浙江省杭州市江干区九年级(上)期末数学试卷

合集下载

浙江省杭州市2023-2024学年上学期数学九年级期末典型试卷

浙江省杭州市2023-2024学年上学期数学九年级期末典型试卷

2023-2024学年上学期杭州市初中数学九年级期末典型试卷一.选择题(共10小题)1.(滨江区期末)在△ABC和△DEF中,AB=3DE,AC=3DF,∠A=∠D.如果△ABC的周长为24,面积为18,则△DEF的周长、面积分别是()A.8,6 B.8,2 C.,6 D.,22.(滨江区期末)四边形ABCD内接于⊙O,∠A=60°,∠B=80°,则∠C的度数是()A.60°B.80°C.100°D.120°3.(杭州期末)下列事件中,属于不可能事件的是()A.a是实数,则|a|≥0B.任意一个三角形都有外接圆C.抛掷一枚骰子,朝上面的点数是6D.一匹马奔跑的速度是每秒100米4.(江干区期末)关于二次函数y=﹣x2+2x的最值,下列叙述正确的是()A.当x=2时,y有最小值0 B.当x=2时,y有最大值0C.当x=1时,y有最小值1 D.当x=1时,y有最大值15.(江干区期末)已知二次函数y=2mx2+(2﹣m)x,它的图象可能是()A.B.C.D.6.(江干区期末)如图,直线l1∥l2∥l3,则()A.B.C.D.7.(江干区期末)如图,CD是⊙O的直径,弦AB⊥CD于点E,若OE=3,AE=4,则下列说法正确的是()A.AC的长为B.CE 3 C.CD的长为12 D.AD的长为108.(滨江区期末)如图,△ABC内接于⊙O,∠A=40°,∠ABC=70°,BD是⊙O的直径,BD交AC于点E,连接CD,则∠AEB等于()A.70°B.90°C.110°D.120°9.(杭州期末)如图,在⊙O中,AB、DC是⊙O的直径,若∠DOA=70°,则∠C=()A.20°B.35°C.55°D.70°10.(杭州期末)已知二次函数y=x2﹣bx+c与x轴只有一个交点,且图象经过两点A(1,n),B(m+2,n),则m、n满足的关系为()A.B.C.D.二.填空题(共6小题)11.(江干区期末)已知抛物线y=(x+1)2向右平移2个单位,再向上平移1个单位,得到的抛物线表达式为.12.(杭州期末)已知圆心角为60°的扇形的弧长为π,则扇形的半径为.13.(滨江区期末)若扇形的面积为24π,圆心角为216°,则它的弧长是.14.(江干区期末)如图是一张矩形纸片,E是AB的中点,把△BCE沿直线CE对折,使点B落在对角线BD上的点F处,AB=2,则CB=.15.(江干区期末)已知线段AB长是2,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为.16.(滨江区期末)某宾馆有50个房间供游客居住.当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有1个房间空闲.如果游客居住房间,宾馆需要对每个房间每天支出40元的各种费用.房价定为元时,宾馆利润最大,最大利润是元.三.解答题(共8小题)17.(杭州期末)设有3个型号相同的杯子,其中一等品2个,二等品1个.从中任取1个杯子,记下等级后放回,第二次再从中取1个杯子.求:(1)第一次取出的杯子是一等品的概率.(2)用树状图或列表的方法求两次取出都是一等品的概率.18.(滨江区期末)在平面直角坐标系中,函数y=﹣x2+bx+c图象过点A(m,0),B(m+3,0).(1)当m=1时,求该函数的表达式;(2)证明该函数的图象必过点(m+1,2);(3)求该函数的最大值.19.(杭州期末)已知二次函数y=ax2+4ax+3a(a为常数).(1)若二次函数的图象经过点(2,3),求函数y的表达式.(2)若a>0,当x<时,此二次函数y随着x的增大而减小,求m的取值范围.(3)若二次函数在﹣3≤x≤1时有最大值3,求a的值.20.(江干区期末)已知函数y1=(x+m)(x﹣m﹣1),y2=ax+m(a≠0)在同一平面直角坐标系中.(1)若y1经过点(1,﹣2),求y1的函数表达式.(2)若y2经过点(1,m+1),判断y1与y2图象交点的个数,说明理由.(3)若y1经过点(,0),且对任意x,都有y1>y2,请利用图象求a的取值范围.21.(杭州期末)商店销售某商品,销售中发现,该商品每天的销售量y(个)与销售单价x(元/个)之间存在如图所示的关系.其中成本为20元/个.(1)求y与x之间的函数关系式.(2)为了保证每天利润不低于1300元,单价不高于30元/个,那么商品的销售单价应该定在什么范围?22.(杭州期末)将图中的破轮子复原,已知弧上三点A,B,C.(1)用尺规作出该轮的圆心O,并保留作图痕迹;(2)若△ABC是等腰三角形,设底边BC=8,腰AB=5,求该轮的半径R.23.(杭州期末)如图,⊙O是四边形ABCD的外接圆,直径BD与弦AC交于点E.若∠BAC=2∠ABE.(1)求证:AB=AC;(2)当△BCE是等腰三角形时,求∠BCE的大小;(3)当AE=4,CE=6时,求边BC的长.24.(江干区期末)已知钝角三角形ABC内接于⊙O,E、D分别为AC、BC的中点,连接DE.(1)如图1,当点A、D、O在同一条直线上时,求证:DE=AC.(2)如图2,当A、D、O不在同一条直线上时,取AO的中点F,连接FD交AC于点G,当AB+AC=2AG时.①求证:△DEG是等腰三角形;②如图3,连OD并延长交⊙O于点H,连接AH.求证:AH∥FG.2023-2024学年上学期杭州市初中数学九年级期末典型试卷1参考答案与试题解析一.选择题(共10小题)1.(滨江区期末)在△ABC和△DEF中,AB=3DE,AC=3DF,∠A=∠D.如果△ABC的周长为24,面积为18,则△DEF的周长、面积分别是()A.8,6 B.8,2 C.,6 D.,2【考点】相似三角形的判定与性质.【专题】计算题;证明题;运算能力;推理能力;应用意识.【分析】由AB=3DE,AC=3DF,可得=3,=3,可得=,由∠A=∠D,可证明△ABC ∽△DEF,再根据相似三角形性质即可求得结论.【解答】解:在△ABC和△DEF中,∵AB=3DE,∴=3,∵AC=3DF,∴=3,∴=,∵∠A=∠D,∴△ABC∽△DEF,∴==3,∵△ABC的周长为24,∴△DEF的周长=×24=8,∴==32=9∵S△ABC=18,∴S△DEF=S△ABC=2.故选:B.【点评】本题考查了相似三角形的判定和性质,是一道基础题,熟练掌握和灵活运用相似三角形性质是解答本题的关键.2.(滨江区期末)四边形ABCD内接于⊙O,∠A=60°,∠B=80°,则∠C的度数是()A.60°B.80°C.100°D.120°【考点】圆周角定理;圆内接四边形的性质.【专题】圆的有关概念及性质;运算能力.【分析】根据圆内接四边形的性质得出∠A+∠C=180°,再求出答案即可.【解答】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=60°,∴∠C=120°,故选:D.【点评】本题考查了圆周角定理和圆内接四边形的性质,注意:圆内接四边形的对角互补.3.(杭州期末)下列事件中,属于不可能事件的是()A.a是实数,则|a|≥0B.任意一个三角形都有外接圆C.抛掷一枚骰子,朝上面的点数是6D.一匹马奔跑的速度是每秒100米【考点】非负数的性质:绝对值;三角形的外接圆与外心;随机事件.【专题】概率及其应用;数据分析观念.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、a是实数,则|a|≥0,是必然事件;B、任意一个三角形都有外接圆,是随机事件;C、抛掷一枚骰子,朝上面的点数是6,是随机事件;D、一匹马奔跑的速度是每秒100米,是不可能事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(江干区期末)关于二次函数y=﹣x2+2x的最值,下列叙述正确的是()A.当x=2时,y有最小值0 B.当x=2时,y有最大值0C.当x=1时,y有最小值1 D.当x=1时,y有最大值1【考点】二次函数的性质;二次函数的最值.【专题】二次函数图象及其性质;运算能力;应用意识.【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案.【解答】解:∵y=﹣x2+2x=﹣(x﹣1)2+1,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,1),∴当x=1时,y有最大值1;∴D正确,故选:D.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k 中,对称轴为x=h,顶点坐标为(h,k).5.(江干区期末)已知二次函数y=2mx2+(2﹣m)x,它的图象可能是()A.B.C.D.【考点】二次函数的图象;二次函数的性质.【专题】二次函数图象及其性质;几何直观;推理能力.【分析】根据题目中的函数解析式和二次函数的性质,利用分类讨论的方法,可以判断各个选项中的图象是否正确,本题得以解决.【解答】解:∵二次函数y=2mx2+(2﹣m)x,∴当x=0时,y=0,即该函数的图象过点(0,0),故选项A错误;该函数的顶点的横坐标为﹣=﹣,当m>0时,该函数图象开口向上,顶点的横坐标小于,故选项B正确,选项C错误;当m<0时,该函数图象开口向下,顶点的横坐标大于,故选项D错误;故选:B.【点评】本题考查二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质解答.6.(江干区期末)如图,直线l1∥l2∥l3,则()A.B.C.D.【考点】平行线分线段成比例;相似三角形的判定与性质.【专题】图形的相似;几何直观.【分析】根据相似三角形的判定与性质,平行线分线段成比例定理得到=或=,然后利用比例的性质得到=,于是可对各选项进行判断.【解答】解:∵l1∥l2∥l3,∴=或=,∴=.故选:D.【点评】本题考查了相似三角形的判定与性质,平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.7.(江干区期末)如图,CD是⊙O的直径,弦AB⊥CD于点E,若OE=3,AE=4,则下列说法正确的是()A.AC的长为B.CE的长为3 C.CD的长为12 D.AD的长为10【考点】勾股定理;垂径定理;圆周角定理.【专题】等腰三角形与直角三角形;圆的有关概念及性质;运算能力.【分析】连接OA,根据勾股定理求出OA,求出CE和DE,再根据勾股定理求出AD,再得出答案即可.【解答】解:连接OA,∵AB⊥CD,∴∠AED=∠AEC=90°,由勾股定理得:OA===5,即OC=OD=5,∴CD=10,∵OE=3,∴CE=OC﹣OE=5﹣3=2,DE=OE+OD=3+5=8,∴AD===4,即只有选项A正确,选项B、选项C、选项D都错误;故选:A.【点评】本题考查了垂径定理,勾股定理等知识点,能熟记勾股定理是解此题的关键.8.(滨江区期末)如图,△ABC内接于⊙O,∠A=40°,∠ABC=70°,BD是⊙O的直径,BD交AC于点E,连接CD,则∠AEB等于()A.70°B.90°C.110°D.120°【考点】三角形的外接圆与外心.【专题】三角形;圆的有关概念及性质;几何直观;运算能力;推理能力.【分析】先利用圆周角定理得到∠BCD=90°,∠D=∠A=40°,则利用互余计算出∠DBC=50°,再计算出∠ABE,然后根据三角形内角和可计算出∠AEB的度数.【解答】解:∵∠A=40°,∴∠D=∠A=40°,∵BD是⊙O的直径,∴∠BCD=90°,∴∠DBC=90°﹣∠D=50°,∵∠ABC=70°,∴∠ABE=∠ABC﹣∠DBC=20°,∴∠AEB=180°﹣(∠A+∠ABE)=180°﹣(40°+20°)=120°,故选:D.【点评】本题重点考查了圆周角定理、三角形的内角和,解题的关键是掌握直径所对的圆周角是直角,同弧所对的圆周角相等.9.(杭州期末)如图,在⊙O中,AB、DC是⊙O的直径,若∠DOA=70°,则∠C=()A.20°B.35°C.55°D.70°【考点】三角形的外角性质;等腰三角形的性质;圆的认识.【专题】与圆有关的计算;推理能力.【分析】利用等腰三角形的性质以及三角形的外角的性质即可解决问题.【解答】解:∵OA=OC,∴∠A=∠C,∵∠AOD=∠A+∠C=70°,∴∠C=35°,故选:B.【点评】本题考查等腰三角形的性质,三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.(杭州期末)已知二次函数y=x2﹣bx+c与x轴只有一个交点,且图象经过两点A(1,n),B(m+2,n),则m、n满足的关系为()A.B.C.D.【考点】二次函数图象上点的坐标特征;抛物线与x轴的交点.【专题】二次函数图象及其性质;数据分析观念.【分析】点A、B的纵坐标相同,则函数的对称轴为x=(1+m+2)==,解得b=m+3,而二次函数y=x2﹣bx+c与x轴只有一个交点,则△=b2﹣4c=(m+3)2﹣4c=0,解得c=(m+3)2,当x=1时,y=n=1﹣b+c=1﹣(m+3)+(m+3)2=,即可求解.【解答】解:∵点A、B的纵坐标相同,∴函数的对称轴为x=(1+m+2)==,解得b=m+3,∵二次函数y=x2﹣bx+c与x轴只有一个交点,则△=b2﹣4c=(m+3)2﹣4c=0,解得c=(m+3)2,当x=1时,y=n=1﹣b+c=1﹣(m+3)+(m+3)2=,故选:C.【点评】本题考查的是抛物线与x轴的交点问题,根据题意得出抛物线的对称轴方程是解答此题的关键.二.填空题(共6小题)11.(江干区期末)已知抛物线y=(x+1)2向右平移2个单位,再向上平移1个单位,得到的抛物线表达式为y=(x﹣1)2+1.【考点】二次函数图象与几何变换.【专题】二次函数图象及其性质;应用意识.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:抛物线y=(x+1)2向右平移2个单位,再向上平移1个单位,得到的抛物线表达式为:y=(x+1﹣2)2+1,即y=(x﹣1)2+1.故答案是:y=(x﹣1)2+1.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.12.(杭州期末)已知圆心角为60°的扇形的弧长为π,则扇形的半径为3.【考点】弧长的计算.【专题】与圆有关的计算;运算能力.【分析】设扇形的半径为R,根据弧长公式和已知条件得出=π,再求出答案即可.【解答】解:设扇形的半径为R,∵圆心角为60°的扇形的弧长为π,∴=π,解得:R=3,∴扇形的半径为3,故答案为:3.【点评】本题考查了弧长的计算,注意:圆心角为n°,半径为r的扇形的弧长为.13.(滨江区期末)若扇形的面积为24π,圆心角为216°,则它的弧长是π.【考点】弧长的计算;扇形面积的计算.【专题】与圆有关的计算;运算能力.【分析】设扇形的半径为R,弧长为l,根据扇形面积公式得出=24π,求出R,再根据扇形的面积公式得出×l=24π,求出l即可.【解答】解:设扇形的半径为R,弧长为l,∵扇形的面积为24π,圆心角为216°,∴=24π,解得:R=2(负数舍去),∴×l=24π,解得:l=π,即它的弧长是π,故答案为:π.【点评】本题考查了弧长公式和扇形的面积计算,注意:已知扇形的圆心角是n°,半径为r,弧长为l,那么这个圆心角所对的弧的长度l=,此扇形的面积S=lr=.14.(江干区期末)如图是一张矩形纸片,E是AB的中点,把△BCE沿直线CE对折,使点B落在对角线BD上的点F处,AB=2,则CB=.【考点】矩形的性质;翻折变换(折叠问题).【专题】矩形菱形正方形;平移、旋转与对称;运算能力;推理能力.【分析】由折叠的性质得出∠COD=90°,证明△DCB∽△CBE,得出比例线段,设CB=x,得出关于x的方程,则可得出答案.【解答】解:如图,DB与CE交于点O,∵把△BCE沿直线CE对折,使点B落在对角线BD上的点F处,∴CE⊥BF,∴∠COD=90°,∵四边形ABCD是矩形,∴∠DCB=∠ABC=90°,AB=DC=2,∴∠DCE+∠CDB=∠DCE+∠ECB=90°,∴∠CDB=∠ECB,∴△DCB∽△CBE,∴,设CB=x,∵E是AB的中点,∴BE=1,∴,∴x=(负值舍去),故答案为:.【点评】本题考查了翻折变换(折叠问题),相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键.15.(江干区期末)已知线段AB长是2,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为﹣1.【考点】黄金分割.【专题】图形的相似;运算能力;推理能力.【分析】根据黄金分割点的定义,知AP是较长线段,得出AP=AB,代入数据即可得出AP的长.【解答】解:∵P是线段AB上的一点,且满足AP2=AB•BP,∴P为线段AB的黄金分割点,且AP是较长线段,∴AP=AB=×2=﹣1,故答案为:﹣1.【点评】本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的倍.16.(滨江区期末)某宾馆有50个房间供游客居住.当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有1个房间空闲.如果游客居住房间,宾馆需要对每个房间每天支出40元的各种费用.房价定为360元时,宾馆利润最大,最大利润是10240元.【考点】二次函数的应用.【专题】销售问题;二次函数图象及其性质;二次函数的应用;运算能力;应用意识.【分析】设空闲房间为x个,则定价增加了10x元,设宾馆的利润为y元,根据利润等于(定价﹣40)×有人居住的房间数,可得y关于x的二次函数,将其写成顶点式,根据二次函数的性质可得答案.【解答】解:设空闲房间为x个,则定价增加了10x元,设宾馆的利润为y元,由题意得:y=(180+10x﹣40)(50﹣x)=﹣10x2+360x+7000=﹣10(x﹣18)2+10240,∵a=﹣10<0,抛物线开口向下,∴当x=18时,y有最大值,为10240.此时房间定价为180+10×18=360(元).∴房间定价为360元时,利润最大,最大利润为10240元.故答案为:360,10240.【点评】本题考查了二次函数在销售问题中的应用,理清题中的数量关系并熟练掌握二次函数的性质是解题的关键.三.解答题(共8小题)17.(杭州期末)设有3个型号相同的杯子,其中一等品2个,二等品1个.从中任取1个杯子,记下等级后放回,第二次再从中取1个杯子.求:(1)第一次取出的杯子是一等品的概率.(2)用树状图或列表的方法求两次取出都是一等品的概率.【考点】列表法与树状图法.【专题】概率及其应用;推理能力.【分析】(1)直接根据概率公式求解即可;(2)根据题意列出树状图得出所有等可能的情况数,找出两次取出都是一等品的情况数,然后根据概率公式即可得出答案.【解答】解:(1)∵有3个型号相同的杯子,其中一等品2个,二等品1个,∴第一次取出的杯子是一等品的概率是.(2)一等品杯子有A表示,二等品杯子有B表示,根据题意画图如下:由图可知,共有9种等可能的情况数;(2)∵共有9种等可能的情况数,其中两次取出都是一等品的有4种,∴两次取出都是一等品的概率是.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.(滨江区期末)在平面直角坐标系中,函数y=﹣x2+bx+c图象过点A(m,0),B(m+3,0).(1)当m=1时,求该函数的表达式;(2)证明该函数的图象必过点(m+1,2);(3)求该函数的最大值.【考点】二次函数图象上点的坐标特征;二次函数的最值;待定系数法求二次函数解析式.【专题】二次函数图象及其性质;应用意识.【分析】(1)当m=1时,A(1,0),B(4,0),然后利用交点式写出抛物线解析式;(2)利用交点式表示出抛物线解析式为y=﹣(x﹣m)(x﹣m﹣3),然后根据二次函数图象上点的坐标特征就行证明;(3)利用配方法把交点式化为顶点式,然后根据二次函数的性质解决问题.【解答】(1)解:当m=1时,A(1,0),B(4,0),抛物线解析式为y=﹣(x﹣1)(x﹣4),即y=﹣x2+5x﹣4;(2)证明:抛物线解析式为y=﹣(x﹣m)(x﹣m﹣3),当x=m+1时,y=﹣(m+1﹣m)(m+1﹣m﹣3)=2,所以该函数的图象必过点(m+1,2);(3)y=﹣(x﹣m)(x﹣m﹣3)=﹣x2+(2m+3)x﹣m2﹣3m=﹣(x﹣)2+,所以当x=时,二次函数有最大值,最大值为.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.19.(杭州期末)已知二次函数y=ax2+4ax+3a(a为常数).(1)若二次函数的图象经过点(2,3),求函数y的表达式.(2)若a>0,当x<时,此二次函数y随着x的增大而减小,求m的取值范围.(3)若二次函数在﹣3≤x≤1时有最大值3,求a的值.【考点】二次函数的性质;二次函数图象上点的坐标特征;二次函数的最值;待定系数法求二次函数解析式.【专题】二次函数图象及其性质;运算能力.【分析】(1)把(2,3)代入y=ax2+4ax+3a,即可求得a的值;(2)由a>0可知抛物线开口向上,求得对称轴为直线x=﹣2,根据二次函数的性质得到,解得m≤﹣6;(3)分两种情况讨论,得到关于a的方程,解方程即可.【解答】解:(1)把(2,3)代入y=ax2+4ax+3a,得3=4a+8a+3a,解得:,∴函数y的表达式y=x2+x+;(2)∵抛物线得对称轴为直线x=,a>0,∴抛物线开口向上,当x≤﹣2时,二次函数y随x的增大而减小,∵时,此二次函数y随着x的增大而减小,∴,即m≤﹣6;(3)由题意得:y=a(x+2)2﹣a,∵二次函数在﹣3≤x≤1时有最大值3①当a>0 时,开口向上∴当x=1时,y有最大值8a,∴8a=3,∴;②当a<0 时,开口向下,∴当x=﹣2时,y有最大值﹣a,∴﹣a=3,∴a=﹣3,综上,或a=﹣3.【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,解题的关键:(1)把(2,3)代入y=ax2+4ax+3a;(2)根据二次函数的性质得到;(3)分开口向上和开口向下两种情况讨论.20.(江干区期末)已知函数y1=(x+m)(x﹣m﹣1),y2=ax+m(a≠0)在同一平面直角坐标系中.(1)若y1经过点(1,﹣2),求y1的函数表达式.(2)若y2经过点(1,m+1),判断y1与y2图象交点的个数,说明理由.(3)若y1经过点(,0),且对任意x,都有y1>y2,请利用图象求a的取值范围.【考点】二次函数综合题.【专题】数形结合;函数思想;判别式法;空间观念.【分析】(1)将(1,﹣2)代入y1=(x+m)(x﹣m﹣1)可得m的值,从而得到答案,(2)将(1,m+1)代入y2=ax+m得到a,再联立y1、y2判断解的个数从而得到交点个数,(3)将点(,0)代入y1可得m的值,再联立y1、y2求出图象只有一个交点时a的值,观察图象得到无交点时a的范围即得答案.【解答】解:y1=(x+m)(x﹣m﹣1)=x2﹣x﹣m2﹣m(1)将(1,﹣2)代入y1=x2﹣x﹣m2﹣m得:﹣2=12﹣1﹣m2﹣m,解得m1=﹣2,m2=1,m1=﹣2时,y1=x2﹣x﹣2,m2=1时,y1=x2﹣x﹣2,∴y1的函数表达式为:y1=x2﹣x﹣2,故答案为:y1=x2﹣x﹣2;(2)将点(1,m+1)代入y2=ax+m得:m+1=a+m,解得a=1,∴y2=x+m,由得x2﹣2x﹣m2﹣2m=0,∴△=(﹣2)2﹣4(﹣m2﹣2m)=4m2+8m+4=4(m+1)2,∵4(m+1)2≥0,∴△≥0,当m=﹣1时Δ=0,当m≠﹣1时Δ>0,∴总有实数解,m=﹣1时有一组解,当m≠﹣1时有两组解,∴y1与y2图象总有交点,当m=﹣1时有一个交点,当m≠﹣1时有两个交点,故答案为:1或2;(3)将点(,0)代入y1=x2﹣x﹣m2﹣m可得m1=m2=﹣,∴y1=x2﹣x+,y2=ax﹣,由得x2﹣(a+1)x+=0,∴△=[﹣(a+1)]2﹣3=(a+1)2﹣3,若Δ=0,则只有一组解,即y1、y2图象只有一个交点,此时(a+1)2﹣3=0,解得a=﹣1或a=﹣﹣1,如下图,如果y1、y2图象没有交点,则对任意x,都有y1>y2,由图象可知此时0<a<﹣1或﹣﹣1<a<0,故答案为:0<a<﹣1或﹣﹣1<a<0.【点评】本题考查函数一次函数、二次函数表达式及图象的交点,关键是判断△的符号,从而得出交点情况.21.(杭州期末)商店销售某商品,销售中发现,该商品每天的销售量y(个)与销售单价x(元/个)之间存在如图所示的关系.其中成本为20元/个.(1)求y与x之间的函数关系式.(2)为了保证每天利润不低于1300元,单价不高于30元/个,那么商品的销售单价应该定在什么范围?【考点】一元二次方程的应用;二次函数的应用.【专题】二次函数的应用;应用意识.【分析】(1)利用待定系数法求解即可;(2)设捐款后每天的剩余利润为w元,根据“单个利润×销售数量”列出函数解析式,求出w=1300时x的值,利用二次函数的性质求解即可.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0).将(25,900),(28,600)代入y=kx+b中,得:,解得:,∴y与之间的函数关系式为y=﹣100x+3400.(2)设捐款后每天的剩余利润为w元,依题意,得:w=(x﹣20)(﹣100x+3400)=﹣100x2+5400x﹣68000,令w=1300,则﹣100x2+5400x﹣68000=1300,解得x1=21,x2=33,∵﹣100<0,x≤30,∴抛物线开口向下,∴当该商品的销售单价每支不低于21元且不高于30元时,可保证每天利润不低于1300元.【点评】本题主要考查了二次函数的综合应用,解题时学会用待定系数法求解函数解析式,并将实际问题转化为求函数最值问题,从而来解决实际问题.22.(杭州期末)将图中的破轮子复原,已知弧上三点A,B,C.(1)用尺规作出该轮的圆心O,并保留作图痕迹;(2)若△ABC是等腰三角形,设底边BC=8,腰AB=5,求该轮的半径R.【考点】等腰三角形的性质;垂径定理的应用;作图—应用与设计作图.【专题】作图题;几何直观.【分析】(1)如图所示:分别作弦AB和AC的垂直平分线交点O即为所求的圆心.(2)设该轮的半径为R,在Rt△BOD中,利用勾股定理解决问题即可.【解答】解:(1)如图所示:分别作弦AB和AC的垂直平分线交点O即为所求的圆心;(2)连接AO、BC相交于点D,连接OB,∵BC=8,∴BD=4,∵AB=5,∴AD=3,设该轮的半径为R,在Rt△BOD中,OD=R﹣3,∴R2=42+(R﹣3)2,解得:R=,∴该轮的半径R为.【点评】本题考查作图﹣应用与设计作图,等腰三角形的性质,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.23.(杭州期末)如图,⊙O是四边形ABCD的外接圆,直径BD与弦AC交于点E.若∠BAC=2∠ABE.(1)求证:AB=AC;(2)当△BCE是等腰三角形时,求∠BCE的大小;(3)当AE=4,CE=6时,求边BC的长.【考点】圆的综合题.【专题】几何综合题;推理能力.【分析】(1)欲证明AB=AC,只要证明∠ABC=∠ACB即可.(2)分三种情形:①BE=BC,②BC=CE,③BE=CE,分别利用等腰三角形的性质求解即可.(3)连接AO并延长,交BC于点F,由AF∥CD,推出,可得OE=OD,DE=OD,CD=OA,证明△ABE∽△DCE,可得,推出AE•CE=DE•BE=24,求出OD=,再利用勾股定理,可得结论.【解答】(1)证明:∵直径BD,∴∠ABE+∠ADB=90°,∵∠BAC=2∠ABE,∠ADB=∠ACB,∴∠BAC+∠ACB=90°,∴∠ACB=90°∠BAC,∴∠ABC=180°﹣∠BAC﹣∠ACB=90°∠BAC,∴∠ACB=∠ABC,∴AB=AC;(2)解:由题意可知:∠BEC=3∠ABE.分情况:①BE=BC,那么∠ACB=∠BEC=3∠ABE,∠EBC=2∠ABE,∴∠ACB+∠BEC+∠EBC=8∠ABE=180°,∴∠ABE=22.5°,∴∠BCE=3∠ABE=67.5°.②BC=CE,那么∠EBC=∠BEC=3∠ABD,∠ACB=∠ABC=∠ABE+∠EBC=4∠ABE,∴∠ACB+∠BEC+∠EBC=10∠ABE=180°,∴∠ABE=18°,∴∠BCE=4∠ABE=72°.③BE=CE,此时E,A重合,舍去,综上所述,满足条件的∠BCE的值为67.5°或72°;(3)解:连接AO并延长,交BC于点F,根据等腰三角形三线合一可知AF⊥BC,∵直径BD,∴∠BCD=90°,∴AF∥CD,∴,∴OE=OD,DE=OD,CD=OA,∵∠AEB=∠DEC,∠ABE=∠DCE,∴△ABE∽△DCE,∴,∴AE•CE=DE•BE=24,∵OB=OD=OA,∴OD•OD=24,∴OD==OA,∴CD=,BD=,在直角△BCD中,BC2+CD2=BD2,∴BC=.【点评】本题属于圆综合题,考查了等腰三角形的性质和判定,垂径定理,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,正确寻找相似三角形解决问题,属于中考压轴题.24.(江干区期末)已知钝角三角形ABC内接于⊙O,E、D分别为AC、BC的中点,连接DE.(1)如图1,当点A、D、O在同一条直线上时,求证:DE=AC.(2)如图2,当A、D、O不在同一条直线上时,取AO的中点F,连接FD交AC于点G,当AB+AC=2AG时.①求证:△DEG是等腰三角形;②如图3,连OD并延长交⊙O于点H,连接AH.求证:AH∥FG.【考点】圆的综合题.【专题】证明题;圆的有关概念及性质;几何直观;推理能力.【分析】(1)先根据垂径定理证明AB=AC,然后根据三角形的中位线解答即可;(2)①由中位线的性质和中点的定义可得AB=2DE,AC=2AE,从而得到AE+DE=AG,由图知:AE+EG =AG,可证DE=EG;②延长HO交⊙O于点N,连接OB,OC,BN,CN,由等腰三角形的性质和三角形外角的性质可得∠EGD=∠AED,由平行线的性质和圆内接四边形的性质可证:∠AED=∠BNC,进而可证∠CAH=∠EGD,利用平行线判定定理即可证得结论.【解答】解:(1)证明:∵D是BC的中点,点A、D、O在同一条直线上,∴OD⊥BC,∴=,∴AB=AC,∵E、D分别为AC、BC的中点,∴DE是△ABC的中位线,∴DE=AB,∴DE=AC.(2)①∵E、D分别为AC、BC的中点,∴AB=2DE,AC=2AE,∵AB+AC=2AG,∴2DE+2AE=2AG,∴DE+AE=AG,∵AE+EG=AG,∴DE=EG,∴△DEG是等腰三角形.②延长HO交⊙O于点N,连接OB,OC,BN,CN,∵DE=EG,∴∠EDG=∠EGD,∴∠AED=∠EDG+∠EGD=2∠EGD,∴∠EGD=∠AED,∵DE∥AB,∴∠BAC+∠AED=180°,∵∠BAC+∠BNC=180°,∴∠AED=∠BNC,∵HO⊥BC,∴∠BOC=2∠COH,∵∠BOC=2∠BNC,∴∠COH=∠BNC,∵∠CAH=∠COH=∠BNC,∴∠CAH=∠EGD,∴AH∥FG.【点评】本题考查了平行线的性质和判定,等腰三角形的判定和性质,三角形外角的性质三角形中位线的判定和性质,圆内接四边形的性质,垂径定理,以及圆周角定理等重要知识点,正确添加辅助线是解答本题的关键。

2020-2021学年杭州市江干区九年级(上)期末数学试卷(含答案解析)

2020-2021学年杭州市江干区九年级(上)期末数学试卷(含答案解析)

2020-2021学年杭州市江干区九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.若函数y=(a2+a)x|a|+1+2x+m是关于x二次函数,则a的值为()A. ±1B. 1C. −1D. 1或02.在一个不透明的布袋中装有4个白球和5个红球,它们除了颜色不同外.其余均相同.从中随机摸出一个球,摸到红球的概率是()A. 59B. 49C. 15D. 143.若将二次函数y=x2−1的图象向上平移2个单位长度,再向右平移3个单位长度,则平移后的二次函数的顶点坐标为()A. (−3,1)B. (3,1)C. (2,2)D. (−3,−3)4.如图,已知直线a//b//c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,若AC=8,CE=12,BD=6,则BF的值是()A. 14B. 15C. 16D. 175.四边形ABCD中,∠A+∠C=180°,∠B−∠D=20°,则∠B的度数为()A. 60°B. 80°C. 100°D. 120°6.如图,在⊙O中,弧AB=弧AC,∠A=36°,则∠C的度数为()A. 44°B. 54°C. 62°D. 72°7.某学习小组为了解本城市100万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟,对于这个数据收集与处理的问题,下列说法正确的是()A. 该调查的方式是普查B. 本城市只有40个成年人不吸烟C. 本城市一定有20万人吸烟D. 样本容量是508.如图,在同一坐标系下,一次函数与二次函数的图像大致可能是()A. B.C. D.9.如图,△ABC中,G、E分别为AB、AC边上的点,GE//BC,BD//CE交EG延长线于D,BE与CD相交于点F,则下列结论一定正确的是()A. AEEC =GEBCB. AGAB=AEDBC. CFCD=CECAD. DGBC=BGBA10.如图,AB是半圆O的直径,C是半圆O上异于A,B的一点,D为AC⏜中点,延长DC交AB的延长线于点E,若∠CAE=14°,则∠E的度数是()A. 14°B. 20°C. 21°D. 24°二、填空题(本大题共6小题,共24.0分)11.将抛物线y=3x2向下平移3个单位,再向右平移2个单位,得到抛物线解析式为______ .12.已知点P是线段AB的黄金分割点,AB=20厘米,则线段AP=______ 厘米.13.从−2,−1,1,2四个数中任意取两个不同的数,分别记为a、b,则ab<−1的概率是______ .14.如图,等腰直角△ABC中,∠B=90°,∠A的顶点在⊙O上,AB,AC分别与⊙O交于点D,E,则∠DOE的度数为______.15.若反比例函数y=k−1在第一,三象限,则k的取值范围是______ .x16.如图,在矩形ABCD中,AC是对角线,且∠ACD=60°,AB=2,则矩形ABCD的面积等于______.三、解答题(本大题共7小题,共66.0分)17.在平面直角坐标系中,抛物线y=ax2+bx+2过B(−2,6),C(2,2)两点,(1)试求抛物线的解析式.(2)记抛物线顶点为D,求△BCD的面积;x向上平移b个单位,所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,(3)将直线y=−32请求出b的取值范围.18.甲、乙两同学玩转盘游戏,转盘被分成四个相同的扇形,分别标有数字1,2,3,4(如图所示),指针位置固定,转动转盘后任其自由停止,如果指针恰好停在分割线上,那么重转,直到指针指向其中一个扇形为止.两人约定:分别转动转盘一次,转到数字之和为奇数则甲获胜,数字之和为偶数则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)你认为这个游戏公平吗?请说明理由.19.在平面直角坐标系中,点A(a,0),点B(0,b),已知a、b满足(a+4)2+b2+8b+16=0.(1)点A的坐标为______,点B的坐标为______;(2)如图1,点E为线段OB上一点,连接AE,过A作AF⊥AE,且AF=AE,连接BF交x轴于点D,若点D(−1,0),求点E的坐标;(3)在(2)的条件下,如图2,过E作EH⊥OB交AB于H,点M是射线EH上一点(点M不在线段EH上),连接MO,作∠MON=45°,ON交线段BA的延长线于点N,连接MN,探究线段MN与OM的关系,并说明理由.20.如图,Rt△ABC中,∠A=90°.(1)用尺规作图法作∠ABD=∠C,与边AC交于点D(保留作图痕迹,不用写作法);(2)在(1)的条件下,当∠C=30°时,求∠BDC的度数.21.如图所示,四边形ABCD是矩形,AD=16cm,AB=6cm.动点P、Q分别同时从A、C出发,点P以3cm/s的速度向D移动,直到D为止,Q以2cm/s的速度向B移动,直到B为止.(1)P、Q两点从出发开始几秒后,四边形ABQP的面积是矩形面积的3?5何时四边形ABQP的面积最大,最大是多少?(2)P、Q从开始出发几秒后,PQ=6√5cm?22.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:______;(2)设直线l2与x轴交于点A,求△OAP的面积.23.如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.参考答案及解析1.答案:B解析:根据二次函数的定义,最高次数为2,且二次项系数不为0求解即可.本题主要考查了二次函数的定义,熟练掌握二次函数的概念是解题的关键.解:函数y=(a2+a)x|a|+1+2x+m是二次函数,∴a2+a≠0,|a|+1=2.解得:a=1.故选B.2.答案:A解析:解:∵不透明的布袋中装有4个白球和5个红球,共有9个球,∴从中随机摸出一个球,摸到红球的概率是59;故选:A.用红球的个数除以总球的个数即可.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.3.答案:B解析:解:∵将二次函数y=x2−1的图象向上平移2个单位长度,再向右平移3个单位长度,∴平移后的二次函数的解析式为:y=(x−3)2+1,∴平移后的二次函数的顶点坐标为(3,1),故选:B.按照“左加右减,上加下减”的规律即可得到函数解析式,求得其顶点坐标即可.本题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.4.答案:B解析:解:∵a//b//c,AC=8,CE=12,BD=6,∴ACAE =BDBF,即820=6BF,解得BF=15.故选:B.三条平行线截两条直线,所得的对应线段成比例.直接根据平行线分线段成比例定理即可得出结论.本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.5.答案:C解析:解:∵∠A+∠B+∠C+∠D=360°,∠A+∠C=180°,∴∠B+∠D=180°,∵∠B−∠D=20°,∴2∠B=200°,∴∠B=100°.故选:C.利用四边形的内角和即可求出答案.此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.6.答案:D解析:本题主要考查了三角形的内角和定理,圆周角定理,根据同圆或等圆中等弧所对圆周角相等得出∠B=∠C,利用三角形内角和定理求解即可.解:∵⊙O中,AB⏜=AC⏜,∴∠B=∠C,又∵∠A=36°,∴∠B=∠C=180°−36°2=72°故选:D.7.答案:D解析:解:A.该调查的方式是抽样调查,此选项说法错误;B.本城市成年人不吸烟的有100×1050=20(万人),此选项错误;C.本城市大约有20万成年人吸烟,此选项错误;D.样本容量是50,此选项正确;故选:D.总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.本题考查用样本估计总体及抽样调查的有关概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.答案:B解析:解:A.由一次函数图象可知:,由二次函数图象可知:,矛盾,所以A错误;B. 由一次函数图象可知:,,由二次函数可知:,对称轴∴所以B正确;C. 由一次函数图象可知:,,由二次函数可知:,对称轴∴矛盾,所以C错误;D. 由一次函数图象可知:,由二次函数图象可知:,矛盾,所以D错误;;故选B.9.答案:D解析:解:如图,设AB交CD于点O.∵DG//BC,∴△DOG∽△COB,∴DGBC =DOOC,∵BD//AC,∴△DOB∽△COA,∴DOOC =BDAC,∵BD//AC,DE//BC,∴四边形DECB是平行四边形,∴BD=EC,∵GE//BC,∴CECA =BGBA,∴DGBC =BGBA,故选:D.如图,设AB交CD于点O.利用相似三角形的性质进行证明即可.本题考查相似三角形的判定和性质,平行四边形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.答案:D解析:解:连接BC,∵AB是半圆O的直径,∴∠ACB=90°,∵∠CAE=14°,∴∠ABC=76°,∵D为AC⏜中点,∴∠DCA=∠DAC=12∠ABC=38°,∴∠E=∠DCA−∠CAE=24°.故选:D.根据直径所对的圆周角是直角得∠ACB=90°,可得∠ABC=76°,由D为AC⏜中点可得∠DCA=∠DAC=12∠ABC=38°,根据三角形外角的性质即可求解.本题考查圆周角定理,三角形外角的性质.解题的关键是利用圆周角定理得出∠DCA的度数.11.答案:y=3(x−2)2−3解析:本题考查的是二次函数的图象与几何变换,熟知“左加右减,上加下减”的法则是解答此题的关键.直接根据函数图象平移的法则即可得出结论.解:将抛物线y=3x2向下平移3个单位,再向右平移2个单位,得到抛物线解析式为:y=3(x−2)2−3,故答案为y=3(x−2)2−3.12.答案:10√5−10或30−10√5解析:解:当AP>BP时,AP=√5−12×20=10√5−10厘米,当AP<BP时,AP=20−(10√5−10)=30−10√5厘米.故答案为:10√5−10或30−10√5.分AP>BP和AP<BP两种情况,根据√5−12叫做黄金比进行计算即可.本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值√5−12叫做黄金比.13.答案:12解析:解:画树状图为:共有12种等可能的结果,其中ab<−1的结果数为6,所以ab<−1的概率=612=12.故答案为12.画树状图展示所有12种等可能的结果,找出ab<−1的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.14.答案:90°解析:解:∵等腰直角△ABC中,∠B=90°,∴∠A=∠C=45°,∴∠DOE=2∠A=90°,故答案为90°先求出∠A=45°,最后用圆周角定理即可得出结论.此题主要考查了等腰直角三角形的性质,圆周角定理,求出∠A是解本题的关键.15.答案:k>1解析:解:根据题意,得k−1>0,解得k>1.故答案为:k>1.根据反比例函数在第一,三象限得到k−1>0,求解即可.本题主要考查反比例函数的性质:当k>0时,函数图象位于第一、三象限,当k<0时,函数图象位于第二、四象限.16.答案:4√3解析:解:∵四边形ABCD是矩形,AB=2,∴CD=AB=2,∵∠ACD=60°,∴AD=CD⋅tan60°=2√3,∴矩形ABCD的面积为AD⋅CD=2×2√3=4√3,故答案为:4√3.首先根据矩形的性质和一边长求得另一边的长,然后利用矩形的面积计算方法求得即可.考查了矩形的性质,解题的关键是根据题意求得另一边的长,难度不大.17.答案:解:(1)把B(−2,6),C(2,2)两点坐标代入得:{4a−2b+2=64a+2b+2=2,解这个方程组,得{a=12b=−1,∴抛物线的解析式为y=12x2−x+2;(2)∵y=12x2−x+2=12(x−1)2+32,∴顶点D(1,32),∴△BCD的面积=4×92−12×3×92−12×1×12−12×4×4=3.(3)由{y =−32x +b y =12x 2−x +2消去y 得到x 2+x +4−2b =0, 当△=0时,直线与抛物线相切,1−4(4−2b)=0,∴b =158,当直线y =−32x +b 经过点C 时,b =5,当直线y =−32x +b 经过点B 时,b =3,∵直线y =−32x 向上平移b 个单位所得的直线与抛物线段BDC(包括端点B 、C)部分有两个交点, ∴158<b ≤3.解析:(1)把B 、C 两点的坐标代入求出a 和b 的值即可求出抛物线的解析式;(2)把抛物线解析式化成顶点式求出顶点坐标,运用割补法求出△BCD 的面积即可;(3)由{y =−32x +b y =12x 2−x +2,当方程组只有一组解时求出b 的值,当直线y =−32x +b 经过点C 时,求出b 的值,当直线y =−32x +b 经过点B 时,求出b 的值,由此即可解决问题.本题考查待定系数法确定二次函数解析式、二次函数性质等知识,解题的关键是求出对称轴与直线BC 交点H 坐标,学会利用判别式确定两个函数图象的交点问题,属于中考常考题型. 18.答案:解:(1)用列表法表示所有可能出现的结果:共有16中结果,即;2,3,3,4,4,4,5,5,5,5,6,6,6,7,7,8;其中和为奇数有8种,和为偶数8种;(2)公平,P 甲胜=816=12,P 乙胜=816=12, 因为甲、乙获胜的概率相等,故整个游戏公平.解析:(1)由列表法或树状图法可以列举出所有可能出现的结果的情况,(2)求出甲、乙获胜的可能性,即:甲、乙获胜的概率,通过比较得出答案.考查列表法或树状图法表示所有可能出现的结果数,以及通过获胜的概率判断游戏的公平性的方法,正确的列出表格,准确计算出获胜的概率是解决问题的关键.19.答案:(1)(−4,0),(0,−4);(2)如图1,过点G 作FH ⊥AO ,垂足为H∵∠FAH +∠AFH =90°∠FAH +∠OAE =90°∴∠AFH =∠OAE∴△AFH≌△AOE∴FH =AO =4设FB 直线解析式为y =kx +b{−k +b =0b =−4解得{k =−4b =−4∴BF 直线解析式为y =−4x −4将y =4代入得x =−2∴F(−2,4)∴OE =AH =2∴E(0,−2)(3)如图2,连接OH ,作MG ⊥NO可知OH ⊥AB∠AOH =∠NOM =45°∴∠MOH =∠NOA∵∠NAO =∠MHO =45°∴△NAO ~△MHO∴NO OM =OA OH=√2 设MG =a ,则MO =√2a ,NO =2a在Rt △MGO 中MG =GO =a∴HG =a∴G 为MO 的中点∴△NMO 为等腰直角三角形∴MN =OMMN ⊥OM解析:解:(1)由已知可得(a +4)2+(b +4)2=0∴a =−4,b =−4∴点A 坐标为(−4,0),点B 坐标为(0,−4)(2)如图1,过点G 作FH ⊥AO ,垂足为H∵∠FAH +∠AFH =90°∠FAH +∠OAE =90°∴∠AFH =∠OAE∴△AFH≌△AOE∴FH =AO =4设FB 直线解析式为y =kx +b{−k +b =0b =−4解得{k =−4b =−4∴BF 直线解析式为y =−4x −4将y =4代入得x =−2∴F(−2,4)∴OE =AH =2∴E(0,−2)(3)如图2,连接OH ,作MG ⊥NO可知OH ⊥AB∠AOH =∠NOM =45°∴∠MOH =∠NOA∵∠NAO =∠MHO =45°∴△NAO ~△MHO∴NO OM =OA OH=√2设MG=a,则MO=√2a,NO=2a在Rt△MGO中MG=GO=a∴HG=a∴G为MO的中点∴△NMO为等腰直角三角形∴MN=OMMN⊥OM(1)a与b分别在两个完全平方式中,两个非负数为零,可得a、b的值;(2)过点F作FH⊥AO,证明△AFH≌△AOE,得出点F纵坐标为4,代入BD直线解析式,求出点F坐标,即可求出点E的坐标;(3)连接oℎ,证明△AON∽△OMH,OMON =1√2,从而可以得出△NMO为等腰直角三角形,可得OM=NM,OM⊥NM.本题考查了一次函数,全等与相似,等腰直角三角形的性质,还有半角模型的应用,综合度较高,是一道很好的一次函数问题.20.答案:解:(1)如图,∠ABD为所作;(2)∵∠ABC+∠C+∠A=90°,∴∠ABC=180°−90°−30°=60°,∵∠ABD=∠C=30°,∴∠BDC=∠ABC−∠ABD=60°−30°=30°,∴∠BDC=180°−30°−30°=120°.解析:(1)利用基本作图作∠ABD=∠C;(2)先根据三角形内角和得到∠ABC=60°,再利用(1)的结论得到∠ABD=∠C=30°,接着计算∠BDC 的度数,然后∠BDC的度数.本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).21.答案:解:(1)矩形ABCD的面积S=16×6=96cm2,3 5S矩形=35×96=57.6cm2,可设x秒后,四边形ABQP的面积是矩形面积的35,即12(3x+16−2x)×6=35×96,解得x=3.2秒.由于点P的移动速度大于点Q的移动速度,所以只有当点P移动到D点时,此时四边形ABQP的面积最大,即3x=16,x=163秒,S=12(16+16−2×163)×6=64cm2;(2)可设出发y秒后PQ=6√5cm,则由题意可得:62+(16−3y−2y)2=(6√5)2,解得y=0.8s或5.6s.由于点P移动到D点所需时间163s,5.6>163不合题意舍去,故P、Q从开始出发0.8秒后,PQ=6√5cm.解析:本题主要考查了矩形的性质以及勾股定理的运用,能够熟练掌握并能求解一些简单的计算问题.(1)由题中数据可先求出矩形的面积,不妨设x秒后,四边形ABQP的面积是矩形面积的35,代入题中数据,求解即可,由于两点的移动速度不同,所以只有当点P移动到D点时,四边形ABQP的面积最大,进而求解出此时的时间及面积;(2)有PQ的值以及两点的移动速度,求解直角三角形即可.22.答案:x>1解析:解:(1)从图象中得出当x>1时,直线l1:y=2x在直线l2:y=kx+3的上方,∴不等式2x>kx+3的解集为:x>1;(2)把x=1代入y=2x,得y=2,∴点P(1,2),∵点P在直线y=kx+3上,∴2=k+3,解得:k=−1,∴y=−x+3,当y=0时,由0=−x+3得x=3,∴点A(3,0),∴S△OAP=1×3×2=3.2(1)求不等式2x>kx+3的解集就是求当自变量x取什么值时,y=2x的函数值大;(2)求△OAP的面积,只要求出OA边上的高就可以,即求两个函数的交点的纵坐标的绝对值.求线段的长度的问题一般是转化为求点的坐标的问题来解决.23.答案:解:①过点O作OG⊥CD,垂足为G,在菱形ABCD中,AC是对角线,则AC平分∠BCD,∵OH⊥BC,OG⊥CD,∴OH=OG,∴OH、OG都为圆的半径,即DC是⊙O的切线;②∵AC=4MC且AC=8,∴OC=2MC=4,MC=OM=2,∴OH=2,CO,在直角三角形OHC中,HO=12∴∠OCH=30°,∠COH=60°,∴HC=√CO2−OH2=2√3,S阴影=S△OCH−S扇形OHM=12CH⋅OH−60360π⋅OH2=2√3−2π3;③作M关于BD的对称点N,连接HN交BD于点P,∵PM=NP,∴PH+PM=PH+PN=HN,此时PH+PM最小,∵ON=OM=OH,∠MOH=60°,∴∠MNH=30°,∴∠MNH=∠HCM,∴HN=HC=2√3,即:PH+PM的最小值为2√3,在Rt△NPO中,OP=ONtan30°=2√33,在Rt△COD中,OD=OCtan30°=4√33,则PD=OP+OD=2√3.解析:①作OH⊥BC,证明OH为圆的半径,即可求解;②利用S阴影=S△OCH−S扇形OHM=12CH⋅OH−60360π⋅OH2,即可求解;③作M关于BD的对称点N,连接HN交BD于点P,PH+PM=PH+PN=HN,此时PH+PM最小,即可求解.本题为圆的综合运用题,涉及到圆切线的性质及应用、点的对称性、解直角三角形等知识,其中③,通过点的对称性确定PH+PM最小,是本题的难点和关键.。

2018-2019学年浙江省杭州市江干区九年级(上)期末数学试卷(解析版)

2018-2019学年浙江省杭州市江干区九年级(上)期末数学试卷(解析版)

2018-2019学年浙江省杭州市江干区九年级(上)期末数学试卷一、选择题1.(3分)下列函数是二次函数的是()A.y=2x B.C.y=x+5D.y=(x+1)(x﹣3)2.(3分)由5a=6b(a≠0),可得比例式()A.B.C.D.3.(3分)二次函数y=﹣2(x﹣1)2+3的最大值是()A.﹣2B.1C.3D.﹣14.(3分)学校组织校外实践活动,安排给九年级两辆车,小明与小慧都可以从两辆车中任选一辆搭乘,则小明和小慧乘同一辆车的概率是()A.B.C.D.15.(3分)如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70°B.110°C.120°D.140°6.(3分)如图,E是平行四边形ABCD的BA边的延长线上的一点,CE交AD于点F.下列各式中,错误的是()A.B.C.D.7.(3分)若抛物线y=ax2+2ax+4a(a>0)上有三点,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y2<y3<y18.(3分)四位同学在研究函数y=ax2+bx+c(a、b、c为常数,且a≠0)时,甲发现当x =1时,函数有最大值;乙发现﹣1是方程ax2+bx+c=0的一个根;丙发现函数的最大值为﹣1;丁发现当x=2时,y=﹣2,已知四位中只有一位发现的结论时错误的,则该同学是()A.甲B.乙C.丙D.丁9.(3分)已知,如图一张三角形纸片ABC,边AB长为10cm,AB边上的高为15cm,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放的正方形的个数是()A.12B.13C.14D.1510.(3分)把边长为4的正方形ABCD绕A点顺时针旋转30°得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.12B.C.D.二、填空题11.(3分)已知b是a、c的比例中项,若a=4,c=9,那么b=.12.(3分)如图,已知正三角形ABC,分别以A、B、C为圆心,以AB长为半径画弧,得到的图形我们称之为弧三角形.若正三角形ABC的边长为1,则弧三角形的周长为.13.(3分)如图,AB是⊙O的直径,E是OB的中点,过E点作弦CD⊥AB,G是弧AC 上任意一点,连结AG、GD,则∠G=.14.(3分)如图所示矩形ABCD中,AB=4,BC=3,P是线段BC上一点(P不与B重合),M是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为.15.(3分)如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠,使AB落在AD边上,折痕为AE,再将△AEB以BE为折痕向右折叠,AE与DC交于点F,则的值是.16.(3分)如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=.三、解答题17.如图,一个人拿着一把长为12cm的刻度尺站在离电线杆20m的地方.他把手臂向前伸直,尺子竖直,尺子两端恰好遮住电线杆,已知臂长约为40m,求电线杆的高度.18.某水果公司以2元千克的成本购进1000千克柑橘,销售人员从柑橘中抽取若干柑橘统计损坏情况,结果如下表:(1)请根据表格中的数据,估计这批柑橘损坏的概率(精确到0.01);(2)公司希望这批柑橘能够至少获利500元,则毎干克最低定价为多少元?(精确到0.1元).19.花圃用花盆培育某种花苗,经过试验发现,毎盆的盈利与毎盆的株数构成一种函数关系.每盆植入2株,每株盈利4元,以同样的栽培条件,当株数在2到9株之间时,若每盆增加一株,平均单株盈利就减少0.5元.要使每盆盈利达到最大,应该植多少株?20.如图,BC是⊙O的直径,四边形ABCD是矩形,AD交⊙O于M、N两点,AB=3,BC =12.(1)求MN的长;(2)求阴影部分的面积.21.如图,在△ABC中,AB=AC,以腰AB为直径作半圆,分别交BC、AC于点D、E,连结DE.(1)求证:BD=DE;(2)若AB=13,BC=10,求CE的长.22.已知二次函数y=(x﹣m)2﹣(x﹣m).(1)判断该二次函数图象与x轴交点个数,并说明理由;(2)若该二次函数的顶点坐标为,求m、n的值;(3)若把函数图象向上平移k个单位,使得对于任意的x都有y大于0,求证:k>.23.如图,在菱形ABCD中,点E在BC边上(不与点B、C重合),连接AE、BD交于点G.(1)若AG=BG,AB=4,BD=6,求线段DG的长;(2)设BC=kBE,△BGE的面积为S,△AGD和四边形CDGE的面积分别为S1和S2,把S1和S2分别用k、S的代数式表示;(3)求的最大值.2018-2019学年浙江省杭州市江干区九年级(上)期末数学试卷参考答案与试题解析一、选择题1.【分析】直接利用二次函数的定义进而分析得出答案.【解答】解:A、y=2x,是一次函数,故此选项错误;B、y=+x,不是整式方程,故此选项错误;C、y=x+5,是一次函数,故此选项错误;D、y=(x+1)(x﹣3),是二次函数,故此选项正确.故选:D.【点评】此题主要考查了二次函数的定义,正确把握函数的定义是解题关键.2.【分析】逆用比例的基本性质,把5a=6b改写成比例的形式,使相乘的两个数a和5做比例的外项,则相乘的另两个数b和6就做比例的内项即可.【解答】解:5a=6b(a≠0),那么a:b=6:5,即=.故选:A.【点评】考查了比例的性质,解答此题的关键是比例基本性质的逆运用,要注意:相乘的两个数要做外项就都做外项,要做内项就都做内项.3.【分析】直接利用二次函数的最值问题求解.【解答】解:二次函数y=﹣2(x﹣1)2+3的最大值是3.故选:C.【点评】本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值.4.【分析】画树状图为(用A、B表示两辆车)展示所有4种等可能的结果数,再找出小明和小慧乘同一辆车的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B表示两辆车)共有4种等可能的结果数,其中小明和小慧乘同一辆车的结果数为2,所以小明和小慧乘同一辆车的概率==.故选:B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.5.【分析】作所对的圆周角∠ADB,如图,利用圆内接四边形的性质得∠ADB=70°,然后根据圆周角定理求解.【解答】解:作所对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.【分析】根据平行四边形的性质得到AB∥CD,AB=CD;AD∥BC,再根据平行线分线段成比例得到==,用AB等量代换CD,得到==;再利用AF∥BC,根据平行线分线段成比例得=,由此可判断A选项中的比例是错误的.【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD;AD∥BC,∴==,而AB=CD,∴==,而AB=CD,∴==;又∵AF∥BC,∴=.故选:A.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得对应线段成比例.也考查了平行四边形的性质.7.【分析】先求出抛物线对称轴,根据题意可知抛物线开口向上,再根据三个点与对称轴距离的大小及抛物线的增减性即可判断纵坐标的大小.【解答】解:抛物线的对称轴是x=﹣1,开口向上,且与x轴无交点,∴与对称轴距离越近的点对应的纵坐标越小.A、B、C三点与对称轴距离按从小到大顺序是A、C、B,∴y1<y3<y2,故选:B.【点评】本题主要考查了抛物线先上点坐标的特征,找准对称轴以及抛物线的增减性是解题的关键.8.【分析】将甲乙丙丁四人的结论转化为等式和不等式,然后用假设法逐一排除正确的结论,最后得出错误的结论.【解答】解:四人的结论如下:甲:b+2a=0,且a<0,b>0;乙:a﹣b+c=0;丙:a<0,且$\frac{4ac﹣b2}{4a}=﹣1$,即:4ac﹣b2=﹣4a;丁:4a+2b+c=﹣2.由于甲、乙、丁正确,联立,解得:c=﹣2,a=>0,与甲矛盾,故其中必有一个错误,所以丙是正确的;若甲乙正确,则:c=﹣3a,b=﹣2a,代入丙:﹣12a2﹣4a2=﹣4a,得:a=>0,与甲矛盾,故甲乙中有一个错,所以丁正确;若乙正确,则b=a+c,代入丙:4ac﹣(a+c)2=﹣4a,化简,得:﹣(a﹣c)2=﹣4a,故a≥0,与丙中a<0矛盾,故乙错误.因此乙错误.故选:B.【点评】本题考查了二次函数的最值和二次函数图象上点的特征,熟知二次函数的性质和合理推理是解题的关键.9.【分析】根据相似的判定与性质每一层的靠上的边的长度,从而判定可放置的正方形的个数及层数.【解答】解:作CF⊥AB于点F,设最下边的一排小正方形的上边的边所在的直线与△ABC的边交于D、E,∵DE∥AB,∴=,即=,解得:DE=,而整数部分是4,∴最下边一排是4个正方形.第二排正方形的上边的边所在的直线与△ABC的边交于G、H.则=,解得GH=,而整数部分是3,∴第二排是3个正方形;同理:第三排是:3个;第四排是2个,第五排是1个,第六排是1个,则正方形的个数是:4+3+3+2+1+1=14.故选:C.【点评】本题考查了相似三角形的性质与判定、正方形的性质等问题,解题的关键是在掌握所需知识点的同时,要具有综合分析问题、解决问题的能力.10.【分析】由正方形的性质可得AB=AD=4,∠DAB=90°,由旋转的性质可得AB=AB'=AD=4,∠BAB'=30°,由“HL”可证Rt△AOB'≌Rt△AOD,可得DO==B'O,即可求四边形AB′OD的周长.【解答】解:如图,∵四边形ABCD是正方形∴AB=AD=4,∠DAB=90°∵旋转∴AB=AB'=AD=4,∠BAB'=30°∴∠DAB'=∠DAB﹣∠BAB'=60°,∵AD=AB',AO=AO∴Rt△AOB'≌Rt△AOD(HL)∴∠DAO=∠B'AO=30°,DO=B'O,∴AD=DO=4∴DO==B'O∴四边形AB′OD′的周长=AD+AB'+DO+B'O=8+故选:C.【点评】本题考查了旋转的性质,正方形的性质,全等三角形判定和性质,熟练运用这些性质进行推理是本题的关键.二、填空题11.【分析】根据比例中项的定义,若b是a,c的比例中项,即b2=ac.即可求解.【解答】解:若b是a、c的比例中项,即b2=ac.则b=±(负值舍去).故答案为:6.【点评】本题主要考查了比例线段,关键是根据比例中项的定义解答.12.【分析】根据等边三角形的性质得到∠A=∠B=∠C=60°,根据弧长公式求出的长,计算即可.【解答】解:∵△ABC是正三角形,∴∠A=∠B=∠C=60°,∴==,则弧三角形的周长=×3=π,故答案为:π.【点评】本题考查的是弧长的计算、等边三角形的性质,掌握弧长公式是解题的关键.13.【分析】连接OD,BD,根据含30°的直角三角形的性质和圆周角定理解答即可.【解答】解:连接OD,BD,∵CD⊥AB,E是OB的中点,∴∠OED=90°,2OE=OD,∴∠BOD=60°,∵OB=OD,∴△OBD是等边三角形,∴∠B=60°,∴∠G=60°,故答案为:60°.【点评】此题考查圆周角定理,关键是根据含30°的直角三角形的性质和圆周角定理解答.14.【分析】过点M作ME⊥AD,垂足为点E,延长EM交BC于点F,由矩形的性质可得出AD=BC=3,∠A=90°,在Rt△ABD中,利用勾股定理可求出BD的长,由ME⊥AD,可得出∠DEM=∠A=90°,结合∠EDM=∠ADB,可得出△DEM∽△DAB,利用相似三角形的性质可用含x的代数式表示出EM,进而可得出MF的长,再利用三角形的面积公式即可得出y关于x的函数关系式.【解答】解:过点M作ME⊥AD,垂足为点E,延长EM交BC于点F,如图所示.∵四边形ABCD为矩形,∴AD=BC=3,∠A=90°.在Rt△ABD中,AB=4,AD=3,∴BD==5.∵ME⊥AD,∴∠DEM=∠A=90°.又∵∠EDM=∠ADB,∴△DEM∽△DAB,∴=,∴EM==x,∴MF=AB﹣EM=(4﹣x),∴y=BP•MF=﹣x2+2x.故答案为:y=﹣x2+2x(0<x≤3).【点评】本题考查了矩形的性质、勾股定理、相似三角形的判定与性质、由实际问题抽象出二次函数关系式以及三角形的面积,利用矩形的性质及相似三角形的性质找出MF 是解题的关键.15.【分析】观察第3个图,易知△ECF∽△ADF,欲求CF、CD的比值,必须先求出CE、AD的长;由折叠的性质知:AB=BE=6,那么BD=EC=2,即可得到EC、AD的长,由此得解.【解答】解:由题意知:AB=BE=6,BD=AD﹣AB=2,AD=AB﹣BD=4;∵CE∥AB,∴△ECF∽△ADF,得=,即DF=2CF,∴CF:FD=1:2=,即=.故答案为:.【点评】本题主要考查了图形的翻折变换、矩形的性质以及相似三角形的判定和性质,掌握变换的性质是解决问题的关键.16.【分析】连接AE,过点F作FH⊥AE,根据正多边形的内角和得出∠AFE=∠DEF=120°,再根据等腰三角形的性质可得∠F AE=∠FEA=30°,得出∠AEP=90°,由勾股定理得FH,AE,从而得出AP.【解答】解:连接AE,过点F作FH⊥AE,∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=a,∠AFE=∠DEF=120°,∴∠F AE=∠FEA=30°,∴∠AEP=90°,∴FH=,∴AH=,AE=,∵P是ED的中点,∴EP=,∴AP=.∴=【点评】本题考查了正多边形和圆,以及勾股定理、等腰三角形的性质,是中考的常见题型.三、解答题17.【分析】先求出△ABC∽△AEF,再根据三角形对应高的比等于对应边的比,这样就可以求出电线杆EF的高.【解答】解:作AN⊥EF于N,交BC于M,∵BC∥EF,∴AM⊥BC于M,∴△ABC∽△AEF,∴=,∵AM=0.4m,AN=20m,BC=0.12m,∴EF==6(m).答:电线杆的高度为6m.【点评】此题主要利用了相似三角形的应用,利用相似三角形对应高的比等于对应边的比是解题关键.18.【分析】(1)根据利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.1左右,由此可估计柑橘的损坏概率为0.10;(2)根据概率计算出完好柑橘的质量为1000×0.9=900千克,设每千克柑橘的销售价为x元,然后根据“售价=进价+利润”列方程解答.【解答】解:(1)根据表中的损坏的频率,当实验次数的增多时,柑橘损坏的频率越来越稳定在0.1左右,所以柑橘的损坏概率为0.10.故答案为:0.10;(2)根据估计的概率可以知道,在1000千克柑橘中完好柑橘的质量为1000×0.9=900千克.设每千克柑橘的销售价为x元,则应有900x=2×1000+500,解得x≈2.8.答:出售柑橘时每千克大约定价为2.8元可获利润500元.【点评】本题考查了利用频率估计概率:用到的知识点为:频率=所求情况数与总情况数之比.得到售价的等量关系是解决(2)的关键.19.【分析】假设每盆花苗增加x株,则每盆花苗有(x+2)株,得出平均单株盈利为(4﹣0.5x)元,根据总利润=平均单株盈利×每盆株数,列出函数表达式,根据二次函数性质求解.【解答】解:设每盆花苗(假设原来花盆中有2株)增加a(a为偶数)株,盈利为y元,则根据题意得:y=(4﹣0.5×a)(a+2)=﹣(a﹣3)2+,∴当a=3时,y=12.5,∴每盆植5株时能使单盆取得最大盈利.【点评】此题考查了二次函数的应用,根据每盆花苗株数×平均单株盈利=总盈利得出二次函数表达式是解题关键.20.【分析】(1)作OE⊥AB于E,连接OM,由垂径定理得到ME=EN=MN,根据勾股定理得到ME===3,于是得到结论;(2)连接ON,根据三角函数的定义得到∠MOE=60°,求得∠BOM=∠CON=30°,根据扇形和三角形的面积公式即可得到结论.【解答】解:(1)作OE⊥AB于E,连接OM,则ME=EN=MN,∵BC=12,∴OM=6,在矩形ABCD中,OE⊥AD,∴OE=AB=3,∵在△OEM中,∠OEM=90°,ME===3,∴线段MN的长度为6;(2)连接ON,在Rt△OME中,∵cos∠MOE==,∴∠MOE=60°,∴∠MON=120°,∴∠BOM=∠CON=30°,∴阴影部分的面积=+×6×3=6π+9.【点评】本题考查了扇形的面积,勾股定理、垂径定理、矩形的性质等知识点,关键是构造直角三角形.21.【分析】(1)连接AD,DE,根据等腰三角形的性质得到∠BAD=∠CAD,于是得到结论;(2)根据等腰三角形的性质得到BD=CD=BC=5,根据相似三角形的性质即可得到结论.【解答】解:(1)连接AD,DE,∵AB为半圆的直径,∴AD⊥BC,∵AB=AC,∴∠BAD=∠CAD,∴=,∴BD=DE;(2)∵AB=AC=13,AD⊥BC,∴BD=CD=BC=5,∵∠CDE=∠BAC,∠C=∠C,∴△CDE∽△CAB,∴,∴=,∴CE=.【点评】本题考查了等腰三角形的性质,相似三角形的判定和性质,圆周角定理,正确的作出辅助线是解题的关键.22.【分析】(1)先把解析式整理y=x2﹣(2m+1)x+m2+m,再计算判别式的值,然后根据判别式的意义判断该二次函数图象与x轴交点个数;(2)利用顶点坐标公式得到﹣=,=n,然后解方程即可得到m、n的值;(3)配成顶点式得到抛物线y=(x﹣)2﹣的顶点坐标为(,﹣),利用平移得到平移k个单位后抛物线的顶点坐标为(,﹣+k),利用平移后的抛物线在x轴上方得到﹣+k>0,从而得到k的范围.【解答】(1)解:该二次函数图象与x轴有2个交点.理由如下:y=(x﹣m)2﹣(x﹣m)=x2﹣(2m+1)x+m2+m,∵△=(2m+1)2﹣4(m2+m)=1>0,∴该二次函数图象与x轴有2个交点;(2)解:∵该二次函数的顶点坐标为,∴﹣=,=n,∴m=3,n=﹣;(3)证明:y=x2﹣(2m+1)x+m2+m=(x﹣)2﹣,抛物线y=(x﹣)2﹣的顶点坐标为(,﹣),把抛物线y=(x﹣)2﹣向上平移k个单位后顶点坐标为(,﹣+k),∵把函数图象向上平移k个单位,使得对于任意的x都有y大于0,∴平移后的抛物线在x轴上方,∴﹣+k>0,∴k>.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.23.【分析】(1)证明△BAG∽△BDA,利用相似比可计算出BG=,从而得到DG的长;(2)先证明△ADG∽△EBG,利用相似三角形的性质得=()2=k2,==k,所以S1=k2S,根据三角形面积公式得到S△ABG=,再利用菱形的性质得到S2=S1+﹣S=k2S+kS﹣S=(k2+k﹣1)S;(3)由于==1+﹣,然后根据二次函数的性质解决问题.【解答】解:(1)∵AG=BG,∴∠BAG=∠ABG,∵四边形ABCD为菱形,∴AB=AD,∴∠ABD=∠ADB,∴∠BAG=∠ADB,∴△BAG∽△BDA,∴=,即=,∴BG=,∴DG=BD﹣BG=6﹣=;(2)∵四边形ABCD为菱形,∴BC=AD=kBE,AD∥BC,∵AD∥BE,∴△ADG∽△EBG,∴=()2=k2,==k,∴S1=k2S,∵==k,∴S△ABG=,∵△ABD的面积=△BDC的面积,∴S2=S1+﹣S=k2S+kS﹣S=(k2+k﹣1)S;(3)∵==1+﹣=﹣(﹣)2+,∴的最大值为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.注意相似三角形面积的比等于相似比的平方.也考查了菱形的性质.。

浙江省2024届九年级上学期期末数学试卷(含答案)

浙江省2024届九年级上学期期末数学试卷(含答案)

浙江省2023-2024学年九年级上学期期末数学复习卷范围:1-4章满分:120分考试时间:120分钟姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.下列四个函数中是二次函数的是()A.B.C.D.2.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其余都相同,则从布袋里任意摸出一个球是红球的概率是()A.B.C.D.3.已知的半径是5,点P在内,则OP的长可能是()A.4 B.5 C.5.5 D.64.若点Р是线段的黄金分割点,,则的长为()A.B.C.D.5.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-26.如图,D、E分别是边上的点,,若,,,则的长是()A.2 B.4 C.6 D.87.如图,四边形内接于⊙O,交的延长线于点E,若平分,,则等于()A.B.6 C.D.8.已知点,,在抛物线上,则,,的大小关系是()A.B.C.D.9.如图,在中,,以该三角形的三条边为边向形外作正方形,正方形的顶点都在同一个圆上.记该圆面积为,面积为,则的值是()A.B.C.D.10.如图,是的外角平分线,与的外接圆交于点D,连接交于点F,且,则下列结论错误的是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分.不需写出解答过程,请将正确答案填写在横线上)11.某批青稞种子在相同条件下发芽试验结果如下表:每次试验粒数50 100 300 400 600 1000发芽频数47 96 284 380 571 948估计这批青稞发芽的概率是.(结果保留到0.01)12.如图,四边形的四个顶点均在半圆上,若,则.13.如图,在ΔABC中,若∠AED=∠B,DE=6,AB=10,AE=8,则BC的长为.14.如图,在平面直角坐标系中,将边长为1的正方形绕点逆时针旋转后得到正方形,继续旋转至次得到正方形,则点的坐标是.15.二次函数的部分对应值列表如下:x …0 1 3 5 …y …7 7 …则一元二次方程的解为.16.如图,内接于半径为的半,为直径,点是的中点,连接交于点,平分交于点,且为的中点,则的长为 .三、解答题(本大题共7小题,共66分.第17题6分;第18题8分;第19题8分;第20题10分;第21题10分;第22题12分;第23题12分;解答时应写出文字说明、证明过程或演算步骤)17.已知二次函数的图象经过点.(1)求的值.(2)若点也在这个二次函数的图象上,求的值.18.游戏者用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.让两个转盘分别自由转动一次.(1)求两次数字之和为4的概率;(2)若两次数字之积大于2,则游戏者获胜,请问这个游戏公平吗?请说明理由.19.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数(件)合格频数合格频率(1)估计任抽一件衬衣是合格品的概率(结果精确到);(2)估计出售件衬衣,其中次品..大约有几件.20.如图,抛物线与x轴交于、两点,与轴交于点,且.(1)求抛物线的解析式及顶点的坐标;(2)判断的形状,证明你的结论;(3)点是抛物线对称轴上的一个动点,当周长最小时,求点的坐标及的最小周长;(4)在该抛物线位于第四象限内的部分上是否存在点,使得的面积最大?若存在,求出点的坐标;若不存在,请说明理由.21.如图,的直径垂直弦于点E,F是圆上一点,D是的中点,连接交于点G,连接.(1)求证:;(2)若,求的长.22.基础巩固:(1)如图1,在中,是上一点,过点作的平行线交于点,点是上任意一点,连结交于点,求证:;尝试应用:(2)如图2,在(1)的条件下,连结,,若,、恰好将三等分,求的值;拓展延伸:(3)如图3,在等边中,,连结,点在上,若,求的值.23.如图,⊙O是四边形ABCD的外接圆,直径BD与弦AC交于点E.若∠BAC=2∠ABE.(1)求证:AB=AC;(2)当是等腰三角形时,求∠BCE的大小.(3)当AE=4,CE=6时,求边BC的长.浙江省2023-2024学年九年级上学期期末数学复习卷一、单选题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.下列四个函数中是二次函数的是()A.B.C.D.答案:C2.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其余都相同,则从布袋里任意摸出一个球是红球的概率是()A.B.C.D.答案:C3.已知的半径是5,点P在内,则OP的长可能是()A.4 B.5 C.5.5 D.6答案:A4.若点Р是线段的黄金分割点,,则的长为()A.B.C.D.答案:A5.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2答案:A6.如图,D、E分别是边上的点,,若,,,则的长是()A.2 B.4 C.6 D.8答案:C7.如图,四边形内接于⊙O,交的延长线于点E,若平分,,则等于()A.B.6 C.D.答案:B8.已知点,,在抛物线上,则,,的大小关系是()A.B.C.D.答案:D9.如图,在中,,以该三角形的三条边为边向形外作正方形,正方形的顶点都在同一个圆上.记该圆面积为,面积为,则的值是()A.B.C.D.答案:C故选:C.10.如图,是的外角平分线,与的外接圆交于点D,连接交于点F,且,则下列结论错误的是()A.B.C.D.答案:B∴第II卷(非选择题)二、填空题(本大题共6小题,每小题4分,共24分.不需写出解答过程,请将正确答案填写在横线上)11.某批青稞种子在相同条件下发芽试验结果如下表:每次试验粒数50 100 300 400 600 1000发芽频数47 96 284 380 571 948估计这批青稞发芽的概率是.(结果保留到0.01)答案:0.9512.如图,四边形的四个顶点均在半圆上,若,则.答案:130°13.如图,在ΔABC中,若∠AED=∠B,DE=6,AB=10,AE=8,则BC的长为.答案:14.如图,在平面直角坐标系中,将边长为1的正方形绕点逆时针旋转后得到正方形,继续旋转至次得到正方形,则点的坐标是.故答案为.15.二次函数的部分对应值列表如下:x …0 1 3 5 …y …7 7 …则一元二次方程的解为.答案:16.如图,内接于半径为的半,为直径,点是的中点,连接交于点,平分交于点,且为的中点,则的长为 .答案:三、解答题(本大题共7小题,共66分.第17题6分;第18题8分;第19题8分;第20题10分;第21题10分;第22题12分;第23题12分;解答时应写出文字说明、证明过程或演算步骤)17.已知二次函数的图象经过点.(1)求的值.(2)若点也在这个二次函数的图象上,求的值.答案:(1);(2).18.游戏者用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.让两个转盘分别自由转动一次.(1)求两次数字之和为4的概率;(2)若两次数字之积大于2,则游戏者获胜,请问这个游戏公平吗?请说明理由.答案:(1)(2)该游戏公平,理由见解析19.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数(件)合格频数合格频率(1)估计任抽一件衬衣是合格品的概率(结果精确到);(2)估计出售件衬衣,其中次品..大约有几件.答案:(1)估计任抽一件衬衣是合格品的概率为;(2)估计出售件衬衣,其中次品大约有件20.如图,抛物线与x轴交于、两点,与轴交于点,且.(1)求抛物线的解析式及顶点的坐标;(2)判断的形状,证明你的结论;(3)点是抛物线对称轴上的一个动点,当周长最小时,求点的坐标及的最小周长;(4)在该抛物线位于第四象限内的部分上是否存在点,使得的面积最大?若存在,求出点的坐标;若不存在,请说明理由.答案:(1)抛物线的解析式为:;(2)是直角三角形(3),的最小周长为:(4)存在,21.如图,的直径垂直弦于点E,F是圆上一点,D是的中点,连接交于点G,连接.(1)求证:;(2)若,求的长.答案:(1)见解析(2).22.基础巩固:(1)如图1,在中,是上一点,过点作的平行线交于点,点是上任意一点,连结交于点,求证:;尝试应用:(2)如图2,在(1)的条件下,连结,,若,、恰好将三等分,求的值;拓展延伸:(3)如图3,在等边中,,连结,点在上,若,求的值.答案:(1)见解析;(2);(3)(1)根据,可得,从而得到,同理,进而得到,即可;(2)根据,可得,,再由、恰好将三等分,可得到,再由直角三角形的性质可得,从而得到,即可;(3)过作的平行线,分别交、于、.可得也是等边三角形,从再而得到,再证得,可得,由(1)和,得,设,则.可得,,然后根据,可得,即可.详解:(1)证明:∵,∴,∴,同理,∴,∴;(2)∵,∴,,∵、恰好将三等分,∴,∴,∵,∴在中,,∴,根据(1)得,;(3)过作的平行线,分别交、于、.∵是等边三角形,∴,,∵,∴∴也是等边三角形,∴,∴,∴,又∵∴∴∴.∴,即,∴,由(1)和,得,设,则.∴,,∴,∴.∵,∴,∵,∴,∴,即,∴,∴.23.如图,⊙O是四边形ABCD的外接圆,直径BD与弦AC交于点E.若∠BAC=2∠ABE.(1)求证:AB=AC;(2)当是等腰三角形时,求∠BCE的大小.(3)当AE=4,CE=6时,求边BC的长.答案:(1)见解析;(2)67.5°或72°;(3)(1)根据题意可得,∠BAD=90°,再根据∠BAC=2∠ABE证即可;(2)由题意可知:,根据腰不同进行分类讨论,依据三角形内角和列方程即可;(3)连接AO并延长,交BC于点F,根据AE=4,CE=6,结合相似三角形,表示线段OA、DC、BE,求出半径长,即可求BC.(1)证明:∵BD是⊙O的直径,∴∠BAD=90°,∴90°∵,∴∴∴∴∴(2)由题意可知:,分情况:①那么,∴∴∴②那么∴∴∴③,此时E,A重合,舍去(3)连接AO并延长,交BC于点F,∵OA=OB,∴∠ABE=∠OAB,∵∠BAC=2∠ABE.∴∠BAF=∠CAF,∵AB=AC,∴AF⊥BC,∴∠AFB=90°,∵BD是⊙O的直径∴∴AF//CD∴∴,,,BE=,∵∠AEB=∠DEC,∠ABE=∠DCE,∴~∴∴∵∴∴∴,在直角中,∵∴。

浙江省杭州市江干区2020-2021学年九年级上学期期末考试数学试题

浙江省杭州市江干区2020-2021学年九年级上学期期末考试数学试题

浙江省杭州市江干区2020-2021学年九年级上学期期末考试数学试题2020学年江干区9上期末一、选择题:每小题3分,共30分1. 下列函数中,是二次函数的是()A .21y x x =+B .2132y x x =-C .()21y x x =+D .21y x =-+2. 把一枚均匀的骰子抛掷一次,朝上面的点数为6的概率是()A .0B .13C .16D .13. 关于二次函数22y x x =-+的最值,下列叙述正确的是()A .当2x =时,y 有最小值0B .当2x =时,y 有最大值0C .当1x =时,y 有最小值1D .当1x =时,y 有最大值14. 如图,直线123l l l ∥∥,则()A .AD EB EB FC = B .AB DEAC EF=C .BC DEAC DF=D .AB DEBC EF=5. 下列关于正多边形的叙述,正确的是() A .正七边形既是轴对称图形又是中心对称图形B .存在一个正多边形,它的外角和为720? C .任何正多边形都有一个外接圆D .不存在每个外角都是对应每个内角两倍的正多边形6. 如图,CD 是O 的直径,弦AB CD ⊥于点E ,若3OE =,4AE =,则下列说法正确的是()A .AC的长为B .CE 的长为3C .CD 的长为12D .AD 的长为107. 为了解某市九年级男生的身高情况,随机抽取了该市100名九年级男生,他们的身高x (cm )统计根据以上结果,全市约有3万男生,估计全市男生的身高不高于180cm 的人数是()A .28500B .17100C .10800D .1500DC8. 已知二次函数()222y mx m x =+-,它的图象可能是()9. 如图,已知ABC △,DF BC ∥,DE AC ∥,四边形DECF 的面积为12,若DE 经过ABC △的重心,则ABC △的面积为()A .25B .26C .27D .2810. 如图,已知△ABC ,O 为AC 上一点,以OB 为半径的圆经过点A ,且与BC 、OC 交于点E 、D ,设C α∠=,A β∠=,则()A .若70αβ+=?,则弧DE 的度数为20?B .若70αβ+=?,则弧DE 的度数为40?C .若70αβ-=?,则弧DE 的度数为20?D .若70αβ-=?,则弧DE 的度数为40?二、填空题:每题4分,共24分11. 已知抛物线()21y x =+向右平移2个单位,再向上平移1个单位,得到的抛物线表达式为. 12. 已知线段AB 长是2,P 是线段AB 上的一点,且满足2AP AB BP =?,那么AP 长为.13. 一个布袋里有3个只有颜色不同的球,其中2个红球,1个白球.从布袋里摸出1个球不放回...,再摸出1个球,摸出的2个球都是红球的概率是.D C BFEDCBA OEDCBA14. 如图,BD 、CE 是O 的直径,弦AE BD ∥,AD 交CE 于点F ,25A ∠=?,则AFC ∠=.15. 如图,二次函数2y ax bx c =++与反比例函数ky x=的图象相交于点()11,A y -、()21,B y 、()33,C y 三个点,则不等式2kax bx c x++>的解是.16. 如图是一张矩形纸片,E 是AB 的中点,把BCE △沿直线CE 对折,使点B 落在对角线BD 上的点F 处,2AB =则CB =.三、解答题:7小题,共66分17. 如图所示,已知二次函数的图象经过点()1,0-,()5,0,()0,1-.当4x =时,求函数值.OFEDCBAA (FEDCBA18. 有A 、B 、C 三种款式的衣服,E 、F 、G 三种款式的裤子,小江任意选一件衣服和一件裤子.(1)请用列表法或画树状图的方法表示小江有多少种不同的可能.(2)求恰好选中A 款衣服和E 款裤子的概率.19. 如图,已知ADB A C ∠=∠+∠.(1)求证:CBD CAB △∽△.(2)若1CD =,2AD =,求CB 的长.20. 如图,某零件的截面为弓形.(1)请用直尺和圆规作出该弓形的圆心;(2)若AB =1;①求弓形的半径②求AB 的长.21. 如图,在矩形ABCD 中,E 是BC 上一点,DF AE ⊥于点F ,设()0ADAEλλ=>.(1)若1λ=,求证:CE FE =;(2)若3AB =,4AD =,且D 、B 、F 在同一直线上时,求λ的值.DCBAAE FDCBA22. 已知函数()()11y x m x m =+--,2y ax m =+()0a ≠在同一平面直角坐标系中.(1)若1y 经过点()1,2-,求1y 的函数表达式;(2)若2y 经过点()1,1m +,判断1y 与2y 图像交点的个数,说明理由;(3)若1y 经过点1,02??,且对任意x ,都有12y y >,请利用图像求a 的取值范围.23. 已知钝角三角形ABC 内接于O ,E 、D 分别为AC 、BC 的中点,连接DE .(1)如图1,当点A 、D 、O 在同一条直线上时,求证:12DE AC =;(2)如图2,当A 、D 、O 不在同一条直线上时,取AO 的中点F ,连接FD 交AC 于点G ,当2AB AC AG +=时.①求证:△DEG 是等腰三角形;②如图3,连OD 并延长交O 于点H ,连接AH .求证:AH FG ∥图3 图2 图1。

浙江省杭州市江干区2020-2021学年九年级上学期期末数学试题

浙江省杭州市江干区2020-2021学年九年级上学期期末数学试题

浙江省杭州市江干区2020-2021学年九年级上学期期末数学试题学校:姓名:班级:考号:一、单选题1. 一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为( )♦♦2.如图,直线/[〃]〃4,若AB=6, BC=9, EF=6,则DE=( )A. 4B. 6C. 7D. 93.己知AA5C SA A'8C,A5=8,A'5'=6,则四=( )B rC f4 16A. 2B. -C. 3D.-3 94.在平面直角坐标系中,函数y = (x+3)(x—5)的图象经过变换后得到y = (x+5)(x—3)的图象,则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位5.如图,AB是。

的直径,点C,D是圆上两点,且NCDB =28。

,则NAOC=()A, 56° B. 118° C. 124° D. 152°6.用配方法将二次函数y=x> 8x - 9化为y=a (x - h尸+k的形式为( )A. y= (x - 4) 2+7B.产(x+4) 2+7C. y= (x - 4) 2 - 25D.产(x+4) 2 - 257.为了解某地区九年级男生的身高情况,随取了该区100名九年级男生,他们的身高工(。

〃)统计如根据以上结果,抽查该地区一名九年级男生,估计他的身高不高于1800〃的概率是()组别(cm)后160 160V 烂170 170 V烂180 x>180人数15 42 38 5A, 0.05 B. 0.38 C. 0.57 D. 0.95 8.如图,在4ABe中,点D为BC边上的一点,且AD=AB = 5, AD_LAB于点A,过点D 作DEJ_AD, DE交AC于点E,若DE=2,则/ADC的面积为()A. 4&B. 4125C.——6D.25T9.已知点A(1J),5(2,K)在抛物线),=_(%+1尸+ 2上,则下列结论正确的是()A. 2 >)\ >B. 2 > y2 >C.弘>%>2D. y2 >> 210.如图,AB是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年浙江省杭州市江干区九年级(上)期末数学试卷一、选择题1.下列成语或词组所描述的事件,可能性最小的是()A.旭日东升ﻩB.潮起潮落ﻩC.瓮中捉鳖 D.守株待兔2.将函数y=x2﹣x化为y=a(x﹣m)2+k的形式,得()A.y=(x﹣1)2﹣ﻩB.y=(x﹣)2+C.y=(x﹣1)2+D.y=(x﹣)2﹣3.己知线段AB的长为2,点P是线段AB的黄金分割点,且AP>PB,那么AP=( ) A.ﻩB.ﻩC.+1 D.﹣14.如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是( )A.B. C.D.5.⊙O中,弧AB的长度为弧MN的2倍,则下列关于弦的结论正确的是() A.AB>2MN B.AB=2MNC.AB<2MNﻩD.AB与2MN的大小不能确定6.复印纸的型号有A0、A1、A2、A3、A4等,它们之间存在着这样一种关系:将其中某一型号(如A3)的复印纸较长边的中点对折后,就能得到两张下一型号(A4)的复印纸,且得到的两个矩形都和原来的矩形相似(如图),那么这些型号的复印纸的长宽之比为()A.2:1ﻩB.:1C.:1ﻩD.3:17.如图,点A、B、C、P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为( )A.70°B.60° C.40°ﻩD.35°8.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x…﹣5﹣4﹣3﹣2﹣10…y…40﹣2﹣204…根据以上信息,某同学得到以下结论:①抛物线的开口向上;②当x>﹣2时,y随x的增大而增大;③二次函数的最小值是﹣2;④抛物线的对称轴是x=﹣,其中正确的有( )A.1个B.2个C.3个D.4个9.如图,一张等腰三角形纸片,底边长12 cm,底边上的高位12 cm,现沿底边依次向下往上裁剪宽度均为2cm的矩形纸条,己知剪得的纸条中有一张是正方形,则这张正方形纸条是()A.第4张ﻩB.第5张ﻩC.第6张ﻩD..第7张10.若实数x满足x2+2+=0,则下列对x值的估计正确的是( )A.﹣2<x<﹣1ﻩB.﹣1<x<0ﻩC.0<x<1ﻩD.1<x<2二、填空题11.己知=,那么的值为.12.如图是一个标准的五角星,将它绕旋转中心旋转x°后能与自身重合,则x的最小值是.13.如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是.14.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则(1)的值是;(2)的值是.15.己知两点P(0,1)和Q(1,0),若二次函数y=x2+ax+2的图象与线段PQ有交点,则a的取值范围为.16.图1是一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=2,AC=1,现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在x 轴上由点O开始向右滑动,点B在y轴上也随之向点O滑动(如图3),并且保持点O在⊙G上,当点B滑动至与点O重合时运动结束.在整个运动过程中,点C 运动的路程是.三、解答题17.如图,小南用自制的直角三角形纸板DEF测量树的高度AB,他使斜边DF保持水平,并且边DE与点B在同一直线上.己知三角形的两条直角边DE=0.6m,EF=0.3m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.18.如图,在⊙O中,半径OA⊥OB,过OA的中点C作FD∥OB交⊙O于D、F 两点,且DF=2,以O为圆心,OC为半径作弧CE,交OB于点E.(1)求OA的长;(2)计算阴影部分的面积.19.如图,BD、CE是ABC的两条中线,它们相交于点F,请写出EF:CF的值,并说明理由.20.在一个不透明的盒子里装着只有颜色不同的黑、白两种球共30个,小鲍做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是“摸到白色球”的概率折线统计图.(1)当n很大时,摸到白球的频率将会接近(精确到0.01),估计盒子里白球为个,假如摸一次,摸到白球的概率为;(2)如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?21.如图,某中学准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成,若墙长为18米,设这个苗圃垂直于墙的一边长为x米.(1)若苗圃园的面积为100平方米,求x的值;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值,如果没有,请说明理由.22.如图,己知AB是半径为2的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形.(1)求证:△DFB是等腰三角形;(2)若AF=1,求DA的长度;(3)若DA=AF,求证:CF⊥AB.23.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C 两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.2016-2017学年浙江省杭州市江干区九年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列成语或词组所描述的事件,可能性最小的是()A.旭日东升ﻩB.潮起潮落ﻩC.瓮中捉鳖 D.守株待兔【分析】根据事件发生的可能性大小判断相应事件的类型即可得出答案.【解答】解:∵A、B、C是必然事件,发生的可能性为1,D所反映的事件可能发生也可能不发生,是不确定事件,可能性最小;∴可能性最小的是D;故选D.【点评】本题考查了可能性大小的判断,解决这类题目要注意具体情况具体对待.一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.2.将函数y=x2﹣x化为y=a(x﹣m)2+k的形式,得()A.y=(x﹣1)2﹣ﻩB.y=(x﹣)2+C.y=(x﹣1)2+ﻩD.y=(x﹣)2﹣【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:∵y=x2﹣x=(x2﹣2x+1)﹣=(x﹣1)2﹣,故选A.【点评】本题考查了二次函数的性质及二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3))(x﹣x2).交点式(与x轴):y=a(x﹣x13.己知线段AB的长为2,点P是线段AB的黄金分割点,且AP>PB,那么AP=A.ﻩB.ﻩC.+1 D.﹣1【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.【解答】解:∵线段AB的长为2,点P是线段AB的黄金分割点,且AP>PB;∴AP=2×=﹣1.故选D.【点评】本题考查了黄金分割点的概念.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.4.如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC 相似的是( )A.ﻩB. C.ﻩD.【分析】设各小正方形的边长为1,根据勾股定理分别表示出已知阴影三角形的各边长,同理利用勾股定理表示出四个选项中阴影三角形的各边长,利用三边长对应成比例的两三角形相似可得出左图中的阴影三角形与已知三角形相似的选项.【解答】解:设各个小正方形的边长为1,则已知的三角形的各边分别为,2,, A、因为三边分别为:,,3,三边不能与已知三角形各边对应成比例,故两三角形不相似;B、因为三边分别为:1,,,三边与已知三角形的各边对应成比例,故两三角形相似;C、因为三边分别为:1,2,三边不能与已知三角形各边对应成比例,故两三角形不相似;D、因为三边分另为:2,,,三边不能与已知三角形各边对应成比例,故两三角形不相故选:B.【点评】此题考查了相似三角形的判定以及勾股定理的运用;相似三角形的判定方法有:1、二对对应角相等的两三角形相似;2、两边对应成比例且夹角相等的两三角形相似;3、三边长对应成比例的两三角形相似;4、相似三角形的定义.本题利用的是方法3.5.⊙O中,弧AB的长度为弧MN的2倍,则下列关于弦的结论正确的是() A.AB>2MN B.AB=2MNC.AB<2MNﻩD.AB与2MN的大小不能确定【分析】如图,取的中点C,连接AC,BC,根据已知条件得到==,得到AC=BC=MN,根据三角形的三边关系即可得到结论.【解答】解:如图,取的中点C,连接AC,BC,∴==,∵=,∴==,∴AC=BC=MN,∵AB<AC+BC,∴AB<2MN,故选C.【点评】本题考查了弧、弦、圆心角的关系,三角形的三边关系,正确的理解题意是解题的关键.、A1、A2、A3、A4等,它们之间存在着这样一种关系:6.复印纸的型号有A0将其中某一型号(如A3)的复印纸较长边的中点对折后,就能得到两张下一型号(A4)的复印纸,且得到的两个矩形都和原来的矩形相似(如图),那么这些型号的复印纸的长宽之比为( )A.2:1ﻩB.:1 C.:1ﻩD.3:1【分析】设这些型号的复印纸的长、宽分别为b、a,根据相似多边形的对应边的比相等列出比例式,计算即可.【解答】解:设这些型号的复印纸的长、宽分别为b、a,∵得到的矩形都和原来的矩形相似,∴=,则b2=2a2,∴=,∴这些型号的复印纸的长宽之比为:1,故选:B.【点评】本题考查的是相似多边形的性质,相似多边形的性质为:①对应角相等;②对应边的比相等.7.如图,点A、B、C、P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE =40°,则∠P的度数为()A.70°ﻩB.60° C.40°D.35°【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.8.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x…﹣5﹣4﹣3﹣2﹣10…y…40﹣2﹣204…根据以上信息,某同学得到以下结论:①抛物线的开口向上;②当x>﹣2时,y随x 的增大而增大;③二次函数的最小值是﹣2;④抛物线的对称轴是x=﹣,其中正确的有()A.1个ﻩB.2个ﻩC.3个ﻩD.4个【分析】观察表格,可以对称抛物线的对称轴位置,开口方向,增减性、最小值问题即可.【解答】解:由题意抛物线的对称轴为x=﹣,抛物线开口向上,当x>﹣时,y随x的增大而增大,故①②④正确,因为x=﹣时,y有最小值,∴y的最小值不是﹣2,故③错误,故选C.【点评】本题考查二次函数的性质、二次函数的最值问题等知识,解题的关键是学会看懂表格信息,灵活运用所学知识解决问题,属于基础题,中考常考题型.9.如图,一张等腰三角形纸片,底边长12cm,底边上的高位12 cm,现沿底边依次向下往上裁剪宽度均为2cm的矩形纸条,己知剪得的纸条中有一张是正方形,则这张正方形纸条是()A.第4张B.第5张C.第6张ﻩD..第7张【分析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.【解答】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是2cm,所以根据相似三角形的性质可设从顶点到这个正方形的线段为xcm,则=,解得x=2,所以另一段长为12﹣2=10,因为10÷2=5,所以是第5张.故选:B.【点评】本题主要考查了相似三角形的性质及等腰三角形的性质的综合运用;由相似三角形的性质得出比例式是解决问题的关键.10.若实数x满足x2+2+=0,则下列对x值的估计正确的是( )A.﹣2<x<﹣1 B.﹣1<x<0C.0<x<1ﻩD.1<x<2【分析】把方程整理成二次函数与反比例函数表达式的形式,然后作出函数图象,再根据两个函数的增减性即可确定交点的横坐标的取值范围.【解答】解:∵x2+2+=0,∴x2+2=﹣,∴方程的解可以看作是函数y=x2+2与函数y=﹣的交点的横坐标,作函数图象如图,在第二象限,函数y=x2+2的y值随m的增大而减小,函数y=﹣的y值随m的增大而增大,当x=﹣2时y=x2+2=4+2=6,y=﹣=﹣=2,∵6>2,∴交点横坐标大于﹣2,当x=﹣1时,y=x2+2=1+2=3,y=﹣=﹣=4,∵3<4,∴交点横坐标小于﹣1,∴﹣2<x<﹣1.故选A.【点评】本题考查了利用二次函数图象与反比例函数图象估算方程的解,把方程转化为两个函数解析式,并在同一平面直角坐标系中作出函数图象是解题的关键.二、填空题11.己知=,那么的值为.【分析】根据题意令a=3,b=4,代入即可得出答案.【解答】解:∵=,∴令a=3,b=4,∴原式==,故答案为.【点评】本题考查了分式的值,掌握分式值的求法是解题的关键.12.如图是一个标准的五角星,将它绕旋转中心旋转x°后能与自身重合,则x的最小值是72° .【分析】该图形被平分成五部分,因而每部分被分成的圆心角是72°,从而得出最小旋转角.【解答】解:该图形被平分成五部分,最小旋转角为=72°.故答案为:72°.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.13.如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是.【分析】利用轴对称图形的定义由3处涂黑得到黑色部分的图形是轴对称图形,然后根据概率公式可计算出新构成的黑色部分的图形是轴对称图形的概率.【解答】解:共有13种等可能的情况,其中3处涂黑得到黑色部分的图形是轴对称图形,如图,所以涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率=.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了轴对称图形.14.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则(1)的值是;(2)的值是.【分析】作FG⊥AB于点G,由AE∥FG,得出,求出Rt△BGF≌Rt△BCF,再由AB=BC求解.【解答】解:作FG⊥AB于点G,∵∠DAB=90°,∴AE∥FG,∴,∵AC⊥BC,∴∠ACB=90°,又∵BE是∠ABC的平分线,∴FG=FC,在Rt△BGF和Rt△BCF中,,∴Rt△BGF≌Rt△BCF(HL),∴CB=GB,∵AC=BC,∴∠CBA=45°,∴AB=BC=AC,∴,∴===+1.故答案为:,.【点评】本题主要考查了平行线分线段成比例,全等三角形的判定与性质及角平分线的知识,解题的关键是找出线段之间的关系:CB=GB,AB=BC,再利用比例式求解.15.己知两点P(0,1)和Q(1,0),若二次函数y=x2+ax+2的图象与线段PQ有交点,则a的取值范围为a≤﹣3 .【分析】如图所示,当x=1,y≤0抛物线与线段PQ有交点,列出不等式即可解决问题.【解答】解:①∵二次函数y=x2+ax+2的图象与线段PQ有交点,抛物线与y轴交于(0,2),开口向上,可知如图所示,当x=1,y≤0抛物线与线段PQ有交点,∴1+2a+2≤0,∴a≤﹣3,②如图,如果是这种情形,由题意,消去y得到x2+(a+1)x+1=0,,x2,因为有交点,设交点的横坐标为x1∵x1•x2=1,与0<x1<1,0<x2<1矛盾,∴这种情形不存在.故答案为a≤﹣3.【点评】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用图象解决问题,把问题转化为不等式,属于中考常考题型.16.图1是一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=2,AC=1,现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在x轴上由点O开始向右滑动,点B在y轴上也随之向点O滑动(如图3),并且保持点O在⊙G上,当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是3﹣.【分析】由于在运动过程中,原点O始终在⊙G上,则弧AC的长保持不变,弧AC所对应的圆周角∠AOC保持不变,等于∠XOC,故点C在与x轴夹角为∠ABC 的射线上运动.顶点C的运动轨迹应是一条线段,且点C移动到图中C位置最2远,然后又慢慢移动到C3结束,点C经过的路程应是线段C1C2+C2C3.【解答】解:如图3,连接OG.∵∠AOB是直角,G为AB中点,∴GO=AB=半径,∴原点O始终在⊙G上.∵∠ACB=90°,AB=2,AC=1,∴BC=.连接OC.则∠AOC=∠ABC,∴tan∠AOC==,∴点C在与x轴夹角为∠AOC的射线上运动.如图4,CC2=OC2﹣OC1=2﹣1=1;1如图5,CC3=OC2﹣OC3=2﹣;2∴总路径为:C1C2+C2C3=1+2﹣=3﹣.故答案为:3﹣.【点评】此题主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数图象的性质和交点的意义求出相应的线段的长度或表示线段的长度,再结合具体图形的性质求解.三、解答题17.如图,小南用自制的直角三角形纸板DEF测量树的高度AB,他使斜边DF 保持水平,并且边DE与点B在同一直线上.己知三角形的两条直角边DE=0.6m,EF=0.3m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明南同学的身高即可求得树高AB.【解答】解:∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB∴=,∵DE=0.6m,EF=0.3m,AC=1.5m,CD=8m,∴=,∴BC=4米,∴AB=AC+BC=1.5+5=5.5米.答:树高5.5米.【点评】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.18.如图,在⊙O中,半径OA⊥OB,过OA的中点C作FD∥OB交⊙O于D、F两点,且DF=2,以O为圆心,OC为半径作弧CE,交OB于点E.(1)求OA的长;(2)计算阴影部分的面积.【分析】(1)首先证明OA⊥DF,由垂径定理求出CD=,由OD=2CO推出∠CDO =30°,设OC=x,则OD=2x,利用勾股定理即可解决问题.(2)根据S阴=S△CDO+S扇形OBD﹣S扇形OCE计算即可.【解答】解;(1)连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,∴OA⊥DF,∴CD=DF=在Rt△OCD中,∵C是AO中点,∴OA=OD=2CO,设OC=x,则x2+()2=(2x)2,解得:x=1,∴OA=OD=2,(2)∵OC=OD,∠OCD=90°,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S阴=S△CDO+S扇形OBD﹣S扇形OCE=×1×+﹣=.【点评】本题考查了扇形面积、垂径定理、勾股定理、有一个角是30度的直角三角形的性质等知识,解题的关键是学会利用分割法求面积.学会把求不规则图形面积转化为求规则图形面积,属于中考常考题型.19.如图,BD、CE是ABC的两条中线,它们相交于点F,请写出EF:CF的值,并说明理由.【分析】过点C作CG∥AB交BD的延长线于点G,从而可证明△ABD≌△CGD(AAS),所以AB=CG,由于BE∥CG,所以△BEF∽△GCF,从而可知=【解答】解:过点C作CG∥AB交BD的延长线于点G,∴∠ABD=∠DGC,∵BD、CE是ABC的两条中线,∴BE=AB,AD=CD在△ABD与△CGD中,∴△ABD≌△CGD(AAS)∴AB=CG,∴BE=CG,∵BE∥CG,∴△BEF∽△GCF,∴=【点评】本题考查相似三角形的判定与性质,涉及全等三角形的判定与性质,三角形中线的性质,平行线的性质等知识,综合程度较高.20.在一个不透明的盒子里装着只有颜色不同的黑、白两种球共30个,小鲍做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是“摸到白色球”的概率折线统计图.(1)当n很大时,摸到白球的频率将会接近0.50(精确到0.01),估计盒子里白球为15个,假如摸一次,摸到白球的概率为;(2)如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?【分析】(1)根据“摸到白色球”的概率折线统计图,得出摸到白球的频率;由30×0.5=15,30﹣15=15,即可得出结果;用频率的稳定值得出摸到白球的概率即可;(2)设需要往盒子里再放入x个白球;根据题意得出方程,解方程即可.【解答】解:(1)由摸到白色球”的概率折线统计图可得,摸到白球的频率将会接近0.50,∵30×0.5=15,30﹣15=15,∴盒子里白球为15,∵随实验次数的增多,频率的值稳定于0.50,∴摸到白球的概率,故答案为:0.50,15,;(2)设需要往盒子里再放入x个白球;根据题意得:=,解得x=30;故需要往盒子里再放入30个白球.【点评】本题考查了利用频率估计概率、概率公式的运用.解题时注意:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.21.如图,某中学准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成,若墙长为18米,设这个苗圃垂直于墙的一边长为x米.(1)若苗圃园的面积为100平方米,求x的值;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值,如果没有,请说明理由.【分析】(1)根据矩形的面积公式列出关于x的方程,解方程可得答案;(2)列出矩形的面积y关于x的函数解析式,结合x的取值范围,利用二次函数的性质可得最值情况.【解答】解:(1)由题意,得:平行于墙的一边长为(30﹣2x),根据题意,得:x(30﹣2x)=100,解得:x=5或x=15,∵∴6≤x<15.∴x=10.(2)∵矩形的面积y=x(30﹣2x)=﹣2(x﹣)2+,且30﹣2x≥8,即x≤11,∴当x=7.5时,y取得最大值,最大值为;当x=11时,y取得最小值,最小值为88.【点评】本题考查了二次函数的应用、长方形的周长公式的运用、长方形的面积公式的运用、一元二次方程的解法的运用,解答时根据长方形的面积公式建立方程和函数解析式是关键.22.如图,己知AB是半径为2的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形.(1)求证:△DFB是等腰三角形;(2)若AF=1,求DA的长度;(3)若DA=AF,求证:CF⊥AB.【分析】(1)由AB是⊙O直径,得到∠ACB=90°,由于△AEF为等边三角形,得到∠CAB=∠EFA=60°,根据三角形的外角的性质即可得到结论;(2)根据等边三角形求出FM、AM、根据勾股定理求出AF即可;(3)过点A作AM⊥DF于点M,设AF=2a,根据等边三角形的性质得到FM=EM=a,AM=a,在根据已知条件得到AB=AF+BF=8a,根据直角三角形的性质得到AE=EF=AF=CE=2a,推出∠ECF=∠EFC,根据三角形的内角和即可得到结论.【解答】(1)证明:∵AB是⊙O直径,∴∠ACB=90°,∵△AEF为等边三角形,∴∠CAB=∠EFA=60°∴∠B=30°,∵∠EFA=∠B+∠FDB,∴∠B=∠FDB=30°,∴△DFB是等腰三角形;(2)解:过点A作AM⊥DF于点M,∵AB=2×2=4,AF=1,∴BF=4﹣1=3,∵DF=BF,∴DF=3,∵△AEF是等边三角形,∴FM=EM=AF=,AM=FM=,在Rt△DAM中,AD=AF=×1=;(3)证明:设AF=2a,∵△AEF是等边三角形,∴FM=EM=a,AM=a,在Rt△DAM中,AD=AF=2a,AM=a,∴DM=5a,∴DF=BF=6a,∴AB=AF+BF=8a,在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,∵AE=EF=AF=2a,∴CE=AC﹣AE=2a,∴∠ECF=∠EFC,∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,∴∠AFC=∠AFE+∠EFC=60°+30°=90°,∴CF⊥AB.【点评】本题考查了圆周角定理,等边三角形的性质,等腰三角形的判定和性质,含30°角的直角三角形,勾股定理,正确的作出辅助线是解题的关键.23.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C 两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MO N和△ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标.【解答】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有=或=,①当=时,则有=,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当=时,则有=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.。

相关文档
最新文档