加热炉的加热计算
加热炉的加热计算
加热炉的加热计算加热炉是指用来加热材料或物体的设备,广泛应用于工业生产中。
加热炉的加热计算是指对加热炉进行技术设计和计算,确定合适的加热能量和加热时间,以确保材料或物体能够达到所需的加热温度或加热效果。
首先,需要确定被加热材料的性质,包括材料的热导率、比热容、密度等。
这些参数是计算加热能量和加热时间的基础。
其次,需要确定加热炉的设计参数,包括加热炉的尺寸、加热器件的数量和布置方式等。
这些参数决定了加热炉的加热效果和加热均匀性。
然后,需要选择合适的加热能源,常用的加热能源包括电能、燃气和燃油等。
选择合适的加热能源需要考虑到能源成本、加热效率和环境影响等因素。
确定了被加热材料的性质、加热炉的设计参数和加热能源,接下来就可以进行加热计算了。
首先计算加热能量。
加热能量的计算公式为:Q=m×c×ΔT,其中Q 表示加热能量,m表示被加热物质的质量,c表示被加热物质的比热容,ΔT表示被加热物质的温度变化。
然后计算加热时间。
加热时间的计算公式为:t=Q/P,其中t表示加热时间,Q表示加热能量,P表示加热功率。
在进行计算时,需要注意单位的一致性。
通常情况下,质量的单位为千克(kg),比热容的单位为焦耳/千克·摄氏度(J/kg·°C),温度的单位为摄氏度(°C),能量的单位为焦耳(J),功率的单位为瓦特(W)。
此外,还需要考虑到加热炉的热损失。
加热炉在加热过程中会有一定的热损失,需要通过绝热层和保温材料来减少热能的损失,以提高加热效率。
加热计算的结果将用于加热炉的技术设计和加热参数的确定。
通过合理的加热计算,可以确保被加热物质能够达到所需的加热温度或加热效果,提高生产效率和产品质量。
总结起来,加热炉的加热计算是一个复杂的过程,需要确定被加热材料的性质、加热炉的设计参数和加热能源,然后进行加热能量和加热时间的计算。
加热计算的结果将用于加热炉的技术设计和加热参数的确定,以确保材料或物体能够达到所需的加热温度或加热效果。
中频感应熔炼炉和加热炉的参数计算和常见
中频感应熔炼炉和加热炉的参数计算和常见首先,中频感应熔炼炉的参数计算主要包括功率和频率的确定。
功率的计算需要考虑被加热物质的熔点、特性以及熔化需要的热能。
通常采用的功率计算公式是:“功率=熔炼物质的熔化热值/熔化时间”。
频率的选择一般在1kHz至10kHz之间,具体根据被熔化物质的热导率以及炉子的尺寸确定。
其次,中频感应加热炉的参数计算同样涉及功率和频率的确定。
功率的计算需要考虑被加热物体的热容量、温升速率以及所需加热的时间。
通常采用的功率计算公式是:“功率=被加热物体的热容量*温升速率”,其中热容量为物体的质量乘以单位质量的热容量。
频率的选择一般在5kHz至100kHz之间,具体根据被加热物体的导电性能以及炉子的尺寸确定。
1.功率:中频感应熔炼炉和加热炉的功率一般从几千瓦到几百千瓦不等,根据具体的工作需求进行选择。
2.频率:中频感应熔炼炉和加热炉的频率一般在1kHz至100kHz之间,不同频率对材料的加热效果和熔化特性有所差异,需要根据具体工艺要求选择。
3.温度:中频感应熔炼炉和加热炉可以达到很高的温度,一般可以达到1000℃以上。
不同的材料对温度的要求不同,需要根据具体工艺进行调整。
4.电流:中频感应熔炼炉和加热炉的电流会根据功率、频率和电压等参数自动调整,一般会维持在较高的电流水平,以满足加热或熔化的需要。
5.应用领域:中频感应熔炼炉主要应用于金属材料的熔炼和铸造领域,例如钢铁、铜、铝等;中频感应加热炉主要应用于金属材料的预热、热处理、锻造等领域,例如淬火、调质等。
总之,中频感应熔炼炉和加热炉在现代工业生产中具有广泛的应用。
其参数计算涉及功率、频率、温度、电流等方面,根据具体的工艺需求进行选择和调整。
中频感应熔炼炉主要应用于金属材料的熔炼和铸造,而中频感应加热炉主要应用于金属材料的预热、热处理、锻造等领域。
通过合理的参数计算和选择,可以实现高效、快速和节能的加热和熔炼过程。
加热炉计算
(8.6)
Ql=81C十246H十26(S—O)—6W
(8.7)
式中Qh、Ql------液体燃料的高、低热值,千卡/公斤(燃料);
C、H、O、S、W——在燃料中的碳、氢、氧、硫和水分重量百分率,常用1
号原油燃料油中含C 88 %,H 12 %, S、O、W微量。 9号原油燃料油中含C 88.3
%,H10.5 %,S1.2 %,O、W微量。
烟气温度 ts, °C 图8.7烟气带走热量百分率图
图8.7烟气带走热量百分率图
q1/Qm%, 千卡/公斤
过剩空气系数 1.01.11.21.31.4 1.5 1.6
B Q Q1
(五)燃料用量
B
Q
Q1
(8.15)
式中 B——燃料用量,公斤/时;Q——加热炉总热负荷; Q1——燃料低热值。
(四)炉效率
加热炉的热效率取决于加热炉的排气温度,合理的控制排气温度可以得到理想的热效率。在计
算时,当对流段采用光管时,离开对流段的烟气温度ts可假定较对流段油料入口温度 1高80-120℃;
对流段采用翼片管或钉头管时,可假定ts= τ1 十(45-80℃);采用废热回收并使用翼片管时,可假 定ts=饱和蒸汽温度十(25-45℃)。对于某些大负荷的加热炉或进料温度较高的加热炉,对流段排 出热量较大时应考虑废热回收以提高炉子的热效率。目前带有预热或余热回收系统的加热炉,热效
表8—1 某些管式炉热负荷示例
装置
延迟 焦化 蒸馏 催化 裂化 铂重整
炉型
方箱炉 双斜 顶炉 立式炉
立式炉
流量 吨/时
24 225 77.6 119.51
热负荷 万千卡/时
总计
辐射室 对流室
炉子热效率计算说明
公司加热炉热效率组态说明
热效率=(1-q 烟-q 散)×100%
其中:
q 散—散热损失百分比,在本式中取3%;
q 烟—排烟热损失百分比,通过计算求得,计算公式如下
q 烟=———————————————————————————
其中: a —过剩空气系数,通过计算求得,计算公式如下
a =———— 其中:O 2—烟气中氧含量百分数,本数值从氧化锆仪表中读取,
如为5%,则式中代入5。
标准规定烟气氧含量测量位置应该为空预器出口,但公司生产实际中氧化锆全部装在辐射段出口,因此本测试以辐射段出口近似代替。
t g —排烟温度,本数值从温度仪表中读取,单位℃。
CO —烟气中CO 含量,单位ppm ,本数值无现场测量仪表,请仪表组态设置人工输入,由装置工程师输入初值,可参照上月公司热效率监测数据中的CO 含量,每月输入一次。
(0.006549+0.032685a )(t g +1.3475×10-4 t g 2)-1.10+(4.043a-0.252)×10-4
CO 100 21+0.116O 2 21—O 2。
加热炉热效率计算
1 q1 q 2 q3 q 4
3.4.4 正平衡计算热效率
(3-75)
正平衡计算就是由加热炉的有效热量来计算热效率,用公式表示为:
Q8 Q7 Q6 Q5
Q0
(3-76)
管式加热炉的有效热量又叫热负荷,如图 3-2 所示的连续重整加热炉,它的 热负荷由两部分组成,辐射段热负荷和对流段热负荷,分别对原料油和省煤器中 的水进行加热的。 同时值得注意的是烟气预热预热空气的热量不应该计算在词加 热炉的热负荷中,因为这部分热量又会随着热空气进入加热炉中,只属于热量在 整个体系中的转移。 (1)辐射段的热负荷
(3-69)
(3-70)
A A1 t t a
14
T 4 Ta 4 A2 100 100 t ta
(3-71) (3-72) (3-73) (3-74)
T t 273.15
Ta t a 273.15
LO ——燃料气的理论空气量,kg 空气/kg 燃料;
L——燃料气的实际空气量,kg 空气/kg 燃料。
V1 0.01 X i V1i
(3-54)
V2 0.01H 2 S
29 V3 0.01 X i V3i V0 GH 18 10
I lk V0 C空气 T
Q1 I py I lk
q1 Q1 / Q0
式中: Q0 ——入炉的总能量,kJ/Nm³ ;
; QF ——燃料入炉时带进炉的热量,kJ/Nm³ ; QK ——空气带来的热量,kJ/Nm³ N——鼓风机或是压缩的功,kJ/Nm³ ;
I rt , I rb ——燃料在体系入口温度和基准温度(环境温度)下的热焓,
感应加热经验公式
感应加热设备常用参数参考与计算感应加热设备常用参数计算:(仅供参考)1.加热炉功率计算P=(C×T×G)÷(0.24×S×η)注释: 1.1 C=材质比热(kcal/kg℃)1.2 G=工件重量(kg)1.3 T=加热温度Heating(℃)1.4 t=时间(S)1.5 η=加热效率(0.6)2.淬火设备功率计算P=(1.5—2.5)×S2.1 S=工件需淬火面积(平方厘米)3.熔炼设备功率计算P=T/23.1 T=电炉容量(T)4.加热设备频率计算δ=4500/d24.1 4500=系数4.2 d=工件半径5.进线整流变压器容量的选择电源功率变压器容量(kW)(kVA)50 100100 160200 250250 315350 400500 630750 100 ……6.设备进线截面的选择电源功率铜芯电缆铝芯电缆(kW)(mm2)(mm2)50 25 35100 50 75200 95 150250 2×70 2×120350 2×95 2×185500 3×95 3×185750 4×95 4×1851000 5×95 5×1857.中频输出电缆截面的选择中频功率电源的输出频率KW kHz0.5 1.0 2.5 4.0 8.0以下电缆截面积单位为:mm250 35 50/90 70 95 120100 50 70 95 2×70 2×95200 95 2×70 2×95 4×70 4×95250 2×70 2×95 3×70 5×90 5×95350 2×95 3×95 4×95 5×100 5×100500 3×95 4×95 5×100 5×150 5×200750 4×95 5×100 5×150 5×200 (5×150)×31000 5×100 5×150 5×200 (5×150)×2 (5×150)×48.冷却水流量的选择8.1 进水压力:0.15—0.3Mpa8.2 冷却水温度在5—30°范围内,水质硬度不超过8度,浑浊度不大于5,PH值在6.5—8的范围内。
步进式加热炉设计计算
二 步进式加热炉设计计算2.1 热工计算原始数据(1)炉子生产率:p=245t/h (2)被加热金属:1)种类:优质碳素结构钢(20#钢) 2)尺寸:250×2200×3600 (mm)(板坯) 3)金属开始加热(入炉)温度:t 始=20℃4)金属加热终了(出炉)表面温度:t 终=1200℃ 5)金属加热终了(出炉)断面温差:t ≤15℃ (3)燃料1)种类:焦炉煤气2)焦炉煤气低发热值:Q 低温=17000kJ/标m 33)煤气不预热:t 煤气=20℃表1-1 焦炉煤气干成分(%)废膛(5)空气预热温度(烧嘴前):t 空=350℃2.2 热工计算2.2.1 焦炉煤气干湿成分换算查燃料燃烧附表5,3/9.18m g g =10000124.0100124.0222⨯+=干干湿OHOHg g O H100100%%2湿干湿O H X X -⨯=由上式得 %2899.22=湿O H000025741.561002899.21009.57%H =-⨯=湿000048184.241002899.21004.25%CH =-⨯=湿00007939.81002899.21009%CO =-=湿0000428336.21002899.21009.2%H C =-⨯=湿000022702.11002899.21003.1%N =-⨯=湿000023909.01002899.21004.0%O =-⨯=湿000020290.31002899.21001.3%CO =-⨯=湿代入表2—1中,得表2-1 焦炉煤气湿成分(%)2.2.2 计算焦炉煤气低发热值)(低 +⨯+⨯+⨯+⨯⨯=424214100%8550%2580%3046187.4H C CH H CO Q=()0000008336.2141008184.2485505741.5625807939.83046187.4⨯+⨯+⨯+⨯⨯=17094.6830 KJ/m ³误差%557.0%10017000170006830.17094%=⨯-=计算值与设计值相差很小,可忽略不计。
浅谈真空电阻加热炉
浅谈真空电阻加热炉
方案
①炉型设计,内热或外热、立式或卧式、周期式或连续式。
②加热体、保温炉衬的材料以及结构形式。
③均温区尺寸,保温炉衬、加热体的外形尺寸,炉壳的整体尺寸。
④真空系统主泵,前级泵,冷阱,阀,管道设计。
⑤传动系统:电机,减速器等。
⑥冷却系统:水箱,管路,水量、水压测量仪表等。
⑦电气系统:原理图,接线图,控制柜,操作台。
⑧测温、测压系统:测量位置和元件。
4.3加热功率计算方法
①加热功率的热平衡计算方法:Φ=Φ1+Φ2+Φ3 (式中:Φ-加热器所发出的总热量;Φ1-加热时的有用热流量;Φ2-损失热流量;Φ3-炉内材料蓄热所消耗的热能量)。
②加热功率的表面积估算法。
③加热功率的容积估算法。
④加热体的计算方法。
⑤加热体几何尺寸计算方法。
4.4.2加热体寿命计算方法
①加热体电阻增加(15-20)%时,为使用寿命。
②允许蒸发量的计算、材料蒸发速率的计算。
③加热体使用寿命。
5 结束语
真空烧结炉现广泛应用钕铁硼等磁性材料行业,面对市场竞争日益严重,凸显真空烧结炉的设计特点,降低烧结炉成本是十分必要的。
参考文献
[1]《真空设计手册》北京:国防工业出版社,1987
[2]《真空技术》四川人民出版社,1981
[3]《真空电阻炉设计》冶金工业出版社,1986
[4]《真空设计》冶金工业出版社,2014
感谢您的阅读!。
载热体加热炉辐射室内传热计算分析
载热体加热炉辐射室内传热计算分析华东理工大学化工机械研究所 汪 琦 载热体加热炉的传热计算包括辐射室内传热计算与对流面传热计算两部分,两 者相比,辐射室内传热计算较为复杂,本文对载热体加热炉辐射室传热计算进行了 分析讨论。
关键词 载热体加热炉 辐射 传热计算 网格1 炉膛传热计算 目前的炉膛热力计算公式是基于辐射传热,根据大量的试验,把炉体结构、燃烧方式、燃料特性、产生的积灰结渣的综合影响以系数M 和 表现在计算式中。
炉膛出口烟温T ″l 按下式确定: T ″l =T xaM (3.6 o a l F l T xa B j VC pj)0.6+1-273(1)式中B j 为燃料计算消耗量(kg /h ), 为保热系数,F l 为炉膛中总辐射受热面积(m 2),T x a 为理论燃烧温度(K),VC pj 为烟气在0℃至T ″l 间的平均热容量(kJ/kg ・K),a l 为炉膛黑度,其可用下式计算: a l =a hya h y +(1-a hy ) l(2)式中a hy 为火焰黑度,它是表示炉内高温介质的辐射能力的系数,其中主要辐射介质成分是三原子气体、悬浮其中的碳黑粒子、焦炭粒子和飞灰粒子,其计算式为 a hy =1-e -KPS (3)式中e 为自然对数的底,K 为炉内介质的辐射减弱系数(1/m ・Pa ),P 为炉膛内的绝对压力(对非正压炉子P =0.1M Pa ),S 为火焰辐射层的有效厚度(m ),可按下式计算: S=3.6V lFl (4)式中,V l 为炉膛容积,F l 为炉壁总面积。
火焰中三原子气体的辐射减弱系数K g 的计算式为K g =(7.8+1.6!H 2O 10P !S-1)(1-0.37T ″l1000)(5)式中,!H 2O 为水蒸气容积份额,!为三原子气体的总容积份额。
火焰中碳黑粒子的辐射减弱系数K th 的计算式为 K th =0.3(2-∀″l )(1.6T ″l 1000-0.5)C y Hy (6)式中T ″l 的单位为K,∀″l 为炉膛出口空气过量系数,C y 、H y 为应用基的碳、氢成分。
火焰直接加热的热载体炉炉内传热计算及最高膜温的确定
火焰直接加热的热载体炉炉内传热计算及最高膜温的确定郑庆福;韩学斌;刘雁【摘要】In the fields of petroleum chemical,textile,printing and dyeing and other light industries,the medium. heat carrier is often used to fransfer heat in order to moderate the heating of the medium and to strictly control the outlet temperature of the medium Medium hot oil is heat-ed in heat carrying agent furnace. Heat transfer calculation is mentioned about heat carrying agent furnace and max. Film temperature calcula-tion is also demonstrated in order to explain deterioration of organic heat carrying agent.%在石油化工、纺织、印染等轻工行业,为使介质均匀缓和加热,且需要严格控制介质出口温度时,常采用中间热载体传递热量.中间热载体在火焰直接加热的热载体炉中升温加热.介绍了热载体炉的常用型式及炉内的传热计算,并针对运行中关心的有机热载体变质的问题,介绍了热载体炉中最高膜温的计算.【期刊名称】《工业加热》【年(卷),期】2018(047)003【总页数】3页(P17-19)【关键词】热载体炉;传热计算;膜温;有机热载体【作者】郑庆福;韩学斌;刘雁【作者单位】北京航天石化技术装备工程有限公司,北京100166;北京航天石化技术装备工程有限公司,北京100166;北京航天石化技术装备工程有限公司,北京100166【正文语种】中文【中图分类】TG155.15热载体炉在石油化工及轻工行业常有运用,中间热载体在热载体炉中加热,输送到后续的换热器中与介质换热。
运转中的炼油厂加热炉热效率及燃料用量的计算
运转中的炼油厂加热炉热效率及燃料用量的计算
运转中的炼油厂加热炉热效率的计算,可以根据热量定理推算:热效
率=输出热量/输入热量,即加热炉的热效率=炼油厂产品的热量/燃料热量,由于加热炉是热力循环系统,输出热量可以由变量进行描述,炼油厂的产
品就是加热炉的热量输出,也就是说,热效率由炼油厂产品产量和燃料用
量决定。
另外,可以通过采用新型高热值燃料,改变燃烧室大小或采取其
他措施,来提高加热炉的热效率。
燃料用量的计算可以根据热量定理来计算:燃料用量=炼油厂产品的
热量/(燃料热量*热效率),即燃料用量=输出热量/(输入热量*热效率),可以看出,燃料用量与热效率密切相关,当热效率提高时,燃料用
量也会相应减少。
10万吨加热炉计算
10万吨/年处理量加热炉一.基础数据1.原料油性质:煤焦油,处理量12500 kg/h2.入炉温度190 ℃出炉温度360 ℃出炉压力0.4MPa 气化分数0.753.过剩空气系数 1.154.比重 0.9255.黏度80℃ 11.16 cp 13.38 cSt二、总热负荷计算1、加热炉总热负荷计算计算公式:Q'=W F[eI V+(1-e)I L-I l]+W g(I g2-I g1)+Q''(116页,公式2-1)式中:Q'——加热炉计算总热负荷,千卡/时W F——油料流量,公斤/时W g——过热蒸汽量,公斤/时e ——气化率,%I L——炉出口温度下油料液相热焓,千卡/公斤I V——炉出口温度下油料气相热焓,千卡/公斤I l——炉进口温度下油料液相热焓,千卡/公斤I g2——过热蒸汽进口时热焓,千卡/公斤I g1——过热蒸汽出口时热焓,千卡/公斤Q ''——其他热负荷,如注水汽化热等。
千卡/时热负荷Hysys173.8×104 Kcal/h设计热负荷 Q =1.15Q '=1.15×173.8×104=200×104 Kcal/h 注:所有焓值均在《石油炼制工程》120页查得。
三、 燃料的燃烧过程1、燃料的低发热l Q 为8854 Kcal/m 3, 理论空气量为L 0=95.88%×9.52+3.36%×16.66+0.34%×23.8+0.05%×30.94+0.05%×30.94+0.02%×38.08=9.807标3m 空气/标3m 瓦斯 2、炉效率加热炉热效率计算公式:()%100q -1η''L ⨯-=l q (119页,公式2-2) 式中:η——热效率,%'L q ——辐射段和对流段热损失,%'l q ——烟气带走的热量,%在计算时,假设离开对流段的烟气温度g t 较对流段入口温度高150℃,则烟气温度g t =190+150=340℃。
中频电源计算方法
1.中频加热炉功率计算P=(C×T×G)÷(0.24×S×η)注释:1.1 C=材质比热(kcal/kg℃)1.2 G=工件重量(kg)1.3 T=加热温度Heating(℃)1.4 t=时间(S)1.5 η=加热效率(0.6)2中频炉淬火功率计算P=(1.5—2.5)×S2.1 S=工件需淬火面积(平方厘米)3.中频炉熔炼功率计算P=T/23.1 T=电炉容量(T)4.中频电炉频率计算δ=4500/d24.1 4500=系数4.2 d=工件半径5.进线整流变压器容量的选择电炉电源功率变压器容量(kW)(kV A)50 100100 160200 250250 315350 400500 630750 100……6.中频炉进线截面的选择电源功率铜芯电缆铝芯电缆(kW)(mm2)(mm2)50 25 35100 50 75200 95 150250 2×70 2×120350 2×95 2×185500 3×95 3×185750 4×95 4×1851000 5×95 5×1857.中频电炉输出电缆截面的选择中频炉功率电源的输出频率KW kHz0.5 1.0 2.5 4.0 8.0以下电缆截面积单位为:mm250 35 50/90 70 95 120100 50 70 95 2×70 2×95200 95 2×70 2×95 4×70 4×95250 2×70 2×95 3×70 5×90 5×95350 2×95 3×95 4×95 5×100 5×100500 3×95 4×95 5×100 5×150 5×200750 4×95 5×100 5×150 5×200 (5×150)×31000 5×100 5×150 5×200(5×150)×2 (5×150)×48.冷却水流量的选择8.1 中频炉进水压力:0.15—0.3Mpa8.2 冷却水温度在5—30°范围内,水质硬度不超过8度,浑浊度不大于5,PH值在6.5—8的范围内。
空间加热功率计算
空间加热功率计算功率计算方式:设备室体散热量+工件吸热量+设备室内空气加热量+补充新鲜空气加热量=总需热量总需热量×其它耗损系数×热量余数KW/小时×发热体热效率设备室体散热量:保温层散热系数×设备室体保温层面积之和×(工作温度----环境温度)保温层散热系数:0.05W(㎡/℃)相当于: 0.05J(㎡/℃)0.05×222×(140-20)=1332(J/小时)空气加热量计算:密度×体积×(9.8牛顿/千克)=空气重量1.293×100×9.8≈1268千克空气比热×空气重量×(所需温度-室温)=空间所需热量空气比热:1006J(KG /℃)1006×1268×(140-20)=153072960(J/小时)工件吸热量计算:铁比热×工件重量×(所需温度-室温)=工件吸热量铁比热:460J(KG/℃)460×3600×(140-20)=198720000(J/小时)新鲜空气补充:每小时补充的空气×空气比热×(工作温度—环境温度)760×1006×(140-20)=91781485(J/小时)总耗热量:1332+153072960+198720000+91781485=443575777(J/小时)总加温所需功率:(一小时)总需热量×其它耗损系数×热量余数KW/小时×发热体热效率其它设备耗损系数:取1.2热量余数:取1.071KW/1小时所产生的热量:3600000J发热体热效率:取90%( 443575777×1.2×1.07)÷(3600000×90%)≈176KW设备室体散热量+工件吸热量+补充新鲜空气加热量=保温时需要的热量保温时:(工作温度-环境温度)/2设备室体散热量:保温层散热系数×设备室体保温层面积之和×(工作温度----环境温度)保温层散热系数:0.05W(㎡/℃)相当于: 0.05J(㎡/℃)0.05×222×[(140-20)/2]=666(J/小时)工件吸热量计算:铁比热×工件重量×(所需温度-室温)=工件吸热量铁比热:460J(KG/℃)460×3600×[(140-20)/2]=99360000(J/小时)新鲜空气补充:每小时补充的空气×空气比热×(工作温度—环境温度)760×1006×[(140-20)/2]=45873600(J/小时)保温时所需热量:666+99360000+45873600=145234266(J/小时)保温时所需功率(最低功率)保温时所需功率×其它耗损系数×热量余数KW/小时×发热体热效率其它设备耗损系数:取1.2热量余数:取1.071KW/1小时所产生的热量:3600000J发热体热效率:取90%(145234266×1.2×1.07)÷(3600000×90%)≈58KW。
塔加热炉热量平衡计算
三个塔加热炉热量平衡计算1. K-2101一段蒸发器:以下以现有数据对其热量进行平衡计算:①焦油带入的热量:(假设含有的4%水已全部汽化,另还有500kg/hr的焦油汽化,请校核)Q1=进料流量*比热*温度+焦油蒸汽的汽化潜热+水蒸汽的汽化潜热=22727*1.74*183.5+500*417+909*2260=9.52 GJ/hr②塔底无水焦油循环进料的热量:Q2=流量*比热*温度=72000*2.01*240=34.73 GJ/hr③塔顶轻油回流进料的热量:Q3=流量*比热*温度=364*1.7*70=0.01 GJ/hr④塔底无水焦油出料带出的热量:Q4=93636*2.01*230=43.29 GJ/hr⑤塔顶蒸汽带出的热量:Q5=轻油蒸汽流量*(比热*温度+汽化潜热)+水蒸汽流量*(比热*温度+汽化潜热) =546*(1.7*115+430)+909*(4.18*115+2260)=2.83 GJ/hr综上,带入的总热量:Q1+Q2+Q3=9.52+34.73+0.01=44.26 GJ/hr带出的总热量:Q4+Q5=43.29+2.83=46.12 GJ/hr带入的热量比带出的热量少 1.9 GJ/hr,塔的供热稍显不足,加上塔体散热等, 针对一段蒸发器塔底供热不足,特作出以下建议供选择:1、E-2101换热器用16公斤蒸汽来提供热量。
2、由K-2103塔底热油循环泵P-2118A/B出口引出一管线,输送拔顶焦油到K-2101塔底热油循环管线(入塔前处)。
注:我公司建议最好用建议1。
2. K-2103馏分塔:热量衡算:入塔的热量:①、无水焦油带入的热量Q1=28928×240℃×2.01=3335213.3 kcal②、塔顶三混馏分回流带入的热量Q2=2648×1.84×110℃=128093 kcal③、塔底中温沥青循环带入的热量Q3=110000×C P×T=110000×0.5×338=18590000 kcal出塔的热量:④、塔顶三混馏分蒸汽带走的热量Q4=6426*(390+1.57*185)=1045044.6 kcal⑤、塔底中温沥青带走的热量Q5=135145×C P×330=22298925 kcal若上面的C P取值为2.09KJ/KG.℃,即C P取值为0.5kcal/kg.℃Q入=22053306.3 kcalQ出=23343969.6 kcalQ入< Q出Q入-Q出=-1290663.3 kcal循环沥青由330℃到338℃需要的热量:Q=110000×C P(取0.5)×8=440000 kcal则加热炉总共需要的热量:1290663.3+440000=1730663.3 kcal,加热炉的效率按照80%,则加热炉的热负荷216万kcal(现选134万Kcal加热炉不够)。
加热炉工艺与传热计算
• 常用炉管外径: 60,73,89,102,114,127,152,168,193,219,273
• 管心距 • 基本是1.75~2倍管外径
• d辐射段炉膛尺寸
• 炉膛高度=(1.5~2)X火焰高度,但要确保可见火焰高度不超 过辐射段高度的2/3。
• 常用油气联合燃烧器的火焰高度:
燃烧器放热量,106kcal/h 火焰高度,mm
2传热计算
• 内膜 • 气体、液体、气液两相 • 外膜 • 光管、翅片管、钉头管、垢阻、流速
• 烟气质量流速:1~3kg/m2.s。
• 烟气温度与入口介质温差:一般70~80 ℃ ,最低可为 40~50 ℃
• 如果设计的加热炉烧重质燃料油,对流段应装吹灰器。烧 轻质燃料油如石脑油,买方应规定是否加吹灰器。
序号 加热炉名称
1
常减压炉
平均表面热强度, kcal/m2.h
20000~30000
2
焦化炉
25000~30000
3
重整加热炉
20000~28000
4
减粘炉
20000~25000
5
常规重沸炉
22000~30000
• 辐射段平均热强度通常按管心距为两倍炉管公称直 径的单排管单面辐射考虑。如果直接受火焰辐射, 第一排遮蔽管应按辐射管束确定其平均辐射热强度。
• c辐射管管径及管程数
• 根据经验暂选质量流速。(控制指标是压降)
• 管内面积X管程数X质量流速=流量
序号 加热炉名称
1
常、减压炉
2
焦化炉
3
重整加热炉
4
减粘裂解炉
5
重沸炉
管内介质质量流速, kg/m2.s 980~1500 1200~2000 170~240 3000~4000 1200~2000
对流换热计算实例
对流换热计算实例流体换热计算是热工领域的重要内容,用于确定流体在换热过程中的温度、压力、质量流率等参数。
在实际工程中,流体换热计算非常常见,例如工业炉窑、蒸汽发生器、冷却系统等。
为了更好地理解流体换热的计算过程,本文将结合一个实例详细介绍流体换热计算的方法。
假设我们有一个工业加热炉,需要将水加热至80℃,加热炉内的炉温为1200℃。
加热炉的换热面积为10平方米,水的流量为2吨/小时。
我们需要计算加热炉所需要的燃料消耗量,以及加热时间。
首先,我们需要确定热传导的热阻系数。
常见的热阻系数有热传导、对流和辐射三种,对流热阻在实际工程中通常占较大比例。
在这个加热炉内,水的对流热阻决定了水的加热速率。
通常情况下,对流热阻可以通过德拜数来估算。
德拜数是一个无量纲的数学指标,表示流体内部的对流热阻。
对于液体流动,德拜数的计算公式如下:Nuer = (ρ·V·l)/k其中,Nuer为德拜数,ρ为液体的密度,V为液体的流速,l为热交换器的特征尺寸,k为液体的导热系数。
根据问题中的数据,水的密度为1000 kg/m³,流速为2吨/小时,特征尺寸为10平方米,导热系数为0.6 W/(m·K),则德拜数的计算结果为:得到德拜数后,可以应用不同的换热关联式计算对流传热系数。
以Dittus-Boelter关联式为例,可以根据德拜数来计算对流传热系数:Nu = 0.023 × Nuer^0.8 × Pr^0.4其中,Nu为对流传热系数,Pr为普朗特数。
根据实际流体的特性,可以选择特定的对流传热关联式。
在本例中,我们假设水为普通流体,通常情况下普朗特数在6到20之间。
这里我们取Pr为10,根据Dittus-Boelter关联式得到对流传热系数Nu:得到对流传热系数Nu后,可以利用传热公式计算热交换率。
Q=h×A×ΔT其中,Q为热交换率,h为对流传热系数,A为换热面积,ΔT为温度差。