最新凸轮机构的设计和计算教学教材

合集下载

机械设计与实践教案 项目2 凸轮机构设计 (教案)

机械设计与实践教案 项目2   凸轮机构设计 (教案)

项目2 凸轮机构设计1.教学目标(1)了解凸轮机构的分类及应用;(2)了解推杆常用运动规律的选择原则;(3)掌握在确定凸轮机构的基本尺寸时应考虑的主要问题;(4)能根据选定的凸轮类型和推杆运动规律设计凸轮的轮廓曲线。

2.教学重点和难点(1)推杆常用运动规律特点及选择原则;(2)盘形凸轮机构凸轮轮廓曲线的设计;(3)凸轮基圆半径与压力角及自锁的关系。

难点:“反转法原理”与压力角的概念。

3.讲授方法多媒体课件4.讲授时数8学时任务一凸轮机构的应用【任务导入】凸轮机构是由凸轮、从动件、机架以及附属装置组成的一种高副机构。

其中凸轮是一个具有曲线轮廓的构件,通常作连续的等速转动、摆动或移动。

从动件在凸轮轮廓的控制下,按预定的运动规律作往复移动或摆动。

受奥拓汽车零部件制造有限公司委托带领学员分析汽车内燃机凸轮机构的工作过程。

【任务分析】在各种机器中,为了实现各种复杂的运动要求,广泛地使用着凸轮机构,汽车机构也不例外,如图2.1是汽车内燃机凸轮机构的工作简图。

【力学知识】平面汇交力系的简化与平衡方程按照力系中各力的作用线是否在同一平面内,可将力系分为平面力系和空间力系。

若各力作用线都在同一平面内并汇交于一点,则此力系称为平面汇交力系。

按照由特殊到一般的认识规律,我们先研究平面汇交力系的简化与平衡规律。

设刚体上作用有一个平面汇交力系F 1、F 2、…、F n ,各力汇交于A 点(图2.2a )。

根据力的可传性,可将这些力沿其作用线移到A 点,从而得到一个平面共点力系(图2.2b )。

故平面汇交力系可简化为平面共点力系。

连续应用力的平行四边形法则,可将平面共点力系合成为一个力。

在图2.3b 中,先合成力F 1与F 2(图中未画出力平行四边形),可得力F R1,即 F R1=F 1+ F 2;再将F R1与F 3合成为力F R2,即F R2=F R1+ F 3;依此类推,最后可得F R =F 1+ F 2+…+ F n =∑F i (2-1)式中 F R 即是该力系的合力。

凸轮机构的设计和计算

凸轮机构的设计和计算

B0 B1 ω e O B2 r0
−ω
B9 η'
η'' B8 η
设计滚子从动件凸轮机构时, 凸轮的基圆半径是指理论轮廓 曲线的基圆半径。
B7
B6 B3 B5 B4
B0 B1 ω e O B2 r0
−ω
B9 η'
η'' B8 η
B7
B6 B3 B5 B4
3、平底从动件 (1)取平底与导路的交点B0为参考点 (2)把B0看作尖底,运用上述方法找到B1、B2… (3)过B1、B2…点作出一系列平底,得到一直线族。 作出直线族的包络线,便得到凸轮实际轮廓曲线。
s B C h (b) ϕ's h A ϕ r0 O ϕs ϕ' D A ϕ's 2π ϕ,t B1 C B C1
运休止角:φS=∠BOC=∠B1OC1
ω
B' e
A
D ϕ ϕs ϕ'
从动件位移线图:从动件速度线图,加速度线图
三、常用从动件运动规律
1、匀速运动规律(推程段)
s h ϕ v v0 ϕ,t
∂ dx dy f ( x1 , y1 , ϕ ) = −2( x1 − x) − 2( y1 − y) =0 dϕ dϕ ∂ϕ
联立求解x1和y1,即得滚子从动件盘形凸轮的实际廓线参数方程:
x1 = x ± rT dy / dϕ dx dy dϕ + dϕ dx / dϕ
s
r θ
B
s 2 3
A A0 1 v
ϕ
4
5
6
h ϕ,t
ϕ,t a
运动特征:没有冲击
ϕ,t

最新机械设计基础教案——第5章 凸轮机构

最新机械设计基础教案——第5章 凸轮机构

第5章凸轮机构(一)教学要求1.了解凸轮机构的工作原理2.掌握常用从动件运动规律及特性3.掌握盘形凸轮轮廓的设计4.了解凸轮机构的尺寸的确定(二)教学的重点与难点1.凸轮的工作原理2.用反转法设计凸轮轮廓3.凸轮的尺寸对其机构的影响(三)教学内容5.1概述5.1.1 概念1.凸轮机构的组成:凸轮是由从动件、机架、凸轮三部分组成的高幅机构。

2.凸轮:是一种具有曲线轮廓或凹糟的构件,它通过与从动什的高副接触,在运动时可以使从动件获得连续或不连续的任意预期运动。

3.特点:结构相当简单,只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任何预期的运动规律。

但另一方面,由于凸轮机构是高副机构,易于磨损,因此只适用于传递动力不大的场合。

4.凸轮机构的应用例:内燃机配气机构(如下图所示)靠模车削机构(如下图所示)自动送料机构(如下图所示)分度转位机构(如下图所示)5.1.2 凸轮机构的分类1、按照凸轮的形状分为:(1)盘形凸轮凸轮中最基本的形式。

凸轮是绕固定铂转动且向径变化的盘形零件,凸轮与从动件互作平面运动,是平面凸轮机构。

(2)移动凸轮可看作是回转半径无限大的盘形凸轮,凸轮作往复移动,是平面凸轮机构。

(3)圆柱凸轮可看作是移动凸轮绕在圆柱体上演化而成的,从动件与凸轮之间的相对运动为空间运动,是一种空间凸轮机构。

(4)曲面凸轮当圆柱表面用圆弧面代替时,就演化成曲面凸轮,它也是一空间凸轮机构。

2、按锁合方式的不同凸轮可分为:(1)力锁合凸轮,如靠重力、弹簧力锁合的凸轮等;(2)几何锁合凸轮,如沟槽凸轮、等径及等宽凸轮、共轭凸轮等。

3、按从动件型式分为:(1)尖顶从动件(2)滚子从动件(3)平底从动件根据从动件运动型式不同分为直动从动件和摆动从动件。

5.1.3 凸轮和滚子的材料凸轮机构的主要失效形式:磨损和疲劳点蚀要求凸轮和滚子的工作表面硬度高、耐磨并且有足够的表面接触强度。

对于经常受到冲击的凸轮机构还要求凸轮芯部有较强的韧性。

《凸轮机构设计新》课件

《凸轮机构设计新》课件

可实现复杂的运动规律,满足各种不同 的工作需求。
凸轮与从动件之间的接触为点或线,因 此具有较高的传动效率和可靠性。
特点 结构简单,紧凑,设计方便。
凸轮机构的应用领域
01
02
03
04
汽车工业
用于控制气门开启和关闭,以 及汽油机的喷油和点火。
自动化生产线
用于实现各种自动化操作,如 装配、检测、包装等。
廓。
反求设计法适用于对现有设备进 行改造或修复的情况,可以通过 测量实物模型快速准确地设计出
所需的凸轮轮廓。
反求设计法需要使用测量设备和 相关软件进行操作,对测量精度
和数据处理能力要求较高。来自01新型凸轮机构研究
非圆凸轮机构
总结词
非圆凸轮机构是一种新型的凸轮机构,其工作原理与传统的圆形凸轮机构不同 。
01
凸轮机构设计基础
凸轮机构的基本类型
盘形凸轮机构
由凸轮、从动件和机架组 成,凸轮轮廓与从动件之 间形成运动副。
移动凸轮机构
凸轮做直线往复运动,从 动件根据需要设计成各种 运动形式。
圆柱凸轮机构
凸轮做旋转运动,从动件 做复杂的空间曲线运动。
凸轮机构的运动规律
等速运动规律
凸轮以等角速度转动,从动件以 等速度运动,适用于低速轻载场
总结词
汽车发动机配气机构是凸轮机构的重要应用之一,通过凸轮的转动来控制气门的开启和关闭,实现发动机的进气 和排气过程。
详细描述
汽车发动机配气机构中的凸轮设计需要精确控制气门的开启和关闭时间,以确保发动机的正常运转。凸轮的形状 和尺寸对气门的运动轨迹和速度有直接影响,进而影响发动机的性能和效率。
自动化机械手
《凸轮机构设计新》 ppt课件

机械原理凸轮机构及其设计PPT精品医学课件

机械原理凸轮机构及其设计PPT精品医学课件
起点: =0 , s=0 , v=0
终点: = 0 , s=h
升程运动规律:
同理,得回程运动规律:
作推程运动线图
h/2
1
2
3
4
5
6
7
8
1
2
3
5
6
7
8
4
推程运动线图
s
O
h
0
0/2
:0 = :
=(/ 0)
位移线图
速度线图
5
6
7
8
1
2
3
5
6
7
8
4
h /20
0
0/2
v
O
1
2
3
4
2
A
O
B
180º
120º
60º
o
1
2
3
4
5
6
7
8
9
10
(1)作出角位移线图;
(2)作初始位置;
(4)找从动件反转后的一系 列位置,得 C1、C2、 等点,即为凸轮轮廓上的点。
A1
A2
A3
A5
A6
A7
A8
A9
A10
A4
0
0
0
0
0
0
0
0
0
0
(3)按- 方向划分圆R得A0、 A1、A2等点;即得机架 反转的一系列位置;
二.图解法设计凸轮轮廓曲线
1. 对心直动尖端从动件盘形凸轮机构
已知:推杆的运动规律、升程 h;凸轮的及其方向、基圆半径r0
设计:凸轮轮廓曲线
h
s
O
/2
h/2

凸轮机构及其设计课件 共59页

凸轮机构及其设计课件 共59页

0
0
得到运动方程:
R B

A0 1 2 3 4 5 6

0
s
h

0

1 2
sin
2 0

v

h 0
1 cos
2 0

无刚性或柔性冲 击
高速、轻载
2 h 2
2
a

2 0
sin 0
结束
§ 4-2 推杆常用的运动规律
推程
s h / 0 v h / 0 a0
回程
s

h (1
/

' 0
)
v

h
/

' 0
a0
a

lim
v0 t

始、末位置: t0
a

lim
0v t

t 0
理论上:a → 惯性力→
→极大冲击 — 刚性冲击
只能用于低速、轻载场合
结束
第4章 凸轮机构及其设计(5课时)
§ 4-1 凸轮机构的应用和分类 § 4-2 从动件(推杆)的运动规律 § 4-3 凸轮轮廓曲线的设计 § 4-4 凸轮机构基本尺寸的确定
§4-1 凸轮机构的应用和分类
一、凸轮机构的组成
凸轮机构 → 凸轮、从动件、机架 凸 轮 → 匀速运动 从动件 → 间歇(连续) 移动或摆动
二、用作图法设计凸轮廓线
(一)直动尖低推杆盘形凸轮机构
1、对心凸轮机构
已知:s2 = s2 ( )、r0 、1( 逆时针)
设计凸轮廓线
步骤:
(1)作位移线图s2 -,且等分1 、 3(或列表计算)

最新机械基础凸轮机构教案

最新机械基础凸轮机构教案
4、按从动件运动形式分类,凸轮机构有哪些类型?特点是什么?
5、从动件常用的运动规律及其运动场合?
6、从动件常用运动规律的位移曲线、速度曲线、加速度曲线作图,分析冲击位置,刚性、柔性冲击的原因及避免刚性冲击的方法。
7、根据位移曲线,计算从动件各运动阶段的时间,速度。
8、补画位移曲线、速度曲线何加速度曲线。
除了“漂亮女生”形成的价格,优惠等条件的威胁外,还有“碧芝”的物品的新颖性,创意的独特性等,我们必须充分预见到。
刚性冲击、产生原因:加速度突变
产生位置:0°、90°、180°、270°
2.www。cer。net/artide/2003082213089728。shtml。为了避免刚性冲击,采用修正弧法避免。
具体教学目标
教学活动
在调查中我们注意到大多数同学都比较注重工艺品的价格,点面氛围及服务。平底式:结构紧凑,润滑性能好,摩擦阻力小,适用于高速。但不能与内凹的轮廓接触,因此运动规律受到一定限制,易形成油膜,受力最平稳。
曲面式:介于滚子和平底之间
4、移动式:主动件连续回转→从动件往复直线移动
2003年,上海市总人口达到1464万人,上海是全国第一个出现人口负增长的地区。摆动式:主动件连续回转→从动件往复摆动
重点:凸轮从动件运动规律。
难点:从动件刚性冲击、柔性冲击的位置。
教学方法
讲授法、演示法、导复教学法
教学资源
多媒体设备、习题资源、高考大纲
板书设计
盘形凸轮:应用于从动件的行程不能太大或摆角较小的场合。
移动凸轮:移动凸轮机构在靠模仿形机械中应用较广。
柱体凸轮:可用较小的径向尺寸获得较大的行程。
等速运动规律:凸轮低速回转、从动件质量小和轻载的场合。

第6章 凸轮机构 (教案)

第6章  凸轮机构 (教案)

第6章 凸轮机构1.教学目标(1)了解凸轮机构的分类及应用;(2)了解推杆常用运动规律的选择原则;(3)掌握在确定凸轮机构的基本尺寸时应考虑的主要问题;(4)能根据选定的凸轮类型和推杆运动规律设计凸轮的轮廓曲线。

2.教学重点和难点(1)推杆常用运动规律特点及选择原则;(2)盘形凸轮机构凸轮轮廓曲线的设计;(3)凸轮基圆半径与压力角及自锁的关系。

难点:“反转法原理”与压力角的概念。

3.讲授方法多媒体课件4.讲授时数8学时6.1 凸轮机构的应用及分类6.1.1凸轮机构的应用凸轮机构是由凸轮、从动件、机架以及附属装置组成的一种高副机构。

其中凸轮是一个具有曲线轮廓的构件,通常作连续的等速转动、摆动或移动。

从动件在凸轮轮廓的控制下,按预定的运动规律作往复移动或摆动。

在各种机器中,为了实现各种复杂的运动要求,广泛地使用着凸轮机构。

下面我们先看两个凸轮使用的实例。

图6.1所示为内燃机的配气凸轮机构,凸轮1作等速回转,其轮廓将迫使推杆2作往复摆动,从而使气门3开启和关闭(关闭时借助于弹簧4的作用来实现的),以控制可燃物质进入气缸或废气的排出。

图6.2所示为自动机床中用来控制刀具进给运动的凸轮机构。

刀具的一个进给运动循环包括:1)刀具以较快的速度接近工件;2)刀具等速前进来切削工件;3)完成切削动作后,刀具快速退回;4)刀具复位后停留一段时间等待更换工件等动作。

然后重复上述运动循环。

这样一个复杂的运动规律是由一个作等速回转运动的圆柱凸轮通过摆动从动件来控制实现的。

其运动规律完全取决于凸轮凹槽曲线形状。

由上述例子可以看出,从动件的运动规律是由凸轮轮廓曲线决定的,只要凸轮轮廓设计得当,就可以使从动件实现任意给定的运动规律。

同时,凸轮机构的从动件是在凸轮控制下,按预定的运动规律运动的。

这种机构具有结构简单、运动可靠等优点。

但是,由于是高副机构接触应力较大,易于磨损,因此,多用于小载荷的控制或调节机构中。

6.1.2 凸轮机构的分类根据凸轮及从动件的形状和运动形式的不同,凸轮机构的分类方法有以下四种:1.按凸轮的形状分类(1)盘形凸轮:如图6.1所示,这种凸轮是一个具有变化向径的盘形构件,当他绕固定轴转动时,可推动从动件在垂直于凸轮轴的平面内运动。

机械设计基础第五章凸轮机构学习教案

机械设计基础第五章凸轮机构学习教案

机械设计基础第五章凸轮机构学习教案教案内容:一、教学内容:本节课的教学内容选自机械设计基础第五章,主要涉及凸轮机构的相关知识。

教材的章节包括:凸轮机构的组成、分类、工作原理及其设计方法。

具体内容有:凸轮的形状、凸轮的运动规律、凸轮机构的压力角、基圆半径的计算、凸轮轮廓曲线的绘制等。

二、教学目标:1. 使学生了解凸轮机构的组成和分类,理解凸轮的工作原理。

2. 使学生掌握凸轮的运动规律,能够进行凸轮的设计和计算。

3. 培养学生的动手能力,学会绘制凸轮轮廓曲线。

三、教学难点与重点:重点:凸轮机构的组成、分类、工作原理及其设计方法。

难点:凸轮的运动规律的计算和凸轮轮廓曲线的绘制。

四、教具与学具准备:教具:黑板、粉笔、多媒体教学设备。

学具:教材、笔记本、尺子、圆规、橡皮擦。

五、教学过程:1. 实践情景引入:观察生活中常见的凸轮机构,如洗衣机脱水装置、汽车雨刷等,引导学生思考凸轮机构的作用和原理。

2. 知识讲解:讲解凸轮机构的组成、分类、工作原理及其设计方法。

3. 例题讲解:分析典型凸轮机构的设计案例,讲解凸轮的运动规律的计算和凸轮轮廓曲线的绘制。

4. 随堂练习:让学生动手绘制简单的凸轮轮廓曲线,巩固所学知识。

六、板书设计:凸轮机构1. 组成:凸轮、从动件、支撑件2. 分类:盘形凸轮、圆柱凸轮、球形凸轮3. 工作原理:凸轮的运动规律1. 线速度与角速度2. 加速度与减速度3. 压力角与基圆半径凸轮轮廓曲线的绘制七、作业设计:1. 题目:设计一个盘形凸轮,使其能够实现某个特定的动作。

答案:根据动作要求,计算凸轮的参数,绘制凸轮轮廓曲线。

2. 题目:计算一个给定参数的凸轮的运动规律。

答案:根据凸轮的参数,计算出线速度、角速度、加速度、减速度等运动规律。

八、课后反思及拓展延伸:本节课通过观察生活中的凸轮机构,让学生了解凸轮机构的作用和原理。

通过例题讲解和随堂练习,使学生掌握凸轮的设计方法和轮廓曲线的绘制。

在教学过程中,要注意引导学生思考,培养学生的动手能力。

凸轮机构及其设计ppt课件

凸轮机构及其设计ppt课件
动件的压力角相等。
右图可用来推导压力角的计算公式,过程如下: 由ΔBCP得 tanα =CP/BC= CP/(s+s0) (1) 由ΔODC得 s0 = r20 +e2
由瞬心法知,P点是瞬心,有 OP=v/ω=ds/dδ CP=OP-e= ds/dδ-e 代入(1)式得
nv
B
s
D
ω r0 α v
O
s0
作者:潘存云教授
r e C P 0
n
ds/dδ
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
压力角计算公式
增大基圆半径 r0 或增大偏距 e 可减小压力角。
当从动件导路和瞬心点分别位于O点两侧时,
按同样思路可推得压力角计算公式
推程运动方程:
s =h φ/Φ v = hω/Φ
a=0 同理得回程运动方程:
s=h(1-φ/Φ’) v=-hω/Φ’
a=0 运动线图如右图所示。
特点:在运动的起始点存在刚性冲击
s
作者:潘存云教授
Φ v
a +∞
h φ
Φ’
φ
-∞
+∞ φ
2)二次多项式(等加速等减速)运动规律 为了规范事业单位聘用关系,建立和完善适应社会主义市场经济体制的事业单位工作人员聘用制度,保障用人单位和职工的合法权益
行程 ——从动件距凸轮回转中心最近点到最远点的距离h 。
凸轮转角——凸轮以从动件位于最近点作为初始位置而转过的角度φ。 从动件位移——凸轮转过φ 角时,从动件相对于基圆的距离s。 从动件运动规律——从动件的位移、速度、加速度与凸轮转角(或时间)之

机械原理课程教案—凸轮机构及其设计

机械原理课程教案—凸轮机构及其设计

一、教案概述机械原理课程教案—凸轮机构及其设计教学目标:1. 使学生了解凸轮机构的定义、分类和应用;2. 使学生掌握凸轮的轮廓曲线及其设计方法;3. 使学生熟悉凸轮机构的设计步骤和注意事项。

教学内容:1. 凸轮机构的定义和分类;2. 凸轮的轮廓曲线及其设计;3. 凸轮机构的设计步骤;4. 凸轮机构的应用实例。

教学重点:1. 凸轮机构的分类和应用;2. 凸轮的轮廓曲线及其设计方法;3. 凸轮机构的设计步骤。

教学难点:1. 凸轮的轮廓曲线的设计方法;2. 凸轮机构的设计步骤。

教学准备:1. 教学PPT;2. 凸轮机构的相关图纸和实例;3. 设计软件(如AutoCAD、SolidWorks等)。

教学方法:1. 讲授法:讲解凸轮机构的定义、分类和应用;2. 案例分析法:分析凸轮机构的设计实例;3. 实践操作法:引导学生利用设计软件进行凸轮机构的设计。

二、教学过程1. 导入:通过展示凸轮机构的实例,引导学生思考凸轮机构的定义和作用。

2. 讲解凸轮机构的定义、分类和应用。

3. 讲解凸轮的轮廓曲线及其设计方法。

4. 讲解凸轮机构的设计步骤。

5. 分析凸轮机构的设计实例。

6. 练习:引导学生利用设计软件进行凸轮机构的设计。

三、教学评价1. 课堂问答:检查学生对凸轮机构的定义、分类和应用的掌握情况。

2. 设计练习:评估学生对凸轮机构设计方法的掌握程度。

3. 课后作业:布置相关设计题目,检查学生对凸轮机构设计的实际操作能力。

四、教学拓展1. 介绍其他常见的机械传动机构,如齿轮传动、皮带传动等;2. 介绍凸轮机构的应用领域,如汽车、机械制造等。

五、教学资源1. 教学PPT;2. 凸轮机构的相关图纸和实例;3. 设计软件(如AutoCAD、SolidWorks等)。

六、教学进度安排1. 课时:2课时(90分钟);2. 教学环节:讲解、案例分析、练习。

六、教学内容6. 凸轮机构的动态特性分析a. 运动规律b. 压力角与传动角c. 凸轮与从动件的接触条件d. 凸轮机构的效率与功耗7. 凸轮机构的强度计算a. 凸轮的接触应力b. 从动件的弯曲应力c. 凸轮机构的疲劳寿命d. 安全系数的确定8. 凸轮机构的实验研究a. 实验目的与意义b. 实验设备与方法c. 实验结果分析9. 凸轮机构的设计案例分析a. 案例一:单凸轮机构设计b. 案例二:双凸轮机构设计c. 案例三:组合凸轮机构设计d. 案例讨论与总结10. 凸轮机构的应用与创新a. 凸轮机构的实际应用场景b. 凸轮机构在现代工业中的挑战与机遇c. 凸轮机构的设计创新d. 未来发展趋势与展望七、教学过程1. 导入:通过展示凸轮机构的动态特性实验,引导学生关注凸轮机构的动态特性分析。

机械原理课程教案—凸轮机构及其设计

机械原理课程教案—凸轮机构及其设计

机械原理课程教案—凸轮机构及其设计一、教学目标1. 使学生了解凸轮机构的分类、工作原理和应用。

2. 培养学生掌握凸轮机构的设计方法和步骤。

3. 提高学生分析问题和解决问题的能力。

二、教学内容1. 凸轮机构的分类及工作原理凸轮机构的分类凸轮的工作原理凸轮机构的应用2. 凸轮的轮廓曲线设计凸轮轮廓曲线的基本原理常用凸轮轮廓曲线的特点及应用凸轮轮廓曲线的设计方法3. 凸轮的压力角和基圆半径的选择压力角的定义及作用基圆半径的计算方法压力角和基圆半径的选择原则4. 凸轮机构的设计步骤确定凸轮的类型和参数选择合适的轮廓曲线计算压力角和基圆半径校核凸轮的强度和运动性能5. 凸轮机构的设计实例实例分析设计过程演示结果讨论和评价三、教学方法1. 采用讲授法,讲解凸轮机构的基本概念、设计方法和步骤。

2. 利用多媒体演示凸轮机构的工作原理和设计过程。

3. 引导学生进行实例分析,培养学生的实际设计能力。

4. 开展课堂讨论,提高学生的思考和表达能力。

四、教学环境1. 教室环境:宽敞、明亮,配备多媒体教学设备。

2. 教学材料:教案、PPT、参考书籍、设计实例。

五、教学评价1. 课堂参与度:观察学生在课堂上的发言和讨论情况,评价学生的积极性。

2. 作业完成情况:检查学生提交的凸轮机构设计作业,评价学生的理解和应用能力。

3. 期末考试:设置有关凸轮机构设计的题目,评价学生对课程知识的掌握程度。

六、教学活动1. 课堂讲解:讲解凸轮机构的基本概念、分类、工作原理和应用。

2. PPT演示:通过PPT展示凸轮机构的工作原理和设计过程。

3. 实例分析:分析典型凸轮机构设计实例,引导学生掌握设计方法和步骤。

4. 小组讨论:分组讨论凸轮机构设计中的问题,培养学生的团队协作能力。

5. 作业布置:布置凸轮机构设计相关作业,巩固所学知识。

七、教学资源1. PPT:制作精美的凸轮机构教学PPT,展示图片、图表和实例。

2. 参考书籍:提供有关凸轮机构设计和应用的参考书籍,方便学生查阅。

《机械原理》课件第9章凸轮机构及其设计

《机械原理》课件第9章凸轮机构及其设计
第9章 凸轮机 构及其设计
§9-1 凸轮机构的应用和分类 §9-2 推杆的运动规律
§9-3
凸轮轮廓曲线的设计 一、凸轮廓线设计方法的基本原理 二、用图解法设计凸轮廓线
1)对心直动尖顶推杆盘形凸轮 2)对心直动滚子推杆盘形凸轮 3)对心直动平底推杆盘形凸轮
4)偏置直动尖顶推杆盘形凸轮
5)摆动尖顶推杆盘形凸轮机构
o
δ
刀架进给凸轮。
-∞
3. 对高速凸轮,要求有较好的动力特性,除了避免 出现刚性或柔性冲击外,还应当考虑Vmax和 amax。
正弦改进等速
二、选择运动规律 选择原则:
1(.机直器动的推工杆作)过或程φ(只摆要动求推凸杆轮)转,过对一运角动度规δ0律时并,无推严杆格完要成求一。行则程应h 选
择直线或圆弧等易加工曲线作为凸轮的轮廓曲线。如夹紧凸轮。 2. 机器的工作过程对推杆运动有要求,则应严格按工作要求的运动规 律来设计凸轮廓线。如刀架进给凸轮。 3. 对高速凸轮,要求有较好的动力特性,除了避免出现刚性或柔性冲
δ
c)改进型运动规律
将几种运动规律组合,以改善运动特性。
s
二、选择运动规律
h
选择原则:
o
1.机器的工作过程只要求凸轮转过一角度δ0时,推
δ0
δ
杆完成一行程h(直动推杆)或φ(摆动推杆), v
对运动规律并无严格要求。则应选择直线或圆弧等
易加工曲线作为凸轮的轮廓曲线。
o
δ
如夹紧凸轮。
a
+∞
2. 机器的工作过程对推杆运动有要求,则应严 格按工作要求的运动规律来设计凸轮廓线。如
2)按推杆形状分:尖顶、 滚子、平底 从动件。 特点: 尖顶--构造简单、易磨损、用于仪表机构;

2024年机械设计基础课件!凸轮机构H(带目录)

2024年机械设计基础课件!凸轮机构H(带目录)

机械设计基础课件!凸轮机构H(带目录)机械设计基础课件:凸轮机构一、引言在机械设计中,凸轮机构是一种常见的传动机构,它通过凸轮与从动件之间的啮合,实现运动和动力的传递。

凸轮机构具有结构简单、传动可靠、运动平稳等特点,广泛应用于各种机械设备中。

本课件将详细介绍凸轮机构的基本原理、类型、运动规律和设计方法。

二、凸轮机构的基本原理凸轮机构由凸轮、从动件和机架三部分组成。

凸轮是一个具有特定轮廓的旋转件,从动件是与凸轮啮合的部件,机架则是固定凸轮和从动件的支撑结构。

当凸轮旋转时,其轮廓与从动件接触,使从动件产生预期的运动规律。

根据从动件的运动规律,凸轮机构可分为直线运动凸轮机构、摆动凸轮机构和圆柱凸轮机构等。

三、凸轮机构的类型1.直线运动凸轮机构:直线运动凸轮机构是指从动件作直线运动的凸轮机构。

根据从动件的运动方向,直线运动凸轮机构可分为直线往复运动凸轮机构和直线单向运动凸轮机构。

2.摆动凸轮机构:摆动凸轮机构是指从动件作摆动的凸轮机构。

根据从动件的摆动方向,摆动凸轮机构可分为单向摆动凸轮机构和双向摆动凸轮机构。

3.圆柱凸轮机构:圆柱凸轮机构是指凸轮的轮廓呈圆柱形的凸轮机构。

圆柱凸轮机构可分为直圆柱凸轮机构和斜圆柱凸轮机构。

四、凸轮机构的运动规律凸轮机构的运动规律是指从动件在凸轮旋转过程中的运动轨迹。

根据从动件的运动规律,凸轮机构的运动可分为等速运动、等加速运动、等减速运动和组合运动等。

在设计凸轮机构时,应根据实际需求选择合适的运动规律,以满足设备的工作要求。

五、凸轮机构的设计方法1.确定从动件的运动规律:根据设备的工作要求,确定从动件的运动规律,如等速运动、等加速运动等。

2.确定凸轮的轮廓曲线:根据从动件的运动规律,利用数学方法求出凸轮的轮廓曲线。

常用的方法有作图法、解析法和数值法等。

3.确定凸轮的尺寸:根据凸轮的轮廓曲线,计算凸轮的尺寸,如直径、宽度等。

4.确定从动件的结构和尺寸:根据凸轮的尺寸和运动规律,设计从动件的结构和尺寸,如摆杆长度、滚子直径等。

机械设计基础第4版教学课件第4章 凸轮机构

机械设计基础第4版教学课件第4章  凸轮机构
等加速等减速运动规律的 位移线图由两段抛物线组成, 而速度线图由两段斜直线组 成。
柔性冲击
1 23 4 5
δ0
v
2hω/δ0
h/2

δ
a 4hω2/δ02
δ
第4章 凸轮机构
图4-14 等加速等减速运动规律线图
5 6s
4
3
h
3.简谐运动规律
质点在圆周上作等速运 动时,它在该圆直径上的投 影所构成的运动称为简谐运 动。按简谐运动的定义可作 出其位移线图如图4-15所 示。
b)空间凸轮机构
图4-2 凸轮机构运动简图
第4章 凸轮机构
图图4配-44-气3靠的用模凸于车轮内削机燃加构机工机构 第4章 凸轮机构
点击播放1 点击播放2
绕线轴
引线杆
A 盘形凸轮
图4-5 绕线机的引线机构 第4章 凸轮机构
点击播放
刀架
扇形齿轮
圆柱凸轮
点击播放 图4-6 机床自动进给机构 第4章 凸轮机构
机械设计基础
(第4版)
柴鹏飞 万丽雯 主编
第4章 凸轮机构
第4章 凸轮机构
4.1 凸轮机构的应用及类型 4.2 凸轮机构工作过程及从动件运动规律 4.3 图解法设计盘形凸轮轮廓 4.4* 凸轮机构设计中的几个问题 4.5* 凸轮的结构与材料
实例分析
第4章 凸轮机构
教学要求
能力目标
1.凸轮机构工作原理分析的能力。 2.图解法绘制凸轮轮廓的能力。
知识要素
1.凸轮机构的结构、特点、应用及分类。 2.从动件常用运动规律及其选择。 3.反转法原理、滚子半径的选择、压力角、基 圆半径的确定。 4.图解法绘制凸轮轮廓曲线的方法。
第4章 凸轮机构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S
h
2h 2
(
)2
v
4h 2
(
)
a
4h 2
2
3、加速度按余弦运动规律变化
s 56 4
3
h
2
s
1
O1
234
5
,t
v
运动特征:
若 S ,S 为零,无冲击,
若 S ,S 不为零,有冲击
,t a
,t
S R R cos
R
h 2
所以 Sh(1cos )
2
从动件按余弦加速规律上升时的运动方程为
S
h (1 cos 2
)
v
h 2
sin
a
2h 2 2
2
cos
4、加速度按正弦运动规律变化(了解)
s
h
r
B
s
A A0 1 2 3 4 5 6 ,t
v
,t a
运动特征:没有冲击
,t
5、组合运动规律 为了获得更好的运动特征,可以把上述几种运动规律组合起来 应用,组合时,两条曲线在拼接处必须保持连续。
4' 5' 6'
O1
2 3 4 5 678 9
0
180°
30° 90°
60°
A
A0
A1
1
a D1
D2 B2
2
C2
B1 C1
C0 B0
A2
B3 D3
C3
O
180°
r0
60° 90°
3 B4
C4
30°
C5 C6 C7
C9 B9 C8
B8
A9 A8
A7
B5 B6
B7
A6
A3
0
180°
30° 90°
60°
2、滚子从动件
(1)去掉滚子,以滚子中心为尖底。 (2)按照上述方法作出轮廓曲线——理论轮廓曲线
(3)在理论轮廓上画出一系列滚子,画出滚子的内包络线——实
际轮廓曲线。
设计滚子从动件凸轮机构时,
凸轮的基圆半径是指理论轮廓
B0
曲线的基圆半径。
B1
e
O
B2
r0
B9 ''
'
S
v0t c
a
0
边界条件:当
t=0时,S=0;当
t
时,S=h
所以:c=0,
v0
h
匀速运动在升程中的运动方程 回程中的运动方程Sຫໍສະໝຸດ h v v0a
0
S
h
h '
v
v0
h '
a 0
2、等加速等减速运动规律
a0 h
0
s
1
4
9
4 1 O1 2 3 4 5 v
6 ,t
a A
B
,t C ,t
上升——停——降——停
s BC (b)
B' e
A
B
r0 O
B1 s
's
' C1
C
D
D
A
s '
's
A ,t
从动件位移线图:从动件速度线图,加速度线图
三、常用从动件运动规律
1、匀速运动规律(推程段)
s
v0 h
,t
v
a ∞
,t
,t -∞
刚性冲击:
由于加速度发生无穷大突 度而引起的冲击称为刚性 冲击。
v v0
凸轮机构的设计和计算
§4-1 凸轮机构的应用和分类
一、应用: 当从动件的位移、速度、加速度必须严格按照
预定规律变化时,常用凸轮机构。
二、组成:
凸轮——一个具有曲线轮廓或凹槽的构件,通过高副接触 从动件:平动,摆动
机架
三、分类:
1、按凸轮的形状:
①盘形凸轮机构——平面凸轮机构 ②移动凸轮机构——平面凸轮机构 ③圆柱凸轮机构——空间凸轮机构
S
A0B
r sin
h 2r
2
所以 Sh( 2 1 sin 2 )
从动件按余弦加速规律上升时的运动方程为
S
h(
1 2
sin
2
)
v
h
(1 cos
2
)
a
2 h 2 sin 2
2
§4-3 凸轮轮廓的设计
设计方法:作图法,解析法 已知 0,e,S,转向。作图法设计凸轮轮廓 一、直动从动件盘形凸轮机构
2、按从动件的型式: ①尖底从动件:用于低速; ②滚子从动件:应用最普遍; ③平底从动件:用于高速。
3、按锁合的方式: 力锁合(重力、弹簧力)、几何锁合
四、特点 优点:1、能够实现精确的运动规律;2、设计较简单。 缺点:1、承载能力低,主要用于控制机构;2、凸轮轮廓加工困难。 五、要求
1、分析从动件的运动规律 2、按照运动规律设计凸轮轮廓
S 1 at 2 2
V a0t
柔性冲击 :
加速度发生有限值的突变 (适用于中速场合)
等加速段
a
a0
v a 0t c1
S
1 2
a0t 2
c1t c 2
边界条件1
t S
0
0
v 0
所以
c c
1 2
0 0
边界条件2
t S
2 h 2
从动件在匀加速上升过程中的运动方程
C3 r0 C4
O
180°
C0 B0
60°
90°
30°
C5 C6 C7
C9 B9 C8
B8
A2
B3 D3
C3
O
180°
r0
60° 90°
A8
B5 B6
B7
3
C4
30°
C9 B9
C8
A3
A7
A5
B4
C5 C6 C7
B8
A4
B5 B6
B7
A3
A6
4' 5'
A5 (a)
3'
6'
7'
2'
A4
1'
8'
max
B1
B2 r0
B3
B0
B8
O
B7
b'' B6
B5 B4
b'
B1
B2 r0
B3
B0
B8
O
B7
b'' B6
B5 B4
二、摆动从动件盘形凸轮机构
1
a D1
已知:ω转向,r0,a,l,ψmax,φ-ψ2 D2
B2 C2
B1 C1
A0
A1
A2
1
a D1
D2 B2
2
C2
B1 C1
C0 B0
D3
A9
B3
3 B4
反转法
O
r0
1 2 3 4
5
6 7 8
1、尖底直动从动件盘形凸轮 机构凸轮轮廓设计: 已知 0,e,S, 转向
3
2
B0
B1
(C
0)
C9 B9
C1
60°
C8 B8
e
B2 C2
KO
C7
90°
B7
r0
180°
30°
C6
C3
B6 C5
B3
C4 B5
1
B4
s
4' 5'
3'
6'
2'
7'
h
1'
8'
O
1
2
3 4 5 6 78 9
§4-2 常用从动件的运动规律
一、几个概念 尖底偏置直动从动件盘形凸轮机构 1、基圆:凸轮轮廓上最小矢径为半径的圆
2、偏距e:偏距圆
e
A
w
B
r0 O
C
D
h h
二、分析从动件的运动
行程:h(最大位移) 推程运动角:φ=BOB′=∠AOB1 运休止角:φS=∠BOC=∠B1OC1 回程运动角:φ′=∠C1OD 近休止角:φS′=∠AOD
B8
B7
B6 B3
B5
B4
B0
B1
e
O
B2
r0
B9 ''
'
B8
B7
B6 B3
B5
B4
3、平底从动件 (1)取平底与导路的交点B0为参考点 (2)把B0看作尖底,运用上述方法找到B1、B2… (3)过B1、B2…点作出一系列平底,得到一直线族。 作出直线族的包络线,便得到凸轮实际轮廓曲线。
b'
S
2h 2
2
v
4h 2
a
4h 2 2
所以 a0
4h 2
2
等减速段
a
a0
v a 0t c1
S
1 2
a0t 2
c1t
c2
边界条件1
t
v 0
S
h
所以
c
1
c
2
a0
边界条件2
t
h a0 2 2 2
v
2 2h
所以 a0
4h 2
2
从动件在匀加速上升过程中的运动方程
相关文档
最新文档