工业微生物育种

合集下载

第五章 工业微生物诱变育种

第五章 工业微生物诱变育种

株时,应选择多种遗传类型的菌株作为出发菌株比较
稳妥,容易在较短时期内达到育种目的。
8. 菌种代谢特点
了解菌种代谢特点有助于选择有效的出发菌株。 有人曾研究过肌苷酸产生菌的代谢特性,发现肌苷 酸的生物合成过程与肌苷、肌苷酸及核苷酸、磷酸 化酶的活性有关,如果从产生肌苷酸野生型的枯草 杆菌中筛选到降解酶活性低而磷酸化酶活性强的作 为诱变出发菌株,一般都能得到良好的诱变效果。
6. 药品和原材料质量
药品规格和原材料来源不同,都会影响菌种的质量。
四、了解菌种有效产物中的 各种组分在代谢 合成过程中与培养条件的关系
由棘孢小单孢菌(Micromonospora echinopora) 产生的庆大霉素,其中C1是有效的组分; C2是无效
的。在发酵过程中加入适量的磷或蛋白胨以及加大 通 风量都有利于C1的合成;反之,C2的比例就上升。

菌悬液由出发菌株的孢子或菌体细胞与生理盐水或 缓冲液制备而成。对菌悬液的制备有如下的要求:
1、供试菌株的孢子或菌体要年轻、健壮。
细胞要新培养的,细胞生理活性方面既要同步, 又要处在最旺盛的对数期,这样突变率高,重现性也 好。 霉菌孢子浓度约为:106ml-1,放线菌孢子浓度约 为:106~107ml-1。菌悬液通常采用生理盐水制备。如 果用化学诱变剂处理时,应采用相应的缓冲液配制, 以防处理过程中pH变化而影响诱变效果。
1. 对一般出发菌株的要求
(1)从自然界样品中分离筛选出来的野生菌株,虽 然产量较低,但对诱变因素敏感,变异幅度大,
正突变率高;
(2)在生产中使用的,具有一定生产能力,并且在 生产过程经过自然选育的菌株; (3)采用具有有利性状的菌株,如生长速度快、营 养要求低以及产生孢子早而多的菌株;

第七章 工业微生物原生质体育种和原生质体融合

第七章 工业微生物原生质体育种和原生质体融合

4)存在着两株以上亲株同时参与融合形成融
合子的可能性。
5)有可能采用产量性状较高的菌株作融合 亲株。 6)提高菌株产量的潜力较大。 7)有助于建立工业微生物转化体系。
四、细胞融合过程
显微镜下的原生质体融合
融合过程中细胞膜变化

类脂质分子发生扰动和重排 导致细胞桥的形成 细胞质、核相互融合
都需要带有可以识别的遗传标记,如营养缺陷型 或抗药性等
2、原生质体融合的方法

物理法、化学法及生物法 。
原理 增加细胞间的粘附、改变膜的通透性—— 随机结合、融合
(1)物理法——电融合诱导法

在直流电脉冲的诱导下,极化产生偶极子, 彼此靠近,定向排列成串球状。
在直流电脉冲的诱导下,原生质体膜两侧 产生电势,正负电荷相吸,细胞膜变薄, 触发膜的穿孔(质膜瞬间破裂)。 膜之间形成通道,细胞质等得以交换、融 合。


原理与过程



灭活后的病毒颗粒结合到原 生质体表面。两受体细胞开 始凝聚。 两细胞的膜紧密结合。病毒 被膜与受体细胞的浆膜融合 。病毒颗粒周围的膜脱离整 个膜,产生破口,在两细胞 间形成细胞质通道(37℃下 1-2min),通道继续扩大, 病毒颗粒流入细胞质内,细 胞质互相融合。 融合细胞变圆,融合结束。
特点

研究最早的促融剂。 毒性大而使应用受到限制。
(3)化学法

包括PEG诱导、高Ca2+和pH诱导PEG结合诱导等。 聚乙二醇(PEG)是一种多聚化合物,分子式为 H(OHCH2-CH2)nOH)。 PEG诱导:PEG与溶液中自由水结合,高度脱水后 引起原生质体凝聚、扭曲变形、细胞膜连接处发 生融合,形成很小的细胞桥,之后扩大,最终彻

工业微生物基因育种

工业微生物基因育种
工业微生物基因育种
• 引言 • 工业微生物基因育种技术概述 • 工业微生物基因育种的应用 • 工业微生物基因育种的挑战与前景 • 结论
01
引言
主题简介
工业微生物基因育种是一门新兴的生物技术领域,旨在通过 基因工程技术对微生物进行遗传改良,以提高其生产能力和 性能,从而在工业生产中发挥重要作用。
01
03
工业微生物基因育种技术的发展,推动了生物制品、 生物能源、生物材料等领域的创新和应用,为人类社
会的可持续发展提供了有力支持。
04
工业微生物基因育种在提高微生物生产效率、降低生 产成本、减少环境污染等方面发挥了重要作用,为工 业生物技术的发展做出了重要贡献。
对未来研究的建议
深入研究工业微生物基因育种的机制 和原理,探索更高效的基因编辑技术 和方法,提高育种效率和成功率。
工业微生物基因育种涉及多个学科领域,包括分子生物学、 遗传学、生物化学和微生物学等,是现代生物技术的重要组 成部分。
研究背景和意义
随着生物技术的迅速发展,工业微生 物基因育种在许多领域中得到了广泛 应用,如生物能源、生物材料、生物 制药和化学品生产等。
此外,工业微生物基因育种还有助于 推动相关产业的发展,促进经济增长 和就业,对国家和社会的发展具有重 要意义。
改良微生物性能
提高耐受性
通过基因工程技术提高微生物对 高温、高盐、高酸、高碱等极端 环境的耐受性,使其能在恶劣条
件下生长。
增强抗性
通过基因工程技术增强微生物对抗 生素、重金属、氧化剂等有害物质 的抗性,提高其生存能力。
优化产物
通过基因工程技术优化微生物产生 的化合物,提高其纯度、产量和稳 定性。
开发新微生物品种
基因表达调控机制不明确

第七章工业微生物诱变育种

第七章工业微生物诱变育种
(二)细胞壁结构
丝状菌孢子壁较厚,表面蜡质也会阻碍诱变剂渗入。 或需用洗衣粉、脂肪酶、表面活性剂等处理去除蜡质。
(三)环境条件的影响
1、诱变前预培养和诱变后培养
预培养:培养基中加入咖啡因、蛋白胨、酵母膏、
吖啶黄、b-重氮尿嘧啶、嘌呤等物质能提高突变率。
后培养:诱变后的菌悬液不直接分离于平板,而是
立即转移到营养丰富的培养基中培养数代。作用是 让突变体重新调节代谢平衡,避免突变体表型延迟 现象。
五、快速准确的检测方法
建立一个适应于大规模筛选的有效检测方法是减少 诱变选育工作量的关键。
分光光度法 液相色谱法 气相色谱法
化学滴定法 薄层层析法
六、最佳的菌种保藏方法
事先要建立一个最佳的培养基、培养条件和适 宜的保藏方法,否则将前功尽弃。
第二节 诱变育种的步骤与方法
诱变育种的优缺点 优点:方法简单、投资少、收获大; 缺点:缺乏定向性。
4、浓度梯度法
合成抗生素的水平与其耐自身产物能力相关。
5、应用复印技术快速筛选变株
产脂野生株、具有高脂含量的突变株。 方法:筛选培养基→ 复印→ 苏丹黑染色→洗去 多余染料→酒精脱色→干燥显色→选择深蓝色或紫 色的菌落。
6、琼脂块大通量筛选变株
适用对象:抗生素、酶类产物。 优点:效率提高15-20倍。 缺点:产物浓度高时易漏筛,培养条件与发酵条件
细菌:生长指数期,最好在诱变处理前进行摇瓶 振荡预培养,尽可能获得同步培养物。
某些不产孢子的真菌:菌丝体,最好采用年幼的 菌丝体进行诱变处理。获得的方法:菌丝尖端法、 处理单菌落周围尖端菌丝法和混合处理法。
菌丝尖端法
枯草杆菌黑色变种芽孢菌悬液:试验菌液用2%蛋 白胨配成3-4×105个/mL浓度共50ml。

工业微生物育种学PPT课件

工业微生物育种学PPT课件

代谢流量调控
通过调节代谢流量,改变代谢产物的合成途 径和合成量,从而获得具有新性状的工程菌。
组合育种与高通量筛选
组合育种
将不同的育种方法进行组合,综合利用各种 方法的优势,提高育种效率和成功率。
高通量筛选
利用高通量筛选技术,快速、高效地对大量 菌株进行筛选,寻找具有优良性状的菌株。
04
工业微生物育种实践与应 用
05
工业微生物育种面临的挑 战与未来发展
基因编辑技术的伦理与法规问题
伦理问题
基因编辑技术对人类基因的干预引发了关于人类尊严 、生命伦理等方面的争议。在工业微生物育种中,应 充分考虑伦理原则,尊重生命、维护人类尊严。
法规问题
随着基因编辑技术的不断发展,各国政府正在制定相关 法律法规,以规范技术的合理应用。在工业微生物育种 中,应遵守相关法规,确保技术的合法性和安全性。
提高产率与生产效率
总结词
通过育种手段优化微生物的代谢途径,提高目标产物 的合成效率。
详细描述
工业微生物育种学通过基因工程技术对微生物进行改 造,优化其代谢途径,提高目标产物的合成效率,从 而提高整个生产过程的产率与生产效率。
降低生产成本与资源利用
要点一
总结词
降低生产成本,提高资源利用率,实现可持续发展。
特点
工业微生物育种学具有高度的应用性和实践性,强调对微生物的遗传特性和代 谢机制的深入理解,通过定向改造和优化微生物,实现工业生产的可持续发展 和高效性。
重要性及应用领域
重要性
随着生物技术的迅猛发展,工业微生物育种学在提高工业生产效率、降低成本、减少环境污染等方面发挥着越来 越重要的作用。通过对微生物的遗传改良,可以突破传统育种方法的限制,实现高效、精准的工业生产。

工业微生物育种

工业微生物育种

⼯业微⽣物育种1.⼯业微⽣物育种在发酵⼯业中的作⽤如何?其⽬的是什么?⼯业微⽣物育种建⽴在:(1)遗传和变异(微⽣物遗传学)的基础之上;(2)物理和化学诱变剂的发现和应⽤;(3)⼯业⾃动化(⾃动仪表装置和微机)。

⼯业微⽣物育种在发酵⼯业中占有重要地位,是决定该发酵产品能否具有⼯业化价值及发酵过程成败与否的关键。

2.⼯业微⽣物发展经历了哪⼏个阶段?1)⾃然选育阶段2)⼈⼯诱变选育阶段3)杂交育种阶段4)代谢控制育种阶段5)基因⼯程育种阶段3.⼯业微⽣物育种的核⼼指标有哪些?1)在遗传上必须是稳定的。

稳定性。

2)易于产⽣许多营养细胞、孢⼦或其它繁殖体。

3)必须是纯种,不应带有其他杂菌及噬菌体。

4)种⼦的⽣长必须旺盛、迅速。

5)产⽣所需要的产物时间短。

转化率。

6)⽐较容易分离提纯。

7)有⾃⾝保护机制,抵抗杂菌污染能⼒强。

8)能保持较长的良好经济性能。

产率。

9)菌株对诱变剂处理较敏感,从⽽可能选育出⾼产菌株。

10)在规定的时间内,菌株必须产⽣预期数量的⽬的产物,并保持相对地稳定。

4.⾰兰⽒阳性和阴性菌的细胞壁结构有何差异?它们对溶菌酶和青霉素的敏感有何不同?5.缺壁细菌有哪些类型和异同?制备缺壁细菌主要有哪些途径?原⽣质体:G+菌经溶菌酶或青霉素处理;球状体:G-菌,残留部分细胞壁。

是研究遗传规律和进⾏原⽣质体育种的良好实验材料。

L型细菌:⾃发突变形成细胞壁缺陷菌株;6.原⽣质体制备时,为什么不同微⽣物要选择不同的酶?举例说明。

酶在原⽣质体制备中主要⽤来酶解细胞壁的,不同的微⽣物其细胞壁成分及含量可能不同,所以要⽤不同的酶。

酵母菌的细胞壁主要成分有葡聚糖、⽢露聚糖蛋⽩质、⼏丁质。

霉菌的细胞壁:主要成分是纤维素、⼏丁质、葡聚糖等。

藻类的细胞壁:主要成分有纤维素构成结构⾻架。

7.基因组、基因、密码⼦、简并、同义密码⼦的概念是什么?⼀、基因组1. 原核⽣物就是它的整个染⾊体,原核⽣物的基因组较⼩,DNA的含量低,如E.coli的DNA分⼦质量为2.4×109Da,相当于4.2×106bp,含有3000-4000个基因,SV40病毒仅5个基因。

工业微生物育种学重点整理

工业微生物育种学重点整理

1)工业微生物:在发酵工艺中已经应用的或者具有潜在应用价值的微生物。

2)用于工业生产的微生物微生物菌种的特征:1.遗传稳定2.多产3.纯种4.生长旺盛5.产生产物时间短6.产物易分离7.抗性强8.能保持较长的良好经济性能9.菌株对诱变剂处理较敏感10.在规定的时间内,菌种必须产生预期数量的目的产物,并保持相对的稳定。

3)自然选育方法:诱变育种、杂交育种、代谢控制育种、基因工程育种。

4)基因突变:是指基因在结构上发生碱基对组成或排列顺序的改变。

特点:自发性、诱发性、独立性、稀有性、遗传性、可逆性、不对应性。

1.同义突变和无义突变2.错义突变3移码突变。

突变的表现型:形态突变型、生化突变型(营养缺陷型)、条件突变型(温度突变型)、抗性突变型、抗原突变型、产量突变型。

突变修复:光修复、切补修复、重组修复、SOS修复、DNA聚合酶的校正作用。

表现延迟:微生物通过自发突变或人工诱变而产生的新基因型,需要经过2个世代以上繁殖复制才能表现出来。

(波动实验)5)诱变剂:凡能诱发生物基因突变,并且突变频率远远超过自发突变率的物理因子或化学物质。

种类:物理诱变剂、化学诱变剂、生物诱变剂。

6)紫外线诱变:光谱范围40~390nm。

有效波长200~300nm。

最有效的波长253.7nm。

相对剂量15w 30cm 紫外线诱变机制:形成嘧啶二聚体。

紫外线诱变的步骤和方法:1.出发菌株的选择2.将菌种培养到最佳生理状态(对数期)约16~24小时。

霉菌和放线菌培养到大部分孢子刚刚萌发3.制备菌悬液4.紫外线照射:紫外灯先预热20分钟稳定光波取单细胞悬液5~6ml于于灭菌培养皿中放在离灯30cm处5.后培养6稀释涂皿。

7)化学诱变剂:是一类能对DNA起作用改变起结构并引起遗传变异的化学物质。

种类:碱基类似物、烷化剂、移码突变剂特点:作用专一性、具有毒性、90%以上是剧毒药品或者致癌物质。

8)碱基类似物:是一类和天然的嘧啶嘌呤等四种碱基分子结构相似的物质。

工业微生物育种学

工业微生物育种学

工业微生物育种学一、微生物资源多样性微生物资源多样性是工业微生物育种学的基础。

微生物世界中存在着广泛的物种多样性,这些物种具有各种各样的生理生化特性,能够产生丰富的代谢产物。

了解和利用这些多样性,是进行工业微生物育种的前提。

二、遗传物质基础遗传物质基础是工业微生物育种学的核心。

掌握微生物的基因组结构、基因表达调控等基本遗传信息,有助于我们理解微生物的生长、代谢等生命活动,以及如何对其进行改造和优化。

三、突变机制与诱变育种突变机制与诱变育种是工业微生物育种学的重要手段。

突变是指基因组中DNA序列的改变,而诱变育种则是利用诱变因素诱导微生物发生突变,再从中筛选有益突变株的方法。

了解突变机制有助于我们预测和控制突变的发生,提高育种效率。

四、基因工程育种基因工程育种是工业微生物育种学的核心技术。

通过基因工程技术,我们可以精确地对微生物进行遗传改造,实现定向进化,提高微生物的生产能力和性能。

基因工程育种具有精度高、见效快等特点,已成为工业微生物育种的主要手段。

五、菌种筛选与初筛技术菌种筛选与初筛技术是工业微生物育种学的重要环节。

通过筛选,我们可以从自然界或实验室中大量菌株中挑选出发酵性能优良、生产能力强的菌株。

初筛技术包括菌落形态观察、生理生化特性检测等方法,是菌种筛选的基础。

六、菌种改良与性能评价菌种改良与性能评价是工业微生物育种学的重要内容。

通过遗传操作和定向进化等技术手段对菌株进行改良,提高其生产能力和性能。

性能评价则是对改良后菌株进行全面的表征和评估,确保其满足工业生产的需求。

七、发酵过程优化发酵过程优化是工业微生物育种学的关键环节。

发酵过程涉及到菌株的生长、代谢等多个方面,是工业微生物育种的最终目标。

通过优化发酵条件、控制发酵过程等方法,可以提高微生物的发酵效率和产物产量。

八、工业微生物应用实例工业微生物应用实例展示了工业微生物育种学的实际价值。

通过具体的应用实例,我们可以了解工业微生物育种在生产实践中的重要性和作用,进一步推动工业微生物育种学的发展和应用。

第二节 工业微生物菌种选育

第二节  工业微生物菌种选育

1.选择出发菌株
• 出发菌株是指用于诱变的原始菌种。 • 选择原则:菌种对诱变剂的敏感性强、变 异幅度大、产量高。 • 获得途径: (1)从自然界的土样或水样中分离出来的野 生型菌种; (2)生产中正在使用的菌种; (3)从菌种保藏机构购买
2.同步培养
• 培养中的细胞不处于同一生长阶段,它们 的生理状态和代谢活动也不完全一样。 • 同步培养法:使培养的微生物比较一致, 生长发育在同一阶段上的培养方法。 • 在诱变育种前,最好选用生理状态一致的 单细胞或单孢界直接分离筛选菌种的步骤
• 1.采样: (1)选择采样地点 中性偏碱:细菌和放线菌多 酸性红土壤及森林土壤:霉菌多 果园、菜园、野果生长区(富含碳水化合物)和沼泽池:酵母和霉 菌多。 (2)确定采样时间 秋初好:温度适中,雨量不多。 夏季或冬季土壤微生物存活量少,暴雨后显著减少。 (3)采样 5cm~15cm处取土。放在牛皮纸袋或玻璃屏或聚乙烯袋中,标明 样品种类、采集日期、地点以及采集地点的地理、生态参数等 采集的样品应及时处理,暂不处理应放在4℃保存。
机械法 (选择法) 离心沉降分离法
同步培养方法 诱导法 温度调整法
膜洗脱法
营养条件调整法
特点:同步生长只能维持几代
机械法
膜洗脱法
通过大小不同 的微孔过滤器
离心沉降分离法
小细胞 沉淀慢
• 主要通过控制环境条件:如温度、营养物质等来诱导同步生 长。 • (1)温度调整法 • 将温度控制在接近最适温度条件下一段时间,缓慢进行新陈 代谢,但不进行分裂。然后再将温度提高到最适生长温度, 大多数细胞进行同步分裂。 • (2)营养条件调整法 • 控制培养基的浓度或培养基的组成以达到同步生长。例如限 制碳源或其他营养物,使细胞只能进行一次分裂而不能继续 生长,从而获得刚分裂的细胞群体,然后转入适宜的培养基 中,它们便进入了同步生长。 • 另外有在培养基中加入某种抑制蛋白质合成的物质(如氯霉 素)诱导一定时间后再转到另一种完全培养基中培养;或用 紫外线处理;对光合行微生物的菌体可采用光照与黑暗交替 处理法等。 • 总之:不管采用哪种诱导因子,都必须具有以下特性:不影 响生物的生长,但可特异性地抑制细胞分裂,当移去(或消 除)该抑制条件后,微生物又可立即同时出现分裂。

现代工业微生物育种

现代工业微生物育种

现代工业微生物育种一、诱变育种诱变育种是通过使用物理或化学方法,如紫外线、X射线、化学诱变剂等,诱导微生物发生基因突变,从而产生具有新性状的菌株。

这种方法可以大幅度提高微生物的变异频率,为育种工作提供了丰富的材料。

二、基因工程育种基因工程育种是通过人工构建基因表达载体,将其导入到微生物中,从而实现基因的转移和表达。

这种方法可以定向地改造微生物的遗传物质,使其表达出所需的性状。

基因工程育种具有高度定向性和可预测性,是现代工业微生物育种的重要手段之一。

三、代谢工程育种代谢工程育种是通过改变微生物的代谢途径,提高其代谢产物的产量或改变代谢产物的性质,从而获得所需的菌株。

这种方法需要对微生物的代谢过程有深入的了解,并能够精确地调控其代谢网络。

代谢工程育种在现代工业微生物育种中具有重要的应用价值。

四、组合生物合成育种组合生物合成育种是通过构建多个基因的组合文库,并筛选出具有所需性状的菌株。

这种方法类似于基因工程育种,但具有更高的遗传复杂性,可以创造出更丰富的变异类型。

组合生物合成育种在现代工业微生物育种中已经成为一种重要的策略。

五、定向进化育种定向进化育种是一种模拟自然进化过程的育种方法。

它通过对大量随机突变体进行筛选和选择,以实现所需性状的定向进化和优化。

定向进化育种可以在短时间内获得高度适应特定条件的优良菌株,具有很高的应用价值。

六、菌种保藏与复壮菌种保藏与复壮是工业微生物育种的重要环节。

通过科学的保藏方法,可以保持菌种的活力和遗传稳定性;而复壮则是通过一定的手段使保藏的菌种恢复活力,以保证其用于生产的性能。

七、基因组编辑育种基因组编辑育种是利用基因编辑技术对微生物基因组进行精确的编辑和改造,以实现定向改良和创造新品种的目的。

目前常用的基因组编辑技术包括CRISPR-Cas9系统、ZFNs和TALENs等。

基因组编辑育种具有高度精确性和可控性,为现代工业微生物育种提供了强有力的工具。

工业微生物代谢控制育种

工业微生物代谢控制育种
次级代谢产物
α-氨基己二糖 丙二酰CoA 乙酰CoA
赖氨酸 脂肪酸
青霉素、头孢菌素 利福霉素族、四环素族 大环内酯族、多烯族抗生素、灰黄霉素、橘霉素、环己酰亚胺、棒曲霉素
莽草酸
对氨基苯丙氨酸 苯丙氨酸 酪氨酸、对氨基苯甲酸、色氨酸
氯霉素 绿脓菌素 新生霉素
次级代谢产物的合成,至少有一部分取决于与初级代谢产物无关的遗传物质,并和由这类遗传物质形成的酶所催化的代谢途径有关,它们多数是特异菌株。从代谢途径来看,次级代谢产物是以初级代谢产物为前体衍生出来的,见下图。
定义:每一分支途径末端产物按一定百分比单独抑制共同途径中前面的酶,所以当几种末端产物共同存在时它们的抑制作用是积累的,各末端产物之间既无协同效应,亦无拮抗作用。
积累反馈抑制——cumulative feedback inhibition
(5)顺序反馈抑制——sequential feedback inhibition 一种终产物的积累,导致前一中间产物的积累,通过后者反馈抑制合成途径关键酶的活性,使合成终止。 举例:枯草芽孢杆菌芳香族氨基酸合成的调节
尽管反馈抑制的类型很多,但其主要的作用方式在于末端产物对反应途径中调节酶的抑制。
01
受反馈抑制的调节酶一般都是变构酶,酶活力调控的实质就是变构酶的变构调节。
02
变构酶的酶蛋白分子一般都是由两个以上亚基组成的多聚体,具有四级结构,这是能够产生变构作用的物质基础。
03
04
(三)反馈抑制的机制
+
激活剂
二、酶活性的调节
通过改变现成的酶分子活性来调节新陈代谢的速率的方式。是酶分子水平上的调节,属于精细的调节。 (一)调节方式:包括两个方面: 1、酶活性的激活:在代谢途径中后面的反应可被较前面的反应产物所促进的现象;常见于分解代谢途径。 如:粗糙脉孢霉的异柠檬酸脱氢酶的活性受柠檬酸促进 2、酶活性的抑制:包括:竞争性抑制和反馈抑制。 概念:反馈:指反应链中某些中间代谢产物或终产物对该途径关键酶活性的影响。 凡使反应速度加快的称正反馈; 凡使反应速度减慢的称负反馈(反馈抑制); 反馈抑制——主要表现在某代谢途径的末端产物过量时可反过来直接抑制该途径中第一个酶的活性。主要表现在氨基酸、核苷酸合成途径中。 特点:作用直接、效果快速、末端产物浓度降低时又可解除

第八章 工业微生物杂交育种

第八章 工业微生物杂交育种

直接亲本
微生物杂交育种所使用的配对菌株称为直接亲本。 特点:经原始亲本菌株诱变而来; 具有营养缺陷型标记或其他标记 研究表明:若要获得高产的重组体,最好采用具有明显遗传 性状差异的近亲菌株为直接亲本
5、培养基
完全培养基(CM):各种微生物菌株 基本培养基(MM):野生型,原养型 有限培养基(LM):异核体菌株 补充培养基(SM):鉴别,选择 发酵培养基
(4)重组体的形成 异核系不稳定,在菌落生长过程中,染色体重叠两节 段(二体区)的不同位置上发生交换后,能产生重组体孢 子。异核系所产生的孢子几乎全部是单倍体,而成为一个 单倍的无性繁殖系,能长出各种类型的分离子,但是,重 组体也可由部分合子经过双交换而产生。
(二)放线菌杂交的过程
1、接合 2、杂合系和重组体杂合系
3、重组体
三、放线菌的杂交技术
放线菌杂交方法有混合培养法、玻璃纸法和平板杂交法等几 种
放线菌杂交育种的程序:
放线菌杂交方法
混合孢子液 (一)混合培养法 基本培养基 10-15d 互 1.直接亲本是杂交配对菌株 养杂合体和 2.斜面混合培养 回复突变 3.单孢悬液的制备 原养性重组 混合培养是要注意两亲株的孢子萌发时间和菌丝生长 体 4.重组体的检出
如果两个直接亲株来源于一个原始亲本杂交形成的二倍体细胞称为纯 异核体自发形成杂合二倍体的频率极低,一般都以人工诱变的方法来 杂合二倍体不是育种工作的需要,真正需要的是得到重组体。重组体 合二倍体;如果两个直接亲株来源于两个原始亲本杂交形成的二倍体 2 .杂合二倍体的表型 提高频率:天然的樟脑蒸气熏蒸或紫外线照射异核体。 应该是杂合二倍体的重组型分离子。 称为杂合二倍体。杂合二倍体用AB/ab或AB:ab来表示。 一般情况下杂合二倍体的表型相似于野生型

工业微生物育种复习题解析

工业微生物育种复习题解析

工业微生物育种复习题解析第一章绪论1.什么是工业微生物?作为工业微生物应具备哪些特征?答:工业微生物:对自然环境中的微生物经过改造,用于发酵工业生产的微生物。

具备特征:(1)菌种要纯(2)遗传稳定且对诱变剂敏感(3)成长快,易繁殖(4)抗杂菌和噬菌体的能力强(5)生产目的产物的时间短且产量高(6)目的产物易分离提纯2.工业微生物育种的基础是什么?答:工业微生物育种的基础是遗传和变异。

3.常用的工业微生物育种技术有哪些?答:常用技术:(1)自然选育【选择育种】(2)诱变育种(3)代谢控制育种(4)杂交育种(5)基因工程育种第二章微生物育种的遗传基础1.基因突变的类型有哪些?答:有碱基突变,染色体畸变2.叙述紫外线诱变的原理?答:原理:紫外线对微生物诱变作用,主要引起DNA的分子结构发生改变(同链DNA的相邻嘧啶间形成共价结合的胸腺嘧啶二聚体),从而引起菌体遗传性变异。

3.基因修复的种类有哪些?答:种类:(1)光复活修复(2)切除修复(3)重组修复(4)SOS修复4.真核微生物基因重组的方式有哪些?答:方式:(1)有性杂交(2)准性生殖(3)原生质体融合第三章出发菌株的分离与筛选1.什么是富集培养?答:富集培养:指在目的微生物含量较少时,根据微生物的生理特点,设计一种选择性培养基,创造有利的生长条件,使目的微生物在最适的环境下迅速地生长繁殖,数量增加,由原来自然条件下的劣势种变成人工环境中的优势种,以利于分离到所需要的菌株。

2.哪些分离方法能达到“菌落纯”?哪些分离方法能达到“细胞纯(菌株纯)”?答:菌落纯:稀释分离法、划线法、组织法细胞纯:单细胞或单孢子的分离法3.分离好氧微生物常用的方法有哪些?答:(1)稀释涂布法(2)划线分离法(3)平皿生化反应分离法4.平皿生化反应分离法有哪些?分别用来筛选哪些菌?各自原理如何?答:(1)透明圈法原理:在平板培养基中加入溶解性较差的底物,使培养基混浊,能分解底物的微生物便会在菌落周围产生透明圈,圈的大小可以放映该菌株利用底物的能力。

微生物育种[整理]

微生物育种[整理]

工业微生物育种第一章绪论1.工业微生物菌种具备特征:1)菌种要纯2)目的产物的产量较高且稳定3)生长快,易繁殖4)抗杂菌和噬菌体的能力强5)微生物的发酵培养基来源广,价格低6)生产目的产物的时间短7)目的产物易分离纯化。

2.工业微生物育种的基础及作用:遗传与变异改良微生物并培育出各种有娘的工业微生物菌种。

3.工业微生物育种在发酵工业中的作用:不仅可以为发酵工业提供合适的菌种,还可不断提高发酵产品的产量和质量,甚至可培育出全新的菌种以生产新的发酵产品。

4.工业微生物育种的方法:1)自然选育(选择育种,通过改变群体的遗传结构,去掉不良细胞,使优良基因不断增加)2)右边育种(通过人工诱变剂)3)代谢控制育种(先诱变破坏微生物正常代谢)4)杂交育种(通过基因重组)5)基因工程育种第二章微生物育种的遗传基础1.原核微生物产生变异的方式:转化,转导,结合,原生质体融合。

2.真核微生物产生变异的方式:有性杂交,准性生殖,原生质体融合。

3.核基因:细胞核内的DNA即染色体上的DNA,是微生物生长繁殖的必需基因,直接控制初级代谢产物的合成,间接控制次级代谢产物的合成。

4.核外基因:是细胞质中的DNA,是微生物的非必需基因,与次级代谢产物的合成有关。

5.表型延迟:有些基因发生突变后,要经两代以上的繁殖复制,表型才能相应的改变。

6.基因突变的类型:1)碱基的变化(碱基置换,移码突变)2)染色体畸变(缺失,重复,倒位,易位等结构变化)3)染色体数目变异(包括染色体单条的变化和整倍的改变)4)遗传信息的变化(同义突变,中性突变,错义突变,无义突变)7.基因突变的修复机制:光复活修复,切除修复,重组修复,SOS修复。

8.基因突变与表型的关系:基因突变指生物体的遗传物质发生改变,从而引起表型的变异。

同义突变与中性突变表型不变,错义突变与无义突变表型改变。

9.原核生物基因重组的特点:通常只有部分遗传物质的转移和重组,形成部分二倍体再进行重组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工业微生物育种简介刘春波-12生工2-20120802224摘要:本文综述了工业微生物遗传育种的历史地位,介绍了遗传育种的方法和机理,并对其前景进行了展望。

微生物遗传育种,所谓微生物遗传育种,即菌种改良,是运用遗传学原理和技术对某种具有特定生产目的的菌株进行改造,去除不良性质,增加有益新性状,以提高产品的产量和质量的一种育种方法[1],使我们获得所需要的高产、优质和低耗的菌种,其目的是改良菌种的特性,使其符合工业生产的要求。

关键词:工业微生物;遗传育种;方法;机理工业微生物菌株选育在工业发酵中占有重要地位。

用于工业生产的微生物菌种,最好具有以下特征:1.在遗传上必须是稳定的。

2.易于产生许多营养细胞、孢子或其它繁殖体3.必须是纯种,不应带有其它杂菌及噬菌体。

4.种子的生长必须旺盛、迅速。

5.产生所需要的产物时间短。

6.比较容易分离纯化。

7.有自身保护机制,抵抗杂菌污染能力强。

8.能保持较长的良好经济能力。

9.菌株对诱变处理较敏感,从而提高产量潜力高[2]。

1 历史地位菌种选育技术的广泛应用为我们提供了各种类型的突变菌株,使得在食品工业、医药、农业、环境保护、化工能源、矿产开发等领域产生众多新的产品,促使传统产业的技术改造和新型产业的产生,同时使诸如抗生素、有机酸、维生素、色素、生物碱、激素以及其它生物活性物质等产品的产量成倍甚至成千万倍地增长,并且产品的质量也不断的提高。

与此同时链霉素、土霉素、金霉素和氯霉素等抗生素也大规模的生产起来;在代谢控制育种的推动下使得产氨基酸、核苷酸、有机酸等次生代谢产物的高产菌株大批投入生产;由基因工程构建的工程菌株使得微生物次生代谢产物生产能力迅速提高,而且生产出微生物本生不能生产的外源蛋白质,如胰岛素、生长激素、单克隆抗体和细胞因子等等。

由此可见工业微生物遗传育种技术是工业发酵工程的核心技术,在其作用下人们获得了许多的高产优质菌株,为生产实践发展起了强大的推动作用。

2 机理及方法2.1 自然选育就是不经人工处理,利用微生物的自然突变进行菌种选育的过程称为自然选育。

这类突变没有人工参与并非是没有原因的,一般认为自然突变有两种原因引起,即多因素低剂量效应和互变异构效应。

所谓多因素低剂量效应,是指在自然环境中存在着低剂量的宇宙射线、各种短波辐射、低剂量的诱变物质和微生物自身代谢产生的诱变物质等作用引起的突变。

互变异构效应是指四种碱基第六位上的酮基或氨基的瞬间变构,会引起碱基的错配[3]。

自然突变可能会产生两种截然不同的结果,一种是菌种退化而导致目标产量或质量下降;另一种是对生产有益的突变。

为了保证生产水平的稳定和提高,应经常地进行生产菌种自然选育,以淘汰退化的,选出优良的菌种。

在工业生产上,由于各种条件因素的影响,自然突变是经常发生的,也造成了生产水平的波动,所以技术人员很注意从高生产水平的批次中,分离高生产能力的菌种再用于生产。

同时也可利用自发突变而出现的菌种性状的变化,去选育优良的菌株,如在味精发酵被噬菌体污染过程中,所选出的抗噬菌体菌株。

自然选育是一种简单易行的选育方法,可以达到纯化菌种,防止菌种退化,稳定生产,提高产量的目的。

但是自然选育的效率低,因此经常要与诱变育种交替使用,以提高育种效率。

酒精发酵是最早应用微生物遗传学原理于微生物育种实践,推广了自然选育的纯系良种,扭转了酒精生产不稳定的现象。

这是最早应用微生物遗传学原理,进行育种实践,提高发酵水平的一个实例[4]。

这样低的突变率导致自然选育耗时长,工作量大,影响了育种工作效率,在这种情况下,出现了诱变育种技术。

2.2 诱变育种微生物的诱变育种,是以人工诱变手段诱变微生物基因突变,改变遗传结构和功能,通过筛选,从多种多样的变异体中筛选出产量高、性状优良的突变株,并且找出发挥这个变株最佳培养基和培养条件,使其在最合适的环境下合成有效产物[2]。

诱变育种和其他育种方法相比,具有速度快、收益大、方法简单等优点,是当前菌种选育的一种主要方法,在生产中使用的十分普遍。

但是诱变育种缺乏定向性,因此诱变突变必须与大规模的筛选工作相配合才能收到良好的效果。

目前,人们用于诱变育种的诱变因素有物理因素和化学因素,前者包括紫外线、激光、X-射线、γ-射线和中子等;后者主要是烷化剂(包括EMS,EI,NEU,NMU,DES,MNNG,NTG等),天然碱基类似物,亚硝酸和氯化锂等。

在物理诱变因素中,紫外线比较有效、适用、安全,其他几种射线都是电离性质的,具有穿透力,使用时有一定的危险性,化学诱变剂的突变率通常要比电离辐射的高,并且十分经济,但这些物质大多是致癌剂,使用时必须十分谨慎[1]。

目前,多种诱变剂的诱变效果、作用时间、方法都已基本确定,人们可以有目的、有选择地使用各种诱变剂以达到预期的育种效果。

诱变育种也可采用复合诱变,即两种或多种诱变剂的先后使用同种诱变剂的重复作用;两种或多种诱变剂的同时使用。

普遍认为复合诱变具有协同效应,如果两种或两种以上诱变剂合理搭配使用,复合诱变较单一诱变效果好。

虽然复合因子较单一因子诱变效果有很大优势,但因为目前大多微生物,尤其是抗生素产生菌的遗传背景不清楚,往往对诱变剂,特别是复合诱变剂的选择使用,带有很大的盲目性[6]。

通过诱变处理,在微生物群体中,会出现各种突变型个体,但从产量变异的角度来讲,其中绝大多数都是负变株。

要从中把极个别的、产量提高较显著的正变株筛选出来,可能要比沙里淘金还难。

因此突变株的分离和筛选是诱变育种的关键,体现了突变不定向性和筛选定向性。

为了获得我们所需的突变株,使得突变株的新表型得以表达,淘汰原养型或负变株,必须设计一个良好的筛选培养基和确定合适的培养条件。

筛选的步骤主要分初筛和复筛,初筛以量为主,选留较多有生产潜力的菌株,复筛以质为主,对少量潜力大的菌株的代谢产物量进行精确测定[7]。

筛选的方法依据目的物不同而异,常用的方法有浓度梯度法、影印平板法、生长谱法、琼脂平板活性圈法、纸片法、夹层培养法、循环筛选法以及与电脑化、智能化的高效筛选技术相结合的现代方法。

2.3 杂交育种杂交是指在细胞水平上进行的一种遗传重组方式。

杂交育种是利用两个或多个遗传性状差异较大的菌株,通过有性杂交、准性杂交、原生质体融合和遗传转化等方式,而导致其菌株间的基因的重组,把亲代的优良性状集中在后代中的一种育种技术。

通过杂交育种可以实现不同的遗传性状的菌株间杂交,使遗传物质进行交换和重新组合,改变亲株的遗传物质基础,扩大变异范围,获得新的品种。

同时不仅可克服因长期诱变造成的菌株活力下降,代谢缓慢等缺陷,也可以提高对诱变剂的敏感性,降低对诱变剂的“疲劳”效应[2,8]。

本小节将从有性杂交、准性杂交和原生质体融合三种常见的育种技术来介绍杂交育种。

2.3.1 有性杂交有性杂交是指不同遗传型的两性细胞间发生的接合和随之进行的染色体重组,进而产生新遗传型后代的一种育种技术。

凡能产生有性孢子的真菌,原则上都能像高等动、植物杂交预育种相似的有性杂交方法来进行育种[7]。

一般方法是把来自不同亲本、不同性别的单倍体细胞通过离心等方式使之密集地接触,就有更多的机会出现种种双倍体的有性杂交后代。

在这些双倍体杂交子代中,通过筛选,就可以得到优良性状的杂种。

2.3.2 准性杂交准性杂交是在无性细胞中所有的非减数分裂导致DNA重组的过程,微生物杂交仅转移部分基因,然后形成部分重组子,最终实现染色体交换和基因重组,在原核和真核生物中均有存在。

准性杂交的方式主要有结合、转化和转导,其局限性在于等位基因的不亲合性。

2.3.3 原生质体融合原生质体融合就是把两个不同亲本菌株的细胞壁,分别经酶解作用去除,而得到球状的原生质体,然后将两种不同的原生质体置于高渗溶液中,由聚乙二醇(PEG)助融,促使两者高度密集发生细胞融合,进而导致基因重组,就可由此再生细胞中获得杂交重组菌株[9]。

原生质体融合技术具有许多常规杂交方法无法比拟的独到之处[10]:由于去除了细胞壁,原生质体膜易于融合,即使没有接合、转化和转导等遗传系统,也能发生基因组的融合重组;融合没有极性,相互融合的是整个胞质与细胞核,使遗传物质的传递更为完善;重组频率高,易于得到杂种;存在着两株以上亲株同时参与融合并形成融合子的可能[11];较易打破分类界限,实现种间或更远缘的基因交流[12];同基因工程方法相比,不必对试验菌株进行详细的遗传学研究,也不需要高精尖的仪器设备和贵的材料费用等。

由于以上优点,迄今,这项技术不仅在基础研究方面,而且在实际应用上,均取得了引人注目的成绩。

随着生物学研究手段的不断创新,该技术的基本实验方法逐步完善。

经过多年的实际应用,证明微生物原生质体融合确是一项十分有用的育种技术[13]。

通过原生质体融合改良工业微生物菌株的遗传本质是培育高产、优质、抗逆性强的良种的一种行之有效的手段,可以与诱变育种等结合使用,同时还需要不断积累有关基础资料,克服育种盲目性,以期达到工业生产的新需求。

1960年法国的Barsi[14]研究小组在培养两种不同动物细胞混合时发现了自发融合现象,同时日本的Dkada[15]发现仙台病毒可诱发内艾氏腹水病细胞彼此融合,从而开始了细胞融合的探索。

1974 年匈牙利的Fereczy[16]采用离心力诱导的方法实现了白地霉(Creotrichumcandidum)营养缺陷型突变株原生质体的融合; 随后人们相继用NaCl、KCl Ca( NO3) 2等作为诱变剂进行融合,但融合率比较低; 1978 年国际工业微生物遗传学讨论会提出了原生质体的融合问题,使这一技术迅速扩展到了育种领域; 1979 年匈牙利的Pesti[17]首先提出了运用融合育种技术提高青霉素的产量,从而开创了原生质体融合技术在工业微生物育种实际工作中的应用。

原生质体融合育种基本步骤为:标记菌株的筛选和稳定性验证→原生质体制备→等量原生质体加聚乙二醇促进融合→涂布于再生培养基,再生出菌落→选择性培养基上划线生长,分离验证,挑取融合子进一步试验、保藏→生产性能筛选。

3 展望工业微生物遗传育种在基因工程、细胞工程、蛋白质工程和酶工程等现代生物技术的支持下,创造出许许多多的设计技巧、科技含量高、目的性强、劳动强度低、效果显著的育种方法,为人类获得稳定性好、高产、新种类的工程菌株和开发新药和工业产品,以及提高产品产量和质量提供了有力的保障。

我们有理由相信微生物遗传育种学将得到更加全面的纵横发展,将为生产实践提供更多的优良菌株,将在食品工业、医药、农业、环境保护、化工能源、矿产开发等领域发挥更加重要的作用。

参考文献[1] 陈三凤,《现代微生物遗传学》[2]《谈谈你对工业微生物育种的看法》2008,08.[3] 贺淹才.基因工程技术指南「M」..北京:科学出版社,1998, 92[4] 施巧琴,吴松刚.工业微生物育种学[M].2 版,北京:科学出版社,2003: 2- 3[6] 黄大肪,林敏.农业微生物基因工程.北京:科学出版社,2001.[7] 吴乃虎.基因工程原理「M」..北京: 科学出版社(第二版)[8] 沈祖嘉,沈仁权.分子遗传学「M」.上海:复旦大学,1988[9] 施巧琴,吴松刚.工业微生物育种学[M].北京:科学出版社,2003[10] 王付转,梁秋霞,李宗伟. 诱变和筛选方法在微生物育种中的应用[J]. 洛阳师范学院学报,2002,2:95-99.[11] 周德庆.微生物学教程[M].北京:高等教育出版社,2002, 202[12] Kao K N .A method for high-frequency intergeneric fusion ofplant protoplast[J]. Planta,1974,115:355-367.[13] Hopwood D A,Wright H M.Genetic recombination throughprotoplast fusion in Streptomyces[J]. J GenMicrobiol,1979,111(1):137-143.[14] Barski G,Hebd C R.Seance8 Acid Sci. [M].Oxford:Blackwell,1960:1825 - 1827[15] Okuda Y.Exp cell[M].NewYork:Academic Press,1962:98- 107[16] Fereaczy L.Curreat microbiol[M].London:Cambridge UniversityPress,1980:550- 574。

相关文档
最新文档