1 每条高强螺栓的承载力设计值

合集下载

20穿墙高强螺栓承载400kg计算书

20穿墙高强螺栓承载400kg计算书

20穿墙高强螺栓承载400kg计算书螺栓是一种常见的机械连接元件,它通过螺纹的摩擦和阻力作用来实现工件间的连接。

而高强螺栓是指能够承受较大载荷和抗拉力的螺栓。

本文将以20个穿墙高强螺栓承载400kg计算书为例,介绍螺栓选择、承载计算和计算书编写过程。

1.螺栓选择在选择螺栓时,首先要确定所需的承载力和工作条件。

根据给定的要求,我们需要计算出20个螺栓承载400kg的情况。

由于高强螺栓能够承受较大的载荷,因此我们可以选择适用于这种工况的高强螺栓。

2.承载计算螺栓承载力的计算包括了剪切力和挤压力两个方面。

一般情况下,我们会根据螺栓的直径和材料的强度来计算其承载力。

首先,我们需要根据给定的承载力400kg来计算每个螺栓的最大受力。

假设我们选择了M16的螺栓,根据螺栓的抗拉强度等级,我们可以查表得到其额定抗拉强度为800N/mm²。

每个螺栓的最大受力为:400kg * 9.8N/kg = 3920N。

每个螺栓的承载力为:800N/mm² * π * (16mm/2)² = 1600N。

然后,我们需要考虑到工作中所受的剪切力和挤压力。

剪切力是指在连接松动时,螺栓产生的摩擦力;挤压力是指在连接紧固后,螺栓产生的压力。

通过经验公式计算,我们可以得出:剪切力= 0.95 *螺栓承载力挤压力= 1.25 *螺栓承载力剪切力= 0.95 * 1600N = 1520N挤压力= 1.25 * 1600N = 2000N3.计算书编写计算书是一种技术文档,用于记录设计和计算的结果。

在编写计算书时,需要包括以下内容:1)项目背景和目的:介绍项目的背景和需要计算的问题。

2)设计要求:明确需要计算的承载力和工作条件。

3)螺栓选择:选择合适的螺栓类型和规格。

4)承载计算:根据所选螺栓的规格和材料强度计算其承载力。

包括剪切力和挤压力的计算。

5)结果分析:分析计算结果,判断所选螺栓是否满足设计要求。

如果不满足,需要重新选择螺栓或者进行辅助固定设计。

钢结构习题答案单元2、3

钢结构习题答案单元2、3

单元2 钢结构的连接复习思考题2-1钢结构的连接方式有几种?各有何特点?目前常用哪些方法?答:钢结构的连接方法有焊缝连接、铆钉连接和螺栓连接三种。

焊缝连接:1)优点:构造简单,任何形式的构件都可直接相连;用料经济、不削弱截面;制作加工方便,可实现自动化操作;连接的密闭性好,结构刚度大。

2)缺点:在焊缝附近的热影响区内,钢材的金相组织发生改变,导致局部材质变脆;焊接残余应力和残余变形使受压构件承载力降低;焊接结构对裂纹很敏感,局部裂纹一旦发生,就容易扩展到整体,低温冷脆现象较为突出。

螺栓连接:1)优点:施工工艺简单、安装方便,特别适用于工地安装连接,工地进度和质量易得到保证;且由于装拆方便,适用于需装拆结构的连接和临时性连接。

2)缺点:螺栓连接需制孔,拼装和安装需对孔,增加了工作量,且对制造的精度要求较高;此外,螺栓连接因开孔对截面有一定的削弱,有时在构造上还须增设辅助连接件,故用料增加,构造较繁。

在钢结构工程中,焊缝连接、螺栓连接是最常用的连接方法。

铆钉连接:1)优点:铆钉连接的塑性和韧性较好,传力可靠,质量易于检查。

2)缺点:构造复杂,费钢费工。

2-2对接焊缝的坡口形式主要由什么条件决定?通常用的坡口形式有哪几种?并绘图示意。

答:对接焊缝的坡口形式取决于焊件厚度t 。

常用对接焊缝的坡口形式有以下6种:(a)直边缝(b)单边V形坡口(c)V形坡口(d)U形坡口(e)K形坡口(f)X形坡口2-3对接焊缝在哪种情况下才需要进行抗拉强度计算?答:由于一、二级质量的焊缝与母材强度相等,故只有三级质量的焊缝才需进行抗拉强度验算。

2-4引弧板起什么作用?答:引弧板可消除焊缝的起灭弧处弧坑等缺陷,避免产生应力集中和裂纹。

2-5焊缝的起弧、落弧对焊缝有何影响?对接焊缝和角焊缝计算中如何考虑? 答:焊缝的起弧、落弧易产生弧坑等缺陷,使焊缝的计算长度减小。

对接焊缝:若未加引弧板,则每条焊缝的引弧及灭弧端各减去t (t 为较薄焊件厚度)后作为焊缝的计算长度。

建筑结构 第九章 钢结构的连接_OK

建筑结构 第九章 钢结构的连接_OK
36
侧面焊缝
主要受剪 力,应力状态 单纯,但焊缝 剪应力沿长度 分布不均匀, 两头大,中间 小,破坏起点 在两端。
37
角焊缝按其截面形式可分为普通型、平坦型和凹 面型三种。
38
有效截面: 试验证明,角焊缝常在沿45°左右方向的截面破坏,故计算时以45°方 向的最小截面为危险截面,称为角焊缝的计算截面或有效截面。
mm2
33
剪应力
V AW W
280103 29.6 102
95 N
mm2
fV w
125 N
mm2
“1”点的折算应力
1
115 380 109 N 400
mm2
2 1
3 2
1092 3 952 197 N mm2 1.1 ft w
1.1185 204 N mm 2
34
9.4 角焊缝的构造和计算
44
7)在搭接连接中,搭接长度不得小于焊件较 小厚度的5倍,并不得小于25㎜,以减小因焊 缝收缩产生的残余应力及因偏心产生的附加弯 矩。
8)当角焊缝的端部在构件转角处时,为避免 起落弧的缺陷发生在此应力集中较大部位,宜 作长度为2f的绕角焊,且转角处必须连续施焊, 不能断弧。
45
9.4.2 角焊缝的计算
N3
2 0.7hf 3b f
f
w f
肢背和肢尖分担的
内力为
N1
b z0 b
N
N3 2
1N
N3 2
N2
z0 b
N
N3 2
2N
N3 2
53
③ 角钢用L形围焊
令N3=0,即得
N3 22 N
N1 N N3
54
按上述求出各条焊缝分担的内力后,假定角钢肢 背和肢尖焊缝的焊脚尺寸,即可分别求其所需的焊 缝计算长度

0508高强螺栓规程

0508高强螺栓规程

呢我《钢结构高强度螺栓连接技术规程》JGJ82征求意见稿规程JGJ82编制组2005年10月1.总则1.0.1为在钢结构高强度螺栓连接的设计、施工中做到技术先进、经济合理、安全适用、确保质量,特制定本规程。

1.0.2本规程适用于工业与民用房屋和构筑物钢结构工程中,高强度螺栓连接的设计、施工与质量验收。

1.0.3 本规程制定的主要依据是现行国家标准《钢结构设计规范》GB50017、《冷弯薄壁钢结构技术规范》GB50018及《钢结构工程施工质量验收规范》GB50205,对特殊条件(疲劳、高温或腐蚀等)下高强度螺栓连接的设计与施工,尚应符合现行有关标准的规定。

1.0.4高强度螺栓连接的设计与施工,应结合工程实际,合理选用材料、连接型式、构造措施及施工方法,保证连接接头在运输、安装和使用过程中满足强度和刚度要求,并符合防火、防腐要求。

1.0.5在钢结构设计文件中,应注明所用高强度螺栓连接副的性能等级、规格、连接型式、预拉力与抗滑移系数等要求。

2.术语、符号2.1术语2.1.1 大六角高强度螺栓连接副heavy-hex high strength bolt assembly由一个高强度大六角头螺栓,一个高强度大六角螺母和两个高强度平垫圈组成的结构连接紧固件。

2.1.2 扭剪型高强度螺栓连接副twist-off-type high strength bolt assembly由一个扭剪型高强度螺栓,一个高强度六角螺母和一个高强度平垫圈组成的结构连接紧固件。

2.1.3 摩擦面faying surface高强度螺栓连接件板层之间接触面。

2.1.4 预拉力(紧固轴力)pretension通过紧固高强度螺栓连接副而在螺栓杆轴方向产生的符合连接设计所要求的拉力。

2.1.5 摩擦型连接slip critical joint通过对高强度螺栓连接副紧固所得到预拉力(紧固轴力),使连接板层贴紧并施加接触压力,利用由此产生于连接件板层之间接触面间的摩擦力来传递外力的高强度螺栓连接。

螺栓焊缝承载力一览表

螺栓焊缝承载力一览表

b
受拉的 受剪的承载力设计值N b (kN) v 承载力 设计值 承 剪 面 在 承 剪 面 在 螺 杆 处 螺 纹 处 Ntb (kN) 单 剪 双 剪 单 剪 双 剪 78.3 62.3 124.7 48.6 97.1
283.2 282.0
122.4
354.0 310.2
97.4
194.8
75.9
一个 10.9 级承压型高强螺栓的承载力设计值表
螺栓 螺栓 螺栓毛 螺栓的 螺栓有 性能 直径 截面面 螺纹间 效截面 等级 d 积A 距 p 面积Ae 构件钢 材钢号 (mm) (mm2) 16 201.1 (mm) (mm ) Q235 2 156.7 Q345 Q235 20 314.2 2.5 244.8 Q345 Q235 22 10.9S Q235 24 452.4 3 352.5 Q345 Q235 27 572.6 3 459.4 Q345 Q235 30 706.9 3.5 560.6 Q345
173.8
347.6
注:1、表中螺栓的承载力设计值按下列公式计算: 承压:Ncb=d ∑t fcb;受拉:Ntb=Ae ftb;受剪(在螺杆处):Nvb=nv A fvb;受剪(在螺纹处):Nvb=nv Ae fvb 2、单角钢单面连接的螺栓,其承载力设计值应按表中的数值乘以0.85。1Fra bibliotek151.8
380.1
2.5
303.4 Q345
389.4 338.4
151.7
117.8
235.7
94.1
188.1
176.3
424.8 380.7
140.2
280.5
109.3
218.6
229.7

普通及高强螺栓承载力计算

普通及高强螺栓承载力计算

M10 M12 M14 M16 M20 M24 M30
220 270 300 310 420 520 700
110 135 150 155 210 260 350
90 110 120 125 170 210 280
45 55 60 65 85 105 140
140 160 170 175 220 260 330
μ
0.45 0.35 0.3
M16
32.4 25.2 21.6 36 28.8 25.2 36 28.8 40.5 31.5 27 45 36 31.5 45 36
M20
50.625 39.375 33.75 56.25 45 39.375 56.25 45 62.775 48.825 41.85 69.75 55.8 48.825 69.75 55.8
螺栓 等级
ftb 170 210 400
N/mm2 N/mm2
C 级 4.6、4.8 A、B 5.6 级 8.8
fvb 承压板承压 fcb N/mm2 140 C 级 199 薄壁型钢 320 A、B级
Q235 305 290 405
钢号 Q345 Q420 385 425 370 510 560
当承压板厚t(mm)为
14.33 15.83 19.62 21.55 26.63 28.15 32.72 35.63 41.62 43.98 51.58 53.22 59.93 63.33 78.1 95.3 80.16 98.96
螺栓 ftb fvb 承压板 fcb 等级 N/mm2 N/mm2 钢号 N/mm2
8.8 400 10.9 500
16
64.8 50.4 43.2 72 57.6 50.4 72 57.6 81 63 54 90 72 63 90 72

钢筋结构试卷和答案

钢筋结构试卷和答案

钢结构试卷题号 一二三四 总 分分数一、填空题(每空1分,共10分)1、钢材的两种破坏形式分别为脆性破坏和 。

2、焊接的连接形式按构件的相对位置分为 、搭接、角接和T 形连接。

3、钢结构中轴心受力构件的应用十分广泛,其中轴心受拉构件需进行钢结构强度和 的验算。

4、轴心受压构件整体屈曲失稳的形式有 、 和 。

5、梁整体稳定判别式11l b 中, 1l 是 , 1b 是 。

6、静力荷载作用下,若内力沿侧面角焊缝没有均匀分布,那么侧面角焊缝的计算长度不宜大于 。

7、当组合梁腹板高厚比0w h t ≤ 时,对一般梁可不配置加劲肋。

二.单项选择题(每题1分,共25分)1、有两个材料分别为Q235和Q345钢的构件需焊接,采用手工电弧焊, 采用E43焊条。

(A)不得 (B)可以 (C)不宜 (D)必须 2、工字形轴心受压构件,翼缘的局部稳定条件为yf t b 235)1.010(1λ+≤,其中λ的含义为 。

(A )构件最大长细比,且不小于30、不大于100 (B)构件最小长细比(C)最大长细比与最小长细比的平均值 (D)30或100 3、偏心压杆在弯矩作用平面内的整体稳定计算公式x 1(10.8')mx x x x Ex M f A W N N βNϕγ+≤-中,其中,1x W 代表 。

(A)受压较大纤维的净截面抵抗矩 (B)受压较小纤维的净截面抵抗矩 (C)受压较大纤维的毛截面抵抗矩 (D)受压较小纤维的毛截面抵抗矩4、承重结构用钢材应保证的基本力学性能内容应是 。

(A)抗拉强度、伸长率 (B)抗拉强度、屈服强度、冷弯性能 (C)抗拉强度、屈服强度、伸长率 (D)屈服强度、伸长率、冷弯性能 5、随着钢材厚度的增加,下列说法正确的是 。

(A )钢材的抗拉、抗压、抗弯、抗剪强度均下降 (B)钢材的抗拉、抗压、抗弯、抗剪强度均有所提高(C)钢材的抗拉、抗压、抗弯强度提高,而抗剪强度下降 (D)视钢号而定6、在低温工作(-20ºC)的钢结构选择钢材除强度、塑性、冷弯性能指标外,还需要 的指标是 。

普通及高强螺栓承载力计算

普通及高强螺栓承载力计算

表 13.2 .3-1 碳钢 及合 金钢 锚栓 钢材 强度 设计 指标
性 能 等 级
锚栓 强度 设计 值 (MPa )
用于 抗拉 计算 fud,t 用于 抗剪 计算 fud,v
表 13.2 .3-2 不锈 钢锚 栓钢 材强 度设 计指 标
性 能 等 级 螺纹 直径 (mm)
M14 300 150 120 60 170 M16 310 155 125 65 175 M20 420 210 170 85 220 M24 520 260 210 105 260 M30 700 350 280 140 330
Q345 34.65 41.58 48.51 55.44 69.3 83.16 97.02 110.9 124.7 138.6
20 314.2 244.8 Q235 30.5 36.6 42.7 48.8 61 73.2 85.4 97.6 109.8 122 41.62 43.98
Q345 38.5 46.2 53.9 61.6 77 92.4 107.8 123.2 138.6 154
钢号
承压承 载力设
mm mm2 mm2
56
当承压 板厚
受拉 螺杆单剪
7
8
10
12
14
16
18
20
Ntb (kN)
Nvb (kN)
12 113.1 80.49 Q235 18.3 21.96 25.62 29.28 36.6 43.92 51.24 58.56 65.88 73.2 14.33 15.83
27 572.6 459.4 Q235 41.175 49.41 57.65 65.88 82.35 98.82 115.3 131.8 148.2 164.7 78.1 80.16

普通及高强螺栓承载力计算

普通及高强螺栓承载力计算

普通及高强螺栓承载力计算螺栓是一种常用的连接元件,在机械制造、建筑工程等领域广泛使用。

螺栓的承载力是指螺栓在受力时所能承受的最大力量。

螺栓的承载力计算需要考虑到材料的强度和力学性能。

螺栓的承载力计算需要根据具体的应用条件和材料性能来进行。

下面将介绍普通及高强螺栓的承载力计算方法,并通过实例来进行说明。

1.普通螺栓的承载力计算方法:-强度计算:根据螺栓的材料强度和尺寸,计算出螺栓的强度。

螺栓的强度可以通过查表得到。

强度计算公式为:承载力=强度×截面面积。

-剪切面积计算:根据螺栓的直径和螺纹尺寸,计算出螺栓的剪切面积。

剪切面积计算公式为:剪切面积=π/4×螺纹直径×螺纹直径。

-承载力计算:根据螺栓的剪切面积和螺纹面积,计算出螺栓的承载力。

承载力计算公式为:承载力=剪切面积×截面面积。

2.高强螺栓的承载力计算方法:-强度计算:根据螺栓的材料强度和尺寸,计算出螺栓的强度。

高强螺栓的强度计算通常采用滚螺纹的强度计算方法。

强度计算公式为:承载力=强度×截面面积。

-剪切面积计算:根据螺栓的直径和螺纹尺寸,计算出螺栓的剪切面积。

剪切面积计算公式为:剪切面积=π/4×螺纹直径×螺纹直径。

-承载力计算:根据螺栓的剪切面积和螺纹面积,计算出螺栓的承载力。

承载力计算公式为:承载力=剪切面积×截面面积。

下面通过一个实例来说明普通螺栓和高强螺栓的承载力计算。

假设有一个M16普通螺栓,其长度为80mm,属于中碳钢;另有一个M16高强螺栓,其长度为100mm,属于5.8级。

1.普通螺栓的承载力计算:- 剪切面积计算:剪切面积=π/4×螺纹直径×螺纹直径=201.06mm²。

2.高强螺栓的承载力计算:- 剪切面积计算:剪切面积=π/4×螺纹直径×螺纹直径=201.06mm²。

由于高强螺栓的强度更高,其承载力也更大。

安徽理工大学钢结构第三章题库

安徽理工大学钢结构第三章题库

、选择题第三章钢结构的连接1 .钢结构焊接常采用 E43型焊条,其中43 A .熔敷金属抗拉强度最小值 C .焊条所需的电源电压2 .手工电弧焊接 Q345构件,应采用( A . E43型焊条 丝3 . Q235 与 Q345 A . E55 型 B . D . B B . E50型焊条 表示( A ) 焊条药皮的编号 焊条编号,无具体意义 ) C . E55型焊条 H08A 焊两种不同强度的钢材进行手工焊接时,焊条应采用( B . E50 型 C . E43 型 D . H10MnSi B ) 4 .结构焊接时,所选焊条和被焊接构件之间的匹配原则是(A .弹性模量相适应B .强度相适应C .伸长率相适应D .金属化学成份相适应 5. 在焊接施工过程中,下列哪种焊缝最难施焊,而且焊缝质量最难以控制?( A .平焊 B .横焊 C .仰焊 D .立焊 6. 在对接焊缝中经常使用引弧板,目的是( A ) A .消除起落弧在焊口处的缺陷 B .对被连接构件起到补强作用 C .减小焊接残余变形 D .防止熔化的焊剂滴落,保证焊接质量 7. 对于常温下承受静力荷载、无严重应力集中的碳素结构钢构件,焊接残余应力对下列没 有明显影响的是( B ) 构件的刚度 B .构件的极限强度 焊接残余应力不影响构件的( B整体稳定性 B .静力强度 产生纵向焊接残余应力的主要原因之一是 C .构件的稳定性 D •构件的疲劳强度 C •刚度 B ) D .局部稳定性 冷却速度太快 B .施焊时焊件上出现冷塑和热塑区 C .焊缝刚度大 D .焊件各纤维能够自由变形 10 .如图,按从 A 到B 的顺序施焊,焊缝处的纵向残余应力为( A ) A .拉应力 B .压应力 C .可能受压也可能受拉 D .没有残余应力 11 .如图所示两块板件通过一条对接焊缝连接,构件冷却后, 布模式为(图中拉为正,压为负) (A ) 1-1截面纵向残余应力的分A .钢材的塑性太低B •钢材的弹性模量太高C •焊接时热量分布不均D •焊缝的厚度太小13 .在承受动力荷载的结构中,垂直于受力方向的焊缝不宜采用(A •角焊缝B •焊透的对接焊缝C •不焊透的对接焊缝C )D .斜对接焊缝14 .不需要验算对接斜焊缝强度的条件是斜焊缝的轴线与轴力N 之间的夹角满足C )。

单个摩擦型高强螺栓的容许承载力

单个摩擦型高强螺栓的容许承载力
《结构设计原理》课件
109、单个摩擦型高强螺栓的容许承 载力
1、高强度螺栓摩擦型抗剪连接
单个摩擦型高强度螺栓抗剪承载力设计值:
式中: 0.9—抗力分项系数 R的倒数( R=1.111);
nf—传力摩擦面数目,单剪时=1,双剪时=2; —摩擦面抗滑移系数;
P—预拉力设计值。
一个高强度螺栓的设计预拉力P
式中:1.111—为抗力分项系数 R
上式就是GBJ17-88规范采用的计算公式,在GB500172003中,采用等价的直线相关公式:
单个螺栓承载力设计值汇总表(二)
螺栓种类 受力状 态 受剪
计算公式
备注
长列螺栓 折减
受拉
摩擦型高 强度螺栓
兼受剪 拉
Nv Nb

Nt Nb
1
v
t
螺 栓 公 称 直 径(mm) 螺栓的性能等级
M16 M20 M22 M24 M27 M30
8.8级
80 125
150
175 230 280
10.9级
100 155
190
225 290 355
摩擦面抗滑移系数值
连接处接触面处理方法
喷 砂(丸) 喷砂(丸)后涂无机富锌漆
喷砂(丸)后生赤绣 钢丝刷清除浮锈或未经处理的干净轧制表面
构件的钢号 Q235 Q345 Q420 0.45 0.50 0.50 0.35 0.40 0.40 0.45 0.50 0.50 0.30 0.35 0.40
2、 摩擦型高强度螺栓的单栓抗拉设计承载力为:
式中: P—预拉力设计值。
3、高强度螺栓同时承受剪力和拉力连接的工作性能
尽管当Nt≤P 时,栓杆预拉力基本不变,但由于μ随Nt的 增大而减小,且随Nt的增大板件间的挤压力减小,故连接 的抗剪能力下降。规范规定将Nt乘以1.125的系数来考虑μ 值降低的不利影响,故单个摩擦型连接高强度螺栓有拉力 作用时的抗剪承载力设计值为:

钢结构节点设计计算书

钢结构节点设计计算书

4 3
fv
r
=
334.6×106 560×14×680
=
62.76Ν / mm2
<
4 3
×
120
= 166.76Ν / mm2
故满足要求
⑷ 螺栓处腹板强度验算:
Νt = 166.7ΚΝ > 0.4Ρ = 0.4 × 225 = 90ΚΝ
Ν t2 ewtw
= 166.7×103 103×10
ቤተ መጻሕፍቲ ባይዱ
= 115.6Ν / mm2
节点设计
1.梁柱拼接节点 横梁和柱的连接采用 10.9 级 Μ 24 高强螺栓进行连接,构件接触面采 用喷砂,
筑龙网
摩擦面抗滑移系数 µ = 0.45 ,每个高强螺栓的预拉力 P=225KN,连接
处传递内力值。(M=334.6KN , V=149.3KN) ⑴ 端板厚度的确定:
=
0.8 × 225
= 180ΚΝ
则受力最大螺栓的拉力和剪力为:
Μ y1
290×106 ×300
Ν = ∑ = = 144.5ΚΝ t
m yi2
2×2×(1102 +2202 +3002 )
Nv
=
34.1 = 2.8KN 12
拉剪共同作用下受力最大螺栓的承载力验算:
Nt
N
b t
+
Nv
N
b v
=
2.8 + 144.5 91.125 180
= 0.03 + 0.803 = 0.833 < 1.0
故承载力满足要求。
⑶ 连接板计算:
连接板近似的按固结梁计算:(如图)
Μ
=

单个螺栓承载力设计值

单个螺栓承载力设计值

单个螺栓承载力设计值
螺栓承载力设计值的计算需要考虑多个因素,包括材料的强度、螺栓的几何形状、紧固力的大小以及受力方式等。

首先,材料的强度是决定螺栓承载力设计值的关键因素之一、常见的螺栓材料有碳钢、合金钢和不锈钢等。

不同材料的强度不同,因此在设计中需要根据实际情况选择合适的螺栓材料来确保其承载能力。

其次,螺栓的几何形状是影响承载力设计值的重要因素之一、螺栓的几何形状包括螺纹形状、螺纹尺寸、螺栓头部和螺栓长度等。

这些几何参数的大小和形态对于螺栓的受力性能有着直接影响,需要根据设计要求进行合理的选择和计算。

紧固力的大小也是影响螺栓承载力设计值的一个重要因素。

螺栓的承载能力与其紧固力成正比,因此需要根据设计要求和实际情况来确定螺栓的预紧力。

通常情况下,设计中会考虑到预紧力的损失和松动因素,以确保螺栓在使用过程中能够保持足够的紧固力。

最后,螺栓的承载力设计值还需要考虑受力方式。

根据受力方向和大小的不同,螺栓可能承受剪切力、拉力、压力等多种受力形式。

因此,在计算螺栓的承载力设计值时,需要对不同受力方式进行分析,并根据最不利受力情况进行计算。

总之,单个螺栓承载力设计值的确定是一个复杂而重要的工作,需要综合考虑材料强度、螺栓几何形状、紧固力和受力方式等多个因素。

只有在合理选择和计算这些参数的基础上,才能保证螺栓连接的安全性和可靠性。

在实际工程设计中,为了确保连接的可靠性,往往会采取一系列的安全措施,如增加剪切面积、采用高强度材料、增加预紧力等。

花篮螺栓悬挑架(扣件式)计算书

花篮螺栓悬挑架(扣件式)计算书

花篮螺栓悬挑架(扣件式)计算书计算依据:1、《建筑施工扣件式钢管脚手架安全技术标准》T/CECS 699-20202、《建筑施工脚手架安全技术统一标准》GB51210-20163、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-20114、《建筑结构荷载规范》GB50009-20125、《钢结构设计标准》GB50017-20176、《混凝土结构设计规范》GB50010-2010架体验算一、脚手架参数二、荷载设计计算简图:立面图侧面图三、纵向水平杆验算横向水平杆上纵向水平杆根数n 2纵、横向水平杆布置方式纵向水平杆在上横杆抗弯强度设计值[f](N/mm2) 205 横杆截面惯性矩I(mm4) 107800 横杆弹性模量E(N/mm2) 206000 横杆截面抵抗矩W(mm3) 4490纵、横向水平杆布置承载能力极限状态q=1.3×(0.033+G kjb×l b/(n+1))+1.5×G k×l b/(n+1)=1.3×(0.033+0.1×0.85/(2+1))+1.5×2×0.85/( 2+1)=0.93kN/m正常使用极限状态q'=(0.033+G kjb×l b/(n+1))+G k×l b/(n+1)=(0.033+0.1×0.85/(2+1))+2×0.85/(2+1)=0.628kN/m 计算简图如下:1、抗弯验算M max=0.1ql a2=0.1×0.93×1.22=0.134kN·mσ=γ0M max/W=1×0.134×106/4490=29.83N/mm2≤[f]=205N/mm2满足要求!2、挠度验算νmax=0.677q'l a4/(100EI)=0.677×0.628×12004/(100×206000×107800)=0.397mm νmax=0.397mm≤[ν]=min[l a/150,10]=min[1200/150,10]=8mm满足要求!3、支座反力计算承载能力极限状态R max=1.1ql a=1.1×0.93×1.2=1.228kN正常使用极限状态R max'=1.1q'l a=1.1×0.628×1.2=0.829kN四、横向水平杆验算承载能力极限状态由上节可知F1=R max=1.228kNq=1.3×0.033=0.043kN/m正常使用极限状态由上节可知F1'=R max'=0.829kNq'=0.033kN/m1、抗弯验算计算简图如下:弯矩图(kN·m)σ=γ0M max/W=1×0.351×106/4490=78.278N/mm2≤[f]=205N/mm2 满足要求!2、挠度验算计算简图如下:变形图(mm)νmax=0.823mm≤[ν]=min[l b/150,10]=min[850/150,10]=5.667mm满足要求!3、支座反力计算承载能力极限状态R max=1.246kN五、扣件抗滑承载力验算横杆与立杆连接方式单扣件扣件抗滑移折减系数0.9 扣件抗滑承载力验算:纵向水平杆:R max=1×1.228/2=0.614kN≤R c=0.9×8=7.2kN横向水平杆:R max=1×1.246=1.246kN≤R c=0.9×8=7.2kN满足要求!六、荷载计算立杆静荷载计算1、立杆承受的结构自重标准值N G1k单外立杆:N G1k=(gk+l a×n/2×0.033/h)×H=(0.12+1.2×2/2×0.033/1.8)×20=2.844kN单内立杆:N G1k=2.844kN2、脚手板的自重标准值N G2k1单外立杆:N G2k1=(H/h+1)×la×l b×G kjb×1/2/2=(20/1.8+1)×1.2×0.85×0.1×1/2/2=0.309kN1/2表示脚手板2步1设单内立杆:N G2k1=0.309kN3、栏杆与挡脚板自重标准值N G2k2单外立杆:N G2k2=(H/h+1)×la×G kdb×1/2=(20/1.8+1)×1.2×0.17×1/2=1.235kN1/2表示挡脚板2步1设4、围护材料的自重标准值N G2k3单外立杆:N G2k3=G kmw×la×H=0.01×1.2×20=0.24kN5、构配件自重标准值N G2k总计单外立杆:N G2k=N G2k1+N G2k2+N G2k3=0.309+1.235+0.24=1.784kN单内立杆:N G2k=N G2k1=0.309kN立杆施工活荷载计算外立杆:N Q1k=la×l b×(n zj×G kzj)/2=1.2×0.85×(2×2)/2=2.04kN内立杆:N Q1k=2.04kN组合风荷载作用下单立杆轴向力:单外立杆:N=1.3×(N G1k+ N G2k)+1.5×N Q1k=1.3×(2.844+1.784)+ 1.5×2.04=9.077kN单内立杆:N=1.3×(N G1k+ N G2k)+1.5×N Q1k=1.3×(2.844+0.309)+1.5×2.04=7.159kN七、立杆稳定性验算1、立杆长细比验算立杆计算长度l0=Kμh=1×1.5×1.8=2.7m长细比λ=l0/i=2.7×103/15.9=169.811≤210满足要求!轴心受压构件的稳定系数计算:立杆计算长度l0=Kμh=1.155×1.5×1.8=3.119m长细比λ=l0/i=3.119×103/15.9=196.132查《规范》表A得,φ=0.1882、立杆稳定性验算组合风荷载作用单立杆的轴心压力标准值N'=N G1k+N G2k+N Q1k=2.844+1.784+2.04=6.668kN单立杆的轴心压力设计值N=1.3(N G1k+N G2k)+1.5N Q1k=1.3×(2.844+1.784)+1.5×2.04=9.077kNM wd=φwγQ M wk=φwγQ(0.05ζ1w k l a H12)=0.6×1.5×(0.05×0.6×0.159×1.2×3.62)=0.067kN·m σ=γ0[N/(φA)+M wd/W]=1×[9076.617/(0.188×424)+66764.736/4490]=128.737N/mm2≤[f]=205N/mm2 满足要求!八、连墙件承载力验算N lw=1.5×ωk×2×h×3×l a=1.5×0.173×2×1.8×3×1.2=3.363kN长细比λ=l0/i=600/15.9=37.736,查《规范》表A.0.5得,φ=0.896(N lw+N0)/(φAc)=(3.363+3)×103/(0.896×424)=16.749N/mm2≤0.85×[f]=0.85×205N/mm2=1 74.25N/mm2满足要求!扣件抗滑承载力验算:N lw+N0=3.363+3=6.363kN≤0.9×12=10.8kN满足要求!悬挑梁验算一、基本参数二、荷载布置参数附图如下:平面图立面图三、主梁验算主梁材料类型工字钢主梁合并根数n z 1荷载标准值:q'=g k=0.241=0.241kN/m第1排:F'1=F1'/n z=6.67/1=6.67kN 第2排:F'2=F2'/n z=6.67/1=6.67kN 荷载设计值:q=1.3×g k=1.3×0.241=0.313kN/m第1排:F1=F1/n z=9.08/1=9.08kN第2排:F2=F2/n z=9.08/1=9.08kN1、强度验算弯矩图(kN·m)σmax=γ0M max/W=1×2.303×106/185000=12.45N/mm2≤[f]=215N/mm2 符合要求!2、抗剪验算剪力图(kN)τmax=γ0Q max/(8I zδ)[bh02-(b-δ)h2]=1×9.219×1000×[94×1802-(94-6.5)×158.62]/(8×16600000×6.5)=9.021N/mm2τmax=9.021N/mm2≤[τ]=125N/mm2符合要求!3、挠度验算变形图(mm)νmax=0.06mm≤[ν]=2×l x/250=2×1250/250=10mm符合要求!4、支座反力计算设计值:R1=4.055kN,R2=14.493kN 四、上拉杆件验算上拉杆件与建筑物连接参数:上拉杆件与主梁连接参数:1、上拉杆强度验算上拉杆件角度计算:α1=arctanL1/L2=arctan(3300/1050)=72.35°上拉杆件支座力:设计值:R S1=n z R2=1×14.493=14.493kN主梁轴向力设计值:N SZ1=R S1/tanα1=14.493/tan72.35°=4.611kN上拉杆件轴向力:设计值:N S1=γ0R S1/sinα1=1×14.493/sin72.35°=15.208kN上拉杆件的最大轴向拉力设计值:N S=max[N S1...N Si]=15.208kN轴心受拉稳定性计算:σ =N S/A=15.208×103/380.1=40.012N/mm2≤f=205N/mm2符合要求!2、花篮螺栓验算σ=N s/(π×d e2/4)=15.208×103/(π×122/4)=134.472N/mm2≤[ft]=170N/mm2符合要求!3、吊耳板计算型钢主梁上吊耳板排数 1 吊耳板厚t(mm) 12吊耳板两侧边缘与吊孔边缘净距b(mm) 50 顺受力方向,吊孔边距板边缘最小距离a(mm)65吊孔直径d0(mm) 25 吊耳板抗拉强度设计值f(N/mm2) 205吊耳板抗剪强度设计值f v(N/mm2) 125吊耳板由于型钢主梁位置吊耳板排数为1,则单个吊耳板所受荷载为N d=15.208/1=15.208kN参考GB50017-2017,对连接耳板进行如下验算:(1)耳板构造要求B e= 2t+16= 2×12+16=40mm≤b=50mm满足要求!4B e/3= 4×40/3=53.333mm≤a=65mm满足要求!(2)耳板孔净截面处的抗拉强度验算计算宽度:b1= min(2t+16,b-d0/3)= min(2×12+16,50-25/3)=40mmσ= N d/(2tb1)= 15.208×103/(2×12×40)=15.842N/mm2≤f=205N/mm2耳板孔净截面处抗拉强度满足要求!(3)耳板端部截面抗拉(劈开)强度验算σ= N d/[2t(a-2d0/3)]= 15.208×103/[2×12×(65-2×25/3)]=13.111N/mm2≤f=205N/mm2耳板端部截面抗拉强度满足要求!(4)耳板抗剪强度验算耳板端部抗剪截面宽度:Z= [(a+d0/2)2-(d0/2)2]0.5= [(65+25/2)2-(25/2)2]0.5=76.485mmτ= N d/(2tZ)= 15.208×103/(2×12×76.485)=8.285N/mm2≤fv=125N/mm2耳板抗剪强度满足要求!4、吊耳板与型钢主梁连接焊缝验算各上拉杆位置单个吊耳板焊缝所受荷载,垂直焊缝方向荷载F、平行焊缝方向荷载V分别为:上拉杆1位置吊耳板:由于型钢梁上吊耳板排数为1,则:单个吊耳板垂直焊缝方向荷载F1=R S1/1=14.493/1=14.493kN单个吊耳板平行焊缝方向荷载V1=R SZ1/1=4.611/1=4.611kN垂直于焊缝长度作用力(正应力):σf=F1/(0.7h f l w1)=14.493×103/(0.7×8×120)=21.566N/mm2≤βf f f w=1.22×160=195.2N/mm2 平行于焊缝长度作用力(剪应力):τf=V1/(0.7h f l w1)=4.611×103/(0.7×8×120)=6.862N/mm2≤f f w=160N/mm2[(σf/βf)2+τf2]0.5=[(21.566/1.22)2+6.8622]0.5=18.962N/mm2≤f f w=160N/mm2上拉杆1位置吊耳板焊缝强度满足要求!5、钢拉杆与吊耳板连接焊缝验算钢拉杆与吊耳板连接焊缝主要承受剪应力:τf=N d/(0.7h f×l w2)=15.208×103/(0.7×8×120)=22.632N/mm2≤f f w=160N/mm2钢拉杆与吊耳板连接焊缝验算符合要求!6、上拉与主梁连接吊耳板轴销验算上拉与主梁连接吊耳板轴销主要承受剪力:单个轴销抗剪承载力容许值:N v b=n vπd2f v b/4=1×3.142×222×125/(4×1000)=47.517kN轴销所受剪力:N v=N s/n2=15.208/1=15.208kN≤N v b=47.517kN上拉与主梁连接吊耳板轴销抗剪符合要求!7、上拉杆件与建筑物连接锚固螺栓验算上拉杆1:与建筑物连接螺栓所受拉力N t1=N s1×sin(90-α1)=15.208×sin(90°-72.35°)=4.611kN与建筑物连接螺栓所受剪力N v1=N s1×cos(90-α1)=15.208×cos(90°-72.35°)=14.493kN单个螺栓所受的拉力值:N t=N t1/n1=4.611/1=4.611kN单个螺栓所受的剪力值:N v=N v1/n1=14.493/1=14.493kN单个高强螺栓抗剪承载力设计值N v b=0.9kn f uP=0.9×1×1×0.5×125=56.25kN 每个高强螺栓受拉承载力设计值N t b=0.8P=0.8×125=100kNN V/N v b+N t/N t b=14.493/56.25+4.611/100=0.304≤1螺栓承载力满足要求。

摩擦型高强度螺栓拉力计算(带公式程序)

摩擦型高强度螺栓拉力计算(带公式程序)

摩擦型高强度螺栓拉力计算螺栓等级(1:8.8级;2:10.9级)2螺栓直径(16;20;22;24;27;30)20螺栓预拉力:155KN124KN螺栓排(对)数:4排假设对称布置1~2:1502~3:2903~4:150(mm)弯距:100KN*M最大轴拉力设计值:68.3第二排螺栓轴拉力设计值:33.5螺栓满足。

端板厚度计算(根据CECS 102:98 7.2.9条端板钢材的抗拉强度设计值f=315N/mm^2端板的宽度b=250mm加肋板的宽度bs=0mm螺栓中心至腹板的距离e w =70mm螺栓中心至翼缘板表面的距离ef =70mm螺栓的间距a =290mm1.伸臂类端板:19.1mm2.无加劲肋类端板:14.5mm3.两边支承类端板:(1)端板外伸13.1mm√(2)端板平齐15.0mm4.三边支承类端板:13.1mm9.2√1.伸臂类端板: 一个高强螺栓的拉力设计值,Nt =68.3KN 按公式(7.2.9-1)计算的端板厚度t 1=19.1mm 2.无加劲肋类端板:(7.2.9-2)KN 一个高强螺栓的拉力设计值,Nt =68.3KN 按公式(7.2.9-2)计算的端板厚度t 1=14.5mm 3.两边支承类端板:(1)端板外伸(7.2.9-3a ) 一个高强螺栓的拉力设计值,Nt =68.3KN 按公式(7.2.9-3a)计算的端板厚度t 1=13.1mm (2)端板平齐(7.2.9-3b ) 一个高强螺栓的拉力设计值,Nt =68.3KN 按公式(7.2.9-3b)计算的端板厚度t 1=15.0mm 4.三边支承类端板:(7.2.9-4) 一个高强螺栓的拉力设计值,Nt =68.3KN 按公式(7.2.9-4)计算的端板厚度t 1= 端板厚度t =13.1mm结 论:端板厚度t =19.1mm bf N e t t f 6≥fe a N e t w tw )5.0(3+≥fe e e b e N e e t wf f w tw f )](2[6++≥fe e e b e N e e t wf f w tw f )](4[12++≥fe b b e N e e tf s w tw f ]4)2([62++≥33.54928 9.186986。

单个高强度螺栓抗拉承载力设计值

单个高强度螺栓抗拉承载力设计值

单个高强度螺栓抗拉承载力设计值下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 引言高强度螺栓在工程结构中扮演着至关重要的角色,它们承担着连接和固定构件的责任。

高强螺栓计算

高强螺栓计算

b Nv
k nf u P
k:系数,普通钢结构取0.9,冷弯薄壁型钢区0.8 n:摩擦面数量 u:摩擦面抗滑移系数 P:高强螺栓预拉力
三、螺栓的计算
延杆轴方向受拉时一个高强螺栓的受拉承载力
按以下计算:
b Nt
0.8 P
高强螺栓预拉力
三、螺栓的计算
高强螺栓在铰接状态下的计算:
尽管承压型在设计数值上占有优势但由于其属于剪压破坏型式螺栓孔为类似普通螺栓的孔隙型螺栓孔于剪压破坏型式螺栓孔为类似普通螺栓的孔隙型螺栓孔在承受荷载作用时的变形远大于摩擦型所以高强度螺栓在承受荷载作用时的变形远大于摩擦型所以高强度螺栓承压型主要用于非抗震构件连接非承受动荷载构件连接承压型主要用于非抗震构件连接非承受动荷载构件连接非反复作用构件连接
ey V 2 b 1 Nt N 2 2 n n x y i i
2


(当yi/x1>3时)
三、螺栓的计算
承压型高强螺栓的计算:
螺栓群的计算模式和摩擦型的相同,但单个螺栓的承载 力不同。
二、螺栓的组成:
高强度螺栓在生产上全称叫高强度螺栓连接副, 一般不简称为高强螺栓。 大六角高强螺栓由一个大六角头螺栓、一个螺母、 两个垫圈组成。扭剪型高强螺栓有一个螺杆、一 个螺母、一个垫圈组成。
二、螺栓的构造:
高强螺栓的材质:
三、螺栓的计算
摩擦型高强螺栓计算:

抗剪连接中(承受垂直于螺栓杆轴方向的内力),一 个高强螺栓受剪承载力应按下式计算:
一、螺栓的分类:
5、高强螺栓的选用
考虑到在强震反复作用下,连接摩擦面可能会失效,这时 候的抗剪承载力还是要取决于螺栓抗剪能力和板件承压能 力,因此抗震规范规定了高强度螺栓极限受剪的承载力计 算公式。尽管承压型在设计数值上占有优势,但由于其属 于剪压破坏型式,螺栓孔为类似普通螺栓的孔隙型螺栓孔, 在承受荷载作用时的变形远大于摩擦型,所以高强度螺栓 承压型主要用于非抗震构件连接、非承受动荷载构件连接、 非反复作用构件连接。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档