二次根式常考题型

合集下载

二次根式考试题型汇总

二次根式考试题型汇总

二次根式考试题型汇总二次根式题型一:二次根式的定义例1、(1)求自然数n的值,使得18-n是整数。

2)当x≥-1时,求式子√(x+1)+√(1-x)的值。

题型二:二次根式有意义的条件例2、当x>-1时,二次根式√(x+1)有意义。

例3、已知x、y为实数,y=√(y^2+8y+16-3xy),求y的值。

例4、已知y=√(x-3)+3-√(x+4),求x的值使得有意义。

题型三:二次根式的性质与化简例5、已知实数a,b在数轴上的位置如图所示:化简(1/(a+3))^2-(1/(b-23))^2.例6、计算(1/(x-1))-((1-x)/(x-1)(x+1))。

已知a、b、c为正数,d为负数,化简(ab-c^2d^2)/(ab+cd)^2.例7、化简求值:1)(a^2-a+b)/((c-a)^2+b+c);2) 11/[(2-1)/(2+1)+(2-1-√2)/(2-1+√2)];3)若x<y<z,则x^2-2xy+y^2+z^2-2yz+xz;4)[(x-1)^2+4-(x+1)^2]/(x^2-1);5)化简(a<0)得-1/(a)。

6)当a<0,b<0时,-a+2ab-b可变形为(a-b)^2.题型四:最简二次根式例8、下列式子中,属于最简二次根式的是9,而1/√3和√(9+x^2)都不是最简二次根式。

题型五:二次根式的乘除法例9、已知m=(3/3-2)(3/3+2-1),则有-5<m<-4.例10、计算:1)(5-3+2)(5-3-2);2) (a+3b)/(a+b)-(a-b)/(a+2b);3)(a^2/n-m^2/mn+n)/(a^2b^2);4)(a+b)/(ab+b-a)/(ab-a).a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)2013答案解析:a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)2013解析:a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)20131.求解x的值:$$\frac{x+a}{x^2+a^2}+\frac{2x-x^2+a^2}{x^2-a^2}+\frac{1}{x^2+a^2/2}$$2.若x,y为实数,且$y=1-4x+4x^{-1}+x^{-2}$,求$\frac{x+y}{y+x^2}-2\frac{y}{yx^2}$的值。

二次根式常见题型总结

二次根式常见题型总结

va +2 题型2最简二次根式、同类二次根式考查形式选择题或填空题4. 下列根式中是最简二次根式的是l2L(A )J 2(B )朽 35. 下列根式中,不能与合并的是ij1 二次根式常见题型总结题型1二次根式的概念(后面附答案)考查形式选择题或填空题1. 如果:二1是二次根式,那么x,y 应满足的条件是【】y(A )x ±l,y ±0(B )y (x -1,三0x €1(C )——±0(D )x ±1,y >0y2. 若代数式丄+<!有意义,则实数x 的取值范围是【】x -1(A )x …1(B )x ±0(C )x ...0(D )x ±0且x (1)3. 要使式子「「有意义,则a 的取值范围为. 【】 (C )3(D )<12【】(C )(D )<123 6.若最简二次根式3b -a +2与J 4b -a 是同类二次根式,则a =,b =.题型3二次根式的化简求值考查形式选择题、填空题、解答题i1n7.若y=r-2+Y2-x-6,则xy=8.'若y=Qx—3+&3—x+2,贝Ux y=.9.若彳x2+x€0侧x的取值范围是.10.若、:m一3+(n+1)2€0,求(m+2n)2020的值.11.先化简,再求值:仝二-_^,其中x€1+2勇,y€1…2訂・x-yx-y12.已知函数y=(m-3)x+n-2(m,n为常数)的图象如图所示,化简: |m-3一、:n2-4n+4.题型4二次根式的计算考查形式选择题、填空题、计算题13.下列等式不成立的是(A)3、辽…2运€6、.:6(B)J8一迈€4 (C)v8-迈€迈2_(2A&-1V3+1_\3 14.计算:15.计算:+2-J 5+(-1)2019-J_x V45;3(2)、18+ (.2-1)-、9+题型5探究活动考查形式解答题3|_T2 16.在进行二次根式的化简时,我们有时会遇到形如丄,厶的式子,其实J5\3<3+1我们还可以将其进一步化简:33x 叮53>/5二二;(口)■v'5v'5x -55vl 仝心)€2;3;(—,T⑴…近-2右+ 1) 込』=v3-1・(□)22…3-1 <3€1…<3+1①参照(III)式化简②参照(W)式化简以上这种化简的步骤叫做分母有理化.芋1还可以用以下方法化简:1)请用不同的方法化简(2)化简:丿€1..€.1€•••+・3+1v5€\:3V7€x5\:2n+1€\2n—1题型6定义新运算17.对于任意的正数m,n定义运算※为:观※n…]丫"-",计算(3探2)<[xl m€Jn,m<n竹※12)的结果为.<3+1…m—3-\;(n-2)2二次根式常见题型总结答案1.C2.D3.a>—24.B5.C6.1,17.—38.99.x<010.解:°・°Y m一3+(n+1)2 0<m一3±0,(n+1)2±0m—3...0,n+1 0m…3,n…—1・:(m+2n)2020…(3—2)2020…1.11.解:旦—旦……,x…y)(x-y)…x+yx—yx—yx—y当x…1+2打,y…1—2<3时原式…1+2^3+1—2心3…2.12.解:由函数的图象可知:m—3>0,n—2<0m>3,n<2…m—3—|n—2…m—3—(2—n)…m+n—5. 13.BI1114.解:(1)3J12—2」—+6語—型+4石L2爲…I3丿解:(2)I、运—1+1)—(—2爲)…12—1—(—413+12)…11—13+4打…—2+4、.3.+12-+(—1)2019—1x<45一2•=1+v5—2—1€解:(2)<18+v9+<1)-1 <2丿=3<2+3—2•、辽—3+2=、辽+2.2=J5—^3亠上+覇)G-訂)=込—再<5+v'3 <5+<3(2)十.(过程略)。

清单05 二次根式 全章复习(3个考点梳理+11种题型+10类型)(解析版)

清单05 二次根式 全章复习(3个考点梳理+11种题型+10类型)(解析版)

清单05二次根式全章复习(3个考点梳理+10种题型+10类型)考点一二次根式的相关概念二次根式的概念:一般地,我们把形如(≥0)的式子叫做二次根式,“”称为二次根号,二次根号下的数叫做被开方数.二次根式有意义的条件:当a≧0时,即被开方数大于或等于0,二次根式有意义.最简二次根式:开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.最简二次根式必须同时满足以下两个条件:①开方数所含因数是整数,因式是整式(分母中不应含有根号);②不含能开得尽方的因数或因式的二次根式,即被开方数的因数或因式的指数都为1.同类二次根式的概念:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式.【考试题型1】二次根式有意义的条件1.(20-21九年级上·吉林长春·在实数范围内有意义的条件是.x的值.2.(2023·浙江杭州·1.(22-23七年级下·广东汕头·m的最小值是()A.2B.3C.8D.11∴12m -是完全平方数,当120m -=时,即12m =,当121m -=时,即11m =,当124m -=时,即8m =,当129m -=时,即3m =,综上所述,自然数m 的值可以是3、8、11、12,所以m 的最小值是3,故答案选:B .【点睛】本题考查了二次根式的化简及自然数的定义,掌握二次根式的化简法则及自然数是指大于等于0的整数是解答本题的关键.2.(22-23八年级下·福建莆田·开学考试)若实数a ,b 4b +,则a b -=.3.(20-21七年级下·广东广州·期中)若()230a -+=,则a b -的立方根是.【点睛】本题考查平方、二次根式的非负性以及求立方根,得到30a -=,50b +=是解题的关键.4.(20-21八年级上·四川达州·期中)已知a ,b 0b =(1)a=_______,b=______(2)把a ,b 的值代下以下方程并求解关于x 的方程()221a xb a ++=-1.(23-24八年级上·上海青浦·)ABC D2.(23-24八年级上·山东滨州·期末)下列各式化成最简二次根式正确的是()A=B =C =D 10=()A .2个B .3个C .4个D .5个4.(22-23八年级下·海南省直辖县级单位·是同类二次根式,则=a .【答案】5-【分析】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键,化成最简二1.(23-24九年级上·四川宜宾·a 的值可能是()A .16B .0C .2D .任意实数2.(22-23九年级上·四川遂宁·是同类二次根式,则m 的值为()A .4m =B .3m =C .5m =D .6m =3.(22-23八年级下·山东泰安·是最简二次根式,则m,n的值为()A.0,1-B.1-,0C.1,1-D.0,04.(21-22八年级下·江西赣州·期中)若考点二二次根式的性质与化简二次根式的化简方法:1)利用二次根式的基本性质进行化简;2)利用积的算术平方根的性质和商的算术平方根的性质进行化简.a =•(≥0,≥0)(≥0,>0)化简二次根式的步骤:1)把被开方数分解因式;2)利用积的算术平方根的性质,把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;3)化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.【考试题型5】利用二次根式的性质化简【类型一】数形结合法1.(22-23八年级下·四川绵阳·阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简2a b b c --+.【答案】a-【分析】本题考查了数轴的定义、二次根式的运算、绝对值运算.观察数轴可得0c b a <<<,从而得到0,0,0a b c a b c ->-<+<,再根据二次根式的运算、绝对值运算计算即可.【详解】解:观察数轴得:0c b a <<<,2.(23-24八年级上·重庆万州·阶段练习)已知实数x 、y 、z 在数轴上的对应点如图所示:(1)若5x =-,y =x 对应的点与z 对应的点恰好关于y 对应的点对称,求z 的值.(2)2+3.(23-24八年级上·湖北襄阳·开学考试)已知实数x ,y ,z 在数轴上的对应点如图所示,试化简:.【类型二】估值法方法简介:先运用二次根式的运算法则化简,再将最后的化简结果化成根式再确定取值范围.1.(2023·重庆·(最接近的整数是()A .7B .8C .9D .10A .5m <-B .54m -<<-C .43m -<<-D .3m >-3.(23-24九年级上·四川宜宾·阶段练习)若a ,则a 的值所在的范围为()A .2a ≥B .2a >C .12a <<D .01a <<【类型三】公式法方法简介:根据题目已知条件,通过变形、凑元等方法,凑成可用乘法公式,快速求解.1.(23-24九年级上·河南周口·阶段练习)已知2M=,2N,则M与N的关系为()A.相等B.绝对值相等C.互为相反数D.互为倒数2.(23-24八年级上·云南文山·阶段练习)计算题:;(2)【类型四】换元法方法简介:根据已知条件,利用未知变量替换有规律表达式,寻找规律,快速求解.1.(19-20八年级上·福建泉州·期中)若ab=1,我们称a与b1与1互为倒数:方法一:∵)22111211+-=-=-=1+1互为倒数.()2211111211⋅--====--111互为倒数.(1)互为倒数;(2)若()21x x -=,求21x x ⎛⎫- ⎪⎝⎭的值;(3)利用“换元法”求((101022⨯的值.=1.【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质是,选择合适的解题途径,往往能事半功倍.【类型五】拆项法【类型六】整体代入法方法简介:由已知条件,通过加减乘除运算,得到与求解表达式相关的表达数值,整体代入.1.(23-24八年级下·云南昭通·期中)已知x =2(8x x -+的值.2.(23-24八年级下·海南省直辖县级单位·期中)已知33a b ==-求下列各式的值:(1)a b +和ab ;(2)22a ab b ++.22(1)223x xy y ++(2)x y y x +【类型七】因式分解法【类型八】配方法1.(23-24八年级下·北京·期中)阅读材料:材料一:数学上有一种根号内又带根号的数,它们能通过完全平方式及二次根式的性质化去一层(或多层)1===-.材料二:配方法是初中数学思想方法中的一种重要的解题方法,配方法的最终目的就是配成完全平方式,利用完全平方式来解决问题,它的应用非常广泛,在解方程、化简根式、因式分解等方面都经常用到.如:(2222311x x x++=+++=+,(20x+≥,(211x∴+≥,即231x++≥.23x∴++的最小值为1.阅读上述材料解决下面问题:_______=______;(2)求211x++的最值;(3)2-2.阅读材料:材料一:数学上有一种根号内又带根号的数,它们能通过完全平方式及二次根式的性质化去一层(或多层)根号,1材料二:配方法是初中数学思想方法中的一种重要的解题方法,配方法的最终目的就是配成完全平方式,利用完全平方式来解决问题,它的应用非常广泛,在解方程、化简根式、因式分解等方面都经常用到.如:2222321(x 1x x x ++=+++=+∵2(0x ≥,∴2(11x ++≥,即231x ++≥∴23x ++的最小值为1阅读上述材料解决下面问题:(1=,=;(2)求211x ++的最值;(3)已知x =221(41)54x y xy -++-的最值.【类型九】辅元法【类型十】先判断后化解解题的关键.【考试题型6】分母有理化1.(新疆维吾尔自治区克孜勒苏柯尔克孜自治州2023-2024学年八年级下学期4月期中考试数学试题)在进样的式子,这样的式子我们可以将其进一步化简:行二次根式化简时,我们有时会碰上如1==;====.以上这种化简的方法叫做分母有理化,通过观察请利用分母有理化解答下列问题:(1)利用你观察到的规律,化简L(2)2.(23-24八年级下·山东济宁·期中)【阅读材料】(材料一)细心观察图形,认真分析各式,总结其中蕴含的规律.22212OA =+=,112S =(1S 是12RtA A O △的面积);22313OA =+=,22S =(2S 是23Rt A A O △的面积);22414OA =+=,32S =(3S 是34Rt A A O △的面积);.==【问题解决】利用你总结的规律,解答下面的问题:(1)填空:100S =_________,11OA =_________;(2)求11111S S S S S S S S S S +++++++++的值.3.(23-24七年级下·上海嘉定·期中)阅读下列解题过程:1⨯-()()221⨯===-请回答下列问题:(1)=______()2n≥.(2)利用上面所提供的解法,请化简:+(3)模仿上面所提供的解法,试一试化简:+考点三二次根式的运算乘法法则:两个二次根式相乘,把被开方数相乘,根指数不变.即:a =•(≥0,≥0).除法法则:=加减法法则:先把各个二次根式化为最简二次根式后,再将被开方数相同的二次根式合并.【口诀】一化、二找、三合并.分母有理化:通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程.【分母有理化方法】==2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分.==混合运算顺序:先乘方、再乘除,最后加减,有括号的先算括号里的(或先去掉括号).【考试题型7】二次根式的乘除运算1.(2024·陕西西安·三模)计算:)()02252π---2.(23-24八年级下·安徽铜陵·00)b ⎛÷⨯>> ,3.(23-24八年级下·全国·课后作业)计算:(1)÷;()0,0x y ⎫÷>>⎪⎪⎭.1.(23-24八年级下·吉林松原·期中)计算:((-.2.(23-24八年级下·广东阳江·期中)已知b=-,求22a=+,11a b+的值.3.(23-24八年级下·北京海淀·这个数叫做黄金分割数,著名数学家华罗庚优选法中就应用了黄金分割数.设a=b=(1)直接写出a b+和ab的值:a b+=______,ab=______;(2)求1111sa b=+的值.2.(23-24九年级下·山东烟台·期中)计算:(2)3.(23-24八年级下·辽宁营口·期中)(1)先化简,再求值:111a a -⎛⎫-÷⎪--⎝⎭,其中,2a =.1.(23-24八年级下·浙江金华·的计算,将分母转化为有理数,这就是“分母有理化()22==;()()2232++====+--.类似地,将分子转化为有理数,就称为“分子有理化21===()222111+-==.根据上述知识,请你解答下列问题:(1)(2)的大小,并说明理由.2.(23-24八年级下·福建福州·期中)如图,正方形A,B的面积分别为25cm和27cm,现将正方形A的边长分别增加2cm和3cm得到矩形甲;将正方形B的边长都增加2cm得到一个新的正方形乙,请通过计算比较甲、乙两个图形的面积的大小.【答案】矩形甲的面积小于矩形乙的面积.【分析】此题考查了二次根式混合运算的应用,根据题意表示出矩形甲和乙的面积,然后相减得到3.(23-24八年级下·江苏扬州·阶段练习)观察下列等式:1==-;==;==;……像)221-=()0a a =≥,)()1110b b -=-≥,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.11,与-答下列问题:(1)化简:(2)=___________(n为正整数).(3)计算:)1+ =___________;(4)已知a==b试比较a、b的大小,则a___________b.(填“<”“>”或“=”)1.(23-24八年级下·甘肃庆阳·期中)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛出的物体下落的时间t(单位:s)和高度h(单位:m)近似满足t=(不考虑风速的影响).(1)从30m高处抛下的物体落地所需的时间1t=s;从60m高处抛下的物体落地所需的时间2t=s(2)2t是1t的多少倍?(3)若从高空抛下的物体经过4s落地,则该物体下落的高度是多少?2.(23-24八年级下·江西宜春·阶段练习)有一块长方形木板,木工师傅采用如图所示的方式,在木板上截出面积分别为218dm 和232dm 的两块正方形木板.(1)截出的两块正方形木板的边长分别为______dm ,______dm ;(2)求剩余木板的面积;(3)如果木工师傅想从剩余的木板中截出长为1.5dm 、宽为1.2dm 的长方形木条,最多能截出______个这样的木条. 1.414≈)3.(23-24八年级下·广东东莞·期中)小乐是一个善于思考的学生,学习完“二次根式”和“勾股定理”后,他发现可以有多种方法求三角形的面积,以下是他的数学笔记,请认真阅读并完成任务,的面积;(1)请根据思路1的公式,求ABC(2)请你结合思路2,在如图所示的网格中(正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点),完成下列任务,,要求三个顶点都在格点上;①画出ABC面积的计算过程.②结合图形,写出ABC②过点A 作AD CB ⊥∴4.(23-24八年级下·广西南宁·期中)安全问题,时刻警醒.高空坠物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.经过查阅相关资料,小南同学得到高空坠物下落的时间t (单位:s )和高度h (单位:m )近似满足公式t 10N /kg g ≈)(1)求从45m 高空抛物到落地的时间;(2)已知高空拋物动能(单位:J )10=(单位:N /kg )⨯物体质量(单位:kg )⨯高度(单位:m ),某质量为0.2kg 的玩具在高空被抛出后经过4s 后落在地上,根据以上信息,小南判断这个玩具产生的动能会伤害到楼下的行人,请通过计算说明小南的判断是否正确.(注:伤害无防护人体只需要65J 的动能)5.(23-24八年级下·安徽铜陵·期中)铜陵市各小区都有“禁止高空抛物”的宣传标语,高空抛物极其危险,是我们必须杜绝的行为.据研究,从高度为h(单位:m)的高空抛出的物体下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响).(1)从50m高空抛出的物体从抛出到落地所需时间1t,从100m高空抛出的物体从抛出到落地所需时间2t,那么2t是1t的多少倍?(2)从足够高的高空抛出物体,经过1.5s,所抛物体下落的高度是多少?6.(23-24八年级下·湖北孝感·期中)学习完《二次根式》后,聪聪发现了下面这类有趣味的试题,请你根据他的探索过程,解答下列问题:(1)具体运算,发现规律:131711122236=+==+=⨯⨯11313412=+=⨯,…计算:=(2)观察归纳,写出结论=(1n ≥且n 为正整数)(3)灵活运用,提升能力请利用你所发现的规律,。

专题04二次根式-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】

专题04二次根式-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】

备战2023年中考数学必刷真题考点分类专练(全国通用)专题04二次根式一.选择题(共15小题)1.(2022•苏州)下列运算正确的是()A.√(−7)2=−7B.6÷23=9C.2a+2b=2ab D.2a•3b=5ab【分析】直接利用二次根式的性质以及有理数的除法运算法则、合并同类项、单项式乘单项式,分别计算判断即可.【解析】A.√(−7)2=7,故此选项不合题意;B.6÷23=9,故此选项,符合题意;C.2a+2b,无法合并,故此选项不合题意;D.2a•3b=6ab,故此选项不合题意;故选:B.【点评】此题主要考查了二次根式的性质以及有理数的除法运算、合并同类项、单项式乘单项式,正确掌握相关运算法则是解题关键.2.(2022•云南)下列运算正确的是()A.√2+√3=√5B.30=0C.(﹣2a)3=﹣8a3D.a6÷a3=a2【分析】根据二次根式的加减法判断A选项;根据零指数幂判断B选项;根据积的乘方判断C选项;根据同底数幂的除法判断D选项.【解析】A选项,√2和√3不是同类二次根式,不能合并,故该选项不符合题意;B选项,原式=1,故该选项不符合题意;C选项,原式=﹣8a3,故该选项符合题意;D选项,原式=a3,故该选项不符合题意;故选:C.【点评】本题考查了二次根式的加减法,零指数幂,幂的乘方与积的乘方,同底数幂的除法,掌握a0=1(a ≠0)是解题的关键.3.(2022•台州)无理数√6的大小在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【分析】根据无理数的估算分析解题.【解析】∵4<6<9,∴2<√6<3.故选:B .【点评】本题考查无理数的估算,理解算术平方根的概念是解题关键.4.(2022•眉山)实数﹣2,0,√3,2中,为负数的是( )A .﹣2B .0C .√3D .2【分析】根据负数的定义,找出这四个数中的负数即可.【解析】∵﹣2<0∴负数是:﹣2,故选A .【点评】本题主要考查实的分类,区分正负,解题的关键是熟知实数的性质:负数小于零.5.(2022•株洲)在0、13、﹣1、√2这四个数中,最小的数是( ) A .0 B .13 C .﹣1 D .√2【分析】根据负数小于0,正数大于0比较实数的大小即可得出答案.【解析】∵﹣1<0<13<√2,∴最小的数是﹣1,故选:C .【点评】本题考查了实数大小比较,掌握负数小于0,正数大于0是解题的关键.6.(2022•江西)下列各数中,负数是( )A .﹣1B .0C .2D .√2 【分析】根据负数的定义即可得出答案.【解析】﹣1是负数,2,√2是正数,0既不是正数也不是负数,故选:A .【点评】本题考查了实数,掌握在正数前面添加“﹣”得到负数是解题的关键.7.(2022•金华)在﹣2,12,√3,2中,是无理数的是( ) A .﹣2 B .12 C .√3 D .2【分析】利用有理数,无理数的概念对每个选项进行判断即可得出结论.【解析】﹣2,12,2是有理数,√3是无理数, 故选:C .【点评】本题主要考查了有理数,无理数的意义,掌握上述概念并熟练应用是解题的关键.8.(2022•舟山)估计√6的值在( )A .4和5之间B .3和4之间C .2和3之间D .1和2之间【分析】根据无理数的估算分析解题.【解析】∵4<6<9,∴√4<√6<√9,∴2<√6<3,故选:C .【点评】本题考查无理数的估算,理解算术平方根的概念是解题关键.9.(2022•安徽)下列为负数的是( )A .|﹣2|B .√3C .0D .﹣5【分析】根据实数的定义判断即可.【解析】A .|﹣2|=2,是正数,故本选项不合题意;B .√3是正数,故本选项不合题意;C .0既不是正数,也不是负数,故本选项不合题意;D .﹣5是负数,故本选项符合题意.故选:D .【点评】本题考查了有理数,绝对值以及算术平方根,掌握负数的定义是解答本题的关键.10.(2022•凉山州)化简:√(−2)2=( )A .±2B .﹣2C .4D .2【分析】根据算术平方根的意义,即可解答.【解析】√(−2)2=√4=2,故选:D .【点评】本题考查了算术平方根,熟练掌握算术平方根的意义是解题的关键.11.(2022•泸州)−√4=()A.﹣2B.−12C.12D.2【分析】根据算术平方根的定义判断即可.【解析】−√4=−√22=−2.故选:A.【点评】本题考查了算术平方根,掌握算术平方根的定义是解答本题的关键.12.(2022•泸州)与2+√15最接近的整数是()A.4B.5C.6D.7【分析】估算无理数√15的大小,再确定√15更接近的整数,进而得出答案.【解析】∵3<√15<4,而15﹣9>16﹣15,∴√15更接近4,∴2+√15更接近6,故选:C.【点评】本题考查估算无理数的大小,理解算术平方根的定义以及数的大小关系是正确解答的前提.13.(2022•重庆)估计√3×(2√3+√5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【分析】先计算出原式得6+√15,再根据无理数的估算可得答案.【解析】原式=√3×2√3+√3×√5=6+√15,∵9<15<16,∴3<√15<4,∴9<6+√15<10.故选:B.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.14.(2022•重庆)估计√54−4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【分析】用夹逼法估算无理数的大小即可得出答案.【解析】∵49<54<64,∴7<√54<8,∴3<√54−4<4,故选:D.【点评】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.15.(2022•天津)估计√29的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】估算确定出所求数的范围即可.【解析】∵25<29<36,∴5<√29<6,即5和6之间,故选:C.【点评】此题考查了估算无理数的大小,以及算术平方根,熟练掌握估算的方法是解本题的关键.二.填空题(共20小题)16.(2022•武汉)计算√(−2)2的结果是2.【分析】利用二次根式的性质计算即可.【解析】法一、√(−2)2=|﹣2|=2;法二、√(−2)2=√4=2.故答案为:2.【点评】本题考查了二次根式的性质,掌握“√a2=|a|”是解决本题的关键.17.(2022•常德)要使代数式有意义,则x的取值范围为x>4.√x−4【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解析】由题意得:x﹣4>0,解得:x>4,故答案为:x>4.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.18.(2022•天津)计算(√19+1)(√19−1)的结果等于18.【分析】根据平方差公式即可求出答案.【解析】原式=(√19)2﹣12=19﹣1=18,故答案为:18.【点评】本题考查平方差公式与二次根式的混合运算,解题的关键是熟练运用平方差公式,本题属于基础题型.19.(2022•新疆)若√x−3在实数范围内有意义,则实数x的取值范围为x≥3.【分析】根据二次根式的被开方数是非负数即可得出答案.【解析】∵x﹣3≥0,∴x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.20.(2022•杭州)计算:√4=2;(﹣2)2=4.【分析】根据二次根式的性质、有理数的乘方法则计算即可.【解析】√4=2,(﹣2)2=4,故答案为:2,4.【点评】本题考查的是二次根式的化简、有理数的乘方,掌握二次根式的性质是解题的关键.21.(2022•泰安)计算:√8•√6−3√43=2√3.【分析】化简二次根式,然后先算乘法,再算减法.【解析】原式=√8×6−3×2√3 3=4√3−2√3=2√3,故答案为:2√3.【点评】本题考查二次根式的混合运算,理解二次根式的性质,准确化简二次根式是解题关键.22.(2022•云南)若√x+1有意义,则实数x的取值范围为x≥﹣1.【分析】根据二次根式的被开方数是非负数即可得出答案.【解析】∵x+1≥0,∴x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.23.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|−√(b−1)2+√(a−b)2=2.【分析】根据数轴可得:﹣1<a<0,1<b<2,然后即可得到a+1>0,b﹣1>0,a﹣b<0,从而可以将所求式子化简.【解析】由数轴可得,﹣1<a<0,1<b<2,∴a+1>0,b﹣1>0,a﹣b<0,∴|a+1|−√(b−1)2+√(a−b)2=a+1﹣(b﹣1)+(b﹣a)=a+1﹣b+1+b﹣a=2,故答案为:2.【点评】本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.24.(2022•滨州)若二次根式√x−5在实数范围内有意义,则x的取值范围为x≥5.【分析】根据二次根式有意义的条件得出x﹣5≥0,求出即可.【解析】要使二次根式√x−5在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.【点评】本题考查了二次根式有意义的条件和解一元一次不等式,能得出关于x的不等式是解此题的关键.25.(2022•扬州)若√x−1在实数范围内有意义,则x的取值范围是x≥1.【分析】直接利用二次根式有意义的条件进而得出答案.【解析】若√x−1在实数范围内有意义,则x﹣1≥0,解得:x≥1.故答案为:x≥1.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.26.(2022•邵阳)若√x−2有意义,则x 的取值范围是 x >2 .【分析】先根据二次根式及分式有意义的条件列出x 的不等式组,求出x 的取值范围即可. 【解析】∵√x−2有意义,∴{x −2≥0x −2≠0,解得x >0. 故答案为:x >2.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.27.(2022•山西)计算:√18×√12的结果为 3 .【分析】按照二次根式的乘法法则计算即可.【解析】原式=√9=3.故答案为:3.【点评】本题主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则√a ⋅√b =√ab .28.(2022•衡阳)计算:√2×√8= 4 .【分析】原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.【解析】原式=√2×8=√16=4.故答案为:4【点评】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.29.(2022•随州)已知m 为正整数,若√189m 是整数,则根据√189m =√3×3×3×7m =3√3×7m 可知m 有最小值3×7=21.设n 为正整数,若√300n是大于1的整数,则n 的最小值为 3 ,最大值为 75 . 【分析】先将√300n 化简为10√3n ,可得n 最小为3,由√300n 是大于1的整数可得√300n 越小,300n 越小,则n 越大,当√300n =2时,即可求解. 【解析】∵√300n =√3×100n =10√3n ,且为整数, ∴n 最小为3, ∵√300n 是大于1的整数, ∴√300n 越小,300n 越小,则n 越大,当√300n =2时, 300n =4,∴n =75,故答案为:3;75.【点评】本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词“大于”,“整数”进行求解.30.(2022•宿迁)满足√11≥k 的最大整数k 是 3 .【分析】根据无理数的估算分析解题.【解析】∵3<√11<4,且k ≤√11,∴最大整数k 是3.故答案为:3.【点评】本题考查无理数的估算,理解算术平方根的概念是解题关键.31.(2022•湘潭)四个数﹣1,0,12,√3中,为无理数的是 √3 . 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可解答.【解析】四个数﹣1,0,12,√3中,为无理数的是√3. 故答案为:√3.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽得到的数;以及像0.1010010001…等有这样规律的数.32.(2022•陕西)计算:3−√25= ﹣2 .【分析】首先利用算术平方根的定义化简,然后加减即可求解.【解析】原式=3﹣5=﹣2.故答案为:﹣2.【点评】本题主要考查了实数的运算,主要利用算术平方根的定义.33.(2022•重庆)|﹣2|+(3−√5)0= 3 .【分析】根据绝对值的性质和零指数幂的性质计算可得答案.【解析】原式=2+1=3.故答案为:3.【点评】本题考查实数的运算,熟练掌握实数的运算性质是解题关键.34.(2022•南充)若√8−x为整数,x为正整数,则x的值是4或7或8.【分析】利用二次根式的性质求得x的取值范围,利用算术平方根的意义解答即可.【解析】∵8﹣x≥0,x为正整数,∴1≤x≤8且x为正整数,∵√8−x为整数,∴√8−x=0或1或2,当√8−x=0时,x=8,当√8−x=1时,x=7,当√8−x=2时,x=4,综上,x的值是4或7或8,故答案为:4或7或8.【点评】本题主要考查了算术平方根的意义,二次根式的性质,利用二次根式的性质求得x的取值范围是解题的关键.35.(2022•连云港)写出一个在1到3之间的无理数:√2(符合条件即可).【分析】由于12=1,32=9,所以只需写出被开方数在1和9之间的,且不是完全平方数的数即可求解.【解析】1到3之间的无理数如√2,√3,√5.答案不唯一.【点评】本题主要考查常见无理数的定义和性质,解题关键是估算无理数的整数部分和小数部分.三.解答题(共9小题)36.(2022•武威)计算:√2×√3−√24.【分析】根据二次根式的乘法法则和二次根式的化简计算,再合并同类二次根式即可.【解析】原式=√6−2√6=−√6.【点评】本题考查了二次根式的混合运算,掌握√a•√b=√ab(a≥0,b≥0)是解题的关键.37.(2022•广元)计算:2sin60°﹣|√3−2|+(π−√10)0−√12+(−12)﹣2.【分析】根据特殊角的三角函数值,绝对值,零指数幂,二次根式的化简,负整数指数幂计算即可.【解析】原式=2×√32+√3−2+1﹣2√3+1(−12)2=√3+√3−2+1﹣2√3+4=3.【点评】本题考查了实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,掌握a ﹣p =1a p (a ≠0)是解题的关键.38.(2022•宿迁)计算:(12)﹣1+√12−4sin60°. 【分析】先计算(12)﹣1、√12,再代入sin60°算乘法,最后加减. 【解析】原式=2+2√3−4×√32=2+2√3−2√3=2.【点评】本题考查了实数的运算,掌握负整数指数幂的意义、二次根式的化简及特殊角的函数值是解决本题的关键.39.(2022•娄底)计算:(2022﹣π)0+(12)﹣1+|1−√3|﹣2sin60°. 【分析】先计算零次幂、负整数指数幂,再化简绝对值、代入特殊角的三角函数值算乘法,最后算加减.【解析】原式=1+2+√3−1﹣2×√32=1+2+√3−1−√3=2.【点评】本题考查了实数的运算,掌握零指数幂、负整数指数幂、绝对值的意义及特殊角的函数值是解决本题的关键.40.(2022•台州)计算:√9+|﹣5|﹣22.【分析】先化简各式,然后再进行计算即可解答.【解析】√9+|﹣5|﹣22=3+5﹣4=8﹣4=4.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.41.(2022•新疆)计算:(﹣2)2+|−√3|−√25+(3−√3)0.【分析】直接利用零指数幂的性质以及绝对值的性质、二次根式的性质分别化简,进而得出答案.【解析】原式=4+√3−5+1=√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.42.(2022•株洲)计算:(﹣1)2022+√9−2sin30°.【分析】根据有理数的乘方,算术平方根,特殊角的三角函数值计算即可.【解析】原式=1+3﹣2×1 2=1+3﹣1=3.【点评】本题考查了实数的运算,特殊角的三角函数值,掌握(﹣1)的偶次幂等于1,(﹣1)的奇次幂等于﹣1是解题的关键.43.(2022•怀化)计算:(3.14﹣π)0+|√2−1|+(12)﹣1−√8.【分析】根据零指数幂,绝对值,负整数指数幂,二次根式的化简计算即可.【解析】原式=1+√2−1+2﹣2√2=2−√2.【点评】本题考查了实数的运算,零指数幂,绝对值,负整数指数幂,考查学生的运算能力,掌握a0=1(a≠0),a﹣p=1a p(a≠0)是解题的关键.44.(2022•遂宁)计算:tan30°+|1−√33|+(π−√33)0﹣(13)﹣1+√16.【分析】根据特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根可以解答本题.【解析】tan30°+|1−√33|+(π−√33)0﹣(13)﹣1+√16=√33+1−√33+1﹣3+4=3.【点评】本题考查实数的运算、特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根,熟练掌握运算法则是解答本题的关键.。

初中数学人教新版八年级期末必刷常考题之二次根式的乘除(含答案)

初中数学人教新版八年级期末必刷常考题之二次根式的乘除(含答案)

初中数学人教新版八年级期末必刷常考题之二次根式的乘除一.选择题(共6小题)1.(2022秋•南关区期末)二次根式在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x>﹣3C.x≥﹣3D.x≥32.(2022秋•南安市期末)当a>0时,=()A.±a B.a C.﹣a D.03.(2022秋•香坊区期末)下列二次根式中属于最简二次根式的是()A.B.C.D.4.(2022秋•海口期末)若二次根式在实数范围内有意义,则x的取值范围是()A.x≤3B.x≥3C.x<3D.x≠35.(2022秋•开福区校级期末)下列式子一定是二次根式的是()A.B.C.D.6.(2022秋•临淄区期末)下列计算正确的是()A.B.C.D.二.填空题(共6小题)7.(2023春•拱墅区期末)若二次根式在实数范围内有意义,则x的取值范围是.8.(2022秋•宁德期末)已知a是正整数,是整数,则a的最小值是2.那么若b是正整数,是大于1的整数,则b的最大值与最小值的差是.9.(2022秋•射洪市期末)若代数式有意义,则实数x的取值范围是.10.(2022秋•汉寿县期末)化简二次根式的结果为.11.(2022秋•思明区校级期末)计算下列各题:化简:①50=;②3﹣2=;③(﹣2a)2=;④=;⑤=;⑥=;⑦=;⑧(x﹣1)(x+2)=.12.(2022秋•南关区期末)将化为最简二次根式的结果是.三.解答题(共3小题)13.(2022秋•东平县期末)计算与求值:(1)(x﹣1)2=25;(2)(x+3)3=﹣27;(3)已知x、y都是实数,且,求y x的值.14.(2022秋•鲤城区校级期末)定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.15.(2022秋•丰城市校级期末)若x,y是实数,且y=++3,求3的值.2022-2023学年下学期初中数学人教新版八年级期末必刷常考题之二次根式的乘除参考答案与试题解析一.选择题(共6小题)1.(2022秋•南关区期末)二次根式在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x>﹣3C.x≥﹣3D.x≥3【考点】二次根式有意义的条件.【专题】二次根式;运算能力.【答案】C【分析】直接利用二次根式的定义得出x+3≥0,进而得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x+3≥0,解得:x≥﹣3.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确掌握二次根式的定义是解题关键.2.(2022秋•南安市期末)当a>0时,=()A.±a B.a C.﹣a D.0【考点】二次根式的性质与化简.【专题】二次根式;运算能力.【答案】B【分析】根据即可求解.【解答】解:当a>0时,.故选:B.【点评】本题考查二次根式的性质,掌握是解题的关键3.(2022秋•香坊区期末)下列二次根式中属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【答案】C【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A.=2,被开方数含有开方开得尽的因式,故不符合题意;B.=4,被开方数是完全平方数,故不符合题意;C.是最简二次根式,故符合题意;D.=,被开方数是小数,故不符合题意.故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.(2022秋•海口期末)若二次根式在实数范围内有意义,则x的取值范围是()A.x≤3B.x≥3C.x<3D.x≠3【考点】二次根式有意义的条件.【专题】二次根式;运算能力.【答案】B【分析】根据二次根式有意义的条件可得2x﹣6≥0,再解不等式即可.【解答】解:由题意得:2x﹣6≥0,解得:x≥3,故选:B.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.5.(2022秋•开福区校级期末)下列式子一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【专题】二次根式;运算能力.【答案】C【分析】直接利用二次根式的定义,一般地,形如的代数式叫做二次根式进行判断即可.【解答】解:∵x2≥0,∴x2+2≥2,∴一定是二次根式,而、和中的被开方数均不能保证大于等于0,故不一定是二次根式,故选:C.【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键.6.(2022秋•临淄区期末)下列计算正确的是()A.B.C.D.【考点】二次根式的性质与化简;立方根.【专题】二次根式;运算能力.【答案】C【分析】根据算术平方根的非负性、二次根式的性质、立方根逐项判断即可.【解答】解:A、,原式计算错误,不符合题意;B、,原式计算错误,不符合题意;C、,原式计算正确,符合题意;D、,原式计算错误,不符合题意.故选:C.【点评】本题主要考查了二次根式的性质、算术平方根的非负性、立方根等知识,掌握二次根式的性质、算术平方根的非负性是解本题的关键.二.填空题(共6小题)7.(2023春•拱墅区期末)若二次根式在实数范围内有意义,则x的取值范围是x <5.【考点】二次根式有意义的条件.【专题】二次根式;运算能力.【答案】x<5.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:5﹣x>0,解得:x<5,故答案为:x<5.【点评】本题考查的是二次根式有意义的条件,熟记二次根式的被开方数是非负数、分母不为0是解题的关键.8.(2022秋•宁德期末)已知a是正整数,是整数,则a的最小值是2.那么若b是正整数,是大于1的整数,则b的最大值与最小值的差是45.【考点】二次根式的定义.【专题】二次根式;运算能力.【答案】45.【分析】由,结合b是正整数,是大于1的整数,可得b是15的倍数,从而可得答案.【解答】解:∵,又∵b是正整数且是大于1的整数,∴当b=15时,的整数值最大为4,此时b的值最小,当b=60时,的整数值最小为2,此时b的值最大,∴b的最大值与最小值的差是60﹣15=45.故答案为:45.【点评】本题考查的是算术平方根的含义与估算,理解题意是解本题的关键.9.(2022秋•射洪市期末)若代数式有意义,则实数x的取值范围是x≥﹣3且x ≠0.【考点】二次根式有意义的条件;分式有意义的条件.【专题】分式;二次根式;运算能力.【答案】x≥﹣3且x≠0.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式即可.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故答案为:x≥﹣3且x≠0.【点评】本题考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.10.(2022秋•汉寿县期末)化简二次根式的结果为.【考点】二次根式的性质与化简.【专题】二次根式;运算能力.【答案】.【分析】根据二次根式的分母有理化计算即可.【解答】解:.故答案为:.【点评】本题考查了二次根式的化简,熟记分母有理化方法是解题关键.11.(2022秋•思明区校级期末)计算下列各题:化简:①50=1;②3﹣2=;③(﹣2a)2=4a2;④=﹣1;⑤=;⑥=2;⑦=;⑧(x﹣1)(x+2)=x2+x﹣2.【考点】二次根式的性质与化简;幂的乘方与积的乘方;多项式乘多项式;分式的混合运算;零指数幂;负整数指数幂.【专题】实数;整式;分式;二次根式;运算能力.【答案】①1.②.③4a2.④﹣1.⑤.⑥2.⑦.⑧x2+x﹣2.【分析】①根据零指数幂的意义即可求出答案.②根据负整数指数幂的意义即可求出答案.③根据积的乘方运算即可求出答案.④根据分式的加减运算法则即可求出答案.⑤根据积的乘方运算即可求出答案.⑥根据二次根式的性质即可求出答案.⑦根据二次根式的性质即可求出答案.⑧根据多项式乘多项式法则即可求出答案.【解答】解:①原式=1.②原式=.③原式=4a2.④原式==﹣1.⑤原式=.⑥原式=2.⑦原式=.⑧原式=x2+2x﹣x﹣2=x2+x﹣2.故答案为:①1.②.③4a2.④﹣1.⑤.⑥2.⑦.⑧x2+x﹣2.【点评】本题考查零指数幂的意义、负整数指数幂的意义、积的乘方运算、二次根式的性质、多项式乘多项式法则,本题属于基础题型.12.(2022秋•南关区期末)将化为最简二次根式的结果是.【考点】最简二次根式.【专题】二次根式;运算能力.【答案】.【分析】被开方数的分子分母乘以2,然后再开方即可.【解答】解:==,故答案为:.【点评】此题主要考查了最简二次根式,关键是掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.把满足上述两个条件的二次根式,叫做最简二次根式.三.解答题(共3小题)13.(2022秋•东平县期末)计算与求值:(1)(x﹣1)2=25;(2)(x+3)3=﹣27;(3)已知x、y都是实数,且,求y x的值.【考点】二次根式有意义的条件;平方根;立方根;实数的运算.【专题】实数;运算能力.【答案】(1)x=﹣4或x=6;(2)x=﹣6;(3)9.【分析】(1)根据平方根的概念计算;(2)根据立方根的概念计算;(3)根据二次根式有意义的条件求出x,进而求出y,根据有理数的乘方法则计算即可.【解答】解:(1)∵(x﹣1)2=25,∴x﹣1=±5,∴x=﹣4或x=6;(2)∵(x+3)3=﹣27,∴x+3=﹣3,∴x=﹣6;(3)由题意得:x﹣2≥0,x﹣2≤0,∴x=2,∴y=3,∴y x=32=9.【点评】本题考查的是二次根式有意义的条件、平方根、立方根的概念,掌握二次根式的被开方数是非负数是解题的关键.14.(2022秋•鲤城区校级期末)定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.【考点】二次根式的定义.【专题】二次根式;运算能力.【答案】(1);(2)2.【分析】(1)根据共轭二次根式的定义列等式可得a的值;(2)根据共轭二次根式的定义列等式可得m的值.【解答】解:(1)∵a与2是关于6的共轭二次根式,∴2a=6,∴a==,故答案为:;(2)∵4+与8﹣m是关于26的共轭二次根式,∴(4+)(8﹣m)=26,∴8﹣m===8﹣2,∴m=2.【点评】本题考查了新定义共轭二次根式的理解和应用,并会用二次根据的性质进行计算.15.(2022秋•丰城市校级期末)若x,y是实数,且y=++3,求3的值.【考点】二次根式有意义的条件.【答案】见试题解答内容【分析】根据二次根式有意义的条件列出不等式,解不等式求出x、y的值,根据二次根式的性质计算即可.【解答】解:由题意得,4x﹣1≥0,1﹣4x≥0,解得,x=,则y=3,则3=3×=.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.考点卡片1.平方根(1)定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“﹣”.正数a的正的平方根,叫做a的算术平方根,记作.零的算术平方根仍旧是零.平方根和立方根的性质1.平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.立方根(1)定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作:.(2)正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.(3)求一个数a的立方根的运算叫开立方,其中a叫做被开方数.注意:符号中的根指数“3”不能省略;对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根.【规律方法】平方根和立方根的性质1.平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.3.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.【规律方法】实数运算的“三个关键”1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.4.幂的乘方与积的乘方(1)幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.(2)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n b n(n是正整数)注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.5.多项式乘多项式(1)多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.(2)运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.6.分式有意义的条件(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.7.分式的混合运算(1)分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.(3)分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.【规律方法】分式的混合运算顺序及注意问题1.注意运算顺序:分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.2.注意化简结果:运算的结果要化成最简分式或整式.分子、分母中有公因式的要进行约分化为最简分式或整式.3.注意运算律的应用:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.8.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00≠1.9.负整数指数幂负整数指数幂:a﹣p=(a≠0,p为正整数)注意:①a≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.④在混合运算中,始终要注意运算的顺序.10.二次根式的定义二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.①“”称为二次根号②a(a≥0)是一个非负数;学习要求:理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.11.二次根式有意义的条件判断二次根式有意义的条件:(1)二次根式的概念.形如(a≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.(3)二次根式具有非负性.(a≥0)是一个非负数.学习要求:能根据二次根式中的被开方数是非负数来确定二次根式被开方数中字母的取值范围,并能利用二次根式的非负性解决相关问题.【规律方法】二次根式有无意义的条件1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.12.二次根式的性质与化简(1)二次根式的基本性质:①≥0;a≥0(双重非负性).②()2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式).③=|a|=(算术平方根的意义)(2)二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.=•(a≥0,b≥0)=(a≥0,b>0)(3)化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.【规律方法】二次根式的化简求值的常见题型及方法1.常见题型:与分式的化简求值相结合.2.解题方法:(1)化简分式:按照分式的运算法则,将所给的分式进行化简.(2)代入求值:将含有二次根式的值代入,求出结果.(3)检验结果:所得结果为最简二次根式或整式.13.最简二次根式最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.如:不含有可化为平方数或平方式的因数或因式的有2、3、a(a≥0)、x+y等;含有可化为平方数或平方式的因数或因式的有4、9、a2、(x+y)2、x2+2xy+y2等.。

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型一、二次根式的定义形如a (a ≥0)的式子叫做二次根式.其中“”叫做二次根号,a 叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围; (2)判断一个式子是否为二次根式,应根据以下两个标准判断: ①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式.(3)形如a m (a ≥0)的式子也是二次根式,其中m 叫做二次根式的系数,它表示的是:a m a m ⋅=(a ≥0);(4)根据二次根式有意义的条件,若二次根式B A -与A B -都有意义,则有B A =. 二、二次根式的性质 二次根式具有以下性质:(1)双重非负性:a ≥0,a ≥0;(主要用于字母的求值) (2)回归性:()a a =2(a ≥0);(主要用于二次根式的计算)(3)转化性:⎩⎨⎧≤-≥==)0()0(2a a a a a a .(主要用于二次根式的化简)重要结论:(1)若几个非负数的和为0,则每个非负数分别等于0. 若02=++C B A ,则0,0,0===C B A . 应用与书写规范:∵02=++C B A ,A ≥0,2B ≥0,C ≥0∴0,0,0===C B A . 该性质常与配方法结合求字母的值. (2)()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2;主要用于二次根式的化简.(3)()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0; 该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的. (4)()B A BA ⋅=22,其中B ≥0.该结论主要用于二次根式的计算. 例1. 式子11-x 在实数范围内有意义,则x 的取值范围是_________.分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0. 解:由二次根式有意义的条件可知:01>-x ,∴1>x . 例2. 若y x ,为实数,且2111+-+-=x x y ,化简:11--y y .分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式B A -与A B -都有意义,则有B A =. 解:∵1-x ≥0,x -1≥0 ∴x ≥1,x ≤1 ∴1=x ∴1212100<=++=y ∴11111-=--=--y yy y . 习题1. 如果53+a 有意义,则实数a 的取值范围是__________. 习题2. 若233+-+-=x x y ,则=y x _________. 习题3. 要使代数式x 21-有意义,则x 的最大值是_________. 习题4. 若函数xxy 21-=,则自变量x 的取值范围是__________. 习题5. 已知128123--+-=a a b ,则=b a _________.例3. 若04412=+-+-b b a ,则ab 的值等于 【 】(A )2- (B )0 (C )1 (D )2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:∵04412=+-+-b b a ∴()0212=-+-b a∵1-a ≥0,()22-b ≥0∴02,01=-=-b a ∴2,1==b a∴221=⨯=ab .选择【 D 】.例4. 无论x 取任何实数,代数式m x x +-62都有意义,则m 的取值范围是__________. 分析:无论x 取任何实数,代数式m x x +-62都有意义,即被开方数m x x +-62≥0恒成立,所以有如下两种解法:解法一:由题意可知:m x x +-62≥0 ∵()93622-+-=+-m x m x x ≥0∴()23-x ≥m -9∵()23-x ≥0∴m -9≤0,∴m ≥9. 解法二:设m x x y +-=62∵无论x 取任何实数,代数式m x x +-62都有意义 ∴m x x y +-=62≥0恒成立即抛物线m x x y +-=62与x 轴最多有一个交点 ∴()m m 436462-=--=∆≤0解之得:m ≥9.例 5. 已知c b a ,,是△ABC 的三边长,并且满足c c b a 20100862=++-+-,试判断△ABC 的形状.分析:非负数的性质常和配方法结合用于求字母的值. 解:∵c c b a 20100862=++-+- ∴010020862=+-+-+-c c b a ∴()010862=-+-+-c b a∵6-a ≥0,8-b ≥0,()210-c ≥0∴010,08,06=-=-=-c b a ∴10,8,6===c b a∵10010,10086222222===+=+c b a ∴222c b a =+ ∴△ABC 为直角三角形.习题 6. 已知实数y x ,满足084=-+-y x ,则以y x ,的值为两边长的等腰三角形的周长为 【 】 (A )20或16 (B )20(C )16 (D )以上答案均不对习题7. 当=x _________时,119++x 取得最小值,这个最小值为_________.习题8. 已知24422--+-=x x x y ,则y x 的值为_________.习题9. 已知非零实数b a ,满足()()a b a b a a =++-+-++-415316822,求1-b a 的值.提示:由()()152+-b a ≥0,且012>+b 可得:5-a ≥0,∴a ≥5.例6. 计算:(1)()26; (2)()232+x ; (3)2323⎪⎪⎭⎫⎝⎛-. 分析:本题考查二次根式的性质: ()a a =2(a ≥0).该性质主要用于二次根式的计算.解:(1)()662=;(2)()32322+=+x x ;(3)()6329323323222=⨯=⎪⎪⎭⎫ ⎝⎛⨯-=⎪⎪⎭⎫ ⎝⎛-. 注意:()B A B A ⋅=22,其中B ≥0.该结论主要用于二次根式的计算.例7. 化简:(1)225; (2)2710⎪⎭⎫ ⎝⎛-; (3)962+-x x ()3<x .分析:本题考查二次根式的性质:⎩⎨⎧≤-≥==)0()0(2a a a a a a .该性质主要用于二次根式的化简.解:(1)2525252==;(2)7107107102=-=⎪⎭⎫ ⎝⎛-; (3)()339622-=-=+-x x x x∵3<x ∴原式x -=3.注意: 结论:()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2.该结论主要用于二次根式和绝对值的化简.例8. 当3-x 有意义时,化简:()()22125x x x -+-++.解:∵二次根式3-x 有意义 ∴3-x ≥0 ∴x ≥3 ∴()()22125x x x -+-++图(1)23125125+=-+-++=-+-++=x x x x x x x例9. 化简:()()2223-+-x x .分析:()222-=-x x ,继续化简需要x 的取值范围,而取值范围的获得需要挖掘题目本身的隐含条件:3-x 的被开方数3-x 为非负数. 解:由二次根式有意义的条件可知:3-x ≥0 ∴x ≥3 ∴()()2223-+-x x522323-=-+-=-+-=x x x x x 例10. 已知10<<a ,化简=-+-++2121aa a a __________. 解:∵10<<a ∴aa 1<∴2121-+-++aa a a aaa a a a a a a a a a a a a a a 21111111122=+-+=⎪⎭⎫⎝⎛--+=--+=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+= 例11. 已知直线()23-+-=n x m y (n m ,是常数), 如图(1),化简1442--+---m n n n m . 解:由函数()23-+-=n x m y 的图象可知:02,03<->-n m∴2,3<>n m∴1442--+---m n n n m()()()1121212122-=+-+--=-----=-----=-----=m n n m m n n m m n n m m n n m例12. 已知c b a ,,在数轴上的位置如图(2)所示,化简:()()222b a c c a a --++-.解:由数轴可知:b a c <<<0 ∴0<+c a ∴()()222b a c c a a --++-ba b c a c a a b a c c a a -=--+++-=--++--=习题10. 要使()()2222-=-x x ,x 的取值范围是__________.习题11. 若02=+a a ,则a 的取值范围是__________.习题12. 计算:=⎪⎪⎭⎫⎝⎛243_________. 习题13. 计算:=⎪⎭⎫⎝⎛-2221_________. 习题14. 若()332-=-x x 成立,则x 的取值范围是__________.习题15. 下列等式正确的是 【 】 (A )()332= (B )()332-=-(C )333= (D )()332-=-习题16. 下列各式成立的是 【 】图(2)(A )21212-=⎪⎭⎫ ⎝⎛- (B )()ππ-=-332(C )21212=⎪⎪⎭⎫ ⎝⎛ (D )74322=+ 习题17. 计算:()=-272_________.习题18. 化简:()=+-22x x_________.习题19. 若=-+=++++-b a a b b a a 22221,01213则________. 习题20. 已知01<<-a ,化简414122+⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛+a a a a 得__________. 习题21. 实数c b a ,,在数轴上对应的点如图(3)所示,化简代数式:222212b ab a c b a a +---++-的结果为 【 】 (A )12--c b (B )1- (C )12--c a (D )1+-c b习题22. 化简:()2232144--+-x x x .例13. 把aa 1-中根号外的因式移到根号内,结果是 【 】 (A )a - (B )a - (C )a (D )a --分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符号.有如下的结论:()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0. 图(3)解:由二次根式有意义的条件可知:01>-a∴0<a ∴a a a a a --=⎪⎭⎫⎝⎛-⋅-=-112.选择【 D 】. 习题23. 化简()212--a a 得__________. 三、二次根式的乘法 一般地,有:ab b a =⋅(a ≥0,b ≥0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a ≥0,b ≥0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:ab mn b n a m =⋅(a ≥0,b ≥0); (4)二次根式的乘法公式可逆用,即有:b a ab ⋅=(a ≥0,b ≥0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14. 若()66-=-⋅x x x x 成立,则 【 】 (A )x ≥6 (B )0≤x ≤6 (C )x ≥0 (D )x 为任意实数分析:本题考查二次根式乘法公式成立的条件:ab b a =⋅(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥060x x解之得:x ≥6. 选择【 A 】.例15. 若1112-⋅+=-x x x 成立,则x 的取值范围是__________.分析:本题考查二次根式乘法公式逆用成立的条件:b a ab ⋅=(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥+0101x x解之得:x ≥1. 例16. 计算:a a 812⋅(a ≥0). 解:a a a a a a a 21214181281222=⎪⎭⎫ ⎝⎛==⋅=⋅(a ≥0). 习题24. 计算:=⨯2731_________. 习题25. 已知()21233-⨯⎪⎪⎭⎫⎝⎛-=m ,则有 【 】 (A )65<<m (B )54<<m (C )45-<<-m (D )56-<<-m 习题26. 化简12的结果是_________. 四、二次根式的除法 一般地,有:baba =(a ≥0,0>b ) (1)以上便是二次根式的除法公式,要特别注意公式成立的条件; (2)二次根式的除法公式用于二次根式的计算;(3)二次根式的除法公式可写为:b a b a ÷=÷ (a ≥0,0>b ); (4)二次根式的除法公式可逆用,即有:ba b a =(a ≥0,0>b ) 公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变. 五、最简二次根式符合以下条件的二次根式为最简二次根式: (1)被开方数中不含有完全平方数或完全平方式; (2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化. 如对21进行分母有理化,过程为:2222221=⨯=;对321+进行分母有理化,过程为:()()723232323321-=-+-=+. 由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17. 计算:(1)654; (2)3223238÷; (3)()22728y xy -÷. 解:(1)39654654===; (2)24338169388323383823383832383223238=⨯==⨯⨯=÷⨯=÷=÷; (3)()x x y xy y xy 247287282222-=-=÷-=-÷.例18. 化简: (1)65; (2)4.0; (3)a a a 9623+-(3>a ). 解:(1)63066656565=⨯⨯==; (2)51052524.0===; (3)∵3>a ∴()()()a a a a a a a a a a 3396962223-=-=+-=+- 注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略,以简化计算. 例19. 式子2121-+=-+x x x x 成立的条件是__________.分析:本题求解的是x 的取值范围,考查了二次根式除法公式逆用成立的条件:ba b a = (a ≥0,0>b ). 解:由题意可得:⎩⎨⎧>-≥+0201x x 解之得:2>x .例20. 计算:(1)7523⨯; (2)5120-; (3)2832-. 解:(1)5225275237523==⨯=⨯; (2)552515205120-=-=-; (3)解法1:224416282322832=-=-=-=-. 解法2:()2248216642228322832=-=-=⨯⨯-=-. 二次根式的乘除混合运算例21. 计算:(1)⎪⎪⎭⎫ ⎝⎛-÷⨯21223222330; (2)182712⨯÷. 解:(1)原式⎪⎪⎭⎫ ⎝⎛-÷⨯=252382330 232443216435238302123-=⨯⨯-=⨯⨯-=⨯⨯⨯⎪⎭⎫ ⎝⎛-⨯=(2)原式228324182712===⨯=.习题27. 下列计算正确的是 【 】(A )3212= (B ) (C ) (D )x x =2习题28. 计算:=÷⨯213827_________. 习题29. 计算:=÷32643x x _________. 习题30. 直线13-=x y 与x 轴的交点坐标是_________.习题31. 如果0,0<+>b a ab ,那么下面各式:①ba b a =; ②1=⋅a b b a ; ③b b a ab -=÷. 其中正确的是_________(填序号).习题32. 若0<ab ,则化简2ab 的结果是_________.习题33. 计算:(1)⎪⎪⎭⎫ ⎝⎛-⨯÷7225283212; (2)⎪⎪⎭⎫ ⎝⎛÷⨯2143236181841.例22. 先化简,再求值:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ,其中22-=x . 解:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ()()()()()()2221122211111322+--=++⋅+-+-=++⋅⎥⎦⎤⎢⎣⎡+-+-+=x x x x x x x x x x x x x 2323=x x x -=-3当22-=x 时 原式122242222222-=--=+----=.习题34. 先化简,再求值:11121122-+÷+-+--a a a a a a ,其中12+=a .习题35. 先化简,再求值:2222221y xy x y x x x yx +--÷⎪⎭⎫ ⎝⎛---,其中6,2==y x .习题36. 下列根式中是最简二次根式的是【】 (A )32(B )3 (C )9 (D )12例23. 观察下列各式: ()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+ (1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫ ⎝⎛++++++++ . 分析:本题考查分母有理化.解:(1)1131099100100991-=-=+; (2)n n n n -+=++111; (3)原式()()2017120162017342312+⨯-++-+-+-= ()()2016120171201712017=-=+-= 习题37. 化简:891231121++++++ .七、同类二次根式 如果几个最简二次根式的被开方数相同,那么它们是同类二次根式. 同类二次根式的判断方法:(1)先化简二次根式;(2)看被开方数是否相同;(3)定结果:若相同,则它们是同类二次根式;若不相同,则不是.同类二次根式的合并方法:几个同类二次根式相加减,将它们的系数相加减,二次根式保持不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式.二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24. 计算:(1)12188++; (2)451227+-. 解:(1)原式3225322322+=++=;(2)原式533533233+=+-=.注意:不是同类二次根式不能合并.例25. 计算:1832225-+.解:原式232425-+=2272225=+=例26. 计算:(1)⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+32233223;(2)()()()23225775-++-.解:(1)原式223223⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=36199243=-=(2)原式364875+-+-=649-=.。

(完整版)二次根式考试题型汇总

(完整版)二次根式考试题型汇总
(4) (5) (6)
(7) (8)
题型六分母有理化
例11、已知 ,则a与b的关系为( )
A.a=b B.ab=1 C.ab=-1 D.a=-b
例12、当a<0时,化简 的结果是( )
A. B. C. D.
例13、已知 ,则 的值为( )
A. B. C. D.
题型七同类二次根式
例14、下列各式中,与 不是同类根式的是( )
例7、化简求值
(1)化简:
(2)先化简再求值: ,其中
题型四最简二次根式
例8、(2013•上海)下列式子中,属于最简二次根式的是( )
A. B. C. D.
题型五二次根式的乘除法
例9、已知 ,则有( )
A.5<m<6 B.4<m<5 C.-5<m<-4 D.-6<m<-5
例10、计算
(1) (2) (3)
A. B. C. D.
题型八二次根式的加减法
例15、计算
(1) (2)
(3) (4)题型九Leabharlann 次根式的混合运算例16、计算
(1) (2)
(3) (4)解方程:
题型十二次根式的化简求值
例17、(1)已知: ,求 的值。
(2)先化简,再求值. ,其中 。
题型十一二次根式的应用
例18、解不等式 。
例19、如图,矩形ABCD的边AB、BC的长分别为4 cm和2 cm,E、F、G、H分别是矩形各边的中点,求四边形EFGH的周长和面积.
二次根式
题型一二次根式的定义
例1、 是整数,求自然数n的值.
题型二二次根式有意义的条件
例2、当x时,二次根式 有意义。
例3、已知x、y为实数, ,求5x+6y的值.

中考数学5年真题(2019-2023)专题汇总解析—二次根式

中考数学5年真题(2019-2023)专题汇总解析—二次根式

中考数学5年真题(2019-2023)专题汇总解析—二次根式考点1二次根式一、单选题1.(2023)A.25与30之间B.30与35之间C.35与40之间D.40与45之间【答案】D【详解】解∶∵160020232025<<.即4045<,40与45之间.故选D.【点睛】本题主要考查了估算无理数的大小,正确估算无理数的取值范围是解题关键.2.(2023年江苏省无锡市中考数学真题)实数9的算术平方根是()A.3B.3±C.19D.9-【答案】A【分析】根据算术平方根的定义即可求出结果.3=,故选:A.【点睛】本题考查了平方根和算术平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.(2023年重庆市中考数学真题(A卷)的值应在()A .7和8之间B .8和9之间C .9和10之间D .10和11之间【答案】B【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.=4=+∵2 2.5<<,∴45<<,∴849<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.4.(2019·广东·的结果是()A .4-B .4C .4±D .2【答案】B【分析】根据算术平方根的定义进行求解即可.,故选B.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键.5.(2020·广西贵港·在实数范围内有意义,则实数x 的取值范围是()A .1x <-B .1x ≥-C .0x ≥D .1x ≥【答案】B【分析】根据二次根式的被开方数为非负数即可得出的取值范围.∴x+1≥0∴x≥﹣1故选:B【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.6.(2020·山东聊城·÷).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.÷==1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.7.(2023年辽宁省大连市中考数学真题)下列计算正确的是()A.0=B.+=C=D)26=-【答案】D【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A.)1=,故该选项不正确,不符合题意;B.=C.=D.)26=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.8.(2021·广东·统考中考真题)若0a =,则ab =()AB .92C .D .9【答案】B【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【详解】∵0a ≥0≥,且0a =∴0a =0==即0a =,且320a b -=∴a =b∴92ab ==故选:B .【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.9.(2022·河北·统考中考真题)下列正确的是()A23=+B 23=⨯CD 0.7=【答案】B【分析】根据二次根式的性质判断即可.【详解】解:23=≠+,故错误;=⨯,故正确;23=≠≠,故错误;0.7故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.10.(2023()A.点P B.点Q C.点R D.点S【答案】B<<【详解】解:∵479<<,<<23Q,故选:B.11.(2023年河北省中考数学真题)若a b===()A.2B.4C D【答案】A【分析】把a b【详解】解:∵a b==2==,故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.12.(2019·四川资阳·统考中考真题)设x=x的取值范围是()A.23x<<B.34x<<C.45x<<D.无法确定【答案】B【分析】根据无理数的估计解答即可.【详解】解:∵91516<<,∴34<<,故选B.【点睛】此题考查估算无理数的大小,关键是根据无理数的估计解答.13.(2021·广东·统考中考真题)设6a,小数部分为b,则(2a b+的值是()A.6B.C.12D.【答案】A的整数部分可确定a的值,进而确定b的值,然后将a与b的值代入计算即可得到所求代数式的值.【详解】∵34<<,∴263<<,∴62a=,∴小数部分624b==∴(((22244416106a b+=⨯+-=+-=-=.故选:A.【点睛】本题考查了二次根式的运算,正确确定6a与小数部分b的值是解题关键.二、填空题14.(2019·江苏苏州·x的取值范围为.【答案】6x≥【分析】根据根式有意义的条件,得到不等式,解出不等式即可.-60x≥,解出得到6x≥.【点睛】本题考查根式有意义的条件,能够得到不等式是解题关键.15.(2020·广西·=.【分析】利用二次根式的性质化简,再相减.==【点睛】本题考查了二次根式的减法,解题的关键是掌握二次根式的化简及性质.16.(2021·天津·统考中考真题)计算1)的结果等于.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题的关键.17.(2023年湖北省武汉市数学真题)写出一个小于4的正无理数是.【分析】根据无理数估算的方法求解即可.<4<..【点睛】本题主要考查了无理数的估算,准确计算是解题的关键.18.(2023x 的取值范围是.【答案】13x ≥-【分析】根据二次根式有意义的条件得到130x +≥,解不等式即可得到答案.∴130x +≥,解得13x ≥-,故答案为:13x ≥-【点睛】此题考查了二次根式有意义的条件,熟知被开方式为非负数是解题的关键.19.(2019·河南·12--==.【答案】112【分析】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.12--122=-112=.故答案为11 2.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.20.(2021·安徽·统考中考真题)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,1-,它介于整数n和1n+之间,则n的值是.【答案】11即可完成求解.2.236≈;1 1.236≈;因为1.236介于整数1和2之间,所以1n=;故答案为:1.分即可;该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力.21.(20231+=.【答案】3【分析】根据求一个数的立方根,有理数的加法即可求解.1+=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.22.(2023年上海市中考数学真题)已知关于x2=,则x=【答案】18【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,140x -≥,即14x ≥,2=,等式两边分别平方,144x -=移项,18x =,符合题意,故答案为:18.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.23.(2023年黑龙江省绥化市中考数学真题)若式子x有意义,则x 的取值范围是.【答案】5x ≥-且0x ≠/0x ≠且5x ≥-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.24.(2023年黑龙江省齐齐哈尔市中考数学真题)在函数12y x +-中,自变量x 的取值范围是.【答案】1x >且2x ≠【分析】根据分式有意义的条件,二次根式有意义的条件得出10,20x x ->-≠,即可求解.【详解】解:依题意,10,20x x ->-≠∴1x >且2x ≠,故答案为:1x >且2x ≠.【点睛】本题考查了求函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.三、解答题25.(2019·福建·统考中考真题)先化简,再求值:(x -1)÷(x -21xx-),其中x【答案】1x x -,1+2【分析】先化简分式,然后将x 的值代入计算即可.【详解】解:原式=(x−1)÷221x x x-+()()211xx x =-⋅-1x x =-当x +1时,12=+【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.26.(2022·福建·统考中考真题)先化简,再求值:2111aa a -⎛⎫+÷ ⎪⎝⎭,其中1a =.【答案】11a -.【分析】根据分式的混合运算法则化简,再将a 的值代入化简之后的式子即可求出答案.【详解】解:原式()()111a a a a a+-+=÷()()111a a a a a +=⋅+-11a =-.当1a =时,原式2=.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.27.(2023年安徽中考数学真题)先化简,再求值:2211x x x +++,其中1x =.【答案】1x +【分析】先根据分式的性质化简,最后将字母的值代入求解.【详解】解:2211x x x +++()211x x +=+1x =+,当1x =-时,∴原式11+=.【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行求解.28.(20232133-⎛⎫- ⎪⎝⎭【答案】6-【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=-+6=-.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.29.(2023年吉林省长春市中考数学真题)先化简.再求值:2(1)(1)a a a ++-,其中3a =.【答案】31a +1+【分析】根据完全平方公式以及单项式乘以单项式进行化简,然后将字母的值代入进行计算即可求解.【详解】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当a =311==【点睛】本题考查了整式乘法的化简求值,实数的混合运算,熟练掌握完全平方公式以及单项式乘以单项式的运算法则是解题的关键.30.(2023年内蒙古通辽市中考数学真题)计算:21tan 453-⎛⎫+︒-⎪⎝⎭【答案】0【分析】根据负整数次幂、特殊角的三角函数值、算术平方根化简,然后在计算即可.【详解】解:21tan 453-⎛⎫+︒-⎪⎝⎭9110=+-,0=.【点睛】本题主要考查了负整数次幂、特殊角的三角函数值、算术平方根等知识点,掌握基本的运算法则是解答本题的关键.31.(2019·河南·统考中考真题)先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x =【答案】3x【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:原式212(2)22(2)x x x x x x x +--⎛⎫=-÷ ⎪---⎝⎭322x x x-=⋅-3x=,当x ===.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.32.(2023年辽宁省营口市中考数学真题)先化简,再求值:524223m m m m-⎛⎫++⋅⎪--⎝⎭,其中tan 45m =︒.【答案】26--m ,原式16=-【分析】先根据分式的混合计算法则化简,然后根据特殊角三角函数值和二次根式的性质求出m 的值,最后代值计算即可.【详解】解:524223m m m m-⎛⎫++⋅⎪--⎝⎭()22245223m m m m m-⎛⎫-=-⋅⎪---⎝⎭()222923m m m m--=⋅--()()()332223m m m m m+--=⋅--()23m =-+26m =--,∵tan 45m =︒,∴415m =+=,∴原式25610616=-⨯-=--=-.【点睛】本题主要考查了分式的化简求值,求特殊角三角函数值,化简二次根式等等,正确计算是解题的关键.33.(2023·重庆九龙坡·的值应在()A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】A【分析】根据二次根式的乘法进行计算,以及估算无理数的大小的方法解答即可.=6=∵91416<<,∴34<,∴43-<<-,∴263<<,故选:A .【点睛】本题考查了估算无理数的大小和二次根式的运算.解题的关键是掌握二次根式的运算方法,以及估算无理数的大小的方法.34.(2023·辽宁丹东·统考二模)在函数y =x 的取值范围是()A .12x -<≤B .21x -<≤C .12x ≤≤D .12x <≤【答案】D【分析】根据函数有意义的条件得到2010x x -≥⎧⎨->⎩,解不等式组即可得到自变量x 的取值范围.【详解】解:由题意得2010x x -≥⎧⎨->⎩,解不等式组得12x <≤,故选:D .【点睛】此题考查了自变量的取值范围,熟练掌握二次根式和分式有意义的条件是解题的关键.35.(2023·安徽蚌埠·统考三模)下列运算正确的是()A 3=B .()3328a a -=-C =D .112235+=【答案】B【分析】根据二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则依次判断即可得出答案.【详解】解:A 333==B .()3328a a -=-,故此选项符合题意;CD .11522365+=≠,故此选项不符合题意.故选:B .【点睛】本题考查二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则.掌握相应的运算法则和性质是解题的关键.36.(2023·河北沧州·校考模拟预测)下列运算中,正确的是().A3=±B 2=C 2=D 8=-【答案】C【分析】利用二次根式的化简的法则对各项进行运算即可.【详解】解答:解:A 3=,故A 不符合题意;B 2=-,故B 不符合题意;C 2=,故C 符合题意;D 8=,故D 不符合题意;故选:C .【点睛】本题主要考查二次根式的化简,解答的关键是对相应的运算法则的掌握.37.(2023·四川泸州·四川省泸县第一中学校考三模)实数2的平方根为()A .2B .2±C D .【答案】D【分析】利用平方根的定义求解即可.【详解】∵2的平方根是.故选D .【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.38.(2023·西南大学附中校考三模)估计(3-)A .0和1之间B .2和3之间C .3和4之间D .4和5之间【答案】A【分析】由题意知(34-,由1.4 1.5=<<=,可得4.2 4.5<<,0.240.5<<,然后判断作答即可.【详解】解:(34-⨯,∵1.4 1.5=<<=,∴4.2 4.5<<,∴0.240.5<<,∴估算(3-0和1之间,故选:A .39.(2023·河北石家庄·校联考一模)下列计算正确的是()A =B1=-C =D 23=【答案】C【分析】根据二次根式加法、二次根式减法、二次根式乘法、二次根式除法分别进行判断即可.【详解】解:AB 0-=,故选项错误,不符合题意;C =D 1=,故选项错误,不符合题意.故选:C .【点睛】此题考查了二次根式的加法、减法、乘法、除法,熟练掌握运算法则是解题的关键.40.(2023·江苏无锡·校考二模)函数y x的取值范围是()A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤【答案】C【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数x 50x 5-≥⇒≥.故选C.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.41.(2023·湖南长沙·校联考二模)4的算术平方根是()A .2B .2±C .8D .16【答案】A【分析】如果一个数x 的平方等于(0)a a ≥,那么这个数x 叫做a 的平方根,可以表示为平方根叫做a 的算术平方根.正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.【详解】解:42=,故选:A .【点睛】本题考查算术平方根的定义,明确平方根与算术平方根的区别与联系是本题的关键.42.(2023·重庆九龙坡·重庆市育才中学校考一模)x)A .0B .2C .3D .5【答案】D【分析】根据二次根式有意义的条件进行求解即可.∴40x -≥,即4x ≥,∴四个选项中只有D 选项中的5符合题意,故选:D .【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于零是解题的关键.43.(2023·甘肃平凉·的结果是.【答案】2【分析】根据二次根式的性质进行化简即可.2=.故答案为:2.()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.44.(2021·黑龙江大庆·=【答案】4【分析】先算4(2)-,再开根即可.==4=故答案是:4.【点睛】本题考查了求一个数的4次方和对一个实数开根号,解题的关键是:掌握相关的运算法则.45.(2023·广东茂名·校考一模)已知实数x,y |4|0y -=,则1x y -=⎛⎫⎪⎝⎭.【答案】2【分析】根据算术平方根的非负性,绝对值的非负性得出24x y ==,,进而根据负整数指数幂进行计算即可求解.40y -=0≥,40y -≥,∴20x -=,40y -=,∴24x y ==,,∴11112422x y ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭===.故答案为:2.【点睛】本题主要考查了算术平方根和绝对值的非负性、负整数次幂等知识点,根据非负性正确求得x 、y 的值是解答本题的关键.46.(2023·福建福州·校考二模)已知2a =2b =22a b ab -的值等于.【答案】【分析】先求出a b -=1ab =,再由()22a b ab ab a b -=-进行求解即可.【详解】解:∵2a =2b =∴22a b -=++=((22431ab =+⨯-=-=,∴22a b ab -()ab a b =-1=⨯=故答案为:【点睛】本题主要考查了二次根式的混合运算、求代数式的值,正确得到a b -=1ab =是解题的关键47.(2023·山东聊城·x 的取值范围是.【答案】12x ≥【分析】根据二次根式有意义的条件可得210x -≥,即可.【详解】解:由题意得:210x -≥,解得:12x ≥,故答案为:12x ≥.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.48.(2023·安徽滁州·校考模拟预测)计算)11-的结果等于.【答案】22【分析】直接利用平方差公式进行简便运算即可.【详解】解:)2211123122=-=-=,故答案为:22【点睛】本题考查的是二次根式的乘法运算,熟练的利用平方差公式进行简便运算是解本题的关键.49.(2023·陕西西安·校考模拟预测)-64的立方根是.【答案】-4【分析】直接利用立方根的意义,一个数的立方等于a ,则a 的立方根是这个数进行求解.【详解】解:根据立方根的意义,一个数的立方等于a ,则a 的立方根是这个数,可知-64的立方根为-4.故答案为:-4.【点睛】本题考查了立方根,解题的关键是掌握一个数的立方等于a ,则a 的立方根是这个数.50.(2023·云南昭通·x 的取值范围是.【答案】x>8【分析】由分式的分母不等于零和二次根式的被开方数是非负数得到x﹣8>0.【详解】解:由题意,得x﹣8>0,解得x>8.故答案是:x>8.【点睛】考查了分式有意义的条件和二次根式有意义的条件,注意,二次根式在分母上,所以不能取到0.51.(2023·四川泸州·四川省泸县第一中学校考三模)函数y=x的取值范围是.【答案】x>3【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.x30x3x>3x30x3-≥≥⎧⎧⇒⇒⎨⎨-≠≠⎩⎩.52.(2023·河南洛阳·统考一模)计算:22-=.【答案】74-【分析】先计算22-,再算减法.【详解】解:原式17244=-=-.故答案为:74-.【点睛】本题考查了实数的计算,掌握负整数指数幂、二次根式的化简是解决本题的关键.53.(2023·安徽蚌埠·统考三模)计算:212022--=.【答案】2023【分析】根据有理数的乘方,二次根根式的性质,化简绝对值进行计算即可求解.【详解】解:212022--=122022-++2023=,故答案为:2023.【点睛】本题考查了有理数的乘方,二次根根式的性质,化简绝对值,正确的计算是解题的关键.54.(2022·新疆·x的取值范围是.【答案】x≥3【分析】直接利用二次根式有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x—3≥0,解得:x≥3,故答案为:x≥3【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.55.(2023·黑龙江哈尔滨·统考三模)计算=.【答案】【分析】先根据二次根式的性质化简,然后根据二次根式的加减法则求解即可.【详解】解:=-2=-=故答案为:【点睛】本题主要考查了二次根式的性质、二次根式的加减运算等知识点,灵活运用二次根式的的性质化简是解题的关键.x的取值范围是.56.(2023·云南昆明·一模)要使式子3有意义,x≥【答案】5【分析】二次根式中的被开方数是非负数,依此即可求解.x-≥,【详解】解:依题意有:50x≥.解得5x≥.故答案为:5【点睛】本题考查了二次根式有意义的条件,关键是熟悉二次根式中的被开方数是非负数的知识点.57.(云南省丽江市华坪县2020-2021=.【答案】6【分析】利用二次根式的乘法法则进行求解即可.==.6故答案为:6.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则和二次根式的性质是解题的关键.58.(2023·山西·模拟预测)计算:=.【答案】【分析】先化简二次根式,再根据二次根式的加减计算法则求解即可.【详解】解:3=⨯=+=故答案为:【点睛】本题主要考查了二次根式的加减计算,二次根式的化简,正确计算是解题的关键.59.(2023·重庆沙坪坝·重庆八中校考模拟预测)如果2y=+,那么yx的值是.【答案】225【分析】根据二次根式有意义的条件,求出,x y的值,进而求出y x的值即可.【详解】解:∵2y=,∴150,150x x -≥-≥,∴15150x x -=-=,∴15,2x y ==,∴215225y x ==;故答案为:225.【点睛】本题考查二次根式有意义的条件,代数式求值.熟练掌握二次根式的被开方数是非负数,是解题的关键.60.(江西省崇仁县第二中学2016-2017学年八年级上学期第二次月考数学试题)计算:=【答案】61.(2015年初中毕业升学考试(山东滨州卷)数学(带解析))计算的结果为.【答案】﹣1【分析】此题用平方差公式计算即可.【详解】22=-23=-1=-62.(2023·黑龙江哈尔滨·=.【答案】3【分析】根据二次根式的化简方法和运算法则进行计算.【详解】解:原式33==【点睛】本题考查二次根式的计算,在化简二次根式的基础上再把同类二次根式合并.63.(福建省永春县第一中学2017【分析】根据二次根式乘法,加减法运算法则计算即可.【详解】解:原式=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的化简方法是解题的关键.64.(2023·广东茂名·校考一模)先化简,再求值:2121211x x x x +⎛⎫÷+ ⎪-+-⎝⎭其中1x +.【答案】11x -;2【分析】先通分算括号内的,把除化为乘,再约分,化简后将x 的值代入计算.【详解】解:212(1)211x x x x +÷+-+-211(1)1x x x x ++=÷--211(1)1x x x x +-=⋅-+11x =-,当1x =+时,原式=2=.【点睛】本题考查了分式化简求值,掌握分式的基本性质,将分式通分和约分进行化简是关键.65.(2023·四川泸州·011+()3-23-【答案】【分析】根据实数的混合运算法则即可求解.011+()3-23-=(1+32-=1+32-+【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及运算法则.66.(2023·安徽六安·1+【分析】先计算算术平方根.化简绝对值,求解立方根,再合并即可.1+=+-413=【点睛】本题考查是算术平方根的含义,化简绝对值,求解立方根,实数的混合运算,掌握“算术平方根与立方根的含义”是解本题的关键.67.(2022·新疆·统考中考真题)计算:20-+(2)|(3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式451=++=【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是=.解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1a。

八年级数学二次根式常考题型例题

八年级数学二次根式常考题型例题

八年级数学二次根式常考题型例题单选题1、实数a、b在数轴上的位置如图所示,化简√(a+1)2+√(b−1)2−√(a−b)2的结果是().A.−2B.0C.−2a D.2b答案:A解析:根据实数a和b在数轴上的位置得出其取值范围,再利用二次根式的性质和绝对值的性质即可求出答案.解:由数轴可知-2<a<-1,1<b<2,∴a+1<0,b-1>0,a-b<0,∴√(a+1)2+√(b−1)2−√(a−b)2=|a+1|+|b−1|−|a−b|=−(a+1)+(b−1)+(a−b)=-2故选A.小提示:此题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.2、若√(3−b)2=3−b,则b的取值范围是()A.b>3B.b<3C.b≥3D.b≤3答案:D解析:根据二次根式的性质√a2=|a|可直接求解.解:∵√(3−b)2=3−b,∴|3−b|=3−b,∴3−b≥0,解得b≤3.故选D.小提示:本题主要考查二次根式的性质,熟记概念是解题的关键.3、若|x2﹣4x+4|与√2x−y−3互为相反数,则x+y的值为()A.3B.4C.6D.9答案:A解析:根据题意得:|x2–4x+4|+√2x−y−3=0,所以|x2–4x+4|=0,√2x−y−3=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.4、√2×√8=()A.4√2B.4C.√10D.2√2答案:B解析:直接利用二次根式的乘法运算法则计算得出答案.解:√2×√8=√16=4.故选B.小提示:此题主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键.5、下列计算正确的是()A.√8÷√2=2√2B.√9=±3C.√(−3)2=3D.√24=√2答案:C解析:根据二次根式的乘除运算法则以及利用二次根式的性质化简,逐项计算,即可判断.A、√8÷√2=√4=2,故此选项错误;B、√9=3,故此选项错误;C、√(−3)2=3,正确;D、√2×4=√22×4=2√2,故此选项错误;故选:C.小提示:本题考查了二次根式的乘除运算,熟练掌握二次根式的加减乘除运算法则以及二次根式的性质化简是解题的关键.6、式子√a+1a−2有意义,则实数a的取值范围是()A.a≥-1B.a≠2C.a≥-1且a≠2D.a>2答案:C解析:根据被开方数大于等于0,分母不等于0列式计算即可.解:由题意得,a+1≥0,a≠2解得,a≥-1且a≠2,所以答案是:C.小提示:本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.7、下面说法正确的是()A.被开方数相同的二次根式一定是同类二次根式B.√8与√80是同类二次根式C.√2与√150不是同类二次根式D.同类二次根式是根指数为2的根式答案:A解析:试题解析:A、被开方数相同的二次根式若能化简,化简后一定被开方数相同,是同类二次根式,故本选项正确;B、∵√8=2√2;√80=4√5;∴√8与√80不是同类二次根式,故本选项错误;C、∵√150=√5050=5√250=√210,∴√2与√150是同类二次根,故本选项错误;D、同类二次根式不仅是根指数为2的根式,还要化简后被开方数相同,故本选项错误.故选A.8、式子√x−2在实数范围内有意义,则x的取值范围是()A.x≥0B.x≥−2C.x≤2D.x≥2答案:D解析:由二次根式有意义的条件列不等式可得答案.解:由式子√x−2在实数范围内有意义,∴x−2≥0,∴x≥2.故选D.小提示:本题考查的是二次根式有意义的条件,掌握二次根式的被开方数为非负数是解题的关键.填空题9、若x满足|2017-x|+ √x-2018 =x,则x-20172=________答案:2018解析:根据二次根式有意义的条件列出不等式,求解得出x的取值范围,再根据绝对值的意义化简即可得出方程√x-2018 =2017,将方程的两边同时平方即可解决问题.解:由条件知,x-2018≥0,所以x≥2018,|2017-x|=x-2017.所以x-2017+ √x-2018 =x,即√x-2018 =2017,所以x-2018=20172,所以x-20172=2018,所以答案是:2018.小提示:本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x的取值范围是解题的关键.10、计算:√27⋅√83÷√12=__________.答案:12解析:根据二次根式的乘除运算计算即可;√27⋅√83÷√12=√27×83×2=√9×16=3×4=12.故答案是12.小提示:本题主要考查了二次根式的乘除运算,准确计算是解题的关键.11、若二次根式√1x−1有意义,则x的取值范围是__________.答案:x>1解析:概念二次根式被开方数大于或等于0,分母不为0求解即可.解:二次根式√1x−1有意义,则1x−1≥0且x−1≠0,解得,x>1,所以答案是:x>1.小提示:本题考查了二次根式和分式有意义的条件,解题关键是熟记二次根式和分式有意义的条件,列出不等式.12、计算:√32−√8√2=_____.答案:2解析:先把二次根式化为最简二次根式,然后把括号内合并后再进行二次根式的除法运算即可得出答案.原式=(4√2﹣2√2)÷√2=2√2÷√2=2.故答案为2.小提示:本题考查了二次根式的混合运算.把二次根式化为最简二次根式,再根据混合运算顺序进行计算是解题的关键.13、如果√(2a-1)2=1-2a,则a的取值范围是______.答案:a≤12解析:根据题意可得,2a-1≤0,解得a≤12考点:二次根式的性质解答题14、计算:(3-√7)(3+√7)+√2 (2-√2).答案:2√2解析:利用平方差公式进行计算,并化简即可.解:(3-√7)(3+√7)+√2(2-√2),=9-7+2√2-2,=2√2.小提示:本题考查了二次根式的混合运算,平方差公式,解题的关键是掌握相应的运算性质.3+√9.15、计算(√2+1)(√2−1)+√−8答案:2解析:先根据平方差公式、立方根、算术平方根进行化简,再计算即可.3+√9解: (√2+1)(√2−1)+√−8=2-1-2+3=2.小提示:本题考查了实数的运算.解题的关键是熟练掌握平方差公式、立方根、算术平方根等考点的运算.。

二次根式必考题型

二次根式必考题型

二次根式必考题型
在数学中,二次根式是一种常见的考题类型,特别是在代数和方程相关的问题中经常出现。

以下是一些关于二次根式的必考题型:
1. 简化二次根式:考查对二次根式进行化简的能力。

2. 比较二次根式大小:考查对二次根式大小进行比较的能力。

3. 运用平方公式求解方程:考查运用平方公式求解二次方程的能力。

4. 运用配方法化简表达式:考查运用配方法将含有二次根式的表达式化简的能力。

这些题型涵盖了二次根式的基本概念、性质和运算规律。

熟练掌握这些题型,可以帮助提高对二次根式的理解和应用能力,进而在数学考试中取得好成绩。

二次根式的有关概念和性质(题型归纳)(解析版)

二次根式的有关概念和性质(题型归纳)(解析版)

二次根式的有关概念和性质【思维导图】◎考点题型1 求二次根式的值例.(2022·浙江·九年级专题练习)当0x = )A .4B .2C D .0【答案】B 【解析】 【分析】把0x = 【详解】解:把0x =2= 故选:B . 【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.变式1.(2020·山东定陶·八年级期末)当 x =-3 )A .3B .-3C .±3D【答案】A 【解析】 【分析】把x =-3代入二次根式进行化简即可求解. 【详解】解:当x =-33=. 故选A. 【点睛】本题考查了二次根式的计算,正确理解算术平方根的意义是关键. 变式2.(2020·北京·一模)如果31a ,那么代数式21(1)11aa a +÷--的值为( )A .3BCD 2【答案】B 【解析】 【分析】先根据分式的混合运算法则化简原式,再把a 的值代入化简后的式子计算即可. 【详解】 解:原式=()()111a a a a a ÷--+=()()1111a a a a a a-+⨯=+-;当31a时,原式11+=故选:B . 【点睛】本题考查了分式的化简求值,属于常考题型,熟练掌握分式的混合运算法则是解题关键.变式3.(2020·湖北鄂城· )A B .2 C .22 D .2±【答案】B 【解析】 【分析】根据乘方和开方的运算法则进行计算即可. 【详解】2=故答案为:B.【点睛】本题考查了开方和乘方的运算问题,掌握乘方和开方的运算法则是解题的关键.◎考点题型2 求二次根式中的参数例.(2021·山东阳谷·n的最小值是()A.2B.4C.6D.8【答案】C【解析】【分析】=6n是完全平方数,满足条件的最小正整数n为6.【详解】解:24n=∴6n是完全平方数;∴n的最小正整数值为6.故选:C.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答变式1.(2021·全国·n是()A.6B.3C.4D.2【答案】B【解析】【分析】根据题意,算数平方根是正整数,可得被开方数是能开方的正整数.【详解】n 的最小正整数是3,故选:B.【点睛】本题主要考查了二次根式的定义,利用开方运算是解答本题的关键.变式2.(2020·四川三台·n 的最小值是( ) A .2 B .3C .4D .6【答案】B 【解析】 【分析】n 的最小正整数值. 【详解】= ∴n 的最小正整数值是3; 故选B . 【点睛】变式3.(2020·江西南丰·20b -=,则2019()a b +的值是( ). A .1 B .-1C .2019D .-2019【答案】B 【解析】 【分析】利用非负数的性质列出方程组,求出方程组的解得到a 与b 的值,代入原式计算即可求出值. 【详解】20b -=,∴3020a b +=⎧⎨-=⎩, ∴32a b =-⎧⎨=⎩,∴20192019()(32)1a b +=-+=-, 故选择:B. 【点睛】此题考查了非负数的性质及二元一次方程组,熟练掌握几个非负数的和为零,则每一个非负数都为零是解本题的关键.◎考点题型3 二次根式有意义的条件例.(2022·河北·在实数范围内有意义,则x的值可能为()A.0B.﹣2C.﹣1D.1【答案】D【解析】【分析】10,10xx得到不等式组的解集,再逐一分析各选项即可.【详解】解:1010xx①②由①得:1,x≥由②得:1,x≠-所以:1,x≥故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是分式有意义的条件,二次根式有意义的条件,掌握“分式与二次根式的综合形式的代数式有意义的条件”是解本题的关键.变式1.(2022·湖南岳阳·x的取值范围是()A.1x≥-B.0x≠C.1≥x D.0x>【答案】C【解析】【分析】根据二次根式的被开方数为非负数解答. 【详解】解:由题意得10x -≥, 解得1≥x , 故选:C . 【点睛】此题考查了二次根式的非负数,解题的关键是熟练掌握二次根式的双重非负性列式进行解答.变式2.(2022·福建惠安·有意义,则x 的取值范围为( ) A .1x ≥- B .1x >- C .1≥x D .1x ≤【答案】A 【解析】 【分析】根据二次根式有意义的条件分析即可. 【详解】∴10x +≥ 解得1x ≥- 故选A 【点睛】本题考查了二次根式有意义的条件,理解被开方数为非负数是解题的关键.变式3.(2021·中x 的取值范围是( ) A .x >2 B .x ≥﹣2C .x ≠2D .x ≥﹣2且x ≠2【答案】D 【解析】 【分析】根据二次根式及分式有意义的条件可直接进行求解. 【详解】 解:由题意得:20x +≥且20x -≠,解得:2x ≥-且2x ≠; 故选D . 【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键.◎考点题型4 利用二次根式的性质化简例.(2022·贵州松桃·八年级期末)下列各式中正确的是( )A 2=-B 2=±C .22= D .(22=-【答案】C 【解析】 【分析】根据二次根式的性质即可依次判断. 【详解】A. 2,故错误;B. 2=,故错误;C.22=,正确;D. (22=,故错误;故选C . 【点睛】此题主要考查二次根式的计算,解题的关键是熟知二次根式的性质.变式1.(2022·江苏·2x =-成立,则x 的取值范围是( ) A .2x ≤ B .2x ≥C .02x ≤≤D .任意实数【答案】A 【解析】 【分析】根据实数的性质及去绝对值的方法即可求解.22x x =-=-∴x -2≤0 ∴2x ≤ 故选A . 【点睛】此题主要考查实数的性质,解题的关键是熟知平方根的性质及去绝对值的方法. 变式2.(2021·上海奉贤·七年级期末)下列计算错误的是( )A 2=-B 2C 2D .2(2=【答案】A 【解析】 【分析】直接利用二次根式的性质以及二次根式的乘法运算法则化简,进而判断即可. 【详解】解:A 2,故此选项计算错误,符合题意;B 2=,故此选项计算正确,不合题意;C 2=,故此选项计算正确,不合题意;D .2(2=,故此选项计算正确,不合题意; 故选:A . 【点睛】此题考查了二次根式的性质及二次根式的乘法运算法则,熟记乘法法则是解题的关键.变式3.(2022·2的结果是( ) A .61x -- B .1-C .61x +D .1【答案】D 【解析】 【分析】x 号,然后合并同类项即可.0x ≥∴31=+x故原式化简为:3131x x +-=. 故选:D . 【点睛】本题主要是考查了去二次根号以及二次根式的基本性质,熟练掌握二次根式的性质,求解该题的关键.◎考点题型5 复合二次根式的化简例.(2021·浙江滨江·八年级期中)对式子m ,正确的结果是( )A B .C .D 【答案】C 【解析】 【分析】直接利用二次根式的性质化简求出答案. 【详解】解:由题意可得:30m -≥,∴0m ≤∴=故选:C 【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.变式1.(2021·河南原阳· )AB C .D .【答案】D 【解析】 【分析】根据二次根式成立的条件确定x 的取值,从而利用二次根式的性质进行化简.解:由题意可得:x <0∴(11x x x⋅=⋅-故选:D . 【点睛】本题考查二次根式的化简,理解二次根式成立的条件及二次根式的性质正确化简计算是解题关键.变式2.(2021·湖北鄂州·八年级期末)把(2-x) 2-x )适当变形后移入根号内,得( )AB C . D .【答案】D 【解析】 【分析】由题意易得x>2,然后根据二次根式的性质可进行求解. 【详解】 解:由题意得: 102x >-,解得:x>2,∴(2x -= 故选D . 【点睛】本题主要考查二次根式的性质,熟练掌握二次根式的性质是解题的关键.变式3.(2018·全国·2得( ) A .2 B .﹣4x+4C .xD .5x ﹣2【答案】C 【解析】 【分析】根据二次函数的性质求解可得答案. 【详解】解:1-3x≥0,x≤13,∴2x-1≤1-3<0,∴原式-(1-3x)=1-2x-1+3x=x,故选C.【点睛】主要考查了根据二次根式的意义及化简.:当a>0时=a;当a<0时,=-a.二次根式2=a,(a≥0).11。

初二数学下册:二次根式常考10大题型

初二数学下册:二次根式常考10大题型

初二数学下册:二次根式常考10大题型考点二次根式1.二次根式的有关概念(1)二次根式:该式子称作二次根式。

注意被开方数a只能是非负数。

并且根式也是非负数。

(2)最简二次根式:被开方数不含分母,不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式。

(3)同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式。

2.二次根式的性质3.二次根式的运算(1)二次根式的加减:先把二次根式化为最简二次根式,再合并同类二次根式。

(2)二次根式的乘除:和(3)二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。

二次根式的运算结果一定要化成最简二次根式。

常考的10个类型题点评:关于二次根式的根号内外的“移进”和“移出”,关键是要抓住二次根式的被开方数是非负数这个特点,先确定字母的隐含的取值范围,再结合进行“移进”和“移出”的变形化简;这类题在考试中常出现在考题的填空和选择题中,是正确率比较低的热点考题高频考点,这个知识点容易与其它知识点联姻构成有一定含金量的综合题,而双重非负数性在其中扮演的往往是关键角色,上面的几道例题就是要抓住算术平方根及其被开方数都是非负数的破题;比如很多同学对于例3这类题不知从何入手,但只要抓住本题是二次根式构建的,从被开方数是非负数这点入手,就可以隐藏在其中的a 的值挖出来,从而使问题得以解故④正确;根据垂直平分线的判定并结合图象可知EF是线段BC的垂直平分线,⑤正确故选①④⑤点评:几何的相关计算中往往要通过二次根式的计算或化简来解决不在少数,是中考和各类考试的热点考题;这类题型把二次根式的计算或化简和勾股定理即其它几何知识很好结合在一起考察,是数形结合等思想方法较好体现。

这类题型还很容易与函数及其图象结合在一起。

end。

2024八年级数学上册期末复习3二次根式3常考题型专练习题课件新版北师大版

2024八年级数学上册期末复习3二次根式3常考题型专练习题课件新版北师大版

1
2
3
4
5
6
7
8
类型3利用 ≥0求最值
6. 当 x 取何值时, + +3的值最小?最小值是多少?
解:∵ + ≥0,∴当 + =0,即当 x =-
时, + +3的值最小,最小值是3.
1
2
3
4
5
6
7
8


类型4利用二次根式的非负性解决代数式化简求值问题
7. 等式 ( − ) + ( − ) = − - − =0恒成
所以 − - − + = − - ( − ) =
− - − = y -3- y +1=-2.
1
2
3
4
5
6
7
8
类型2利用 ≥0求代数式的值或平方根
4. [2024十堰实验中学月考]若 + + +|2 a - b +1|
=0,则( b - a )2 024等于(
当 b =3时,此式的值最大,即 S 最大,最大值为 =
2 .
1
2
3
4
5
6
有意义,
∴ m -4≥0,即 m ≥4.
当 m ≥4时, ( − ) + ( − ) =( m -3)+( m -
4)=2 m -7.
1
2
3
4
5
6
题型3利用二次根式的性质进行计算
4. (1)设 = a , = b ,试用含 a , b 的代数式表示
.
解:(1) =6 =6
立,且 x , y , a 互不相等,求
1
2

二次根式计算专题——30题

二次根式计算专题——30题

二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(3)(3)2732π++-+- 【答案】(1)22; (2) 643- 【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案. (2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+- 22(36)(42)=-=54-32=22.(2)20(3)(3)2732π++-+-313323=+-+-643=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:2051123525532335=-⨯32=-1=;(2)1(62)34x x x÷62)3x x x x =÷ (3)3x x x =÷3x x =13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0==⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简.11.计算:(1)(2)()020********π----【答案】(1)1+(2)3-.【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1)(1==(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|+-+-.【答案】1.【解析】0(2013)|-+-1=+1=.考点:二次根式化简.14.计算12)824323(÷+-【答案】2-.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:???=- 考点: 二次根式的混合运算.15-2-. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.==- 考点: 二次根式的运算.16.化简:(1)83250+ (2)2163)1526(-⨯-【答案】(1)92;(2)- 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3+(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1-+ 【答案】17.【解析】,运用平方差公式计算1)(1+,再进行计算求解.181-- =17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-.【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:① 01 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷ ⎝⎝.1a 2a 63⎛-=-⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π==.(2)((()2344951675+--=+--=.考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(2) (3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。

初中数学八下《二次根式》常考练习题及参考答案与解析(人教版)

初中数学八下《二次根式》常考练习题及参考答案与解析(人教版)

《二次根式》常考练习题及参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+43.(2019春•徐州期末)下列计算正确的是()A.B.C.D.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3 5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±46.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.37.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4 10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.211.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4 12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣515.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.025.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣227.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣128.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=330.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±1131.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.2033.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.234.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.1535.(2019春•许昌期末)已知x=+1,y=﹣1,则x2+xy+y2的值为()A.10 B.8 C.6 D.436.(2014•张家港市模拟)已知实数x,y满足x+y=﹣2a,xy=a(a≥1),则的值为()A.a B.2a C.a D.237.(2012秋•富顺县校级月考)若实数x、y满足x2+y2﹣4x﹣2y+5=0,则的值是()A.1 B.+C.3+2D.3﹣238.(2013•宁波自主招生)设等式在实数范围内成立,其中a、x、y是三个不同的实数,则的值是()A.3 B.C.2 D.39.(2019春•西湖区校级月考)如果f(x)=并且f()表示当x=时的值,即f()==,f()表示当x=时的值,即f()=,那么f()+f()+f()+f()+的值是()A.n B.n C.n D.n+40.(2019秋•天心区校级期末)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)二、填空题(共30小题)41.(2019春•曲靖期末)若是一个正整数,则正整数m的最小值是.42.(2018秋•杨浦区期中)计算:=.43.(2019•聊城二模)计算﹣的结果是.44.(2019春•东至县期末)与最简二次根式是同类二次根式,则m=.45.(2017秋•南开区期末)二次根式与的和是一个二次根式,则正整数a的最小值为;其和为.46.(2016春•寿光市期末)若最简二次根式与是同类二次根式,则a =.47.(2013秋•罗平县校级期中)等式=成立的条件是.48.(2012•山西模拟)若规定符号“*”的意义是a*b=ab﹣b2,则2*()的值是.49.(2015秋•达州校级月考)设的整数部分为a,小数部分为b,则的值等于.50.(2015•鄂州)若使二次根式有意义,则x的取值范围是.51.(2019•岳池县模拟)要使代数式有意义,x的取值范围是.52.(2018秋•松桃县期末)若代数式有意义,则实数x的取值范围是.53.(2018•陇南)使得代数式有意义的x的取值范围是.54.(2019春•西湖区校级月考)已知y=+8x,则的算术平方根为.55.(2014•吴江市模拟)设a=,b=2+,c=,则a、b、c从小到大的顺序是.56.(2013秋•南通月考)在下列二次根式,中,最简二次根式的个数有个.57.(2013春•阳谷县期末)若和都是最简二次根式,则m=,n=.58.(2012秋•集贤县期中)若两个最简二次根式与可以合并,则x=.59.(2018•皇姑区二模)化简的结果是.60.(2014秋•慈利县校级期末)若m<0,化简2n=.61.(2015春•崆峒区期末)已知a,b,c为三角形的三边,则=.62.(2018春•襄城区期中)化简的结果为.63.(2019春•睢县期中)已知a,b,c为三个整数,若,,,则a,b,c的大小关系是.64.(2013•江都市一模)若二次根式=4﹣x,则x.65.(2018秋•牡丹区期末)若的整数部分是a,小数部分是b,则a2+(1+)ab=.66.(2019春•江汉区期末)已知xy=2,x+y=4,则+=.67.(2019秋•兰考县期中)当a<﹣b<1时,化简÷的结果为.68.(2013•沙市区一模)已知m=1+,n=1﹣,则代数式的值为.69.(2011•内江)若m=,则m5﹣2m4﹣2011m3的值是.70.(2019春•成武县期末)如图,在矩形ABCD中,不重叠地放上两张面积分别是5cm2和3cm2的正方形纸片BCHE和AEFG.矩形ABCD没被这两个正方形盖住的面积是.三、解答题(共30小题)71.(2019春•伊通县期末)计算:×﹣(+)(﹣)72.(2016•夏津县自主招生)计算:.73.(2015春•赵县期末)化简:(1);(2).74.(2018春•新泰市期末)计算(1)(2﹣1)2+(+2)(﹣2)(2)(﹣2)×﹣6.75.(2019秋•浦东新区校级月考)已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.76.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?77.(2014秋•石鼓区校级期中)若3,m,5为三角形三边,化简:﹣.78.(2012秋•罗田县期中)化简求值:已知:x=,求x2﹣x+1的值.79.(2013秋•崇阳县期末)阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.80.(2018秋•新华区校级月考)阅读下列解题过程:;请回答下列问题:(1)观察上面的解题过程,化简:①②(2)利用上面提供的解法,请计算:.81.(2019秋•长宁区期中)计算:2÷•.82.(2014春•巢湖市月考)已知x为奇数,且,求的值.83.(2013秋•婺城区校级月考)若代数式有意义,则x的取值范围是什么?84.(2019秋•景县期末)已知y=+﹣4,计算x﹣y2的值.85.(2018春•黄冈期中)若a,b为实数,a=+3,求.86.(2013秋•仪征市期末)某同学作业本上做了这么一道题:“当a=时,试求a+的值”,其中是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是否正确,说出你的道理.87.(2019秋•兰考县期中)若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.88.(2018春•罗平县期末)已知实数a,b,c在数轴上的位置如图所示,化简|a|﹣+﹣.89.(2019春•黄石期中)已知a,b,c为实数且c=,求代数式c2﹣ab的值.90.(2011秋•东台市校级期中)(1)化简:•(﹣4)÷(2)已知x=﹣1,求x2+3x﹣1的值.91.(2013•金湾区一模)观察下列各式及证明过程:(1);(2);(3).验证:;.a.按照上述等式及验证过程的基本思想,猜想的变形结果并进行验证;b.针对上述各式反映的规律,写出用n(n≥1的自然数)表示的等式,并验证.92.(2014春•陕县校级月考)已知:x=,求x2+的值.93.(2017春•江津区期中)已知x=﹣2,y=+2,求:(1)x2y+xy2;(2)+的值.94.(2019春•潮南区期末)已知a=,求的值.95.(2019春•鞍山期末)已知:,,求代数式x2﹣xy+y2值.96.(2015春•饶平县期末)先化简,再求值:•,其中.97.(2017春•黄冈期中)化简求值:,求的值.98.(2014春•霸州市期末)先化简,后求值:,其中.99.(2019春•襄州区期末)先化简,再求值:(+b),其中a+b=2.100.(2015春•重庆校级期末)先化简,再求值.,其中.参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.【知识考点】二次根式的定义.【思路分析】根据二次根式的定义作出选择:式子(a≥0)叫做二次根式.【解答过程】解:A、是三次根式;故本选项符合题意;B、被开方数﹣10<0,不是二次根式;故本选项不符合题意;C、被开方数a2+1>0,符合二次根式的定义;故本选项符合题意;D、被开方数a<0时,不是二次根式;故本选项不符合题意;故选:C.【总结归纳】本题主要考查了二次根式的定义.式子(a≥0)叫做二次根式,特别注意a≥0,a是一个非负数.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+4【知识考点】二次根式的定义.【思路分析】直接利用二次根式的定义分别分析得出答案.【解答过程】解:A、3﹣π<0,则3﹣π不能作为二次根式被开方数,故本选项不符合题意;B、a的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;C、a2+1一定大于0,能作为二次根式被开方数,故本选项符合题意;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;故选:C.【总结归纳】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.3.(2019春•徐州期末)下列计算正确的是()A.B.C.D.【知识考点】二次根式的加减法.【思路分析】结合选项根据二次根式的加减法的运算法则求解即可.【解答过程】解:A、﹣=2﹣=,故本选项符合题意;B、+≠,故本选项不符合题意;C、3﹣=2≠3,故本选项不符合题意;D、3+2≠5,故本选项不符合题意.故选:A.【总结归纳】本题考查了二次根式的加减法,解答本题的关键是掌握其运算法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3【知识考点】二次根式的加减法.【思路分析】原式各项合并得到结果,即可做出判断.【解答过程】解:A、2+不能合并,故本选项不符合题意;B、5﹣=4,故本选项不符合题意;C、5+=6,故本选项符合题意;D、+2不能合并,故本选项不符合题意,故选:C.【总结归纳】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±4【知识考点】二次根式的加减法.【思路分析】方程左边化成最简二次根式,再解方程.【解答过程】解:原方程化为:=10,合并得:=10∴=2,即2x=4,∴x=2.故选:C.【总结归纳】本题考查了二次根式的加减法.掌握二次根式的加减运算法则是解题的关键,先化为最简二次根式,再将被开方数相同的二次根式进行合并.解无理方程,需要方程两边平方,注意检验算术平方根的结果为非负数.6.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【知识考点】二次根式的加减法.【思路分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答过程】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.【总结归纳】关键是会表示的整数部分和小数部分,再二次根式的加减运算,即将被开方数相同的二次根式进行合并.7.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.【知识考点】二次根式的性质与化简.【思路分析】根据被开方数是非负数,可得a的取值范围,根据二次根式的性质,可得答案.【解答过程】解:由被开方数是非负数,得﹣a≥0.﹣a=×=,故选:B.【总结归纳】本题考查了二次根式的性质与化简,利用被开方数是非负数得出a的取值范围是解题关键.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质1和性质2逐一判断即可得.【解答过程】解:A.=2,故本选项不符合题意;B.()2=2,故本选项符合题意;C.﹣=﹣2,故本选项不符合题意;D.(﹣)2=2,故本选项不符合题意;故选:B.【总结归纳】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质1与性质2.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质列出不等式,解不等式即可.【解答过程】解:∵=4﹣b,∴4﹣b≥0,解得,b≤4,故选:D.【总结归纳】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键.10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.2【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的意义化简.【解答过程】解:若x<0,则=﹣x,∴===2,故选:D.【总结归纳】本题考查了二次根式的性质与化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.11.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4【知识考点】二次根式的性质与化简;二次根式的乘除法.【思路分析】直接利用二次根式的性质分别分析得出答案.【解答过程】解:A、=3,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、÷=,故本选项不符合题意;D、=4,故本选项不符合题意;故选:B.【总结归纳】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.【知识考点】二次根式的乘除法.【思路分析】根据二次根式的性质及二次根式成立的条件解答.【解答过程】解:∵成立,∴﹣>0,即m<0,∴原式=﹣=﹣.故选:D.【总结归纳】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣【知识考点】二次根式的乘除法.【思路分析】直接进行分母有理化即可求解.【解答过程】解:原式===﹣.故选:C.【总结归纳】本题考查了二次根式的乘除法,解答本题的关键是进行分母有理化.14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣5【知识考点】分母有理化.【思路分析】根据平方差公式,可分母有理化,根据实数的大小比较,可得答案.【解答过程】解:b===+,a=+,故选:A.【总结归纳】本题考查了分母有理化,利用平方差公式将分母有理化是解题关键.15.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等【知识考点】实数的性质;分母有理化.【思路分析】求出ab的乘积是多少,即可判断出a与b的关系.【解答过程】解:∵ab=×==1,∴a与b互为倒数.故选:C.【总结归纳】此题主要考查了分母有理化的方法,以及实数的性质和应用,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.【知识考点】最简二次根式.【思路分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答过程】解:A、﹣=﹣,被开方数含分母,故本选项不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故本选项符合题意;C、=4,被开方数含能开得尽方的因数或因式,故本选项不符合题意;D、=2,被开方数含能开得尽方的因数或因式,故本选项不符合题意;故选:B.【总结归纳】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】最简二次根式应满足的条件:①被开方数的因数是整数,因式是整式;②被开方数的因式的指数必须小于根指数2.【解答过程】解:A、不符合上述条件②,即=2,不是最简二次根式,故本选项不符合题意;B、符合上述条件,是最简二次根式,故本选项符合题意;C、不符合上述条件①,即=,不是最简二次根式,故本选项不符合题意;D、不符合上述条件②,即=|x|,不是最简二次根式,故本选项不符合题意.故选:B.【总结归纳】此题考查了最简二次根式应满足的条件.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.【知识考点】最简二次根式.【思路分析】根据二次根式的性质化简,根据最简二次根式的概念判断.【解答过程】解:A、=,不是最简二次根式,故本选项不符合题意;B、,是最简二次根式,故本选项符合题意;C、=|2a+1|,不是最简二次根式,故本选项不符合题意;D、=,不是最简二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查的是最简二次根式的概念、二次根式的性质,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行判断,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答过程】解:A、=|a|,可化简,不是最简二次根式,故本选项不符合题意;B、==,可化简,不是最简二次根式,故本选项不符合题意;C、==3,可化简,不是最简二次根式,故本选项不符合题意;D、=,不能开方,符合最简二次根式的条件,故本选项符合题意.故选:D.【总结归纳】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】先化简二次根式,再根据被开方数相同进行解答即可.【解答过程】解:A、不能与合并,故本选项不符合题意;B、=3,可以与合并,故本选项符合题意;C、=,不能与合并,故本选项不符合题意;D、=2,不能与合并,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式【知识考点】同类二次根式.【思路分析】根据同类二次根式的概念判断.【解答过程】解:A、被开方数不同的二次根式可以是同类二次根式,故本选项不符合题意;B、化简后被开方数完全相同的二次根式才是同类二次根式,故本选项不符合题意;C、同类二次根式不一定都是最简二次根式,故本选项不符合题意;D、两个最简二次根式不一定是同类二次根式,故本选项符合题意;故选:D.【总结归纳】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】根据同类二次根式的定义逐个判断即可.【解答过程】解:=2,A、不能和合并为一个二次根式,故本选项不符合题意;B、能和合并为一个二次根式,故本选项符合题意;C、不能和合并为一个二次根式,故本选项不符合题意;D、=5不能和合并为一个二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,能熟记同类二次根式的定义是解此题的关键.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定【知识考点】二次根式有意义的条件;二次根式的性质与化简.【思路分析】首先求出x的取值范围,再利用绝对值以及二次根式的性质化简求出即可.【解答过程】解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.【总结归纳】本题主要考查了二次根式与绝对值的性质,正确化简二次根式是解题关键.24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.0【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答过程】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【总结归纳】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.25.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.【知识考点】数轴;二次根式有意义的条件.【思路分析】根据二次根式中的被开方数必须是非负数,否则二次根式无意义.【解答过程】解:在数轴上,右边的数总大于左边的数,∴a>b,即a﹣b>0,根据二次根式的性质,被开方数大于等于0,可知二次根式有意义.故选:B.【总结归纳】本题主要考查了二次根式的意义和性质,掌握和理解二次根式的概念和性质是解题的关键.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣2【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式有意义的条件分析得出答案.【解答过程】解:代数式有意义,故x+2>0,解得:x>﹣2.故选:C.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.27.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣1【知识考点】二次根式有意义的条件.【思路分析】依据二次根式有意义的条件即可求得k的范围.【解答过程】解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤﹣≤0 ②①+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选:C.【总结归纳】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.28.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.【知识考点】二次根式有意义的条件.【思路分析】根据有理数的性质以及平方数非负数对各选项分析判断后利用排除法求解.【解答过程】解:A、x≤0时,﹣6x≥0,有意义,故本选项不符合题意;B、x=0时,﹣x2=0,有意义,故本选项不符合题意;C、x为任何数,﹣x2﹣1≤﹣1,无意义,故本选项符合题意;D、﹣x2≥﹣1时,﹣x2+1≥0,有意义,故本选项不符合题意.故选:C.【总结归纳】本题考查了二次根式有意义的条件,判断出各选项中被开方数的正负情况是解题的关键.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=3【知识考点】二次根式的混合运算.【思路分析】根据二次根式的运算法则对每一项分别进行判断,即可得出正确答案.【解答过程】解:A、﹣=2﹣=,故本选项不符合题意;B、2+3=5,故本选项不符合题意;C、÷=,故本选项符合题意;D、(+1)(﹣1)=2﹣1=1,故本选项不符合题意;故选:C.【总结归纳】本题考查了二次根式的运算,关键是熟练掌握二次根式的运算法则,注意把二次根式进行化简.30.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±11【知识考点】二次根式的混合运算.【思路分析】根据二次根式混合运算法则,一一判断即可.【解答过程】解:A、2﹣=,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、==,故本选项不符合题意;D、=11,故本选项不符合题意;故选:B.【总结归纳】本题考查二次根式的混合运算,乘法公式等知识,解题的关键是熟练掌握二次根式的化简以及混合运算法则,属于中考常考题型.31.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+【知识考点】二次根式的混合运算.【思路分析】先利用积的乘方得到原式=[(﹣2)(+2)]2018•(+2),然后根据平方差公式计算.【解答过程】解:(2﹣)2018(2+)2019=[(﹣2)(+2)]2018(+2)=(5﹣4)2018(+2)=1×(+2)=2+.故选:D.【总结归纳】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.20【知识考点】二次根式的混合运算.【思路分析】根据题目所给的运算法则进行求解.【解答过程】解:∵3>2,∴3※2=﹣,∵8<12,∴8※12=+=2×(+),∴(3※2)×(8※12)=(﹣)×2×(+)=2.故选:B.【总结归纳】本题考查了二次根式的混合运算,解答本题的关键是根据题目所给的运算法则求解.33.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.2【知识考点】二次根式的化简求值.【思路分析】首先把原式变为,再进一步代入求得答案即可.【解答过程】解:∵a=3+,b=3﹣,∴a+b=6,ab=4,∴===2.故选:C.【总结归纳】此题考查二次根式的化简求值,抓住式子的特点,灵活利用完全平方公式变形,使计算简便.34.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.15【知识考点】二次根式的化简求值.。

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型资料编号:一、二次根式的定义形如.a( a >0)的式子叫做二次根式.其中“”叫做二次根号,a叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围;(2)判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式.(3)形如m・.a ( a > 0)的式子也是二次根式,其中m叫做二次根式的系数,它表示的是:m- a m a ( a > 0);(4)根据二次根式有意义的条件,若二次根式、、A B与.B A都有意义,则有A B.二、二次根式的性质二次根式具有以下性质(1)双重非负性:..a >0, a >0;(主要用于字母的求值)(2)回归性:...a2 a( a > 0);(主要用于二次根式的计算)(3)转化性:a2 a a(a (主要用于二次根式的化简)a(a 0)重要结论:(1)若几个非负数的和为°,则每个非负数分别等于0.若 A B2C 0,贝卩 A 0,B 0,C 0.应用与书写规范:V A B2.C 0,A > 0, B2>0,、C > 0A 0,B 0,C 0.该性质常与配方法结合求字母的值.(2)•. AB2 AB A BA B ;主要用于二次根式的化简.A2 B A 0(3)A国—,其中 B > 0;<A2 B A 0该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的.2(4) A B A2 B,其中 B > 0.该结论主要用于二次根式的计算.例1.式子〒二在实数范围内有意义,则x的取值范围是 ____________ .寸x 1分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0.解:由二次根式有意义的条件可知:x 1 0,二x 1.例2.若x,y为实数,且y -x 1 J x丄,化简:丄」.2 y 1分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式A B与B A都有意义,则有A B .解:•/ x 1 > 0, 1 x > 0x》1, x W 1/. x 1• 1 1 ,…y 0 0 12 2习题1.如果V3C有意义,则实数a的取值范围是_____________ .习题 2.若y 4^32,则x y_____________ .习题3.要使代数式(P 有意义,则x的最大值是 _______________ .习题4.若函数y 丄空,则自变量x的取值范围是.x习题5. 已知b J3a 12 <8 2a 1,贝廿a b__________________ .例 3. 若.a 1 b2 4b 4 0 ,贝卩ab 的值等【】(A) 2 (B) 0 (C) 1 (D) 2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:T1 b2 4b 4 0/. a 1 b 2 20T a 1 > 0, b 2 2> 0二 a 1 0,b 2 0「• ab 1 2 2.选择【D ] 例4.无论x取任何实数,代数式x2 6x m都有意义,则m的取值范围是 __________ .分析:无论x取任何实数,代数式.x2 6x m都有意义,即被开方数x2 6x m > 0恒成立,所以有如下两种解法:解法一:由题意可知:x2 6x m > 0T x2 6x m x 3 2 m 9 > 0--x 3 > 9 m•/ x 3 2> 0/. 9 m < 0, A m > 9.解法二:设y x2 6x mT•无论x取任何实数,代数式x2 6x m都有意义A y x2 6x m》0恒成立即抛物线y x2 6x m与x轴最多有一个交点2A 6 4m 36 4m < 0解之得:m > 9.例5.已知a,b,c是厶ABC勺三边长,并且满足、、a 6 8 b c2 100 20c,试判断△ ABC勺形状.分析:非负数的性质常和配方法结合用于求字母的值解:T a 6 8 b c2100 20ca 6b 8 c220c 100 0.a 6 b 8 c 10 20T a 6 > 0, b 8 > 0, c 10 2> 0二 a 6 0, b 8 0,c 10 0二 a 6, b 8, c 10T a2 b26282100,c2102100•••△ ABC为直角三角形.习题6.已知实数x,y满足x 4,Y 8 0,则以x,y的值为两边长的等(A) 20或16 (B) 20解:(1 )-6 2 6;(D )以上答案均不对习题7.当x ________________ 时,<9x 1 1取得最小值,这个最小值为习题8.已知V 我4韶X?,则x y 的值为x 2习题9.已知非零实数a,b 满足.a 2 8a 16 b 3 . a 5 b 2 1 4 a ,求a b1的值.提示:由 a 5 b 2 1 > 0,且 b 2 1 0可得:a 5》0, — a > 5.例6•计算:二次根式的计算.(C ) 16 —2(1)6 ;------------- 2(2)2x 3 ;(3)3,3分析:本题考查二次根式的性质_ 2 ______________________________________________________ . ”.a a ( a > 0).该性质主要用于_ ______ 2(2)、2x 3 2x 3;-2 - 2(3)3J - 3 29 - 6. ^3丫 3 3注意:A. B 2 A 2 B ,其中B > 0.该结论主要用于二次根式的计算例7.化简:I2(1)< 252 ; ( 2)10; ( 3). X 2 6x 9 x 3 .¥7二次根式的化简. 解:(1).25225 25;10 ;7;二原式 3 x .和绝对值的化简.分析:本题考查二次根式的性质:a 2aaa(a 0)0).该性质主要用于(2)注意:结论:.A B 2A BABA B A A.该结论主要用于二次根式10 7(3) x 2 6x 932例10.已知0 a 1 ,化简:a ; 2例8.当、、x 3有意义时,化简:x 5 . x 22.. 1解:•••二次根式、x 3有意义-----2'xx 5 x 2 1xx 5 x 2 x 13x 2例9. 化简:i.2一 x 2分析:,x 2 2x 2,继续化简需要x 的取值范围需要挖掘题目本身的隐含条件 「X 3的被开方数 ,而取值范围的获得x 3为非负数.解:由二次根式有意义的条件可知:* 3 >----------- 2 --------------------------x 3 x 2x 3 x 2 x 3 x 22x 5221解:由函数y m 3x n 2的图象可知: m 3 0, n 2 0m 3,n 2m n | :n 2 4n 4 |m 1m n..n 2 2 m1mn n2 m 1 m n 2 n m 1m n 2 n m 1解:•/ 0 a 1• r~ 1…、.a —.a2肓I.a 1 ■- a1 a 1 .a例11.已知直线y m 3 x n 2 ( m,n 是常数),如图(1),化简m| *n 2 4n 4 m 1 .x例12.已知a,b,c在数轴上的位置如图(2 )所示,化简:ac a 0图(2)解:由数轴可知:c a 0 b二 a a c $ 、c a $ . b2习题10.要使..x 2 2 x 2 2 ,x的取值范围是习题11.若.a2 a 0,则a的取值范围是习题12.习题13.计算:〉2习题14. 若:.x 3 2x 3成立,则x的取值范围是15. 下列等式正确2 __________________________________________________________ _____ _(A )品 3(B )厂〒 3___ 2(C )-..33 3(D )、、3 3习题18.化简:厂2卫 _________________ .习题 19.若 Ja 2 3a 1 b 2 2b 1 0,则a 2 丄 b ______________________a2 '2~习题20.已知1 a 0,化简{ a 14J a 14得 -----------16.下 列 各 式成 立 的 是(A )(B )32 3(C )(D), 32 42 7习题17.计算:2、72习题21.实数a,b,c 在数轴上对应的点如图3)所示,化简代数式: a 2 2a 1 b c | ::a 2 2ab b 2的【 】 结果为(A ) 2b c 1(B ) 1(C) 2a c 1 (D) b c 11 212例13.把a 1中根号外的因式移到根号内,结果是Y a【 】(A ) . a( B ) .. a ( C ) . a( D )a分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的 系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符 号.有如下的结论:解:由二次根式有意义的条件可知:1 0a图(3)习题22.化简:.4x 2 4x 1________ 2“2x 3A-BA 2B A 0 A 2B A 0,其中B > 0.1 a 1aa .选择【D ]习题23.化简2「工得\a 2 ----------------------三、二次根式的乘法一般地,有:a b ab ( a > 0, b > 0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a >0, b > 0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:m.. a n b mn._ ab ( a > 0, b > 0);(4)二次根式的乘法公式可逆用,即有:' ab a ' b ( a》0, b》0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14.若.x x 6 .. x x 6 成立,则【】(C) x > 0 (D) x为任意实数(A) x》6(B) 0w x w 63分析:本题考查二次根式乘法公式成立的条件:•. a .b . ab ( a > 0, b > 0)解:由题意可得解之得:x > 6.选择【A J .例15.若Vx2 i jx i 成立,则x的取值范围是___________________分析:本题考查二次根式乘法公式逆用成立的条件:ab - a0, b >0)解:由题意可得解之得:x > 1.例16.计算:..2a :;a ( a >0) 解:2a 8a .2a 8a >2■. :a厂a》0)习题24.计算:J-叼 ______________ .习题25. 已知2 213(A ) 5 m 6(C )5 m 4(D )6 m 5习题26.化简 辺 的结果是 __________ .四、二次根式的除法般地,有:(1) 以上便是二次根式的除法公式,要特别注意公式成立的条件(2) 二次根式的除法公式用于二次根式的计算;(3) 二次根式的除法公式可写为:•. a . a b ( a > 0, b 0 )(4) 二次根式的除法公式可逆用,即有:公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变 五、最简二次根式符合以下条件的二次根式为最简二次根式(B) 4 m 5:a(a》o,b(1)被开方数中不含有完全平方数或完全平方式(2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化.如对寺进行分母有理化,过程为:〒2 2 2 2;对、233进行42分母有理化,过程为:丽 3 、2 3 -、23 .2 3 27 '由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17•计算:(1 ;(2)8占23 ;(3)J28xy2 J7『.解:(1)54 54.9 3;(2)83 3 228338 8 3 8 8 3 3 8 9 8 3(2)®2 3 23 8:2 3、3 3 -2 3 3-2 8 3 “6 3 ;2;v4x 2丘.3 - 28xy2...7y2 28xy2 7y2例18.化简:(1) 5;(2) .、0.4;(3) ,.a3 6a2 9a ( a 3).Y 6解:(1) 5i5'-5 6 30 .解:(1)'. 6 .6 .6、6 可;(—5; ¥;(3)V a 3/. .a3 6a2 9a a a2 6a 9 、aa 32 a 3 , a注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略以简化计算.例19.式子$ —旦成立的条件是\x 2 v x 2 ----------------------分析:本题求解的是x的取值范围,考查了二次根式除法公式逆用成立的条件:a a\ b vb(a > 0, b 0 )解:由题意可得解之得:x 2.2 4-16 2 4,2 4 3、-2例20.计算:⑵201解:(1)3 . 752 2 .275 ■. 25 ~5(2)(3) 解法1:32'.8.232 8.16 42 24 22.解法 2: 32.82:、22 、8 、2 ■::2 」2• 64 、162二次根式的乘除混合运算 例21.计算:222W ;(2)■ 12 .27.18.解:(〔)原式竝号芒2£18 3(2原式1218f --- 1 O 24、8 2.2.;27■ 3习题27.下列计算正确的是【】(A)J2 2.3(B) . 3\ 22(C)、、x3x.. x(D). x2x习题28.计算:727 J8黒.\ 3 \ 2 -------------------习题29.计算:^r6x y2\卜.\ 3习题30.直线y打x 1与x轴的交点坐标是____________ .习题31.如果ab 0, a b 0 ,那么下面各式:①,a a;②.a . b 1;③ ab ,a b.-b . b■. b . a,b其中正确的是__________ (填序号).习题32.若ab 0,则化简J硬的结果是 _____________ .习题33.计算:(1)■. 2 1 3.28 5 22;(2)1 18 8 1〈41\ 2 V 7 4 * 36 ^2X 3 4x 4 n3X 1 X 1 X 1 X 1X 12x 2X 2 x 2 X 1X 1 X 22X 2X2当X2 2时原式2 2 2 2 4222 2 2J 、J3X例也先化简,再求值:耳X 1=,其中X 2 *-习题34.先化简,再求值:占a 1 a 2 2a 1时其中 a 2 1.2 2x y2 2X 2xy y习题36.下列根式中是最简二次根式的是(B) 3(C) .9 (D) 、12例23.观察下列各式:112 .313 .41 、21 \2 1 2■ 3 .2;卅4 ?3;(1)请利用上面的规律直接写出 199 .100的结果(2)请用含n ( n为正整数)的代数式表示上述规律,并证明;(3)计算:丿I 1 V2017■ 2016-2017分析:本题考查分母有理化2. 100、99 10 3 11 ; •、99 .100(2).2017 1 . 2017 12017 1 2016七、同类二次根式如果几个最简二次根式的被开方数相同,那么它们是同类二次根 式•同类二次根式的判断方法:(1) 先化简二次根式;(2) 看被开方数是否相同;(3) 定结果:若相同,则它们是同类二次根式;若不相同,则不是.同类二次根式的合并方法几个同类二次根式相加减,将它们的系数相加减,二次根式保持解:(1) (3)原式 2 1,3 ,2.3 .2017 ,2016 1 .. 2017习题37.化简:二1、9 、8不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24.计算:(1).8 -.18 12;(2)• 27 ■. 12 . 45 .解:(1)原式2、2 3-2 2..3 5 2 2 3 ;(2)原式 3 3 2.3 3 5 ,3 3.5 .注意:不是同类二次根式不能合并例25 •计算:..25 32 <18.2解:原式4.2 3、\2 .227、22例26 •计算:(1)三二虫二T V T V解:(1)原式3 24 91936(2)原式 5 7 8 463习题35.先化简,再求值:--x 12。

《二次根式》专题专练(一)(4个专题)

《二次根式》专题专练(一)(4个专题)
(2)若再以OA2为边按逆时针方向作等边△OA2B2,A2B2与OB1相交于点A3,按此作法进行下去,得到△OA3B3,△OA4B4,…,△OAnBn(如图1).求△OA6B6的周长.
分析:本题先根据图形进行计算,再探究规律.
解:(1) ;
(2)依题意: ;


依此类推 ,所以△ 的周长为 .
点评:数与形是一个问题的两个方面,数无形不直观,形缺数难入微,数形结合既有助于找到解答思路,也常使解答简捷,数形结合的关键在于几何图形转化为数的知识去探索规律,本题就体现了这种数与形的统一与和谐!
3.考查同类二次根式的概念
例4.(2007年眉山市)下列二次根式中与 是同类二次根式的是( ).
A. B. C. D.
分析:只要将所给式子化成最简二次根式,再看是否与2相同即可.
解:因为 ; ; ; ,故选D.
点评:判断是否与同类二次根式关键是化成最简二次根式以后,被开方数相同那就是同类二次根式,重点考查对概念的理解和把握情况.
点评:判断是否是二次根式的条件是 ≥0),要特别注意 ≥0这个条件,本题重点考查对二次根式概念的理解.
例2.(2007年成都市: ≥0,又 ≥0,再由非负数的性质就可以求出a,b的值.
解:由已知条件可得:a=2,b= -5,所以a+b=2-5= -3.
专练四:
1.写出和为6的两个无理数(只需写出一对)
2.借助计算器可以求出 , , , ,……仔细观察上面几道题中的计算结果,试猜想: =。
3.动手操作题:用计算器探索:已知按一定规律排列的一组数:1, , ,…, , 。如果从中选出若干个数,使它们的和大于3,那么至少需要选个数。
4.阅读下列解题过程,并按要求填空:

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型二次根式知识点总结及常见题型一、二次根式的定义形如$a\sqrt{a}$的式子叫做二次根式。

其中$\sqrt{a}$叫做二次根号,$a$叫做被开方数。

1) 二次根式有意义的条件是被开方数为非负数。

据此可以确定字母的取值范围。

2) 判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“$\sqrt{}$”;②被开方数是否为非负数。

若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式。

3) 形如$m\sqrt{a}$的式子也是二次根式,其中$m$叫做二次根式的系数,它表示的是:$m\sqrt{a}=m\cdot\sqrt{a}$。

4) 根据二次根式有意义的条件,若二次根式$A-B$与$B-A$都有意义,则有$A=B$。

二、二次根式的性质二次根式具有以下性质:1) 双重非负性:$a\geq0$,$\sqrt{a}\geq0$。

(主要用于字母的求值)2) 回归性:$(\sqrt{a})^2=a$,其中$a\geq0$。

(主要用于二次根式的计算)begin{cases}sqrt{a}(a\geq0)\\sqrt{a}(a\leq0)end{cases}$(主要用于二次根式的化简)重要结论:1) 若几个非负数的和为0,则每个非负数分别等于0.若$A+B^2+C=0$,则$A=0$,$B=0$,$C=0$。

应用与书写规范:$\because A+B^2+C=0$,$A\geq0$,$B^2\geq0$,$C\geq0$,$\therefore A=0$,$B=0$,$C=0$。

该性质常与配方法结合求字母的值。

2) $\begin{cases}A-B(A\geq B)\\frac{(A-B)^2}{A+B}\end{cases}$(主要用于二次根式的化简)3) $AB=\begin{cases}A\cdot B(A>0)\\A\cdot B(A<0)\end{cases}$,其中$B\geq0$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式常考题型————————————————————————————————作者:————————————————————————————————日期:二次根式§1.1二次根式的概念(1)二次根式的定义:像24,3,2a b s +-这样表示的算术平方根,且根号内含字母的代数式叫做二次根式。

为了方便,我们把一个数的算术平方根(如13,2)也叫做二次根式。

……即一个非负数的算术平方根。

(注意:二次根式根号内字母的取值范围必须满足被开方式(数)大于或等于零(非负)。

题型:类型之一:二次根式的定义1.判断,下列各式中哪些是二次根式?7;21;yx 2;22x y +;3-;a ;a (a <0=;2.下列各式是二次根式吗?2、32、2-、12+a 、)0(<b b 、24b ac -.3.在式子()12,02,1,42223+-<--+x x x x a y x ,,4,x 中,是二次根式的有 ( )A.2个B.3个 C .4个 D .5个总结:判断一个式子是二次根式要满足:① 二次根式都含有二次根号"";② 在二次根式中,被开方数a 必须满足0≥a ,当0<a 时,根式无意义; ③ 在二次根式中,a 可以是数也可以是一个代数式; ④ 二次根式)0(≥a a 是a 的算术平方根,所以0≥a 。

类型之二:确定二次根式中被开方数所含字母的取值范围 1.求下列二次根式中字母a 的取值范围: ①3a -;②112a -;③2(3)a -;④3-x ;⑤x 423-;⑥x 5-;⑦1||+x 。

2.当下列各题的字母取何值时,下列各式为二次根式: (1)22b a + (2)x 3- (3)x21 (4)x--233.当x 取什么实数时,下列各式有意义?⑴x -; ⑵()212-x ;⑶x x -⋅-21; ⑷()()x x --21;⑸5124--x x ; ⑹311x--.§1.2二次根式的性质1.(a )2=a(a ≥0) 解二次根式问题的基本途径——通过平方,去掉根号有理化a (a ≥0)2.2a =|a|= 揭示了与绝对值的内在一致性 -a (a <0) 3.ab =a ·b (a≥0,b ≥0) 4.a a bb=(a≥0,b≥0),给出了二次根式乘除法运算的法则5.若a>b >0,则a >b >0,反之亦然,这是比较二次根式大小的基础运用二次根式性质解题应注意:(1)每一性质成立的条件,即等式中字母的取值范围;(2)要学会性质的“正用”和“逆用”,既能够从等式的左边变形到等式的右边,也能够从等式的右边变形到等式的左边。

题型 类型之一1.求下列二次根式的值:(1)2)3(π-; (2)122+-x x ,其中3-=x .2.计算:(1)25;ﻩﻩ(2)2)5.1(-;(3)2)3(-a (a <3);ﻩ(4)2)32(-x (x<23) 类型之二1.化简:;);();();()(72495374222512112⨯⨯ 2.先化简,再求出下面算式的近似值(精确到0.01) ()()。

);();()(5.0001.034911224181⨯-•-3. (1)已知443422-=++++-c c b a ,求cba)(的值.(2)若0<a ,则=++332a a a4、a 、b 、c 在数轴上的位置如下图所示,则=+--22)()(c b b a5、若0<a ,则=+-4)1(2aa6、若b a b a -=2,则a ,b7、化简:(1)2342xx x +- ( 0 < x < 1 ) (2)aa a a --++-1164162(1< a < 8) 总结:化简的步骤:①先进行观察,寻找平方因数、带分数、处理符号等;②确定运算的顺序,并应用性质进行变形;③作出化简后的结果;④再回顾题目中的要求(精确度等)或适当调整解答的顺序,寻找更为合理的解答方法。

对二次根式化简结果的要求:①根号中不能含有除1以外的平方因数(能开得尽方的因式要尽量开出来);②根号内的结果应该是自然数,即不能含有分母或小数;③分母中不能含有根号。

§1. 3二次根式的运算a ·b =ab (a ≥0,b ≥0)aa bb=(a ≥0,b ≥0)类型之一1.计算:(1)26⨯ ;(2)2271310⨯;(3)795.2101.310⨯⨯ 2、计算:(1)y x 3212÷ (2)20245- (3)231++x x (4)342222c ab c b a ÷ (5)21161÷ (6)ba b a +- (7)2254318÷⋅(8)a ba b a b ab ⨯÷ 类型之二 1、化简2)(b a ab +,当a >0,b>0时,结果为________,当a <0,b <0时,结果为____abc 0____.2、3的倒数是________,相反数是________。

3、13+x 的有理化因式是________。

4、如果75=x ,则x=________。

5、化简:xx 22-=____ ____。

6、若a >0,则a的算术平方根的倒数是________。

7、若a 是无理数,则其倒数是________8、2)2(2x x --的值为________或________。

9、16的平方根的倒数为________. 10、选择题:(1).当a >0,b <0时,下列各式中,正确的是( ). ①ab a b =2)( ②b a ba =22③b b a b ab b a --=+-)(2322 ④a bb a 12= ⑤b aba -=-A.①和④ B .③ C .④ D .⑤ (2).将21++x x 分母有理化正确的是( ).A.21++x x B.)2)(1(++x xC.2)2)(1(+++x x x D.)2)(1(-+x x (3).化简y x+21(x >0)的结果是( ). A.y x x 211+ B.y x +11 C.y x x2211+ D.y x x 21+ (4).等式ba ba --=成立的条件为( ).A.a ≥0,b ≥0 B.a ≥0,b >0 C.a ≤0,b ≤0 D.a ≤0,b <0(5).若242xy x y -=成立,则有( ).A .y ≤0,x≠0 B.y ≤0,x 为任意实数C .y <0,x≠0 D.y ≥0,x ≠0 11、化去根号内的分母(字母表示正数).1.3xy 2.a b 32 3.ab a 264.yx y x -+(x >y >0) 5.m n 983 6.)3(15-+x x x (x>3)总结:乘除法运算一般步骤(1)运用法则,化归为根号内的运算;(2)完成根号内的相乘、除(约分)运算;(3)化简二次根式。

总结解决此类问题的一般步骤:①应用性质,化归为根号内的实数运算;②完成根号内的乘除运算(一般要化得简单);③化简二次根式。

类型之三1.计算:()()()()()312736223363482738-⨯-⋅-÷; ;2.计算()()()22333322,1+-;()()()22322,2+-3.下列计算哪些正确,哪些不正确?并适当地说明理由: ①325+=;②a b a b -=-;③a b a b +=;④()a a b a a b a +=+;⑤1132032a a a a -=-=二次根式的四则混合运算中: ①能化简的先化简;②当化简后被开方数相同时可象合并同类项那样合并;③在二次根式的运算中要注意运用乘法公式和乘法法则,使运算简便。

类型之四()()()()2322223x x x x =---++1已知,求代数式的值。

.2323)2(22的值,求,已知b ab a b a +--=+=(3)已知2=a ,3=b ,求abb a +的值. (4)设a 、b 、c 是实数,若a+b +c=21a ++41b ++62c --14,求a(b+c)+b(c +a)+c(a+b)的值。

本题型主要是先化简后求值的方式进行。

§1. 4综合应用类型之一1. 已知实数a 满足a a a =-+-20092008,求22008-a 的值.2.若,x y 是实数,且21122y x x <-+-+,化简22y y --. 3.在△AB C中,a 、b 、c 是三角形的三边,化简2)(c b a +--2|c-a -b| 4.已知:22816123610x x x x +++-+=,化简:()228212.x x ++-5.若()2230x y -++=,求2xy 的值.6. 若201020092009+-+-=x x y ,求x y -的值.类型之二1.如图,池塘边有两点A 、B,点C 是与BA 方向成直角的AC 方向上的一点,现测得CB=60m,AC=205m 。

请你求出A 、B 两点间的距离。

2.如图所示,有一边长为8米的正方形大厅,它的地面是由黑白完全相同的方砖密铺而成。

求一块方砖的边长.3.如图,在平面直角坐标系中,A (3,-1),B (-2,-1)C (3,1)是三角形的 三个顶点,求BC 的长。

4. 根据据图所示的直角三角形、正方形和等边三角形的条件,求直角三角形的斜边长,正方形的边长,等边三角形的边长。

5. 一艘轮船先向正东方向航行2小时,再向西北方向航行 t小 时。

船的航速是每小时25千米。

试用关于 t 的代数式表示船离出发地的距离;C(3,1) A (3,-1)B (-2,-1)xyO(b -3)cm 22cma cm2cm 23S。

相关文档
最新文档