot(223);bar(x,'stack');title('累加值为纵坐标的垂直条形图'); subplot(224);barh(x,'group');title('水平条形图');046梯形图与正弦函数x=0:0.1:10;y=sin(x);subplot(121);stairs(x);subplot(122);stairs(x,y);047概率图x=randn(1,1000);y=-2:0.1:2;hist(x,y)048向量图:x=[-2+3j,3+4j,1-7j];subplot(121);compass(x);rea=[-2 3 1];imag=[3 4 -7];subplot(122);feather(rea,imag);049绘制三维曲线图:z=0:pi/50:10*pi;x=sin(z);y=cos(z);plot3(x,y,z)x=-10:0.5:10;y=-8:0.5:8;[x,y]=meshgrid(x,y);z=sin(sqrt(x.^2+y.^2))./sqrt(x.^2+y.^2); subplot(221);mesh(x,y,z);title('普通一维网格曲面');subplot(222);meshc(x,y,z);title('带等高线的三维网格曲面'); subplot(223);meshz(x,y,z);title('带底座的三维网格曲面'); subplot(224);surf(x,y,z);title('充填颜色的三维网格面')050 带网格二维图x=0:pi/10:2*pi;y1=sin(x);y2=cos(x);plot(x,y1,'r+-',x,y2,'k*:')grid onxlabel('Independent Variable x') ylabel('Dependent Variable y1&y2') text(1.5,0.5,'cos(x)')051各种统计图y=[18 5 28 17;24 12 36 14;15 6 30 9]; subplot(221);bar(y)x=[4,6,8];subplot(222);bar3(x,y)subplot(223);bar(x,y,'grouped') subplot(224);bar(x,y,'stack')052曲面图x=-2:0.4:2;y=-1:0.2:1;[x,y]=meshgrid(x,y);z=sqrt(4-x.^2/9-y.^2/4); surf(x,y,z)grid on053创建符号矩阵e=[1 3 5;2 4 6;7 9 11];m=sym(e)符号表达式的计算问题因式分解:syms xf=factor(x^3-1)s=sym('sin(a+b)'); expand(s)syms x tf=x*(x*(x-8)+6)*t; collect(f)syms xf=sin(x)^2+cos(x)^2; simplify(f)syms xs=(4*x^2+8*x+3)/(2*x+1); simplify(s)通分syms x yf=x/y-y/x;[m,n]=numden(f)嵌套重写syms xf=x^4+3*x^3-7*x^2+12; horner(f)054求极限syms x a;limit(exp(-x),x,0,'left')求导数syms xdiff(x^9+x^6)diff(x^9+x^6,4)055求不定积分与定积分syms x ys=(4-3*x^2)^2;int(s)int(x/(x+y),x)int(x^2/(x+2),x,1,3) double(ans)056函数的变换:syms x ty=exp(-x^2);Ft=fourier(y,x,t)fx=ifourier(Ft,t,x)057求解方程syms a b c xs=a*x^2+b*x+c;solve(s)syms x y zs1=2*x^2+y^2-3*z-4;s2=y+z-3;s3=x-2*y-3*z;[x,y,z]=solve(s1,s2,s3)058求微分方程:y=dsolve('Dy-(t^2+y^2)/t^2/2','t')059求级数和syms x ksymsum(k)symsum(k^2-3,0,10)symsum(x^k/k,k,1,inf)060泰勒展开式syms xs=(1-x+x^2)/(1+x+x^2);taylor(s)taylor(s,9)taylor(s,x,12)taylor(s,x,12,5)061练习syms x a;s1=sin(2*x)/sin(5*x);limit(s1,x,0)s2=(1+1/x)^(2*x);limit(s2,x,inf)syms xs=x*cos(x);diff(s)diff(s,2)diff(s,12)syms xs1=x^4/(1+x^2);int(s1)s2=3*x^2-x+1int(s2,0,2)syms x y zs1=5*x+6*y+7*z-16;s2=4*x-5*y+z-7;s3=x+y+2*z-2;[x,y,z]=solve(s1,s2,s3)syms x yy=dsolve('Dy=exp(2*x-y)','x')y=dsolve('Dy=exp(2*x-y)','y(0)=0','x')n=sym('n');s=symsum(1/n^2,n,1,inf)x=sym('x');f=sqrt(1-2*x+x^3)-(1-3*x+x^2)^(1/3);taylor(f,6)062求于矩阵相关的值a=[2 2 -1 1;4 3 -1 2;8 5 -3 4;3 3 -2 2]adet=det(a)atrace=trace(a)anorm=norm(a)acond=cond(a)arank=rank(a)eiga=eig(a)063矩阵计算A=[0.1389 0.6038 0.0153 0.9318;0.2028 0.2772 0.7468 0.4660;0.1987 0.1988 0.4451 0.4186]B=var(A)C=std(A)D=range(A)E=cov(A)F=corrcoef(A)064求根及求代数式的值P=[4 -3 2 5];x=roots(P)x=[3 3.6];F=polyval(P,x)065多项式的和差积商运算:f=[1 2 -4 3 -1]g=[1 0 1]g1=[0 0 1 0 1]f+g1f-g1conv(f,g)[q,r]=deconv(f,g)polyder(f)066各种插值运算:X=0:0.1:pi/2;Y=sin(X);interp1(X,Y,pi/4)interp1(X,Y,pi/4,'nearest')interp1(X,Y,pi/4,'spline')interp1(X,Y,pi/4,'cubic')067曲线的拟合:X=0:0.1:2*pi;Y=cos(X);[p,s]=polyfit(X,Y,4)plot(X,Y,'K*',X,polyval(p,X),'r-')068求函数的最值与0点x=2:0.1:2;[x,y]=fminbnd('x.^3-2*x+1',-1,1) [x,y]=fzero('x.^3-2*x+1',1)069求多项式的表达式、值、及图像y=[1 3 5 7 19]t=poly(y)x=-4:0.5:8yx=polyval(t,x)plot(x,yx)070数据的拟合与绘图x=0:0.1:2*pi;y=sin(x);p=polyfit(x,y,5);y1=polyval(p,x)plot(x,y,'b',x,y1,'r')071求代数式的极限:syms xf=sym('log(1+2*x)/sin(3*x)');b=limit(f,x,0)072求导数与微分syms xf=sym('x/(cos(x))^2');y1=diff(f)y2=int(f,0,1)078划分网格函数[x,y]=meshgrid(-2:0.01:2,-3:0.01:5); t=x.*exp(-x.^2-y.^2);[px,py]=gradient(t,0.05,0.1);td=sqrt(px.^2+py.^2);subplot(221)imagesc(t)subplot(222)imagesc(td)colormap('gray')079求多次多项方程组的解:syms x1 x2 a ;eq1=sym('x1^2+x2=a')eq2=sym('x1-a*x2=0')[x1 x2]=solve(eq1,eq2,x1,x2)v=solve(eq1,eq2)v.x1v.x2an1=x1(1),an2=x1(2)an3=x2(1),an4=x2(2)080求解微分方程:[y]=dsolve('Dy=-y^2+6*y','y(0)=1','x')s=dsolve('Dy=-y^2+6*y','y(0)=1','x')[u]=dsolve('Du=-u^2+6*u','u(0)=1')w=dsolve('Du=-u^2+6*u','z')[u,w]=dsolve('Du=-w^2+6*w,Dw=sin(z)','u(0)=1,w(0)=0','z') v=dsolve('Du=-w^2+6*w,Dw=sin(z)','u(0)=1,w(0)=0','z')081各种显现隐含函数绘图:f=sym('x^2+1')subplot(221)ezplot(f,[-2,2])subplot(222)ezplot('y^2-x^6-1',[-2,2],[0,10])x=sym('cos(t)')y=sym('sin(t)')subplot(223)ezplot(x,y)z=sym('t^2')subplot(224)ezplot3(x,y,z,[0,8*pi])082极坐标图:r=sym('4*sin(3*x)')ezpolar(r,[0,6*pi])083多函数在一个坐标系内:x=0:0.1:8;y1=sin(x);subplot(221)plot(x,y1)subplot(222)plot(x,y1,x,y2)w=[2 3;3 1;4 6]subplot(223)plot(w)q=[4 6:3 5:1 2]subplot(224)plot(w,q)084调整刻度图像:x=0:0.1:10;y1=sin(x);y2=exp(x);y3=exp(x).*sin(x);subplot(221)plot(x,y2)subplot(222)loglog(x,y2)subplot(223)plotyy(x,y1,x,y2)085等高线等图形,三维图:t=0:pi/50:10*pi;subplot(2,3,1)plot3(t.*sin(t),t.*cos(t),t.^2) grid on[x,y]=meshgrid([-2:0.1:2])z=x.*exp(-x.^2-y.^2)subplot(2,3,2)plot3(x,y,z)box offsubplot(2,3,3)meshz(x,y,z)subplot(2,3,4)surf(x,y,z)contour(x,y,z)subplot(2,3,6)surf(x,y,z)subplot(2,3,5)contour(x,y,z)box offsubplot(2,3,6)contour3(x,y,z)axis off086统计图Y=[5 2 1;8 7 3;9 8 6;5 5 5;4 3 2]subplot(221)bar(Y)box offsubplot(222)bar3(Y)subplot(223)barh(Y)subplot(224)bar3h(Y)087面积图Y=[5 1 2;8 3 7;9 6 8;5 5 5;4 2 3];subplot(221)area(Y)grid onset(gca,'Layer','top','XTick',1:5)sales=[51.6 82.4 90.8 59.1 47.0];x=90:94;profits=[19.3 34.2 61.4 50.5 29.4];subplot(222)area(x,sales,'facecolor',[0.5 0.9 0.6], 'edgecolor','b','linewidth',2) hold onarea(x,profits,'facecolor',[0.9 0.85 0.7], 'edgecolor','y','linewidth',2) hold offset(gca,'Xtick',[90:94])set(gca,'layer','top')gtext('\leftarrow 销售量') gtext('利润')gtext('费用')xlabel('年','fontsize',14)088函数的插值:x=0:2*pi;y=sin(x);xi=0:0.1:8;yi1=interp1(x,y,xi,'linear')yi2=interp1(x,y,xi,'nearest') yi3=interp1(x,y,xi,'spline')yi4=interp1(x,y,xi,'cublic')p=polyfit(x,y,3)yy=polyval(p,xi)subplot(3,2,1)plot(x,y,'o')subplot(3,2,2)plot(x,y,'o',xi,yy)subplot(3,2,3)plot(x,y,'o',xi,yi1)subplot(3,2,4)plot(x,y,'o',xi,yi2)subplot(3,2,5)plot(x,y,'o',xi,yi3)subplot(3,2,6)plot(x,y,'o',xi,yi4)089二维插值计算:[x,y]=meshgrid(-3:0.5:3);z=peaks(x,y);[xi,yi]=meshgrid(-3:0.1:3); zi=interp2(x,y,z,xi,yi,'spline') plot3(x,y,z)hold onmesh(xi,yi,zi+15)hold offaxis tight090函数表达式;function f=exlin(x)if x<0f=-1;elseif x<1f=x;elseif x<2f=2-x;elsef=0;end091:硬循环语句:n=5;for i=1:nfor j=1:nif i==ja(i,j)=2;elsea(i,j)=0;endendendwhile 循环语句:n=1;while prod(1:n)<99^99;n=n+1endn:092 switch开关语句a=input('a=?')switch acase 1disp('It is raning') case 0disp('It do not know')case -1disp('It is not ranging')otherwisedisp('It is raning ?')end093画曲面函数:x1=linspace(-3,3,30)y1=linspace(-3,13,34)[x,y]=meshgrid(x1,y1);z=x.^4+3*x.^2-2*x+6-2*y.*x.^2+y.^2-2*y; surf(x,y,z)。
Matlab编程与应用习题和一些参考答案
Matlab编程与应用习题和一些参考答案Matlab 上机实验一、二3.求下列联立方程的解⎪⎪⎩⎪⎪⎨⎧=+-+-=-+=++-=--+41025695842475412743w z y x w z x w z y x w z y x >> a=[3 4 -7 -12;5 -7 4 2;1 0 8 -5;-6 5 -2 10];>> b=[4;4;9;4];>> c=a\b4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=81272956313841A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=793183262345B ,求C1=A*B’;C2=A’*B;C3=A.*B,并求上述所有方阵的逆阵。
>> A=[1 4 8 13;-3 6 -5 -9;2 -7 -12 -8];>> B=[5 4 3 -2;6 -2 3 -8;-1 3 -9 7];>> C1=A*B'>> C2=A'*B>> C3=A.*B>> inv(C1)>> inv(C2)>> inv(C3)5.设 ⎥⎦⎤⎢⎣⎡++=)1(sin 35.0cos 2x x x y ,把x=0~2π间分为101点,画出以x 为横坐标,y 为纵坐标的曲线。
>> x=linspace(0,2*pi,101);>> y=cos(x)*(0.5+(1+x.^2)\3*sin(x));>> plot(x,y,'r')6.产生8×6阶的正态分布随机数矩阵R1, 求其各列的平均值和均方差。
并求该矩阵全体数的平均值和均方差。
(mean var )a=randn(8,6)mean(a)var(a)k=mean(a)k1=mean(k)i=ones(8,6)i1=i*k1i2=a-i1i3=i2.*i2g=mean(i3)g2=mean(g)10.利用帮助查找limit 函数的用法,并自己编写,验证几个函数极限的例子。
matlab绘图试题及答案
matlab绘图试题及答案MATLAB绘图试题及答案1. 绘制正弦曲线题目:使用MATLAB绘制函数 \( y = \sin(x) \) 在区间 \([0, 2\pi]\) 上的图像。
答案:```matlabx = 0:0.01:2*pi;y = sin(x);plot(x, y);title('Sin(x) Function');xlabel('x');ylabel('y');```2. 绘制二次函数图像题目:绘制函数 \( y = ax^2 + bx + c \) 在区间 \([-10, 10]\) 上的图像,其中 \( a = 1, b = 2, c = 3 \)。
答案:```matlabx = -10:0.1:10;y = x.^2 + 2*x + 3;plot(x, y);title('Quadratic Function y = x^2 + 2x + 3');xlabel('x');ylabel('y');```3. 绘制柱状图题目:给定一组数据 [10, 20, 30, 40, 50],使用MATLAB绘制柱状图。
答案:```matlabdata = [10, 20, 30, 40, 50];bar(data);title('Bar Chart');xlabel('Index');ylabel('Value');```4. 绘制散点图题目:给定两组数据 \( x = [1, 2, 3, 4, 5] \) 和 \( y = [2, 4, 6, 8, 10] \),使用MATLAB绘制对应的散点图。
答案:```matlabx = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];scatter(x, y);title('Scatter Plot');xlabel('x');ylabel('y');```5. 绘制饼图题目:给定一组数据 [10, 20, 30, 40],使用MATLAB绘制饼图。
MATLAB习题及参考答案经典.doc
习题:1, 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。
2, 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。
3, 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。
4, 角度[]604530=x ,求x 的正弦、余弦、正切和余切。
(应用sin,cos,tan.cot)5, 将矩阵⎥⎦⎤⎢⎣⎡=7524a 、⎥⎦⎤⎢⎣⎡=3817b 和⎥⎦⎤⎢⎣⎡=2695c 组合成两个新矩阵: (1)组合成一个4⨯3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡237912685574(2)按照a 、b 、c 的列顺序组合成一个行矢量,即 []2965318772546, 将(x -6)(x -3)(x -8)展开为系数多项式的形式。
(应用poly,polyvalm)7, 求解多项式x 3-7x 2+2x +40的根。
(应用roots)8, 求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。
(应用poly,polyvalm)9, 计算多项式9514124234++--x x x x 的微分和积分。
(应用polyder,polyint ,poly2sym)10, 解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡66136221143092x 。
(应用x=a\b)11, 求欠定方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡5865394742x 的最小范数解。
(应用pinv) 12, 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=943457624a ,计算a 的行列式和逆矩阵。
(应用det,inv)13, y =sin(x ),x 从0到2π,∆x =0.02π,求y 的最大值、最小值、均值和标准差。
matlab程序设计例题及答案
matlab程序设计例题及答案1.编写程序:计算1/3+2/5+3/7+……+10/21法一: s=0;for i=1:10s=s+i/(2*i+1); end ss =法二:sum((1:10)./(3:2:21)) ans =2.编写程序:计算1~100中即能被3整除,又能被7整除的所有数之和。
s=0;for i=1:100if mod(i,3)==0&&mod(i,7)==0 s=s+i; end,end ss =2103.画出y=n!的图,阶乘的函数自己编写,禁用MATLAB 自带的阶乘函数。
x=1:10; for i=1:10try y(i)=y(i-1)*i; catch y(i)=1; end,end plot(x,y)106123456789104.一个数恰好等于它的因子之和,这个数就称为完数。
例如,6的因子为1,2,3,而6=1+2+3,因此6就是一个完数。
编程找出20XX以内的所有完数。
g=;for n=2:20XX s=0;for r=1:n-1if mod(n,r)==0 s=s+r; end endif s==ng=[g n]; end end gg =6 28 4965.编写一个函数,模拟numel函数的功能,函数中调用size函数。
function y=numelnumel(x) m=size(x); y=m(1)*m(2);numelnumel([1 2 3;4 5 6])ans =66. 编写一个函数,模拟length函数的功能,函数中调用size函数。
function y=lengthlength(x) m=size(x);y=max(m(1),m(2));lengthlength([1 2 3;4 5 6])ans =37.求矩阵rand的所有元素和及各行平均值,各列平均值。
s=rand(5);sum=sum(sum(s)) mean2=mean(s,2) mean1=mean(s)sum =mean2 =mean1 =8.编程判断1001,1003,1007,1009,1011为素数,若不是,输出其约数。
MATLAB带答案例题
一、必做题:
1.已知典型二阶系统的传递函数为2
22210)(ωωω++=s k s s G ,试绘制当100ωπ=时,8,7,6,5,4,3,2,1=k 时的系统在单位阶跃相应,要求编制程序实现,并在同一图面中绘制要有必要的文字标志说明和图形编辑。
2.试用Simulink构建三相整流逆变电路。
要求:给出整流桥桥臂电流和电压,整流桥输出电压和逆变桥输入电压,逆变滤波以后的输出电压,并有必要的分析和说明。
第二题 、选做题
5、已知某控制系统的开环传递函数,)
9)(5()2()()(2+++=s s s s k s H s G ,要求绘制系统正反馈、负反馈时系统的根轨迹,并判断系统的稳定性有何区别。
要求编制相应的程序实现。
7、已知如图1所示的电路中,电源
电压10)(=t u s V 时,L =2H ,Ω=1R 求解
图中的电流波形。
假设初始电流
A i 2)0(=,试用Simulink 工具箱搭建模型求出电流波形。
15.用Simulink构建如图8所示的电路,其中R1=5 Ώ,R2=3 Ώ,R3=4 Ώ,R4=2 Ώ,R5=1 Ώ,求电流I。
matlab考试题目及答案
matlab考试题目及答案1. 题目:编写一个MATLAB函数,实现计算并返回一个向量中所有元素的平方和。
答案:以下是一个简单的MATLAB函数,用于计算并返回一个向量中所有元素的平方和。
```matlabfunction sumOfSquares = calculateSumOfSquares(vector)sumOfSquares = sum(vector.^2);end```2. 题目:给定一个3x3的矩阵A,使用MATLAB编写代码,求出矩阵A 的转置。
答案:可以通过简单的转置操作来求得矩阵A的转置。
```matlabA = [1 2 3; 4 5 6; 7 8 9];A_transpose = A';```3. 题目:编写一个MATLAB脚本,实现对一个二维数组进行排序,并返回排序后的数组。
答案:以下是一个MATLAB脚本,用于对一个二维数组进行排序,并返回排序后的数组。
```matlabfunction sortedArray = sort2DArray(array)sortedArray = sort(array(:));end```4. 题目:给定一个向量x,使用MATLAB编写代码,计算并返回向量x的元素个数。
答案:可以通过内置函数`numel`来计算向量x的元素个数。
```matlabx = [1, 2, 3, 4, 5];numElements = numel(x);```5. 题目:编写一个MATLAB函数,实现计算并返回两个向量元素的点积。
答案:以下是一个简单的MATLAB函数,用于计算两个向量的点积。
```matlabfunction dotProduct = calculateDotProduct(vector1, vector2)dotProduct = dot(vector1, vector2);end```6. 题目:给定一个矩阵B,使用MATLAB编写代码,求出矩阵B的行列式。
matlab试题及答案
matlab试题及答案# MATLAB试题及答案一、选择题1. MATLAB的基本数据单位是:A. 矩阵B. 向量C. 标量D. 数组答案:A2. 下列哪个命令可以用来绘制函数图形?A. `plot`B. `graph`C. `draw`D. `chart`答案:A3. MATLAB中,以下哪个是正确的矩阵转置操作?A. `transpose(A)`B. `A'`C. `A^T`D. `flip(A)`答案:B二、简答题1. 简述MATLAB中矩阵的基本操作。
答案:在MATLAB中,矩阵是最基本的数据结构,可以进行加、减、乘、除等基本运算。
矩阵的创建可以使用方括号`[]`,例如`A = [1 2;3 4]`。
矩阵的转置使用单引号`'`,例如`A'`。
矩阵的求逆使用`inv`函数,例如`inv(A)`。
2. MATLAB中如何实现循环结构?答案:MATLAB中实现循环结构主要有两种方式:`for`循环和`while`循环。
`for`循环用于已知迭代次数的情况,例如:```matlabfor i = 1:5disp(i);end````while`循环用于迭代次数未知的情况,例如:```matlabi = 1;while i <= 5disp(i);i = i + 1;end```三、计算题1. 给定矩阵A和B,请计算它们的乘积C,并求C的行列式。
A = [1 2; 3 4]B = [5 6; 7 8]答案:首先计算矩阵乘积C:```matlabC = A * B;```然后计算C的行列式:```matlabdetC = det(C);```结果为:```matlabC = [19 22; 43 50]detC = -16```2. 编写一个MATLAB函数,计算并返回一个向量的范数。
答案:```matlabfunction norm_value = vector_norm(v)norm_value = norm(v);end```四、编程题1. 编写一个MATLAB脚本,实现以下功能:- 随机生成一个3x3的矩阵。
matlab20道试题及解答
试题1.“数学黑洞”:任意一个4位自然数,将组成该数的各位数字重新排列,形成一个最大数和一个最小数,之后两数相减,其差仍为一个自然数。
重复进行上述运算,最终会出现一个神秘的数,请编程输出这个神秘的数。
clear;a=input('请输入一个四位正整数:');str_a=num2str(a); %将a转化为一个字符串b_min=str2double(sort(str_a)); %形成最小数b_max=str2double(sort(str_a,'descend')); %形成最大数b=b_max-b_min; %求最大数与最小数之差while (b~=a)a=b;str_a=num2str(a); %将a转化为一个字符串b_min=str2double(sort(str_a)); %形成最小数b_max=str2double(sort(str_a,'descend')); %形成最大数b=b_max-b_min; %求最大数与最小数之差endb试题2.将数字1、2、3、4、5、6填入一个2行3列的表格中,要使得每一列右边的数字比左边的数字大,每一行下面的数字比上面的数字大。
请编写程序求出按此要求可有几种填写方法。
a(1)=1;a(6)=6;count=0; %用来计数b=perms('2345'); %产生2345的全排列[m,n]=size(b);for i=1:mtemp=b(i,:);a(2)=str2double(temp(1));a(3)=str2double(temp(2));a(4)=str2double(temp(3));a(5)=str2double(temp(4));if ((a(4)>a(2))&&(a(4)>a(3))&&(a(5)>a(3)))count=count+1;c=reshape(a,2,3); %将a向量转化为2*3矩阵输出disp(c);endenddisp(['共有',num2str(count),'种填写方法']); %输出填写方法的种数试题3.编写成绩排序程序。
matlab简单编程21个题目及答案
1、设⎥⎦⎤⎢⎣⎡++=)1(sin35.0cos2xxxy,把x=0~2π间分为101点,画出以x为横坐标,y为纵坐标的曲线。
第一题的matlab源程序:①考虑cos(x)为一个整体,然后乘以中括号里面的全部x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x).*(0.5+3*sin(x)./(1+x.^2)); %y的表达式plot(x,y)%画出图形图如下:②考虑对整体求解cos,先求x乘以括号中的部分x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x.*(0.5+3*sin(x)./(1+x.^2))); %y的表达式plot(x,y) %画出图形图如下:2、产生8×6阶的正态分布随机数矩阵R1, 求其各列的平均值和均方差。
并求该矩阵全体数的平均值和均方差。
第二题的matlab源程序如下:R1=randn(8,6) %产生正态分布随机矩阵R1 =1.0933 -0.7697 1.5442 -0.1924 1.4193 0.21571.1093 0.3714 0.0859 0.8886 0.2916 -1.1658-0.8637 -0.2256 -1.4916 -0.7648 0.1978 -1.14800.0774 1.1174 -0.7423 -1.4023 1.5877 0.1049-1.2141 -1.0891 -1.0616 -1.4224 -0.8045 0.7223-1.1135 0.0326 2.3505 0.4882 0.6966 2.5855-0.0068 0.5525 -0.6156 -0.1774 0.8351 -0.66691.5326 1.1006 0.7481 -0.1961 -0.2437 0.1873aver=(sum(R1(1:end,1:end)))./8 %产生各行的平均值aver =0.0768 0.1363 0.1022 -0.3473 0.4975 0.1044a=std(R1(1:end,1:end)) %产生各行的均方差也就是标准差a =1.0819 0.8093 1.3456 0.8233 0.8079 1.2150aver1=(sum(R1(:)))./48 %全体数的平均值aver1 =0.0950b=std(R1(:)) %全体数的均方差即标准差b =1.01033、设x=rcost+3t,y=rsint+3,分别令r=2,3,4,画出参数t=0~10区间生成的x~y 曲线。
MATLAB例题考试及答案
例1.1 分别绘制函数和的曲线。
x=-2*pi:pi/180:2*pi;plot(x,2.^(-abs(x)),':',x,sin(x));例1.2 求方程2x5-3x3 +71x2-9x+13=0的全部根。
p=[2,0,-3,71,-9,13];x=roots(p)例1.3 求解线性方程组。
a=[2,3,-1;8,2,3;45,3,9];b=[2;4;23];x=inv(a)*b例1.4 求积分quad('x.*log(1+x)',0,1)例2.2 利用M文件建立MYMAT矩阵。
(1)启动有关编辑程序或MATLAB文本编辑器(见第4章),并输入待建矩阵:MYMAT=[101,102,103,104,105,106,107,108,109;201,202,203,204,205,206,207,208,209;301,302,303,304,305,306,307,308,309]例2.3 建立5阶方阵A,判断A的元素是否能被3整除。
A =[24,35,13,22,63;23,39,47,80,80; ...90,41,80,29,10;45,57,85,62,21;37,19,31,88,76]P=rem(A,3)==0例2.5 建立矩阵A,然后找出在[10,20]区间的元素的位置。
(1) 建立矩阵A。
A=[4,15,-45,10,6;56,0,17,-45,0](2) 找出大于4的元素的位置。
find(A>=10 & A<=20)ans =367例2.6 建立一个字符串向量,然后对该向量做如下处理:(1)取第1~5个字符组成的子字符串。
(2)将字符串倒过来重新排列。
(3)将字符串中的小写字母变成相应的大写字母,其余字符不变。
(4)统计字符串中小写字母的个数。
命令如下:ch='ABc123d4e56Fg9';subch=ch(1:5)subch =ABc12revch=ch(end:-1:1)revch =9gF65e4d321cBAk=find(ch>='a'&ch<='z');ch(k)=ch(k)-('a'-'A');char(ch)ans =ABC123D4E56FG9length(k)ans =4例3.2 建立随机矩阵:(1) 在区间[20,50]内均匀分布的5阶随机矩阵。
matLAB经典例题及答案
一.对以下数据分别作二次,三次多项式拟合,并画出图形.x=1:16;y=[4,6.4,8,8.4,9.28,9.5,9.7,9.86,10,10.2,10.32,10.42,10.5, 10.55,10.58,10.6];答:程序如下(1)x=(1:16);y=erf(x);p=polyfit(x,y,2);f=polyval(p,x);plot(x,y,x,f);结果p=-0.00100.02020.9096(2)y=[4,6.4,8,8.4,9.28,9.5,9.7,9.86,10,10.2,10.32,10.42,10.5, 10.55,10.58,10.6];y=erf(x);p=polyfit(x,y,3)f=polyval(p,x);plot(x,y,x,f)结果P=0.0002-0.00710.06280.8404二.在[0,4pi]画sin(x),cos(x)(在同一个图象中);其中cos(x)图象用红色小圆圈画.并在函数图上标注“y=sin(x)”,“y=cos(x)”,x轴,y轴,标题为“正弦余弦函数图象”.答:程序如下x=[0:720]*pi/180;plot(x,sin(x),x,cos(x),'ro');x=[2.5;7];y=[0;0];s=['y=sin(x)';'y=cos(x)'];text(x,y,s);xlabel('正弦余弦函数图象'),ylabel('正弦余弦函数图象')图形如下三.选择一个单自由度线性振动系统模型,自定质量、弹簧刚度、阻尼、激振力等一组参数,分别编程(m 文件)计算自由和强迫振动时的响应,并画出振动曲线图。
(要求画出该单自由度线性振动系统模型图)其中质量为m=1000kg,弹性刚度k=48020N/m,阻尼c=1960N.s/m,激振力f(t)=0.阻尼比ζ的程序p=1960/(2*sqrt(48020*1000))求得p=0.1414而p为阻尼比ζ强迫振动时的响应程序g =tf([-101],[48020048020*1.9848020]);bode(g)图形g =tf([001],[0001]);bode(g)振动曲线图程序:函数文件function dx =rigid(t,x)dx =zeros(2,1);dx(1)=x(2);dx(2)=(-48020*x(1)-1960*x(2))/1000;命令文件options =odeset('RelTol',1e-4,'AbsTol',[1e-41e-4]);[T,X]=ode45(@rigid,[012],[11],options);plot(T,X(:,1),'-')其图形如下024681012-6-5-4-3-2-11234单自由度线性强迫振动系统模型图其中质量为m=1000kg,弹性刚度k=48020N/m,阻尼c=1960N.s/m,f(t)=cos(3*pi*t)振动曲线图程序:函数文件function dx=rigid(t,x)dx=zeros(2,1);dx(1)=x(2);dx(2)=(-48020*x(1)-1960*x(2))/1000+cos(3*pi*t);命令文件options=odeset('RelTol',1e-4,'AbsTol',[1e-41e-4]);[T,X]=ode45(@rigid,[020],[11],options);plot(T,X(:,1),'-')力等一组参数,建立Simulink仿真模型框图进行仿真分析。
matlab试题及答案开卷
matlab试题及答案开卷1. MATLAB基础操作在MATLAB中,如何创建一个名为“myMatrix”的3x3矩阵,其元素从1到9按顺序排列?答案:在MATLAB中,可以使用以下命令创建名为“myMatrix”的3x3矩阵:```matlabmyMatrix = [1 2 3; 4 5 6; 7 8 9];```或者使用内置函数`magic`:```matlabmyMatrix = magic(3);```2. 矩阵运算给定两个矩阵A和B,其中A = [2 3; 4 5],B = [6 7; 8 9],计算A+B的结果。
答案:在MATLAB中,可以使用加号`+`来计算两个矩阵的和:```matlabA = [2 3; 4 5];B = [6 7; 8 9];C = A + B;```计算结果C为:```matlabC = [8 10; 12 14];```3. 向量操作创建一个从0到1的等差数列,步长为0.1。
答案:在MATLAB中,可以使用`linspace`函数或`:`操作符来创建等差数列:```matlabv = 0:0.1:1;```或者使用`linspace`函数:```matlabv = linspace(0, 1, 11);```两种方法都将得到一个包含11个元素的向量,从0开始,到1结束,步长为0.1。
4. 条件语句编写一个MATLAB脚本,判断一个给定的数n是否为素数。
答案:可以通过以下MATLAB脚本来判断一个数n是否为素数:```matlabfunction isPrime = isPrimeNumber(n)if n <= 1isPrime = false;elsefor i = 2:sqrt(n)if mod(n, i) == 0isPrime = false;return;endendisPrime = true;endend```调用此函数时,传入一个数值n,函数将返回一个布尔值,表示n 是否为素数。
matlab试题及答案
matlab试题及答案一、单项选择题(每题2分,共10分)1. MATLAB中用于创建向量的命令是:A. vectorB. arrayC. linspaceD. colon答案:D2. 在MATLAB中,以下哪个函数用于计算矩阵的行列式?A. detB. rankC. invD. eig答案:A3. MATLAB中用于进行矩阵转置的运算符是:A. 'B. .C. ^D. !答案:A4. 若A是一个3x3的矩阵,执行命令A(2,:)=0;后,矩阵A的第二行将变为:A. [0 0 0]B. [1 0 0]C. [0 1 0]D. [0 0 1]答案:A5. MATLAB中,以下哪个函数用于绘制三维曲面图?A. plotB. surfC. barD. hist答案:B二、填空题(每题3分,共15分)1. MATLAB中,使用________命令可以清除所有变量。
答案:clear2. 若要在MATLAB中创建一个从0到1的100个元素的向量,可以使用命令________。
答案:linspace(0,1,100)3. MATLAB中,使用________函数可以计算矩阵的特征值。
答案:eig4. 在MATLAB中,________函数用于计算两个矩阵的点乘。
答案:dot5. 若要在MATLAB中绘制一个圆,可以使用________函数。
答案:plot三、简答题(每题5分,共20分)1. 请解释MATLAB中矩阵索引的概念。
答案:在MATLAB中,矩阵索引指的是通过行号和列号来访问矩阵中特定元素的过程。
例如,A(2,3)表示访问矩阵A的第二行第三列的元素。
2. MATLAB中如何实现矩阵的元素乘法?答案:在MATLAB中,矩阵的元素乘法可以通过使用点乘运算符(.*)来实现。
例如,C = A .* B,其中A和B是相同大小的矩阵。
3. 请说明MATLAB中如何使用循环结构。
答案:MATLAB中可以使用for循环和while循环两种循环结构。
(完整版)matlab经典习题及解答
第1章 MATLAB 概论1.1 与其他计算机语言相比拟,MATLAB 语言突出的特点是什么?MATLAB 具有功能强大、使用方便、输入简捷、库函数丰富、开放性强等特点。
1.2 MATLAB 系统由那些局部组成?MATLAB 系统主要由开发环境、MATLAB 数学函数库、MATLAB 语言、图形功能和应用程序接口五个局部组成。
1.4 MATLAB 操作桌面有几个窗口?如何使某个窗口脱离桌面成为独立窗口?又如何将脱离出去的窗口重新放置到桌面上?在MATLAB 操作桌面上有五个窗口,在每个窗口的右上角有两个小按钮,一个是关闭窗口的Close 按钮,一个是可以使窗口成为独立窗口的Undock 按钮,点击Undock 按钮就可以使该窗口脱离桌面成为独立窗口,在独立窗口的view 菜单中选择Dock ……菜单项就可以将独立的窗口重新防止的桌面上。
1.5 如何启动M 文件编辑/调试器?在操作桌面上选择“建立新文件〞或“翻开文件〞操作时,M 文件编辑/调试器将被启动。
在命令窗口中键入edit 命令时也可以启动M 文件编辑/调试器。
1.6 存储在工作空间中的数组能编辑吗?如何操作?存储在工作空间的数组可以通过数组编辑器进行编辑:在工作空间浏览器中双击要编辑的数组名翻开数组编辑器,再选中要修改的数据单元,输入修改内容即可。
1.7 命令历史窗口除了可以观察前面键入的命令外,还有什么用途?命令历史窗口除了用于查询以前键入的命令外,还可以直接执行命令历史窗口中选定的内容、将选定的内容拷贝到剪贴板中、将选定内容直接拷贝到M 文件中。
1.8 如何设置当前目录和搜索路径,在当前目录上的文件和在搜索路径上的文件有什么区别?当前目录可以在当前目录浏览器窗口左上方的输入栏中设置,搜索路径可以通过选择操作桌面的file 菜单中的Set Path 菜单项来完成。
在没有特别说明的情况下,只有当前目录和搜索路径上的函数和文件能够被MATLAB 运行和调用,如果在当前目录上有与搜索路径上相同文件名的文件时那么优先执行当前目录上的文件,如果没有特别说明,数据文件将存储在当前目录上。
Matlab 考题题整理 带答案
MATLAB 考试试题(1)产生一个1x10的随机矩阵,大小位于(-5 5),并且按照从大到小的顺序排列好!(注:要程序和运行结果的截屏)答案:a=10*rand(1,10)-5;b=sort(a,'descend')1.请产生一个100*5的矩阵,矩阵的每一行都是[1 2 3 4 5]2. 已知变量:A=’ilovematlab’;B=’matlab’, 请找出:(A)B在A中的位置。
(B)把B放在A后面,形成C=‘ilovematlabmatlab’3. 请修改下面的程序,让他们没有for循环语句!A=[1 2 3; 4 5 6; 7 8 9];[r c]=size(A);for i=1:1:rfor j=1:1:cif (A(i,j)>8 | A(i,j)<2)A(i,j)=0;endendend4. 请把变量A=[1 2 3; 4 5 6; 7 8 9]写到文件里(output.xls),写完后文件看起来是这样的1 2 3 4 5 6 7 8 95.试从Yahoo网站上获得微软公司股票的2008年9月的每日收盘价。
6.编写M文件,从Yahoo网站批量读取60000.SH至600005.SH在2008年9月份的每日收盘价(提示:使用字符串函数)。
7. 将金牛股份(000937)2005年12月14日至2006年1月10日的交易记录保存到Excel中,编写程序将数据读入MATLAB中,进一步将数据读入Access数据库文件。
8.已知资产每日回报率为0.0025,标准差为0.0208,资产现在价值为0.8亿,求5%水平下资产的10天在险价值(Var)。
9.a=[1 2 3 4 5],b=a(1)*a(5)+a(2)*a(4)+a(3)*a(3)+a(4)*a(2)+a(5)*a(1).试用MATLAB中最简单的方法计算b,注意最简单哦。
1、求下列联立方程的解3x+4y-7z-12w=45x-7y+4z+ 2w=-3x +8z- 5w=9-6x+5y-2z+10w=-8求系数矩阵的秩;求出方程组的解。
MATLAB考试试题及答案
MATLAB考试试题及答案一、选择题(每题5分,共25分)1. 在MATLAB中,下列哪个命令用于创建一个行向量?A. v = [1; 2; 3]B. v = [1 2 3]C. v = [1, 2, 3]D. v = (1, 2, 3)答案:B2. 在MATLAB中,下列哪个命令用于计算矩阵A的行列式?A. det(A)B. det(A')C. det(inv(A))D. det(A^2)答案:A3. 在MATLAB中,下列哪个命令用于计算矩阵A的逆?A. inv(A)B. A^(-1)C. pinv(A)D. A\B答案:A4. 在MATLAB中,下列哪个命令用于求解线性方程组Ax= b?A. A\bB. A/BC. B/AD. A^-1b答案:A5. 在MATLAB中,下列哪个命令用于绘制二维图形?A. plot(x, y)B. scatter(x, y)C. bar(x, y)D. pie(x, y)答案:A二、填空题(每题5分,共25分)6. 在MATLAB中,可以使用______命令创建一个等差数列。
答案:linspace7. 在MATLAB中,可以使用______命令创建一个等比数列。
答案:logspace8. 在MATLAB中,可以使用______命令计算矩阵A的特征值。
答案:eig(A)9. 在MATLAB中,可以使用______命令计算矩阵A的特征向量。
答案:eigenvector(A)10. 在MATLAB中,可以使用______命令计算矩阵A的奇异值。
答案:svd(A)三、解答题(每题25分,共75分)11. 编写MATLAB程序,求解以下线性方程组:2x + 3y - z = 1x - y + 2z = 03x + 2y - 4z = -3答案:```A = [2 3 -1; 1 -1 2; 3 2 -4];b = [1; 0; -3];x = A\b;disp('解为:');disp(x);```12. 编写MATLAB程序,绘制以下函数的图形:y = sin(x) + cos(x),x ∈ [0, 2π]答案:```x = linspace(0, 2pi, 100);y = sin(x) + cos(x);plot(x, y);title('y = sin(x) + cos(x)');xlabel('x');ylabel('y');grid on;```13. 编写MATLAB程序,计算以下矩阵的特征值和特征向量:A = [1 2 3; 4 5 6; 7 8 9]答案:```A = [1 2 3; 4 5 6; 7 8 9];[V, D] = eig(A);disp('特征值:');disp(diag(D));disp('特征向量:');disp(V);```14. 编写MATLAB程序,使用牛顿迭代法求解方程f(x) = x^3 - 4x + 2 = 0在x = 1附近的根。
matlab笔试试题及答案
matlab笔试试题及答案MATLAB笔试试题及答案1. MATLAB中,如何创建一个名为`myMatrix`的3x3矩阵,其元素从1到9依次排列?答案:可以使用以下命令创建矩阵:```matlabmyMatrix = [1 2 3; 4 5 6; 7 8 9];```2. 在MATLAB中,如何计算向量`v`的范数?答案:可以使用`norm`函数来计算向量的范数。
例如,如果`v`是一个向量,则:```matlabv = [1, 2, 3];norm_v = norm(v);```3. MATLAB中,如何将一个矩阵`A`转置?答案:可以使用单引号(`'`)来转置矩阵`A`:```matlabA = [1 2 3; 4 5 6; 7 8 9];A_transpose = A';```4. 如果要找到矩阵`B`中的最大元素,应该如何操作?答案:可以使用`max`函数来找到矩阵中的最大元素:```matlabB = [10 20 30; 40 50 60; 70 80 90];max_element = max(B(:));```5. 在MATLAB中,如何实现一个简单的for循环,计算从1到10的和?答案:可以使用以下代码实现:```matlabsum = 0;for i = 1:10sum = sum + i;end```6. MATLAB中,如何创建一个二维数组,其元素为当前索引的乘积?答案:可以使用以下代码创建:```matlabC = zeros(3,3);for i = 1:3for j = 1:3C(i,j) = i * j;endend```7. 如何在MATLAB中使用条件语句?答案:可以使用`if`语句来实现条件判断。
例如:```matlabx = 5;if x > 0disp('x is positive');elsedisp('x is not positive');end```8. 在MATLAB中,如何使用`plot`函数绘制一个正弦波?答案:可以使用以下代码绘制正弦波:```matlabx = 0:0.1:2*pi;y = sin(x);plot(x, y);title('Sine Wave');xlabel('x');ylabel('sin(x)');```9. MATLAB中如何使用`fft`函数计算一个信号的快速傅里叶变换?答案:可以使用以下代码计算信号的FFT:```matlabt = 0:0.001:1;x = cos(2*pi*50*t) + randn(size(t));X = fft(x);f = linspace(0, 1000, length(x));plot(f, abs(X));title('Frequency Domain');xlabel('Frequency (Hz)');ylabel('Amplitude');```10. 如何在MATLAB中使用`subplot`函数创建多个子图?答案:可以使用以下代码创建多个子图:```matlabsubplot(2,1,1); % 第一个子图plot(1:10, (1:10).^2);title('Square of Numbers');subplot(2,1,2); % 第二个子图plot(1:10, (1:10).^3);title('Cube of Numbers');```。
matlab考试题B卷及答案
matlab考试题B卷及答案1. MATLAB基础操作题:请在MATLAB中创建一个名为`myVector`的向量,包含元素1, 2, 3, 4, 5,并计算其元素之和。
答案:首先,创建向量`myVector`可以使用以下代码:```matlabmyVector = [1 2 3 4 5];```然后,计算元素之和可以使用`sum`函数:```matlabsumOfElements = sum(myVector);```最终,`sumOfElements`的值将为15。
2. MATLAB矩阵运算题:给定一个3x3的矩阵A,其元素为A=[1 2 3;4 5 6; 7 8 9],请计算矩阵A的转置。
答案:计算矩阵A的转置可以使用`transpose`函数或者简单的`.'`操作符。
以下是使用`transpose`函数的代码:```matlabA = [1 2 3; 4 5 6; 7 8 9];A_transpose = transpose(A);```或者使用`.'`操作符:```matlabA_transpose = A.';```得到的转置矩阵`A_transpose`将是:```1 4 72 5 83 6 9```3. MATLAB编程题:编写一个MATLAB函数,该函数接受一个整数n作为输入,并返回一个n阶的魔方矩阵。
答案:魔方矩阵是一个方阵,其中每一行、每一列以及两条对角线上的元素之和都相等。
以下是一个生成n阶魔方矩阵的MATLAB函数:```matlabfunction magicMatrix = createMagicSquare(n)if mod(n, 2) == 0error('n must be an odd number.');endmagicMatrix = zeros(n);num = 1;for i = 1:nfor j = 1:nif i == 1j = j;elsej = (j + 2 * (i - 1) - n) % n + 1;endmagicMatrix(i, j) = num;num = num + 1;endendend```调用此函数并传入一个奇数n,例如`createMagicSquare(3)`,将返回一个3阶魔方矩阵。
matlab基础考试题及答案
matlab基础考试题及答案1. MATLAB中,如何创建一个名为"myMatrix"的3x3矩阵,其元素为1到9的连续整数?答案:可以使用以下命令创建矩阵:```matlabmyMatrix = [1 2 3; 4 5 6; 7 8 9];```或者使用`magic`函数:```matlabmyMatrix = magic(3);```2. 在MATLAB中,如何计算一个向量的元素平方?答案:可以使用`.^`运算符来计算向量元素的平方:```matlabv = [1 2 3 4];v_squared = v.^2;```3. MATLAB中,如何将一个向量逆序?答案:可以使用`flip`函数或者`end`索引来逆序一个向量:```matlabv = [1 2 3 4];v_reversed = flip(v);```或者```matlabv_reversed = v(end:-1:1);```4. 在MATLAB中,如何计算矩阵的行列式?答案:可以使用`det`函数来计算矩阵的行列式:```matlabA = [1 2; 3 4];detA = det(A);```5. MATLAB中,如何使用循环结构来计算1到100的自然数之和?答案:可以使用`for`循环来计算总和:```matlabsum = 0;for i = 1:100sum = sum + i;end```或者使用`sum`函数直接计算:```matlabsum = sum(1:100);```6. 在MATLAB中,如何创建一个复数?答案:可以通过指定实部和虚部来创建一个复数:```matlabcomplexNumber = 3 + 4i;```7. MATLAB中,如何绘制一个正弦波?答案:可以使用`plot`函数和`sin`函数来绘制正弦波:```matlabx = linspace(0, 2*pi, 100);y = sin(x);plot(x, y);```8. 如何在MATLAB中计算两个矩阵的点积?答案:可以使用`dot`函数或`*`运算符来计算两个矩阵的点积:```matlabA = [1 2; 3 4];B = [5 6; 7 8];dotProduct = dot(A, B);```或者```matlabdotProduct = A * B;```9. MATLAB中,如何使用条件语句来检查一个数是否为偶数?答案:可以使用`if`语句和模运算符来检查一个数是否为偶数:```matlabnum = 10;if mod(num, 2) == 0disp('The number is even.');elsedisp('The number is odd.');end```10. 在MATLAB中,如何将一个字符串转换为小写?答案:可以使用`lower`函数来将字符串转换为小写:```matlabstr = 'Hello World';lowerStr = lower(str);```结束语:以上是MATLAB基础考试题及答案,希望这些题目能帮助你更好地理解和掌握MATLAB的基础知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.对以下数据分别作二次,三次多项式拟合,并画出图形.
x=1:16;
y=[4,6.4,8,8.4,9.28,9.5,9.7,9.86,10,10.2,10.32,10.42,10.5, 10.55,10.58,10.6];
答:程序如下
(1)x=(1:16);
y=erf(x);
p=polyfit(x,y,2);
f=polyval(p,x);
plot(x,y,x,f);
结果p=
-0.00100.02020.9096
(2)y=[4,6.4,8,8.4,9.28,9.5,9.7,9.86,10,10.2,10.32,10.42,10.5, 10.55,10.58,10.6];
y=erf(x);
p=polyfit(x,y,3)
f=polyval(p,x);
plot(x,y,x,f)
结果
P=
0.0002-0.00710.06280.8404
二.在[0,4pi]画sin(x),cos(x)(在同一个图象中);其中cos(x)图象用红色小圆圈画.并在函数图上标注“y=sin(x)”,“y=cos(x)”,x轴,y轴,标题为“正弦余弦函数图象”.
答:程序如下
x=[0:720]*pi/180;
plot(x,sin(x),x,cos(x),'ro');
x=[2.5;7];
y=[0;0];
s=['y=sin(x)';'y=cos(x)'];
text(x,y,s);
xlabel('正弦余弦函数图象'),ylabel('正弦余弦函数图象')
图形如下
三.选择一个单自由度线性振动系统模型,自定质量、弹簧刚度、阻尼、激振力等一组参数,分别编程(m 文件)计算自由和强迫振动时的响应,并画出振动曲线图。
(要求画出该单自由度线性振动系统模型图)
其中质量为m=1000kg,弹性刚度k=48020N/m,阻尼c=1960N.s/m,激振力f(t)=0.阻尼比ζ的程序p=1960/(2*sqrt(48020*1000))
求得p=0.1414而p为阻尼比ζ
强迫振动时的响应程序
g =tf([-101],[48020048020*1.9848020]);bode(g)
图形
g =tf([001],[0001]);bode(g)
振动曲线图程序:
函数文件
function dx =rigid(t,x)dx =zeros(2,1);dx(1)=x(2);dx(2)=(-48020*x(1)-1960*x(2))/1000;
命令文件
options =odeset('RelTol',1e-4,'AbsTol',[1e-41e-4]);[T,X]=ode45(@rigid,[012],[11],options);plot(T,X(:,1),'-')
其图形如下024681012
-6-5
-4
-3
-2
-1
1
2
3
4
单自由度线性强迫振动系统模型图
其中质量为m=1000kg,弹性刚度k=48020N/m,阻尼c=1960N.s/m,f(t)=cos(3*pi*t)
振动曲线图程序:
函数文件
function dx=rigid(t,x)
dx=zeros(2,1);
dx(1)=x(2);
dx(2)=(-48020*x(1)-1960*x(2))/1000+cos(3*pi*t);
命令文件
options=odeset('RelTol',1e-4,'AbsTol',[1e-41e-4]);
[T,X]=ode45(@rigid,[020],[11],options);
plot(T,X(:,1),'-')
力等一组参数,建立Simulink仿真模型框图进行仿真分析。
答案:参数与第二题一样。
仿真参数设置:simulation/simulation parameters
Time:0,100s,solver options:variable-step,ode45
Simulink仿真模型框图如下:
五.自选一个力学问题(除单自由度线性振动系统外),应用MATLAB求解。
(要求有问题描述、数学模型、编制程序、结果显示)
解:问题描述
梁长L=2m,截面尺寸b*h为0.04m*0.02m,截面惯性矩为2.67*(10e-8),密度为7920kg/,质量块的质量M为3.0kg弹性模量E=210GPa.求简支梁的模态.
采用集中质量法
力学模型如下:
数学模型:
质量矩阵为
柔度矩阵
矩阵D=FM称作矩阵的动力矩阵MATLAB程序:
m=[100;01.940;001]; h=0.00000195*3.186;
b=[9117;111611;7119]; f=h.*b;
a=f*m;
d=[111]';
for i=1:16;
y=a*d;
end
v=d
s=m*y;
结果:v=
1.0000
1.4271
1.0000
程序:
w1=1/sqrt(s(3,1))
subplot(3,1,1)
plot([02],[00])
hold on
plot([00.511.52],[0v(1,1)v(2,1)v(3,1)0]) p=v'*m*v;
q=v*v'*m;
j=a-(s(3,1)/p)*q;
d=[11-1]';
%x(1)=d;
for i=1:16;
y=j*d;
%l=y(i)
d=(1/y(3,1))*y;
end
v=d
s=m*y;
w2=1/sqrt(s(3,1))
subplot(3,1,2)
plot([02],[00])
hold on
plot([00.511.52],[0v(1,1)v(2,1)v(3,1)0]) q=v*v'*m;
r=j-(s(3,1)/p)*q;
d=[1-11]';
%x(1)=d;
for i=1:16;
y=r*d;
%l=y(i)
d=(1/y(3,1))*y;
end
v=d
s=m*y;
subplot(3,1,3)
plot([02],[00])
hold on
plot([00.511.52],[0v(1,1)v(2,1)v(3,1)0])
结果:
w1=
58.8629
v=
-1.0000
-0.0000
1.0000
w2=
283.6905
v=
1.0018
-0.7230
1.0000
w3=
524.8349。