曲线坐标计算及曲线偏角计算
线性工程坐标计算公式汇总(安玉赟)
线性工程坐标计算公式汇总中铁一局安玉赟2014年04月06日目录一、已知条件(红色必要条件)及字母说明 1二、曲线要素计算 2三、主点里程计算 3四、曲线坐标计算(交点法) 3五、圆曲线坐标计算 6六、竖曲线计算 7七、坐标方位角计算过程 9八、定积分复合曲线万能坐标计算公式(积木法) 10九、曲线转角计算 13一、已知条件(红色必要条件)及字母说明K、X、Y—该交点里程和坐标O—转角R—圆半径l10—第一缓和长l20—第二缓和长P—待算中桩桩号N=M+O—该交点后直线方位角M—该交点前直线方位角T1—第一缓和曲线长T2—第二缓和曲线长L—总曲线长Ly—圆曲线长E—外矢距Q—切曲差A—缓和曲线参数P1、P2—第一和第二缓和曲线的内移值q1、q2—第一和第二缓和曲线的切线增长值二、曲线要素计算缓和曲线参数圆曲线内移值切线增量带缓和曲线切线长度圆曲线切线长度曲线总长度圆曲线长度外矢距切曲差三、主点里程计算ZH=K-T1HY=ZH+l10QZ=ZH+Ly/2+l10(曲中位于圆曲线中点)QZ=ZH+L/2+L10/4-L20/4 (曲中点位于角平分线方向)QZ=HZ-L/2(或:QZ=ZH+L/2)(曲中位于平曲线中点)YH=ZH+L-l20=HY+LyHZ=YH+l20JD=QZ+Q/2(校核)四、曲线坐标计算(交点法)曲线坐标计算的方法1、切线支距法:又称直角坐标法,以曲线的起点ZH或终点HZ为坐标原点,以过原点的切线为X轴,过原点的半径为Y轴,按曲线上个点坐标X、Y设置曲线上个点的位置。
缓和曲线坐标圆曲线坐标(β为全缓和曲线转角点方位角)2、偏角法:略3、极坐标法:略曲线坐标计算公式1、ZH点坐标2、ZH点前直线坐标(切线方位角)3、第一缓和曲线内坐标设以螺旋线(也称回旋线)起点(ZH点)为坐标原点,过ZH点的切线为x 轴,半径方向为y轴,缓和曲线上任一点的坐标为X1、Y1坐标转换(切线方位角)4、圆曲线内坐标(切线方位角)线路左转W=-1,线路右转W=15、第二缓和曲线内坐标以ZH为局部坐标原点,以过原点的切线为局部坐标系的X轴,过原点的半径为局部坐标系的y轴坐标转换(切线方位角)6、HZ点坐标7、HZ点后直线坐标Z=N(切线方位角)五、圆曲线坐标计算T—切线长L—曲线长E—外矢距α—转向角主点里程计算ZY=JD-TYZ=ZY+LQZ=YZ-L/2JD=QZ+D/2(校核)圆曲线要素计算计算方法及公式1、切线支距法:又称直角坐标法,以曲线的起点ZY或终点YZ为坐标原点,以切线为X轴,过原点的半径为Y轴,按曲线上个点坐标X、Y设置曲线上个点的位置。
线路坐标计算公式(带偏移)
1.直线坐标计算直线上一点坐标公式如下:COS αl X X A ⨯+=SIN αl Y Y A ⨯+=X A :直线上一点A 的X 坐标(待求点里程-A 点里程必须大于零) Y A :直线上一点A 的Y 坐标(待求点里程-A 点里程必须大于零) l : 待求点里程-A 点里程α:直线方位角(A 点至待求点的方位角) 2.圆曲线坐标计算圆曲线上一点坐标计算公式如下:)90K πR 180lK COS(αR )90K COS(αR X X 起起起︒⨯-⨯+⨯+︒⨯+⨯+= )90K πR180l K SIN(αR )90K SIN(αR Y Y 起起起︒⨯-⨯+⨯+︒⨯+⨯+=切线方位角πR180lK α起⨯+=,起始方位角β+=ZH 起αα X 起:圆曲线起点处的X 坐标 Y 起:圆曲线起点处的Y 坐标α起:圆曲线起点处的切线方位角 R :圆曲线半径l :待求点里程-圆曲线起点里程 K :右转取1,左转取-1 偏移:K1:右转取1,左转取-1,K2:右转取-1,左转取+1,3.带有圆曲线的缓和曲线(缓和曲线为完整缓和曲线)坐标计算:(1)曲线要素的计算:①切线角:π1802Rl β11︒⨯=,π1802Rl β22︒⨯=②内移值:24R l p 211=,24Rl p 222= ③切线增值:23111240R l 2l m -=,23222240R l 2l m -= ④切线长:sin αp p m 2αtan )p (R T 21111--+⨯+=sin αp p m 2αtan)p (R T 21222-++⨯+= ⑤曲线长:2121l l 180πR )ββ(αL ++︒⨯⨯--=⑥外矢距:R OS E -+=1112α)/C p (R)90K2πR 180l K1COS(αE)-R ()90K COS(αR X X 起起起︒⨯+⨯+⨯+︒⨯+⨯+=⑦缓和曲线总偏角:/310βδ= 其中:β1:前缓和曲线切线角 β2:后缓和曲线切线角 p 1:前缓和曲线内移值 p 2:后缓和曲线内移值 m 1:前缓和曲线切线增值 m 2:后缓和曲线切线增值 T 1:前切线长 T 2:后切线长 l 1:前缓和曲线长 l 2:后缓和曲线长 R :为圆曲线半径 E :外矢距0δ:缓和曲线总偏角(2)前缓和曲线一点坐标计算公式如下:)πRl 30l K COS(α)90Rl (l X X s12ZHs1225ZH l⨯+⨯-+=)πRl 30l K SIN(α)90Rl (l Y Y s12ZHs1225ZH l⨯+⨯-+=切线方位角=s12ZHπRl 90l K α⨯+X ZH :ZH 点X 坐标 Y ZH :ZH 点Y 坐标K:右转取1,左转取-1 R :圆曲线半径l :待求点里程-ZH 点里程 l s1:前缓和曲线长度偏移:(3)后缓和曲线一点坐标计算公式如下:)πRl 30l K 180COS(α)90R l (l X X s22HZs2225HZ l ⨯-︒+⨯-+=)πRl 30l K 180SIN(α)90Rl (l Y Y s22HZs2225HZ l⨯-︒+⨯-+=切线方位角=s22HZπRl 90l K α⨯- )90K πRl 90l K COS(α)E l (X 偏X s12ZH s1l ︒⨯+⨯+⨯⨯+=X:HZ点X坐标HZY:HZ点Y坐标HZK:右转取1,左转取-1R:圆曲线半径l: HZ点里程- 待求点里程l s2:后缓和曲线长度。
圆曲线坐标计算公式带例题精编版
圆曲线坐标计算公式β=180°/π×L/R (L= βπ R/180°)弧长公式β为圆心角△X=sinβ×R△Y=(1-cosβ)×RC= 弦长X=X1+cos (α ±β/2)×CY=Y1+sin (α ±β/2)×Cβ代表偏角,(既弧上任一点所对的圆心角)。
β/2是所谓的偏角(弦长与切线的夹角)△X、△Y代表增量值。
X、Y代表准备求的坐标。
X1、Y1代表起算点坐标值。
α代表起算点的方位角。
R 代表曲线半径缓和曲线坐标计算公式β= L2/2RL S ×180°/πC= L - L5/90R2L S2X=X1+cos (α ±β/3)×CY=Y1+sin (α ±β/3)×CL代表起算点到准备算的距离。
LS代表缓和曲线总长。
X1、Y1代表起算点坐标值。
直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值α代表直线段方位角。
L代表起算点到准备算的距离。
左右边桩计算方法X边=X中+cos(α±90°)×LY边=Y中+sin(α±90°)×L在计算左右边桩时,先求出中桩坐标,在用此公式求左右边桩。
如果在线路方向左侧用中桩方位角减去90°,线路右侧加90°,乘以准备算的左右宽度。
例题:直线坐标计算方法α(方位角)=18°21′47″X1=84817.831 Y1=352.177 起始里程DK184+714.029求DK186+421.02里程坐标解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.901Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943求DK186+421.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″- 90°)×3.75=86439.082Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″- 90°)×3.75=886.384线路右侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″+ 90°)×7.05=86435.680Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″+90°)×7.05=896.634例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″X1=86437.901 Y1=889.941 起始里程DK186+421.02曲线半径2500 缓和曲线长120m求HY点坐标,也可以求ZH点到HY点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120)}×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2C=120-1205/(90×25002×1202)=119.997X=X1+cos(α±β/3)×CX=86437.901+cos(18°21′47″-1°22′30.36″/3)×119.997=86552.086Y=Y1+sin(α±β/3)×CY=889.941+sin(18°21′47″-1°22′30.36″/3)×119.997=926.832求DK186+541.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)- 90°}×3.75=86553.182Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246线路右侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574缓和曲线方位角计算方法α=(起始方位角±β偏角)= 18°21′47″-1°22′30.36″=16°59′16.64″注:缓和曲线在计算坐标时,此公式只能从两头往中间推,只能从ZH点往HY点推,HZ点往YH点推算,如果YH往HZ点推算坐标,公式里的β为β2/3.例题:圆曲线坐标计算方法α(HY点起始方位角)= 16°59′16.64″X1=86552.086 Y1=926.832曲线半径2500 曲线长748.75 起始里程DK186+541.02求YH点坐标,也可以求QZ点坐标或任意圆曲线一点坐标.解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ)×R△Y=(1-cos17°09′36.31″)×2500=111.290C= 弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=87290.023Y=Y1+sin(α±β/2)×CY=926.832+ sin(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=1035.905圆曲线方位角计算方法α=(起始方位角±β偏角)= 16°59′16.64″+360°-17°09′36.31″=359°49′40.33″求DK187+289.77里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″-90°)×3.75=87290.012Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″-90°)×3.75=1032.155线路右侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″+90°)×7.05=87290.044Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″+90°)×7.05=1042.955。
铁路工程曲线坐标计算步骤
第9讲教学目标:了解偏角法的概念,理解正拨、反拨的含义,掌握曲线偏角计算公式和方法。
重点难点:5—4 一. 偏角法原理正拨 反拨二. 偏角计算1.圆曲线偏角Rl j i j i 2,,=δ 2.缓和曲线偏角δi ,j=βi -αj ,ij i i tg l Rl =,221αβ、、661 03j j j j i i i i Rl l Rl y l x ≈≈)(6122,j j i i j i j i ij l l l l Rl x x y y ++=--≈α)2)((610,j i j i j i l l l l Rl +-=δ若j 点位于i 点与缓和曲线终点之间,则同样方法可得,)2)((610,j i i j j i l l l l Rl +-=δ故其一般表达式为)2(6||0,j i j i j i l l Rl l l +-=δ若1010610210j i l j l i Rl ===、、δ,即在缓和曲线上,曲线点号等于以10m 为单位曲线长,则式中,R 为圆曲线半径,l 0为缓和曲线长,δ10为缓和曲线基本角。
)2(||10,j i j i j i +-=δδ102,0δδj j =当i 点位于缓和曲线起点时,则上式可化简为三. 弦线长度计算向,2至i f Z5—5 曲线详细测设的直角坐标法一. 直角坐标法测设曲线原理X 轴上丈量x P ,得P'点;自P'点,沿与X 轴垂直且指向曲线内侧的方向丈量y P ,即得P 点。
直角坐标法中,坐标系X 轴均选主点的切线,故曲线点的y 坐标为相对于切线的支距。
因此,直角坐标法也称为切线支距法。
二. 曲线点坐标计算直角坐标法所选定的坐标系通常为缓和曲线坐标系,则在该坐标系下,缓和曲线段曲线点坐标的计算公式为缓和曲线方程,圆曲线段曲线点的坐标:⎭⎬⎫+-=+=p R y m R x t t t t )cos 1(sin αα式中0βα+-=RK K HYt t ,K t 为t 点的里程,K HY 为HY 里程。
方位角的计算公式
计算公式一、 方位角的计算公式1. 字母所代表的意义:x 1:QD 的X 坐标 y 1:QD 的Y 坐标 x 2:ZD 的X 坐标 y 2:ZD 的Y 坐标 S :QD ~ZD 的距离 α:QD ~ZD 的方位角2. 计算公式:()()212212y y x x S -+-=1)当y 2- y 1>0,x 2- x 1>0时:1212x x y y arctg--=α2)当y 2- y 1<0,x 2- x 1>0时:1212360x x y y arctg --+︒=α 3)当x 2- x 1<0时:1212180x x y y arctg--+︒=α 二、 平曲线转角点偏角计算公式1. 字母所代表的意义:α1:QD ~JD 的方位角 α2:JD ~ZD 的方位角 β:JD 处的偏角2. 计算公式:β=α2-α1(负值为左偏、正值为右偏)三、 平曲线直缓、缓直点的坐标计算公式1. 字母所代表的意义:U :JD 的X 坐标 V :JD 的Y 坐标 A :方位角(ZH ~JD )T :曲线的切线长,2322402224R L L D tg R L R T ss s -+⎪⎪⎭⎫ ⎝⎛+=D :JD 偏角,左偏为-、右偏为+2. 计算公式:直缓(直圆)点的国家坐标:X ′=U+Tcos(A+180°)Y ′=V+Tsin(A+180°)缓直(圆直)点的国家坐标:X ″=U+Tcos(A+D)Y ″=V+Tsin(A+D)四、 平曲线上任意点的坐标计算公式1. 字母所代表的意义:P :所求点的桩号B :所求边桩~中桩距离,左-、右+ M :左偏-1,右偏+1C :JD 桩号 D :JD 偏角 L s :缓和曲线长 A :方位角(ZH ~JD ) U :JD 的X 坐标 V :JD 的Y 坐标T :曲线的切线长,2322402224R L L D tg R L R T ss s -+⎪⎪⎭⎫ ⎝⎛+=I=C -T :直缓桩号 J=I+L :缓圆桩号s L DRJ H -+=180π:圆缓桩号K=H+L :缓直桩号2. 计算公式: 1)当P<I 时中桩坐标:X m =U+(C -P)cos(A+180°) Y m =V+(C -P)sin(A+180°) 边桩坐标:X b =X m +Bcos(A+90°) Y b =Y m +Bsin(A+90°)2)当I<P<J 时()s230RL I P MA O π-︒+= ()()2390R I P I P G ---=中桩坐标:X m =U+Tcos(A+180°)+GcosO Y m =V+Tsin(A+180°)+GsinO()s290RL I P W π-︒=边桩坐标:X b =X m +Bcos(A+MW+90°) Y b =Y m +Bsin(A+MW+90°)3)当J<P<H 时()()R J P L M A R J P R L M A O s s πππ-+︒+=⎪⎭⎫⎝⎛-︒+︒+=909090 ()RJ P R G π-︒=90sin2中桩坐标:()O G R L M A R L L A T U X s ss m cos 30cos 90180cos 23+⎪⎭⎫⎝⎛︒+⎪⎪⎭⎫ ⎝⎛-+︒++=π ()O G R L M A R L L A T V Y s ss m sin 30sin 90180sin 23+⎪⎭⎫ ⎝⎛︒+⎪⎪⎭⎫ ⎝⎛-+︒++=π ()RJ P W π-︒=90边桩坐标:X b =X m +Bcos(O+MW+90°) Y b =Y m +Bsin(O+MW+90°)4)当H<P<K 时()sRL K P MMD A O π230180-︒-︒++= ()2390R P K P K G ---= 中桩坐标:X m =U+Tcos(A+MD)+GcosO Y m =V+Tsin(A+MD)+GsinO()s290RL K P W π-︒=边桩坐标:X b =X m +Bcos(A+MD -MW+90°) Y b =Y m +Bsin(A+MD -MW+90°)5)当P>K 时中桩坐标:X m =U+(T+P -K)cos(A+MD) Y m =V+(T+P-K)sin(A+MD) 边桩坐标:X b =X m +Bcos(A+MD+90°) Y b =Y m +Bsin(A+MD+90°)注:计算公式中距离、长度、桩号单位:“米”;角度测量单位:“度”;假设要以“弧度”为角度测量单位,请将公式中带°的数字换算为弧度。
曲线计算公式
2、缓和曲线偏角公式:
δn=30Ln2/RπLs
3、切线长T=m+(R+P)tan(β/2)
4、曲线长:
L=(Rπ(β-2β0))/180+2Ls
5、外矢距E=(R+P)/cos(β/2Βιβλιοθήκη -R6、切曲差q=2T-L
7、切垂距m=Ls/2-Ls3/240R2
8、内移距P=Ls2/24R-Ls4/2688R3
一、圆曲线范围公式
已知:半径R.转向角β
1、切线长T=Rtan(β/2)
2、曲线长L=(Rπβ)/180
3、外矢距E=R(1/cos(β/2)-1)
4、切曲差q=2T-L
偏角公式δ=180C/2Rπ注C为所点弧长
二、缓和曲线范围公式
1、缓和曲线切线角βn=90Ln2/RπLs
Ln为所点n到直缓或缓直点曲线长
9、缓和曲线数学坐标公式:
X=Ls-Ln5/40R2Ls2
Y=Ln3/6RLs-Ln7/336R3Ls3
10、缓和曲线偏角公式:
δn=tan-1(y/x)
11、缓和曲线弦长公式:Ci=√(x2+y2)
Cc=Ln-Ln3/90R2+Ln5/3888R4(代数式
综合曲线中圆曲线范围坐标公式:
Xi=m+Li-Ls/2-(Li-Ls/2)3/6R2
Yi=p+(Li-Ls/2)2/2R-(Li-Ls/2)4/24R3
注:Li为圆曲线上任意点到ZH或HZ的曲线长(用于计算偏移值)
三、竖曲线计算公式
Y=X2/2R
各种曲线计算公式
一、公路平曲线坐标计算公式1、缓和曲线:Lb1 0{K,D}①T=A2/R ②L=J(K-O)+T ③B=T2 /2/A2 *180/π④M=(L-T)-(L5-T5)/40/A4+(L9-T9)/3456/A8-(L13-T13)/599040/A12+(L17-T17)/17542600/A165.N=(L3-T3)/6/A2-(L7-T7)/336/A6+(L11-T11)/42240/A10-(L15-T15) /9676800/A14+(L19-T19)/3530097000/A18⑥I=(L2-T2)*180/2/A2/π⑦X=C+Mcos(Q-ZB)-ZNsin(Q-ZB)+Dcon(Q+ZI+S)◢⑧Y=F+Msin(Q-ZB)+ZNcos(Q-ZB)+Dsin(Q+ZI+S)◢Goto 0注:A:缘和曲线参数 R:起点半径 J:曲率半径判定值(当曲率半径由小到大取1,否则取-1)(当起点半径到终点半径是由大或无穷大到小取+1,反之则取-1) K:欲求点里程 O:缘和曲线起点里程 C:缘和曲线起点X坐标Q:起始方位角(当J=-1时,方位角应+180。
) Z:偏角判定值(当J=1时,左偏为-1,右偏为1;当J=-1时,左偏为1,右偏为-1) D:距中桩的距离 S:斜交角度 F:缘和曲线起点Y坐标2、圆曲线Lb1 0{K,D}①L=K-0②X=C+R[sin(Q+L/R*180/π)-sinQ]+Dcos(Q+L/R*180/π+S)◢③Y=F-R[cos(Q+L/R*180/π)-cosQ]+Dsin(Q+L/R*180/π+S)◢ Goto 0注:K:欲求点里程 O:圆曲线起点里程 C:圆曲线起点X坐标 R:圆曲线半径 (左偏为负) Q:起始方位角 D:距中桩的距离 S:斜交角度 F:圆曲线起点Y坐标3、直线Lb1 0{K,D}①L=K-0②X=C+LcosQ+Dcos(Q+S)◢③Y=F+LsinQ+Dsin(Q+S)◢Goto 0注:K:欲求点里程 O:直线起点里程 C:直线起点X坐标 Q:起始方位角 D:距中桩的距离 S:斜交角度 F:直线起点Y坐标二、竖曲线计算公式Lb1 0①{K} ②L=K-(0-T)③H=M-IT+LI-ZL2 /2/R◢ Goto 0 注:K:欲求点里程;O:顶点里程;T:切线长;M:顶点高程;I:坡度;Z:竖曲线判定值三、预拱度计算公式Lb1 0①{K} ②H=D-(4D÷B2)×(B/2-(K-O)) 2◢ Goto 0注:D:跨中最大设计预拱度 H:要计算的预拱度 K:欲求点里程桩号(距支座的距离) O:起点桩号 B:本跨净长。
偏角法计算缓和曲线
第9讲教学目标:重点难点:缓和曲线偏角计算公式5—4 曲线详细测设的偏角法一.偏角法原理实质上是角度与距离交会法。
正拨 反拨二.偏角计算1.圆曲线偏角Rl j i j i 2,,=δ 2.缓和曲线偏角δi ,j =βi -αj ,iji i j i i tg l Rl =,20 21αβ、;、;、 61 61 3030j j j j i i i i l Rl y l x l Rl y l x ≈≈≈≈ )(61220,j j i i j i j i ij l l l l Rl x x y y ++=--≈α )2)((61,j i j i j i l l l l Rl +-=δ 若j 点位于i 点与缓和曲线终点之间,则同样方法可得,)2)((610,j i i j j i l l l l Rl +-=δ 故其一般表达式为)2(6||0,j i j i j i l l Rl l l +-=δ若1010 6100210j i l j l i Rl ===、、δ,即在缓和曲线上,曲线点号等于以10m 为单位曲线长,则)2(||10,j i j i j i +-=δδ102,0δδj j =式中,R 为圆曲线半径,l 0为缓和曲线长,δ10为缓和曲线基本角。
当i 点位于缓和曲线起点时,则上式可化简为三.弦线长度计算表定向。
数。
例至i +1式中,5—5 曲线详细测设的直角坐标法一.直角坐标法测设曲线原理P ,得P'点;自P'点,沿与X 轴垂直且指向曲线内侧的方向丈量y P ,即得P 点。
直角坐标法中,坐标系X 轴均选主点的切线,故曲线点的y 坐标为相对于切线的支距。
因此,直角坐标法也称为切线支距法。
二.曲线点坐标计算直角坐标法所选定的坐标系通常为缓和曲线坐标系,则在该坐标系下,缓和曲线段曲线点坐标的计算公式为缓和曲线方程,圆曲线段曲线点的坐标:⎭⎬⎫+-=+=p R y mR x t t t t )cos 1(sin αα式中0βα+-=RK K HYt t ,K t 为t 点的里程,K HY 为HY 里程。
圆曲线坐标计算公式带例题
精心整理圆曲线坐标计算公式β=180°/π×L/R (L= βπ R/180°)弧长公式β为圆心角△X=sinβ×RSX=X1+cos (α±β/3)×CY=Y1+sin (α±β/3)×CL代表起算点到准备算的距离。
LS代表缓和曲线总长。
X1、Y1代表起算点坐标值。
直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值Y1=352.177 起始里程DK184+714.029求DK186+421.02里程坐标解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.901Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943求DK186+421.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:7.05=896.634例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″X1=86437.901 Y1=889.941 起始里程DK186+421.02曲线半径2500 缓和曲线长120m求HY点坐标,也可以求ZH点到HY点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120)}×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246线路右侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ)×R△Y=(1-cos17°09′36.31″)×2500=111.290C= 弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″-90°)×3.75=1032.155线路右侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″+90°)×7.05=87290.044Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″+90°)×7.05=1042.955。
曲线坐标计算(
曲线坐标计算一、圆曲线圆曲线要素:α---------------曲线转向角R---------------曲线半径根据α及R可以求出以下要素:T----------------切线长L----------------曲线长E----------------外矢距q----------------切曲差(两切线长与曲线全长之差)各要素的计算公式为:2αtgR T ⋅=︒⋅=180παR L (弧长))12(sec -=αR E (sec α=cos α的倒数)圆曲线主点里程:ZY=JD -TQZ=ZY +L /2 或 QZ=JD -q /2 YZ=QZ +L /2 或 YZ=JD +T -qJD=QZ+q/2(校核用)1、基本知识◆里程:由线路起点算起,沿线路中线到该中线桩的距离。
◆表示方法:DK26+284.56。
“+”号前为公里数,即26km,“+”后为米数,即284.56m。
CK ——表示初测导线的里程。
DK ——表示定测中线的里程。
K——表示竣工后的连续里程。
铁路和公路计算方法略有不同。
2、曲线点坐标计算(偏角法或弦切角法)已知条件:起点、终点及各交点的坐标。
1)计算ZY、YZ点坐标通用公式:2)计算曲线点坐标①计算坐标方位角i 点为曲线上任意一点。
li 为i 点与ZY点里程之差。
弧长所对的圆心角弦切角弦的方位角当曲线左转时用“-”,右转时用“+”。
计算弦长②③计算曲线点坐标此时的已知数据为:ZY(x ZY,y ZY)、αZY- i、C。
根据坐标正算原理:切线支距法这种方法是以曲线起点ZY或终点YZ为坐标原点,以切线为X轴,以过原点的半径为Y轴,则圆曲线上任意一点的切线支距坐标可通过以下公式求得:πϕϕϕ︒⋅=-==180,)cos 1(sin R l R y R x 式中利用坐标平移和旋转,该点在大地平面直角坐标系中的坐标可由以下公式求得:式中:α为ZY(YZ)点沿线路前进方向的切线方位角。
5 圆曲线偏角法放样及中桩坐标计算 - 副本
该线元半径就等于交点至圆心的边长;
3 、依据圆心至交点方位角为计算圆曲线细部点 坐标的基准线,计算线元细部点至基准线的 圆心角,使用半径作为圆心至细部点的边长。 4 、运用坐标正算原理,计算线路曲线范围 待求点P的坐标。
2018/10/24
ZY切线方位角走向148 °01 ′ 37 ″ ,试计算K6+000处中桩坐标?
根据上述学到的知识分别使用偏角弦长计算法和圆心角半径计算法进行计算!
2018/10/24
计算案例
已知线路某圆曲线线元交点桩号K3+984.56 ,圆曲线半径R=180m,该线元转角38°56 ′ 24 ″,试计
算该圆曲线T 、L 、E 曲线要素及主点桩号?
1 、將曲线中桩坐标计算,转换为直线
坐标计算; 2 、通过ZY点切线方位角走向和ZY点
至待求点P的弦切角,进行旋转,
求出ZY点至待求点P的弦长走向方位角; 3 、通过曲线要素计算ZY点至曲线 待求点P的弦长; 4 、运用坐标正算原理,计算线路曲线范围 待求点P的坐标。
2018/10/24
圆曲线中桩坐标计算原理
201749中桩坐标计算04计算原理06案例计算圆曲线圆曲线偏角法放样原理偏角法是以曲线起点或终点至曲线上任一点p的弦长与切线之间的偏角弦切角和弦长来确定曲线范围内放样点p的平面位置
圆曲线偏角法放样 及中桩坐标计算
01
放样原理 放样过程 案例计算 计算原理 计算过程 案例计算
讲解人:刘芳超 讲解时间:2017.4.9
圆心坐标计算:
圆曲线范围 任意一点P计算公式:
2018/10/24
计算案例
缓和曲线坐标计算公式
缓和曲线坐标计算公式你说的坐标应该是在整条公路上的坐标不是支距法算出来的坐标吧支距法现在都不怎么用了给你个偏角法的计算公式吧ZH至i点的偏角A=30xL的平方除以派除以R 除以LsZH至i点的弦长C=L(ZH至i点的长)-L的5次方除以90 除以R的平方除以Ls的平方具体是这样的:建立以ZH或(HZ)为原点,过ZH的切线及半径分别X轴与Y轴的坐标系统后,就可以用曲线上各点在这个坐标系统中的x,y测设曲线。
坐标计算如下:缓和曲线:xi=li- li^5/40R^2li^2yi=li/6Rl0-li^7/336R^3li^3圆曲线:xi=R×sinαi+myi=R(1-cosαi)+pα=180°∕πR(li- l0)+β0li是曲线上与测设点距ZH点的弧长,l0缓和曲线长度,m,p,β0是缓和曲线参数缓和曲线计算偏角公式L2(平方)/(2RLs)L:缓和曲线上任一点到ZH点距离R:圆半径Ls:缓和曲线长当L=Ls时,公式就是L/(2R)卵形曲线坐标计算方法简介:在高速公路立交平面线型中,现越来越多采用卵形曲线这一线型形式,而卵形曲线坐标的计算在现有相关书籍中却又很少提到,这就为施工中的坐标计算及放样增加了较大难度,为解决此难道,我在实践中通过对缓和曲线坐标的计算加以分析并结合理论知识,总结出了卵形曲线坐标的计算方法和技巧。
关键字:卵形曲线坐标计算一、概念卵形曲线:是指在两半径不等的圆曲线间插入一段缓和曲线。
也就是说:卵形曲线本身是缓和曲线的一段,只是在插入时去掉了靠近半径无穷大方向的一段,而非是一条完整的缓和曲线。
二、卵形曲线坐标计算原理根据已知的设计参数,求出包括卵形曲线的完整缓和曲线的相关参数和曲线要素,再按缓和曲线坐标计算的方法来计算卵形曲线上任意点上的坐标。
三、坐标计算以雅(安)至攀(枝花)高速公路A合同段(西昌西宁)立交区A匝道一卵形曲线为例,见图一:(图一)已知相关设计数据见下表:主点桩号坐标(m)切线方位角(θ)X Y ° ’ ”ZHAK0+090 9987.403 10059.378 92 17 26.2HY1AK0+160 9968.981 10125.341 132 23 51.6YH1AK0+223.715 9910.603 10136.791 205 24 33.6HY2AK0+271.881 9880.438 10100.904 251 24 18.5YH2AK0+384.032 9922.316 10007.909 337 04 54.2HZAK0+444.032 9981.363 10000.000 0 00 001、缓和曲线(卵形曲线)参数计算A1= =59.161卵形曲线参数:A2=(HY2-YH1)×R1(小半径)×R2(大半径)÷(R2-R1)=(271.881-223.715)×50×75÷(75-50)= 7224.900A2= =84.999A3= =67.0822.卵形曲线所在缓和曲线要素计算卵形曲线长度LF由已知条件知:LF=HY2-YH1=271.881-223.715=48.166卵形曲线作为缓和曲线的一段,因此先求出整条缓和曲线的长度LS,由此找出HZ“点的桩号及坐标(实际上不存在,只是作为卵形曲线辅助计算用)LM=LS(YH1至HZ“的弧长)=A2÷R1=7224.900÷50=144.498∴HZ“桩号=YH1+LM=223.715+144.498=368.213LE=HY2至HZ“的弧长=A2÷R2=7224.900÷75=96.332或LE= LM-LF=144.498-48.166=96.332卵形曲线长度LF=LM-LE=144.498-96.332=48.166(校核)HY2=HZ“-LE=368.213-96.332=271.881(校核)由上说明计算正确3.HZ“点坐标计算(见图二)(图二)①用缓和曲线切线支距公式计算,缓和曲线切线支距公式通式:Xn=[(-1)n+1×L4n–3]÷[(2n-2)!×22n–2×(4n-3)×(RLs)2n–2]Yn=[(-1)n+1×L4n–1]÷[(2n-1)!×22n–1×(4n-1)×(RLs)2n–1]公式中符号含义:n —项数序号(1、2、3、……n)!—阶乘R —圆曲线半径Ls —缓和曲线长②现取公式前6项计算(有关书籍中一般为2-3项,不能满足小半径的缓和曲线计算精度要求,如本例中AK0+090~AK0+160段缓和曲线,如AK0+160中桩坐标带2项算误差达8cm),公式如下:X=L-L5÷[40(RLS)2]+L9÷[3456(RLS)4]–L13÷[599040(RLS)6]+L17÷[175472640(RLS)8]- L21÷[7.80337152×1010(RLS)10] (公式1)Y=L3÷[6(RLS)] - L7÷[336(RLS)3]+L11÷[42240(RLS)5] - L15÷[9676800(RLS)7]+L19÷[3530096640(RLS)9] - L23÷[1.8802409472×1012(RLS)11] (公式2)公式中L为计算点至ZH“或HZ“的弧长HZ“:AK0+368.213的坐标从YH1:AK0+223.715推算,L=LS=HZ“-YH1=368.213-223.715=144.498将L=LS 代入公式(1)、(2)得:X=117.1072 Y=59.8839L对应弦长C=√(X2+Y2)=131.5301偏角a1=arctg(Y÷X)=27°05’00.2”* 偏角计算用反正切公式,不要用其它公式。
曲线偏角与切线角的关系
缓和曲线上任一点偏角:
δ=ι2/(6Rιs)*(180/π)=>δ=(90ι2)/(3Rπιs)=(30ι2)/(Rπιs) 【度】
当ι=ιs时,缓和曲线的总偏角:
δ(总)=ιs/(6R)*(180/π)=(30ιs)/(Rπ) 【度】;
由于β=(90ι2)/(Rπιs) ,上式可写成:缓和曲线δ(偏角)=(1/3)*β(缓和曲线切线角)
式中Δi为各辅点的偏角。
当测设精度不太高时也可用近似公式计算:Y=X2[2为平方]÷2R;
3、圆曲线中央纵距法
曲线上弦的中点至曲线的距离垂距叫该弦线的中央纵距,可用它测设圆曲线的辅点的位置。
求曲线起点ZY和终点YZ连线(叫长弦以C表示)的中点至圆曲线中点(MC)的垂距(M)。
计算公式:M=R(1-cos(β/2));C=2R*sin(β/2).式中β为圆曲线的切线角即转角。
一、圆曲线偏角偏角与切线角关系:
道路中线有一个方向偏转为另一个方向时,偏转后的方向与原方向之间的夹角称为转折角,也称转角或偏角。
1、曲线起点或终点至曲线上任一点P的弦长与切线T之间的偏角“数学上叫弦切角”和弦长C来定P点位置的方法称偏角法也就是极坐标法。
有几何原理可知,圆曲线偏角Δ等于相应弧(弦)所对圆心角的一半。
弦切角的性质:①弦切角等于它所夹的弧的一半。②弦切角等于它所夹的弧所对的圆周角。
圆曲线上任一点P处的切线与过起点切线的交角β称为切线角,β值与圆曲线上该点的曲线长(弧长)所对的圆心角相等。
圆曲线上任一点偏角: Δ=Φ/2=(90ι)/(Rπ)【度】
圆曲线上任一点切线角:β=2Δ=(180ι)/(R
缓和曲线上任一点P处的切线与过起点切线的交角β称为切线角,β值与缓和曲线上该点的曲线长(弧长)所对的圆心角相等。
曲线坐标计算(
曲线坐标计算一、圆曲线圆曲线要素:a -------------- 曲线转向角R -------------- 曲线半径根据a及R可以求出以下要素:T --------------- 切线长L -------------- 曲线长E -------------- 外矢距q -------------- 切曲差(两切线长与曲线全长之差)各要素的计算公式为:L R180(弧长)E RRsec 1)2(sec a =cos a 的倒数)圆曲线主点里程:ZY=J[> TQZ=ZY + L/2 或QZ=JD —q /2YZ=QZ + L/2 或YZ=JD + T—qJD=QZ + q/2 (校核用)1、基本知识里程:由线路起点算起,沿线路中线到该中线桩的距离。
表示方法:DK26+284.56 。
“+”号前为公里数,即26km,“ +”后为米数,即284.56m CK ——表示初测导线的里程。
DK ——表示定测中线的里程。
K ——表示竣工后的连续里程。
铁路和公路计算方法略有不同。
2、曲线点坐标计算(偏角法或弦切角法)已知条件:起点、终点及各交点的坐标。
1)计算ZY、YZ 点坐标通用公式:2)计算曲线点坐标①计算坐标方位角i 点为曲线上任意一点li为i点与ZY点里程之差当曲线左转时用“-”,右转时用“ +”② 计算弦长③ 计算曲线点坐标此时的已知数据为:ZY ( xZY , yZY 、?ZY- i 、C 。
根据坐标正算原理:切线支距法 这种方法是以曲线起点ZY 或终点YZ 为坐标原点,以切线为X 轴,以过原点的半径为丫轴,则圆曲线上任意一点的切线支距坐标可通过以下公式求得: 利用坐标平移和旋转,该点在大地平面直角坐标系中的坐标可由以下公式求得: 式中:a 为ZY(YZ)点沿线路前进方向的切线方位角。
当起点为ZY 时“土”取“ + ”,XO=X(ZY),YO=Y(ZY),曲线为左偏时应以yi=-yi 代入;当起点为YZ 时,“土”取“ -”,XO=X(YZ), YO=Y(YZ), 曲线为左偏时应以yi 二yi 代入;弧长所对的圆心角弦切角弦的方位角注:1、同弧所对的圆周角等于圆心角的一半2、切线性质圆的切线与过切点的半径相垂直3、弦切角定理弦切角等于它所夹弧上的圆周角4、弧长公式由L/ n R=n /180 °得L=n°n R/ 180 °=n n R/180二、缓和曲线(回旋线)缓和曲线主要有以下几类:A:对称完整缓和曲线(基本形)------切线长、Is1与ls2都相等。
曲线计算公式及例题
一、圆曲线坐标计算公式β=180°/π×L/R(L= βπR/180°)弧长公式β为圆心角△X=sinβ×R△Y=(1-cosβ) ×RC= 弦长X=X1+cos (α±β/2)×CY=Y1+sin (α±β/2)×Cβ代表偏角,(既弧上任一点所对的圆心角)。
β/2是所谓的偏角(弦长与切线的夹角)△X 、△Y 代表增量值。
X 、Y 代表准备求的坐标。
X1、Y1代表起算点坐标值。
α代表起算点的方位角。
R 代表曲线半径二、缓和曲线坐标计算公式β= L2/2RLS ×180°/πC= L - L5/90R2L S 2X=X1+cos (α±β/3)×CY=Y1+sin (α±β/3)×C L 代表起算点到准备算的距离。
LS 代表缓和曲线总长。
X1、Y1代表起算点坐标值。
三、直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值α代表直线段方位角。
L 代表起算点到准备算的距离。
1)左右边桩计算方法X 边=X中+cos(α±90°) ×LY 边=Y中+sin(α±90°) ×L在计算左右边桩时,先求出中桩坐标,在用此公式求左右边桩。
如果在线路方向左侧用中桩方位角减去90°,线路右侧加90°,乘以准备算的左右宽度。
例题:直线坐标计算方法α(方位角)=18°21′47″DK184+714.029,求DK186+421.02里程坐标X1=84817.831 Y1=352.177 起始里程解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.901Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943求DK186+421.02里程左右边桩, 左侧3.75m, 右侧7.05m. 解:根据公式线路左侧计算:X 边=X中+cos(α±90°) ×LX 边=86437.901+cos(18°21′47″- 90°) ×3.75=86439.082Y 边=Y中+sin(α±90°) ×LY 边=889.943+sin(18°21′47″- 90°) ×3.75=886.384线路右侧计算:X 边=X中+cos(α±90°) ×LX 边=86437.901+cos(18°21′47″+ 90°) ×7.05=86435.680Y 边=Y中+sin(α±90°) ×LY 边=889.943+sin(18°21′47″+90°) ×7.05=896.634四、例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″X1=86437.901 Y1=889.941 起始里程DK186+421.02曲线半径2500 缓和曲线长120m求HY 点坐标, 也可以求ZH 点到HY 点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120) }×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2C=120-1205/(90×25002×1202)=119.997X=X1+cos(α±β/3)×CX=86437.901+cos(18°21′47″-1°22′30.36″/3)×119.997=86552.086Y=Y1+sin(α±β/3)×CY=889.941+sin(18°21′47″-1°22′30.36″/3)×119.997=926.832求DK186+541.02里程左右边桩, 左侧3.75m, 右侧7.05m. 解:根据公式线路左侧计算:X 边=X中+cos(α±90°) ×LX 边=86552.086+cos{(18°21′47″-1°22′30.36″)- 90°}×3.75=86553.182Y 边=Y中+sin(α±90°) ×LY 边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246线路右侧计算:X 边=X中+cos(α±90°) ×LX 边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026Y 边=Y中+sin(α±90°) ×LY 边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574缓和曲线方位角计算方法α=(起始方位角±β偏角)= 18°21′47″-1°22′30.36″=16°59′16.64″注:缓和曲线在计算坐标时, 此公式只能从两头往中间推, 只能从ZH 点往HY 点推,HZ 点往YH点推算, 如果YH 往HZ 点推算坐标, 公式里的β为β2/3.五、例题:圆曲线坐标计算方法α(HY点起始方位角)= 16°59′16.64″X1=86552.086 Y1=926.832曲线半径2500 曲线长748.75 起始里程DK186+541.02求YH 点坐标, 也可以求QZ 点坐标或任意圆曲线一点坐标. 解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ) ×R△Y=(1-cos17°09′36.31″) ×2500=111.290C= 弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=87290.023 Y=Y1+sin(α±β/2)×CY=926.832+ sin(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=1035.905圆曲线方位角计算方法α=(起始方位角±β偏角)= 16°59′16.64″+360°-17°09′36.31″=359°49′40.33″求DK187+289.77里程左右边桩, 左侧3.75m, 右侧7.05m. 解:根据公式线路左侧计算:X 边=X中+cos(α±90°) ×LX 边=87290.023+cos(359°49′40.33″-90°) ×3.75=87290.012 Y 边=Y中+sin(α±90°) ×LY 边=1035.905+sin(359°49′40.33″-90°) ×3.75=1032.155线路右侧计算:X 边=X中+cos(α±90°) ×LX 边=87290.023+cos(359°49′40.33″+90°) ×7.05=87290.044 Y 边=Y中+sin(α±90°) ×LY 边=1035.905+sin(359°49′40.33″+90°) ×7.05=1042.955。
曲线基本要素计算公式
1、缓和曲线坐标公式:
x L y y x
3
L
5 2
y x
4 2
L
3
40c (1 6c x
6c 293 x
8 4
c R l
2
)当缓和曲线l不太长时:
35 c
237000 c
即三次抛物线
6c
2、圆曲线基本要素计算公式:
T R tg
2
L
180
R
E R sec 1 2
3、偏角法测设圆曲线公式: 圆心角
180 L
R
偏角
90 L
R
弦长 C 2 R Sin
2
4、加设缓和曲线后基本要素计算公式:
i1 (弧度) 6R l L
2
⑵、第 n 点偏角: in
i0
n i1
2
1
3 6R 缓和曲线偏角: L-缓和曲线上任一点至切点的距离 n-缓和曲线 l 的 n 等分
l
(弧度)
仪器在 HY(YH)对于 QZ 的偏角:
QZ ZH 4
2
HY
2i0 β
i0
曲线正矢计算公式: 1、 圆曲线: f1=(1-a2/2)fy=ay fy f0=b2/2fy=az fy
T R p tg L
2
m
E R p sec L
R
R
180
l
R
180
或
圆曲线和缓和曲线坐标推算公式(附带例题)
圆曲线和缓和曲线坐标推算公式(附带例题)本文为圆曲线和缓和曲线的推算公式,包括直线、缓和曲线、圆曲线上的坐标推算圆曲线和缓和曲线坐标推算公式一、直线上的坐标推算Xi=Xm Licosa0 Y=Y Lsinami0 i式中:Xm、Ym――直线段起点M坐标Li――直线段上任意点i到线路起点M的距离a0――直线段起点M到JD1的方位角二、圆曲线上任一点的坐标推算①、圆曲线上任一点i相对应的圆心角:i=180Li R式中:Li――圆曲线上任一点i离开ZY或YZ点的弧长Xi=Rsin i②、圆曲线上任一点i的直角坐标:(可不计算).Y=R(1 cos )i i本文为圆曲线和缓和曲线的推算公式,包括直线、缓和曲线、圆曲线上的坐标推算③、圆曲线ZY或YZ点到任一点i的偏角:i=i2=90Li R④、圆曲线ZY或YZ点到任一点i的弦长:Ci=2Rsin(i2) 2Rsin( i)⑤、圆曲线ZY或YZ点到任一点i的弦长的方位角:ai=azy jd或yz jd iXi=XZY或YZ Cicosai⑥、所以圆曲线上任意点i的坐标为:Y=Y CsinaiiZY或YZ i例题:已知一段圆曲线,R=3500m,Ls=553.1m,交点里程K50+154.734,ZY点到JD方向方位角为A=129°23′18.3″,右偏9°3′15.8″,ZY点里程K49+877.607,YZ点里程K50+430.707,起点坐标为x=__.196,y=__.251,求K50+200处中点坐标及左右各偏12.5m的坐标。
解:K50+200处的曲线长度为Li=322.393m180 180 Li=322.393=5 16 39.52 K50+200相对应的方位角:a=R 3500K50+200相对应的偏角:i=i2=90 90Li=322.393=2 38 19.76 R 3500K50+200到zy点的弦长:Ci=2Rsin i=2 3500 sin2 38 19.76 =322.279m zy点到K50+200中桩的方位角:ai=azy jd i=129 23 18.3 2 38 19.76 =132 1 38.06K50+200左、右偏12.5m的方位角:a左=Ai a 90 =134 39 57.82 90 =44 39 57.82 a右=Ai a 90 =134 39 57.82 90 =134 39 57.82 所以K50+200处的坐标为:.196 322.279 cos132 1 38.06 =__.4354 Xi=XZY Cicosai=__ Y=Y Csina=__.251 322.279 sin132 1 38.06 =__.6484ZYii i 本文为圆曲线和缓和曲线的推算公式,包括直线、缓和曲线、圆曲线上的坐标推算K50+200左偏12.5m的坐标为:.4354 12.5 cos44 39 57.82 =__.3256 X左=Xi 12.5cosa左=__Y=Y 12.5sina=__.6484 12.5 sin44 39 57.82 =__.4656i左左K50+200右偏12.5m的坐标为:.4354 12.5 cos134 39 57.82 =__.6482 X右=Xi 12.5cosa右=__ Y=Y 12.5sina=__.6484 12.5 sin134 39 57.82 =__.5386i右右三、缓和曲线上任一点的坐标推算L2i180=切线角:i2RLsL2i180缓和曲线上任意点i的偏角:i==36RLsi缓和曲线ZH或HZ点到任意点i的方位角为:ai=aZH jd或HZ jd iL5i xi=Li40R2L2s3缓和曲线上任意点i的坐标为:L y=ii 6RLs22缓和曲线ZH或HZ点到任意点i的弦长:Cix yXi=XZH或HZ Cicosai所以缓和曲线上任意点i的坐标为:Y=Y CsinaiiZH或HZ i本文为圆曲线和缓和曲线的推算公式,包括直线、缓和曲线、圆曲线上的坐标推算例题:已知一段缓和曲线,ZH点到JD方向方位角为A=183°17′08.9″,线路左偏43°31′02″,ZH点里程为K52+001.615,ZH点坐标x=__.927,y=__.089,R=960m,Ls=120m,求K52+100处的中点坐标及左右各偏12.5m的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.测设原理
3.测设数据的计算
i
和C i
已知:偏角α、半径R 、JD里程、桩距
1
l1 R
1800
P1
l1 P1点里程-ZY点里程
A
ZY
第一个点
1
1 2
C1 2 R sin
l0
1800
2
R
1
n
2
R
第二个及 以后的点
i 1 (i 1)
△Y △y=L×Sina
X
X2=X1+L×Cosa Y2=y1+L×Sina
(2)偏角法计算
JD
T
l1
M
a
ZY
C
YZ
任意点偏角计算: a={(l1×180°)/(R×π)}/2 =(l1×90°)/(R×π)
任意点弦长计算:
C=2×R ×Sina
R O
实例分析:
• 已知圆曲线ZY点里程K0+040.1,坐标为 (2757352.935,533279.718),直线上 点K0+000坐标为(2757387.004, 533258.568),曲线要素已知,试求各加 桩点偏角以及逐桩坐标。
R
切曲差:D=2T-L
a 2
α O
本次课主要内容
一、圆曲线元素的计算
√
二、圆曲线主点里程的计算
三、圆曲线主点的测设
四、长弦偏角法细部点测设
二、圆曲线主点里程的计算
已知:交点JD里程、圆曲线半径R、偏角α
ZY点里程=JD点里程-T
切线长T
交点JD
α
L
2
YZ点里程=ZY点里程+L
直圆点ZY
曲中点QZ 曲线长L
3
K0+100 500 637.96 3.1415927 59.9 3.432017192 3
4
K0+120 500 637.96 3.1415927 79.9 4.577932782 4
5
K0+140 500 637.96 3.1415927 99.9 5.723848373 5
6
K0+160 500 637.96 3.1415927 119.9 6.869763963 6
i
Ci
i
2 2R
sin
i
检核(YZ)
n
2
Cn 2R sin
JD
α
P2
Pi
i
Ci
1
α
O
P4 YZ
4. 测设数据计算举例
JD 【解】采用长弦偏角法计算 :
JD里程ZY点里程:ZYK点3 里09程1.05
1
细 l部1 点180里0 程8.95
11 K0+260 500 637.96 3.1415927 219.9 12.59934191 12
12 K0+280 500 637.96 3.1415927 239.9 13.7452575 13
13 K0+300 500 637.96 3.1415927 259.9 14.89117309 14
8.95(m)
P2
2
1 2
4 1624 9 2
3257
6
5441
R C2
2 R sin 1 2
2120 sin
4 1624 2
28.88(m)
1
P4 YZ
O
5.细部点测设
ZY P1
JD
P2
P3
P4 YZ
横向闭合差(半径方向): 0.1m
L
1
纵向闭合差(切线方向):
1000 M
O
点的平面位置测设方法:
1.直角坐标系法(大地坐标)。 2.极坐标法(切线支距)。 3.角度交会法(偏角法)。 4.距离交会法(适用于障碍测量)。
(1) 坐标计算原理:
Y
L
a A(x1,y1) △X O △x=x2-x1 △y=y2-y1
B(x2,y2) △x=L×Cosa
α
切线长T 外矢距1E80°1-8α0-
曲中点QZ
2
切线长T
圆直点YZ 交点JD3
O
本次课主要内容
一、圆曲线元素的计算
√
二、圆曲线主点里程的计算 √
三、圆曲线主点的测设
√
四、长弦偏角法细部点测设
几个概念
1.右偏 左偏
2.偏角
α
3.正拨 反拨
顺时针拨动
逆时针拨动
α
四、长弦偏角法细部点测设
1.测设前提 :曲线较长,地形变化较大
圆曲线元素:切线长T、曲线长L、外矢距E、切曲差D 交点JD
已 知 数 据 :圆曲线半径R和偏角α
α
切线长度:T R tan
曲线长度:L=R 直圆点ZY
180
切线长T 外矢距E
切线长T
曲中点QZ 曲线长L
圆直点YZ
外矢距:E=
R
cos
R
R (sec
1)
• a=73°06′16″ • R=500 • T=370.69 • L=637.96
序号 里程 半径 曲线L
π
加桩长度 偏角(角度)
°
ZY K0+040.1
637.96 3.1415927
1
K0+060 500 637.96 3.1415927 19.9 1.140186012 1
2
K0+080 500 637.96 3.1415927 39.9 2.286101602 2
知识回顾
单圆曲线
复曲线 平面曲线 反向曲线
回头曲线
螺旋曲线
曲交曲线
圆曲线 缓和曲线
本次课主要内容
一、圆曲线元素的计算 二、圆曲线主点里程的计算 三、圆曲线坐标计算 四、长弦偏角法细部点测设
重点 重点,难点
圆曲线的测设流程
一、圆曲线元素的计算
圆曲线主点:直圆点ZY、曲中点QZ、圆直点YZ
7
K0+180 500 637.96 3.1415927 139.9 8.015679553 8
8
K0+200 500 637.96 3.1415927 159.9 9.161595143 9
9
K0+220 500 637.96 3.1415927 179.9 10.30751073 10
10 K0+240 500 637.96 3.1415927 199.9 11.45342632 11
R 120
1800
偏 4角1和62弦4 长
α
l0 1800 20 1800 93257 R 120
P1
P2
P3
P1
1
1 2
4 1624 2
2
0812
ZY
C1
2
R sin
1 2
2 120 sin
4
1624 2
QZ点里程=YZ点里程- L 2
JD点里程=QZ点里程+ D(检核) 2
R O
圆直点YZ
本次课主要内容
一、圆曲线元素的计算
√
二、圆曲线主点里程的计算 √
三、圆曲线主点的测设
四、长弦偏角法细部点测设
三、圆曲线主点的测设
★测设直圆点ZY ★测设圆直点YZ ★测设曲中点QZ
交点JD2
直圆点ZY 交点JD1