2013年考研数学试题详解及评分参考
2013考研试题及评分标准
x>0 其他
,其中 θ 为未知
3
2013 年考研数学 ( 一 ) 试题
一.选择题 (1)D 二.填空题 (9) 1 三.解答题 (15) 解:因 f ( x ) = 从而 (10) c1e + c2 e
x 3x
参考解答和评分标准
(2)A
(3)C
(4)D
(5)B
(6)B
(7)A
(8)C
− xe 2 x
9 S (− ) = 4 3 1 1 3 (A) (B) (C) − (D) − 4 4 4 4 2 2 2 2 2 2 2 (4) 设 L1 : x + y = 1 , L2 : x + y = 2 , L3 : x + 2 y = 2 , L4 : 2 x + y 2 = 2 为四条逆
时针方向的平面曲线.记 I i =
Σ 与平面 z = 0, z = 2 所围成的立体为 Ω .
(I)求曲面 Σ 的方程; (II)求的 Ω 形心坐标.
(20) (本题满分 11,B = . 当 a, b 为 何值 时, 存在矩阵 C 使 得 1 0 1 b AC - CA = B ,并求所有矩阵 C .
……10 分
f (1) − f (0) = f ′(ξ ) . 又因为 f (1) = 1 ,所以 f ′(ξ ) = 1 .
∑a
n=2
∞
n− 2
x n − 2 = ∑ an x n .故 S ′′( x ) − S ( x ) = 0 . ……5 分
n= 0 x −x
∞
(II)齐次微分方程 S ′′( x ) − S ( x ) = 0 的特征根为 1 和 −1 ,通解为 S ( x ) = C1e + C2 e . 由 S (0) = a0 = 3, S ′(0) = a1 = 1 得 C1 = 2, C2 = 1 .所以 S ( x ) = 2e x + e − x .
2013考研数学一数学二数学三(真题及答案)完美打印word版
2013考研数学(一、二、三)真题及答案解析第一部分:数一真题及答案解析1.已知极限arctan limkx x xc x →-=,其中k ,c 为常数,且0c ≠,则() A.12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案:D解析:用洛必达法则221121000011arctan 1111lim lim lim lim (1)k k k k x x x x x x x x x cx kx kx x k x ---→→→→--+-+====+因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案:A 解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()s i n n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34-答案:C解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013年考研数学一真题及详细解答
2013硕士研究生入学考试 数学一一,选择题:1-8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上。
1.已知极限0arctan lim k x x xc x→-=,其中k ,c 为常数,且0c ≠,则( ) A.12,2k c ==- B. 12,2k c == C. 13,3k c ==- D. 13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( )A.2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 3.设1()2f x x =-,102()sin (1,2,)nb f x n xdx n π==⎰ ,令1()sin n n S x b n x π∞==∑,则9()4-=S ( )A .34 B. 14 C. 14- D. 34- 4.设221:1L x y +=,222:2L x y +=,223:22L x y +=,224:22L x y +=为四条逆时针方向的平面曲线,记33()(2)(1,2,3,4)63ii L y x I y dx x dy i =++-=⎰ ,则{}1234max ,,,I I I I = A.1I B. 2I C. 3I D 4I5.设A,B,C 均为n 阶矩阵,若AB=C ,且B 可逆,则( ) A.矩阵C 的行向量组与矩阵A 的行向量组等价 B 矩阵C 的列向量组与矩阵A 的列向量组等价 C 矩阵C 的行向量组与矩阵B 的行向量组等价 D 矩阵C 的列向量组与矩阵B 的列向量组等价6.矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与20000000b ⎛⎫⎪⎪ ⎪⎝⎭相似的充分必要条件为( )A.0,2a b == B. 0,a b = 为任意常数 C. 2,0a b == D. 2,a b = 为任意常数7.设123,,X X X 是随机变量,且1(0,1)X N ,22(0,2)X N ,23(5,3)X N ,{}22(1,2,3)=-≤≤=i i P P X i ,则( )A.123P P P >> B. 213P P P >> C. 322P P P >> D 132P P P >>8.设随机变量()X t n ,(1,)Y F n ,给定(00.5)a a <<,常数c 满足{}P X c a >=,则{}2P Y c >=( )二、填空题(本题共6小题,每小题4分,满分24分.请将所选项前的字母填在答题纸指定位置上。
2013-15年考研数学一、二、三答案
2013年考研数学一真题与解析一、选择题 1—8小题.每小题4分,共32分.1.已知c xxx k x =-→arctan lim0,则下列正确的是 (A )21,2-==c k (B )21,2==c k(C )31,3-==c k (D )31,3==c k【分析】这是0型未定式,使用洛必达则即可.或者熟记常见无穷小的马克劳林公式则可快速解答.【详解1】c kx x kx x x x x x k x k x kx ==+=--→-→→12012200lim 1lim arctan lim ,所以k ,c k 121==-,即31,3==c k .【详解2】 因为)(31arctan 33x o x x x +-=,显然331arctan x x x =-,当然有31,3==c k .应该选(D) 2.曲面0)cos(2=+++x yz xy x 在点)1,1,0(-的切平面方程为(A )2-=+-z y x (B )0=++z y x (C )32-=+-z y x (D )0=--z y x【分析】此题考查的是空间曲面在点),,(000z y x M 处的法向量及切平面的方程.其中法向量为()),,(000|,,z y x z y x F F F =.【详解】设x yz xy x z y x F +++=)cos(),,(2,则在点点)1,1,0(-处())1,1,1(|,,000,,(-==z y x z y x F F F ,从而切平面方程为0)1()1()0(=++---z y x ,即2-=+-z y x .应该选(A)3.设21)(-=x x f ,),2,1(d sin )(210 ==⎰n x x n x f b n π,令∑∞==1sin )(n n x n b x S π,则=⎪⎭⎫⎝⎛-49S(A)43 (B)41 (C)41- (D)43【分析】此题考查的是傅立叶级数的收敛性. 【详解】由条件可知,∑∞=1sin n n x n b π为21)(-=x x f 的正弦级数,所以应先把函数进行奇延拓,由收敛定理可知∑∞==1sin )(n nx n b x S π也是周期为2的奇函数,故41414141)49(-=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=-f S S S ,应选(C).4.设1:221=+y x L ,2:222=+y x L ,22:223=+y x L ,22:224=+y x L 为四条逆时针方向的平面曲线,记)4,3,2,1(32633=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎰i dy x x dx y y I i L i ,则{}=4321,,,max I I I I (A)1I (B)2I (C)3I (D)4I 【分析】此题考查的是梅林公式和二重积分的计算. 【详解】由格林公式,⎰⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛+-=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=i i i D i D L i dxdy y x D S dxdy y x dy x x dx y y I 2)(21326222233. .8343)(43)2(403202222222222R dr r d dxdy y x dxdy y x R R y x R y x πθπ==+=+⎰⎰⎰⎰⎰⎰≤+≤+ 所以πππ85831=-=I ,248322πππ=⋅-=I ; 在椭圆D :12222≤+by a x 上,二重积分最好使用广义极坐标计算:πθθθθθθθπππ4)2(cos 4)2(sin 2cos 4sin 21cos )2(222022220222210222222201222222b a ab d ba ab b a ab abrdrr b r a d dxdy y x b y ax +=+=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+=+⎰⎰⎰⎰⎰⎰≤+故ππ82523-=I ,πππ222224=-=I . 显然π224=I 最大.故应选(D). 二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.设函数)(x f y =由方程)1(y x e x y -=-确定,则=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛∞→11lim n f n n .【详解】当0=x 时,1)0(==f y ,利用隐函数求导法则知1)0('=f .1)0('1)0(1lim 11lim ==-⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛∞→∞→f nf n f n f n n n . 10.已知x x x x x xe y xe e y xe e y 2322231,,-=-=-=是某个二阶常系数线性微分方程三个解,则该方程的通解为 .【详解】显然x e y y 331=-和x e y y =-32是对应的二阶常系数线性齐次微分方程两个线性无关的解,由解的结构定理,该方程的通解为x x x xe e C e C y 2231-+=,其中21,C C 为任意常数.11.设⎩⎨⎧+==t t t y t x cos sin sin t 为参数,则==422|πt dx y d .【详解】t dx dy tdt t dy tdt dx ===,cos ,cos ,t t dxy d sec cos 122==, 所以2|422==πt dx yd .12.=+⎰∞+x d x x12)1(ln . 【详解】2ln |1ln )1(1|1ln 11ln )1(ln 111112=+=+++-=+-=+∞+∞+∞+∞+∞+⎰⎰⎰x x dx x x x x x xd x d x x 三、解答题15.(本题满分10分) 计算⎰10)(dx xx f ,其中⎰+=x dt t t x f 1)1ln()(. 【分析】被积函数中含有变上限积分,所以应该用分部积分法.【详解】π282ln 414|)1ln(4)1ln(4)1ln(2|)(2)(2)(1010110101010-+-=+++-=+-=+-==⎰⎰⎰⎰⎰dx xxx x x d x dx x x x x f x x d x f dx xx f16.(本题满分10分)设数列{}n a 满足条件:)2(0)1(,1,3110≥=--==-n a n n a a a n n ,)(x S 是幂级数∑∞=0n n n x a 的和函数. (1)证明:0)()(=-''x S x S ; (2)求)(x S 的表达式.【详解】(1)证明:由幂级数和函数的分析性质可知,;)(100∑∑∞=∞=+==n n n n nn x a a x a x S∑∑∑∑∑∞=+∞=+∞=-∞=∞=++=+==+==1110111100)1()1()'()'()('n n n n nn n n n n nn n nn x a n a x a n xna x a a x a x S ;∑∑∑∞=+∞=-+∞=+++=+=++=''02111111)2)(1()1()')1(()('n n n n n n n nn x a n n xa n n x a n a x S ,由条件可得n n a a n n =+++2)2)(1(, 所以)()2)(1()('02x S x a x a n n x S n nn n nn ==++=''∑∑∞=∞=+, 也就有0)()(=-''x S x S .(2)解:由于,)(100∑∑∞=∞=+==n n n n nn x a a xa x S 所以3)0(0==a S∑∞=+++=111)1()('n n n x a n a x S ,所以1)0('1==a S ,解微分方程1)0(',3)0(,0)()(===-''S S x S x S , 可得x x e e x S 2)(+=-. 17.(本题满分10分)求函数yx e x y y x f +⎪⎪⎭⎫ ⎝⎛+=3),(3的极值.18.(本题满分10分)设奇函数)(x f 在[]1,1-上具有二阶导数,且1)1(=f ,证明: (1)存在)1,0(∈ξ,使得()1'=ξf ;(2)存在)1,1(-∈η,使得1)()(='+''ηηf f . 【详解】证明:(1)由于)(x f 为奇函数,则0)0(=f ,由于)(x f 在[]1,1-上具有二阶导数,由拉格朗日定理,存在)1,0(∈ξ,使得101)0()1()('=--=f f f ξ.(2)由于)(x f 为奇函数,则)('x f 为偶函数,由(1)可知存在)1,0(∈ξ,使得()1'=ξf ,且()1'=-ξf , 令)1)('()(-=x f e x x ϕ,由条件显然可知)(x ϕ在[]1,1-上可导,且0)()(==-ξϕξϕ, 由罗尔定理可知,存在)1,1(),(-⊂-∈ξξη,使得(),0'=ηϕ即1)()(='+''ηηf f . 19.(本题满分10分)设直线L 过,)0,0,1(A )1,1,0(B 两点,过L 绕Z 轴旋转一周得到曲面∑,曲面∑与平面2,0==z z 所围成的立体为Ω.(1)求曲面∑的方程;(2)求立体Ω的质心坐标. 【详解】(1)直线L 的对称式方程为1111zy x ==--, 设),,(z y x M 为曲面∑上的任意一点,并且其对应于直线L 上的点为),,(0000z y x M , 由于过L 绕Z 轴旋转一周得到曲面∑,所以有如下式子成立⎪⎪⎪⎩⎪⎪⎪⎨⎧==--+=+=11110002202200z y x y x y x z z ,整理可得,122222+-=+z z y x ,这就是曲面∑的方程. (2)设Ω的质心坐标为()z y x ,,,由对称性,显然0,0==y x ,57310314)122()22(2220231222012220222222==+-+-===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+-≤++-≤+ΩΩππππdz z z dz z z z dxdy zdzdxdy dzdvzdv z z z y x z z y x , 所以Ω的质心坐标为()⎪⎭⎫ ⎝⎛=57,0,0,,z y x .2013年考研数学二真题及答案一、选择题 1—8小题.每小题4分,共32分.1.设2)(),(sin 1cos παα<=-x x x x ,当0→x 时,()x α ( )(A )比x 高阶的无穷小 (B )比x 低阶的无穷小(C )与x 同阶但不等价无穷小 (D )与x 等价无穷小 【详解】显然当0→x 时)(~21~)(sin ,21~)(sin 1cos 2x x x x x x x ααα--=-,故应该选(C ). 2.已知()x f y =是由方程()1ln cos =+-x y xy 确定,则=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛∞→12lim n f n n ( )(A )2 (B )1 (C )-1 (D )-2 【分析】本题考查的隐函数的求导法则信函数在一点导数的定义.【详解】将0=x 代入方程得1)0(==f y ,在方程两边求导,得01')')(sin(=+-+-yy xy y xy ,代入1,0==y x ,知1)0(')0('==f y .2)0('22)0()2(lim 212lim ==-=⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛∞→∞→f nf n f n f n n n ,故应该选(A ). 3.设⎩⎨⎧∈∈=]2,[,2),0[,sin )(πππx x x x f ,⎰=x dt t f x F 0)()(则( )(A)π=x 为)(x F 的跳跃间断点. (B)π=x 为)(x F 的可去间断点. (C))(x F 在π=x 连续但不可导. (D))(x F 在π=x 可导. 【详解】只要注意π=x 是函数)(x f 的跳跃间断点,则应该是⎰=x dt t f x F 0)()(连续点,但不可导.应选(C).4.设函数⎪⎪⎩⎪⎪⎨⎧≥<<-=+-e x xx e x x x f ,ln 11,)1(1)(11αα,且反常积分()dx x f ⎰∞+收敛,则( )(A )2-<α (B )2>a (C )02<<-a (D )20<<α 【详解】⎰⎰⎰∞++-∞++-=e e dx xx x dx dx x f 1111ln 1)1()(αα, 其中⎰⎰---=-10111)1(e e t dt x dxαα当且仅当11<-α时才收敛;而第二个反常积分x x dx xx x eαξαααln lim 11|ln 1ln 111+∞→∞+-∞++-=-=⎰,当且仅当0>a 才收敛. 从而仅当20<<α时,反常积分()dx x f ⎰∞+才收敛,故应选(D).5.设函数()xy f x y z =,其中f 可微,则=∂∂+∂∂yz x z y x ( ) (A ))('2xy yf (B ))('2xy yf -(C ))(2xy f x (D ))(2xy f x- 【详解】)('2)(')(1)(')(22xy yf xy yf xy f xxy f x y xy f x y y x y z x z y x =++⎪⎪⎭⎫ ⎝⎛+-=∂∂+∂∂.应该选(A ). 6.设k D 是圆域{}1|),(22≤+=y x y x D 的第k 象限的部分,记⎰⎰-=kD k dxdy x y I )(,则( )(A )01>I (B )02>I (C )03>I (D )04>I 【详解】由极坐标系下二重积分的计算可知()ππππππθθθθθθθθ22122110222)1(|cos sin 31)sin (sin 31)cos (sin )(k k kk kk D k d dr r d dxdy x y I k ---+-=-=-=-=⎰⎰⎰⎰⎰所以ππ32,32,04231-====I I I I ,应该选(B ). 二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9. =⎪⎭⎫⎝⎛+-→xx x x 10)1ln(2lim . 【详解】21)(21(lim)1ln(lim 101022202)1ln(1lim )1ln(2lim e eex x x x x x x o x x x xx x xx xx x x ===⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛+-+--+-→→→→.10.设函数dt e x f x t ⎰--=11)(,则)(x f y =的反函数)(1y f x -=在0=y 处的导数==0|y dydx. 【详解】由反函数的求导法则可知11011|1|--==-==e dxdy dy dx x y .11.设封闭曲线L 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤-=663cos πθπθr t 为参数,则L 所围成的平面图形的面积为 .【详解】12cos 313cos 2121202662662πθθθπππππ====⎰⎰⎰--dt t d d r A所以.答案为12π.12.曲线上⎪⎩⎪⎨⎧+==21ln arctan ty tx 对应于1=t 处的法线方程为 .【详解】当1=t 时,2ln 21,4==y x π,1|111|'1221=++===t t t t ty ,所以法线方程为 )4(12ln 21π--=-x y ,也就是042ln 21=--+πx y .13.已知x x x x x xe y xe e y xe e y 2322231,,-=-=-=是某个二阶常系数线性微分方程三个解,则满足1)0(',0)0(==y y 方程的解为 .【详解】显然x e y y 331=-和x e y y =-32是对应的二阶常系数线性齐次微分方程两个线性无关的解,由解的结构定理,该方程的通解为x x x xe e C e C y 2231-+=,其中21,C C 为任意常数.把初始条件代入可得1,121-==C C ,所以答案为x x x xe e e y 23--= 三、解答题15.(本题满分10分)当0→x 时,x x x 3cos 2cos cos 1-与nax 是等价无穷小,求常数n a ,.【分析】主要是考查0→x 时常见函数的马克劳林展开式. 【详解】当0→x 时,)(211cos 22x o x x +-=,)(21)()2(2112cos 2222x o x x o x x +-=+-=,)(291)()3(2113cos 2222x o x x o x x +-=+-=,所以)(7))(291))((21))((211(13cos 2cos cos 122222222x o x x o x x o x x o x x x x +=+-+-+--=-,由于x x x 3cos 2cos cos 1-与nax 是等价无穷小,所以2,7==n a .16.(本题满分10分) 设D 是由曲线3x y =,直线a x =)0(>a 及x 轴所转成的平面图形,y x V V ,分别是D 绕x 轴和y 轴旋转一周所形成的立体的体积,若y x V V =10,求a 的值. 【详解】由微元法可知πππ35320253a dx x dx y V a ax ===⎰⎰;πππ37340762)(2a dx x dx x xf V a ay ===⎰⎰;由条件y x V V =10,知77=a .17.(本题满分10分)设平面区域D 是由曲线8,3,3=+==y x x y y x 所围成,求⎰⎰Ddxdy x 2. 【详解】341683622332222221=+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-xx xx D D Ddy dx x dy dx x dxdy x dxdy x dxdy x . 18.(本题满分10分)设奇函数)(x f 在[]1,1-上具有二阶导数,且1)1(=f ,证明: (1)存在)1,0(∈ξ,使得()1'=ξf ;(2)存在)1,1(-∈η,使得1)()(='+''ηηf f . 【详解】证明:(1)由于)(x f 为奇函数,则0)0(=f ,由于)(x f 在[]1,1-上具有二阶导数,由拉格朗日定理,存在)1,0(∈ξ,使得101)0()1()('=--=f f f ξ.(2)由于)(x f 为奇函数,则)('x f 为偶函数,由(1)可知存在)1,0(∈ξ,使得()1'=ξf ,且()1'=-ξf , 令)1)('()(-=x f e x x ϕ,由条件显然可知)(x ϕ在[]1,1-上可导,且0)()(==-ξϕξϕ, 由罗尔定理可知,存在)1,1(),(-⊂-∈ξξη,使得(),0'=ηϕ即1)()(='+''ηηf f . 19.(本题满分10分)求曲线)0,0(133≥≥=+-y x y xy x 上的点到坐标原点的最长距离和最短距离. 【分析】考查的二元函数的条件极值的拉格朗日乘子法. 【详解】构造函数)1(),(3322-+-++=y xy x y x y x L λ令⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=-+=∂∂=-+=∂∂10)3(20)3(23322y xy x x y y y Ly x x x L λλ,得唯一驻点1,1==y x ,即)1,1(1M . 考虑边界上的点,)0,1(),1,0(32M M ;距离函数22),(y x y x f +=在三点的取值分别为1)0,1(,1)1,0(,2)1,1(===f f f ,所以最长距离为2,最短距离为1.20.(本题满分11) 设函数xx x f 1ln )(+=⑴求)(x f 的最小值;⑵设数列{}n x 满足11ln 1<++n n x x ,证明极限n n x ∞→lim 存在,并求此极限.【详解】 (1)22111)('xx x x x f -=-=, 令0)('=x f ,得唯驻点1=x ,当)1,0(∈x 时,0)('<x f ,函数单调递减;当),1(∞∈x 时,0)('>x f ,函数单调递增. 所以函数在1=x 处取得最小值1)1(=f . (2)证明:由于11ln 1<++n n x x ,但11ln ≥+nn x x ,所以n n x x 111<+,故数列{}n x 单调递增. 又由于11ln ln 1<+≤+n n n x x x ,得到e x n <<0,数列{}n x 有界.由单调有界收敛定理可知极限n n x ∞→lim 存在.令a x n n =∞→lim ,则11ln 1ln lim 1≤+=⎪⎪⎭⎫ ⎝⎛++∞→a a x x n n n ,由(1)的结论可知1lim ==∞→a x n n .21.(本题满分11) 设曲线L 的方程为)1(ln 21412e x x x y ≤≤-=. (1)求L 的弧长.(2)设D 是由曲线L ,直线e x x ==,1及x 轴所围成的平面图形,求D 的形心的横坐标. 【详解】(1)曲线的弧微分为dx xx dx x x dx y dx )1(211411'12+=⎪⎭⎫ ⎝⎛-+=+=, 所以弧长为41)1(2121+=+==⎰⎰e dx x x ds s e .(2)设形心坐标为()y x ,,则)7(4)32(31271632324324ln 214101ln 21410122---=---===⎰⎰⎰⎰⎰⎰⎰⎰--e e e e e e dy dx dy xdx dxdy xdxdyx x x x x eD D.2013年考研数学三真题及答案一、选择题 1—8小题.每小题4分,共32分.1.当0→x 时,用)(x o 表示比x 高阶的无穷小,则下列式子中错误的是( )(A ))()(32x o x o x =⋅ (B ))()()(32x o x o x o = (C ))()()(222x o x o x o =+ (D ))()()(22x o x o x o =+【详解】由高阶无穷小的定义可知(A )(B )(C )都是正确的,对于(D )可找出反例,例如当0→x 时)()(),()(2332x o x x g x o x x x f ===+=,但)()()(x o x g x f =+而不是)(2x o 故应该选(D ). 2.函数xx x x x f xln )1(1)(+-=的可去间断点的个数为( )(A )0 (B )1 (C )2 (D )3 【详解】当0ln →x x 时,x x ex xx xln ~11ln -=-,1ln ln limln )1(1lim)(lim 0==+-=→→→x x x x x x x x x f x xx x ,所以0=x 是函数)(x f 的可去间断点.21ln 2ln limln )1(1lim)(lim 011==+-=→→→xx xx xx x x x f x xx x ,所以1=x 是函数)(x f 的可去间断点. ∞=+-=+-=-→-→-→xx x x xx x x x f x x x x ln )1(ln limln )1(1lim)(lim 111,所以所以1-=x 不是函数)(x f 的可去间断点.故应该选(C ).3.设k D 是圆域{}1|),(22≤+=y x y x D 的第k 象限的部分,记⎰⎰-=kD k dxdy x y I )(,则( )(A )01>I (B )02>I (C )03>I (D )04>I 【详解】由极坐标系下二重积分的计算可知()ππππππθθθθθθθθ22122110222)1(|cos sin 31)sin (sin 31)cos (sin )(k k kk kk D k d dr r d dxdy x y I k ---+-=-=-=-=⎰⎰⎰⎰⎰所以ππ32,32,04231-====I I I I ,应该选(B ). 4.设{}n a 为正项数列,则下列选择项正确的是( ) (A )若1+>n n a a ,则∑∞=--11)1(n n n a 收敛;(B )若∑∞=--11)1(n n n a 收敛,则1+>n n a a ;(C )若∑∞=1n na收敛.则存在常数1>P ,使n pn a n ∞→lim 存在;(D )若存在常数1>P ,使n pn a n ∞→lim 存在,则∑∞=1n na收敛.【详解】由正项级数的比较审敛法,可知选项(D )正确,故应选(D).此小题的(A )(B )选项想考查的交错级数收敛的莱布尼兹条件,对于选项(A ),但少一条件0lim =∞→n n a ,显然错误.而莱布尼兹条件只是交错级数收敛的充分条件,不是必要条件,选项(B )也不正确,反例自己去构造.二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.设曲线)(x f y =和x x y -=2在点()0,1处有切线,则=⎪⎭⎫⎝⎛+∞→2lim n n nf n . 【详解】由条件可知()1)1(',01==f f .所以2)1('22222)1(221lim 2lim -=-=-+⋅+--⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫⎝⎛+∞→∞→f nn n f n f n n nf n n 10.设函数()y x z z ,=是由方程()xy y z x=+确定,则=∂∂)2,1(|xz. 【详解】设()xy y z z y x F x-+=)(,,,则()1)(),,(,)ln()(,,-+=-++=x z x x y z x z y x F y y z y z z y x F ,当2,1==y x 时,0=z ,所以2ln 22|)2,1(-=∂∂xz. 11.=+⎰∞+x d x x12)1(ln .【详解】2ln |1ln )1(1|1ln 11ln )1(ln 111112=+=+++-=+-=+∞+∞+∞+∞+∞+⎰⎰⎰x x dx x x x x x xd x d x x 12.微分方程041=+'-''y y y 的通解为 . 【详解】方程的特征方程为041=+-λλr,两个特征根分别为2121==λλ,所以方程通解为221)(xe x C C y +=,其中21,C C 为任意常数.三、解答题15.(本题满分10分)当0→x 时,x x x 3cos 2cos cos 1-与nax 是等价无穷小,求常数n a ,.【分析】主要是考查0→x 时常见函数的马克劳林展开式. 【详解】当0→x 时,)(211cos 22x o x x +-=,)(21)()2(2112cos 2222x o x x o x x +-=+-=,)(291)()3(2113cos 2222x o x x o x x +-=+-=,所以)(7))(291))((21))((211(13cos 2cos cos 122222222x o x x o x x o x x o x x x x +=+-+-+--=-,由于x x x 3cos 2cos cos 1-与nax 是等价无穷小,所以2,7==n a .16.(本题满分10分) 设D 是由曲线3x y =,直线a x =)0(>a 及x 轴所转成的平面图形,y x V V ,分别是D 绕x 轴和y 轴旋转一周所形成的立体的体积,若y x V V =10,求a 的值. 【详解】由微元法可知πππ35032253a dx x dx y V a a x ===⎰⎰;πππ370340762)(2a dx x dx x xf V a a y ===⎰⎰;由条件y x V V =10,知77=a . 17.(本题满分10分)设平面区域D 是由曲线8,3,3=+==y x x y y x 所围成,求⎰⎰D dxdy x 2.【详解】341683622332222221=+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-xx x x D D Ddy dx x dy dx x dxdy x dxdy x dxdy x . 18.(本题满分10分)设生产某产品的固定成本为6000元,可变成本为20元/件,价格函数为,100060QP -=(P 是单价,单位:元,Q 是销量,单位:件),已知产销平衡,求: (1)该的边际利润.(2)当P=50时的边际利润,并解释其经济意义. (3)使得利润最大的定价P . 【详解】(1)设利润为y ,则6000100040)206000(2--=+-=Q Q Q PQ y , 边际利润为.50040'Q y -= (2)当P=50时,Q=10000,边际利润为20.经济意义为:当P=50时,销量每增加一个,利润增加20.(3)令0'=y ,得.40100002000060,20000=-==P Q19.(本题满分10分)设函数()x f 在),0[+∞上可导,()00=f ,且2)(lim =+∞→x f x ,证明(1)存在0>a ,使得();1=a f(2)对(1)中的a ,存在),0(a ∈ξ,使得af 1)('=ξ. 【详解】证明(1)由于2)(lim =+∞→x f x ,所以存在0>X ,当X x >时,有25)(23<<x f , 又由于()x f 在),0[+∞上连续,且()00=f ,由介值定理,存在0>a ,使得();1=a f (2)函数()x f 在],0[a 上可导,由拉格朗日中值定理, 存在),0(a ∈ξ,使得aa f a f f 1)0()()('=-=ξ.2014年考研数学一真题与解析一、选择题 1—8小题.每小题4分,共32分.1.下列曲线有渐近线的是(A )x x y sin += (B )x x y sin +=2(C )xx y 1sin += (D )xx y 12sin+= 2.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( ) (A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≤'')(x f 时,)()(x g x f ≥ (D )当0≤'')(x f 时,)()(x g x f ≤ 【分析】此题考查的曲线的凹凸性的定义及判断方法.【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点21x x ,及常数10≤≤λ,恒有())()()()(212111x f x f x x f λλλλ+-≥+-,则曲线是凸的. 显然此题中x x x ===λ,,1021,则=+-)()()(211x f x f λλ)()())((x g x f x f =+-110,而())()(x f x x f =+-211λλ,故当0≤'')(x f 时,曲线是凸的,即())()()()(212111x f x f x x f λλλλ+-≥+-,也就是)()(x g x f ≥,应该选(C )【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当0≤'')(x f 时,曲线是凸的,从而010==≥)()()(F F x F ,即0≥-=)()()(x g x f x F ,也就是)()(x g x f ≥,应该选(C )3.设)(x f 是连续函数,则=⎰⎰---y y dy y x f dy 11102),((A)⎰⎰⎰⎰---+210011010x x dy y x f dx dy y x f dx ),(),((B)⎰⎰⎰⎰----+010111012x x dy y x f dx dy y x f dx ),(),((C)⎰⎰⎰⎰+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (1021020dr r r f d dr r r f d(D)⎰⎰⎰⎰+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (1021020rdr r r f d rdr r r f d【分析】此题考查二重积分交换次序的问题,关键在于画出积分区域的草图. 【详解】积分区域如图所示如果换成直角坐标则应该是⎰⎰⎰⎰---+xx dy y x f dx dy y x f dx 10101012),(),(,(A ),(B ) 两个选择项都不正确;如果换成极坐标则为⎰⎰⎰⎰+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (1021020rdr r r f d rdr r r f d .应该选(D )4.若函数{}⎰⎰-∈---=--ππππdx x b x a x dx x b x a x Rb a 2211)sin cos (min)sin cos (,,则=+x b x a s in c o s 11(A)x sin 2 (B)x cos 2 (C)x sin π2 (D)x cos π2 【详解】注意3232πππ=⎰-dx x ,222πππππ==⎰⎰--dx x dx x sin cos ,0==⎰⎰--dx x x dx x x ππππsin cos cos , πππ2=⎰-dx x x sin ,所以b b a dx x b x a x πππππ42322232-++=--⎰-)()sin cos ( 所以就相当于求函数b b a 422-+的极小值点,显然可知当20==b a ,时取得最小值,所以应该选(A ).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.曲面)sin ()sin (x y y x z -+-=1122在点),,(101处的切平面方程为 .【详解】曲面)sin ()sin (x y y x z -+-=1122在点),,(101处的法向量为()),,(|,,),,(1121101--=-y x z z ,所以切平面方程为0110112=--+--+-))(())(()(z y x ,即012=---z y x .10.设)(x f 为周期为4的可导奇函数,且[]2012,),()('∈-=x x x f ,则=)(7f . 【详解】当[]20,∈x 时,C x x dx x x f +-=-=⎰2122)()(,由00=)(f 可知0=C ,即x x x f 22-=)(;)(x f 为周期为4奇函数,故1117==-=)()()(f f f .11.微分方程0=-+)ln (ln 'y x y xy 满足31e y =)(的解为 .【详解】方程的标准形式为x y x y dx dy ln =,这是一个齐次型方程,设xyu =,得到通解为1+=Cx xe y ,将初始条件31e y =)(代入可得特解为12+=x xey .12.设L 是柱面122=+y x 和平面0=+z y 的交线,从z 轴正方向往负方向看是逆时针方向,则曲线积分⎰=+Lydz zdx .【详解】由斯托克斯公式⎰⎰⎰∑∂∂∂∂∂∂=++RQ P z y x dxdy dzdx dydz Rdz Qdy Pdx L 可知π===+=+⎰⎰⎰⎰⎰⎰⎰∑∑xyD Ldxdy dxdy dzdx dydz ydz zdx .其中⎩⎨⎧≤+=+∑1022y x z y :取上侧,{}122≤+=y x y x D xy |),(. 三、解答题15.(本题满分10分)求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.【分析】.先用等价无穷小代换简化分母,然后利用洛必达法则求未定型极限.【详解】21121111111222121122112=⎪⎭⎫ ⎝⎛-++=--=--=+--∞→∞→+∞→+∞→⎰⎰x x o x x x x e x xdtt e t x x dtt e t x xx xtx x tx )((lim ))((lim ))((lim)ln())((lim16.(本题满分10分)设函数)(x f y =由方程06223=+++y x xy y 确定,求)(x f 的极值. 【详解】解:在方程两边同时对x 求导一次,得到0223222=++++)(')(xy y y x xy y , (1)即222232xxy y xyy dx dy ++--=, 令0=dx dy 及06223=+++y x xy y ,得到函数唯一驻点21-==y x ,. 在(1)式两边同时对x 求导一次,得到(022*******=+++++++y y x xy y y x xy y yy ")(')''(把0121=-==)(',,y y x 代入,得到0941>=)("y ,所以函数)(x f y =在1=x 处取得极小值2-=y . 17.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足xx e y e z yz x z 222224)c o s (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.【详解】设y e u x cos =,则)cos ()(y e f u f z x ==,y e u f y e u f xze uf xzx x y x cos )('cos )(",)('cos +=∂∂=∂∂2222; y e u f y e u f yz y e u f y z x x xcos )('sin )(",sin )('-=∂∂-=∂∂2222; xx x e y e f e u f yz x z 222222)cos (")("==∂∂+∂∂ 由条件xx e y e z yz x z 222224)cos (+=∂∂+∂∂,可知 u u f u f +=)()("4这是一个二阶常用系数线性非齐次方程. 对应齐次方程的通解为:u ue C eC u f 2221-+=)(其中21C C ,为任意常数.对应非齐次方程特解可求得为u y 41-=*.故非齐次方程通解为u e C e C u f u u 412221-+=-)(. 将初始条件0000==)(',)(f f 代入,可得16116121-==C C ,. 所以)(u f 的表达式为u e e u f u u 4116116122--=-)(. 18.(本题满分10分)设曲面)(:122≤+=∑z y x z 的上侧,计算曲面积分:dxdy z dzdx y dydz x )()()(11133-+-+-⎰⎰∑【详解】设⎩⎨⎧≤+=∑11221y x z :取下侧,记由1∑∑,所围立体为Ω,则高斯公式可得 123322222221120(1)(1)(1)(3(1)3(1)1)(33766)(337)(37)4rx dydz y dzdx z dxdy x y dxdydzx y x y dxdydz x y dxdydzd rdr r dz πθπ∑+∑ΩΩΩ-+-+-=--+-+=-++--=-++=-+=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰在⎩⎨⎧≤+=∑11221y x z :取下侧上,0111111133=-=-+-+-⎰⎰⎰⎰∑∑dxdy dxdy z dzdx y dydz x )()()()(, 所以dxdy z dzdx y dydz x )()()(11133-+-+-⎰⎰∑=π4111133-=-+-+-⎰⎰∑+∑dxdy z dzdx y dydz x )()()( 19.(本题满分10分) 设数列{}{}n n b a ,满足2020ππ<<<<n n b a ,,n n n b a a cos cos =-且级数∑∞=1n nb收敛.(1) 证明0=∞→n n a lim ;证明级数∑∞=1n nnb a 收敛. 【详解】(1)证明:由n n n b a a cos cos =-,及2020ππ<<<<n n b a ,可得20π<-=<n n n b a a cos cos ,所以20π<<<n n b a ,由于级数∑∞=1n nb收敛,所以级数∑∞=1n na也收敛,由收敛的必要条件可得0=∞→n n a lim .(2)证明:由于2020ππ<<<<n n b a ,,所以2222nn n n n n n n a b a b b a b a -≤-+≤+sin ,sin2sinsin cos cos 22n n n n n n nn nn a b b aa ab b b b +--==222222222n n n nn n n n n n n a b b a b a b b b b b +--≤=<=由于级数∑∞=1n n b 收敛,由正项级数的比较审敛法可知级数∑∞=1n nnb a 收敛. 2014年考研数学二真题一、选择题 1—8小题.每小题4分,共32分.1.当+→0x 时,若)(ln x 21+α,α11)cos (x -均是比x 高阶的无穷小,则α的可能取值范围是( )(A )),(+∞2 (B )),(21 (C )),(121 (D )),(210 2.下列曲线有渐近线的是( )(A )x x y sin += (B )x x y sin +=2(C )xx y 1sin += (D )xx y 12sin+= 3.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( )(A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≥'')(x f 时,)()(x g x f ≥ (D )当0≥'')(x f 时,)()(x g x f ≤4.曲线⎩⎨⎧++=+=14722t t y t x ,上对应于1=t 的点处的曲率半径是( ) (A)5010(B)10010 (C)1010 (D)105 5.设函数x x f arctan )(=,若)(')(ξxf x f =,则=→22xx ξlim( )(A)1 (B)32 (C)21(D)316.设),(y x u 在平面有界闭区域D 上连续,在D 的内部具有二阶连续偏导数,且满足02≠∂∂∂yx u及02222=∂∂+∂∂y ux u ,则( ). (A )),(y x u 的最大值点和最小值点必定都在区域D 的边界上; (B )),(y x u 的最大值点和最小值点必定都在区域D 的内部; (C )),(y x u 的最大值点在区域D 的内部,最小值点在区域D 的边界上;(D )),(y x u 的最小值点在区域D 的内部,最大值点在区域D 的边界上.二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.⎰∞-=++12521dx x x .10.设)(x f 为周期为4的可导奇函数,且[]2012,),()('∈-=x x x f ,则=)(7f .11.设),(y x z z =是由方程4722=+++z y x e yz 确定的函数,则=⎪⎭⎫ ⎝⎛2121,|dz .12.曲线L 的极坐标方程为θ=r ,则L 在点⎪⎭⎫⎝⎛=22ππθ,),(r 处的切线方程为 . 13.一根长为1的细棒位于x 轴的区间[]10,上,若其线密度122++-=x x x )(ρ,则该细棒的质心坐标=x . 三、解答题15.(本题满分10分)求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.16.(本题满分10分)已知函数)(x y y =满足微分方程''y y y x -=+122,且02=)(y ,求)(x y 的极大值和极小值. 17.(本题满分10分) 设平面区域{}004122≥≥≤+≤=y x y x y x D .,|),(.计算⎰⎰++Ddxdy y x y x x )sin(22π 18.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足xx e y e z yz x z 222224)c o s (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.19.(本题满分10分)设函数)(),(x g x f 在区间[]b a .上连续,且)(x f 单调增加,10≤≤)(x g ,证明: (2) []b a x a x dt t g xa,,)(∈-≤≤⎰0;⎰⎰≤⎰+badtt g a adx x g x f dx x f ba )()()()(.20.(本题满分11分)设函数[]101,,)(∈+=x xxx f ,定义函数列 )()(x f x f =1,))(()(x f f x f 12=, )),(()(,x f f x f n n 1-=设n S 是曲线)(x f y n =,直线01==y x ,所围图形的面积.求极限n n nS ∞→lim .21.(本题满分11分) 已知函数),(y x f 满足)(12+=∂∂y yf,且y y y y y f ln )()(),(--+=212,求曲线0=),(y x f 所成的图形绕直线1-=y 旋转所成的旋转体的体积.2014年考研数学三真题与解析一、选择题 1—8小题.每小题4分,共32分.1.设0≠=∞→a a n n lim ,则当n 充分大时,下列正确的有( )(A )2a a n >(B )2a a n <(C )n a a n 1-> (D)na a n 1+< 【详解】因为0≠=∞→a a n n lim ,所以0>∀ε,N ∃,当N n >时,有ε<-a a n ,即εε+<<-a a a n ,εε+≤<-a a a n ,取2a =ε,则知2a a n >,所以选择(A )2.下列曲线有渐近线的是(A )x x y sin += (B )x x y sin +=2 (C )xx y 1sin += (D )xx y 12sin += 【分析】只需要判断哪个曲线有斜渐近线就可以. 【详解】对于x x y 1sin +=,可知1=∞→x y x lim且01==-∞→∞→xx y x x sin lim )(lim ,所以有斜渐近线x y =应该选(C )3.设32dx cx bx a x P +++=)(,则当0→x 时,若x x P tan )(-是比3x 高阶的无穷小,则下列选项中错误的是( )(A )0=a (B )1=b (C )0=c (D )61=d 【详解】只要熟练记忆当0→x 时)(tan 3331x o x x x ++=,显然31010====d c b a ,,,,应该选(D ) 4.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( )(A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≥'')(x f 时,)()(x g x f ≥ (D )当0≥'')(x f 时,)()(x g x f ≤ 【分析】此题考查的曲线的凹凸性的定义及判断方法.【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点21x x ,及常数10≤≤λ,恒有())()()()(212111x f x f x x f λλλλ+-≥+-,则曲线是凸的. 显然此题中x x x ===λ,,1021,则=+-)()()(211x f x f λλ)()())((x g x f x f =+-110,而())()(x f x x f =+-211λλ,故当0≥'')(x f 时,曲线是凹的,即())()()()(212111x f x f x x f λλλλ+-≤+-,也就是)()(x g x f ≤,应该选(D )【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当0≥'')(x f 时,曲线是凹的,从而010==≤)()()(F F x F ,即0≤-=)()()(x g x f x F ,也就是)()(x g x f ≤,应该选(D )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.设某商品的需求函数为p Q 240-=(p 为商品的价格),则该商品的边际收益为 . 【详解】2240p p pQ p R -==)(,边际收益p p R 440-=)('.10.设D 是由曲线01=+xy 与直线0=+y x 及2=y 所围成的有界区域,则D 的面积为 . 【详解】22112101ln +=+=⎰⎰⎰⎰--yydx dy dx dy S 11.设412=⎰ax dx xe ,则=a . 【详解】411241244120202+-=-==⎰)(|)(a e x e dx xe a ax ax .所以.21=a12.二次积分=⎪⎪⎭⎫ ⎝⎛-⎰⎰dx e xe dy y y x 11022. 【详解】)()(12111010101010100110101102222222222-==+-=--=-=⎪⎪⎭⎫ ⎝⎛-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰e dy ye dy ye dy e edy y e dy x ex d dx e dy dy x e dx dx e x e dy y y y dxx xy x x y y x y y x三、解答题15.(本题满分10分)求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.【分析】.先用等价无穷小代换简化分母,然后利用洛必达法则求未定型极限. 【详解】21121111111222121122112=⎪⎭⎫ ⎝⎛-++=--=--=+--∞→∞→+∞→+∞→⎰⎰x x o x x x x e x xdtt e t x x dtt e t x xx xtx x tx )((lim ))((lim ))((lim)ln())((lim16.(本题满分10分)设平面区域{}004122≥≥≤+≤=y x y x y x D .,|),(.计算⎰⎰++Ddxdy y x y x x )sin(22π 【详解】由对称性可得432112121212022222222-==+=+++=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰D D D Ddr r r d dxd y x dxdy y x y x y x dxd y x y x y dxd y x y x x πθπππππsin )sin()sin()()sin()sin(17.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足xx e y e z yz x z 222224)c o s (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.【详解】设y e u xcos =,则)cos ()(y e f u f z x==,y e u f y e u f xz e u f xzxx y x cos )('cos )(",)('cos +=∂∂=∂∂2222; y e u f y e u f yz y e u f y z xx x cos )('sin )(",sin )('-=∂∂-=∂∂2222; x x x e y e f e u f yzx z 222222)cos (")("==∂∂+∂∂由条件x x e y e z yzx z 222224)cos (+=∂∂+∂∂,可知u u f u f +=)()("4这是一个二阶常用系数线性非齐次方程.对应齐次方程的通解为:u u e C e C u f 2221-+=)(其中21C C ,为任意常数.对应非齐次方程特解可求得为u y 41-=*. 故非齐次方程通解为u e C eC u f u u412221-+=-)(.将初始条件0000==)(',)(f f 代入,可得16116121-==C C ,. 所以)(u f 的表达式为u e e u f u u 4116116122--=-)(. 18.(本题满分10分) 求幂级数∑∞=++031n nxn n ))((的收敛域、和函数.【详解】 由于11=+∞→nn n a a lim,所以得到收敛半径1=R .当1±=x 时,级数的一般项不趋于零,是发散的,所以收敛域为()11,-. 令和函数)(x S =∑∞=++031n nxn n ))((,则3211121112131111234)('"'")())(()()(x xx x x x x x x n x n n x n n x S n n n n n nn nn n--=⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=++++=++=∑∑∑∑∑∞=+∞=+∞=∞=∞=19.(本题满分10分)设函数)(),(x g x f 在区间[]b a .上连续,且)(x f 单调增加,10≤≤)(x g ,证明: (3) []b a x a x dt t g xa,,)(∈-≤≤⎰0;。
2013年考研数学一真题及答案解析
2013年全国硕士研究生入学统一考试数学一试题、选择题: 1~8 小题,每小题 4 分,共 32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸 指定位置上 .2 曲面 x 2cos( xy) yz x 0 在点 (0,1, 1) 处的切平面方程为(A )B ) xyz2C ) x 2y z 3D ) xyz03)设 f(x)b n 12 f (x)sin n xdx(n 1,2,...) ,令S(x)b s n in n xn19,则 S( 9) ( )4A )B )C )D )34 1 414 3 44) 设 l 1 : x 2y 2 1,l 222 2 2 22: x 2y 2 2,l 3 : x 2 2y 2 2,4l :2x 2 y 2 2为, 四条逆时针的平面曲线,记I ix 3li3(y y)dx (2x )dy(i 1,2,3,4) ,则 MAX(I i ) ( ) 631)已知极限 lim x arctan xx02,c 122,c 12 1 3,c3 3,c 13k c ,其中 c,k 为常数,且 c 0,则 xA )B )C )D ) 2)A)I 1B ) I 2C ) I 3D )I 35)设矩阵 A,B,C 均为 n 阶矩阵,若 AB C ,则B 可逆,则 A ) a 0,b 2B ) a 0,b 为任意常数C ) a 2,b 0D ) a 2, b 为任意常数227)设 X 1, X 2, X 3是随机变量,且 X 1~N(0,1) , X 2~N( 0,2 2), X 3 ~ N (5,3 2) ,P j P{ 2 X j 2}( j 1,2,3), 则( )A)P 1 P 2 P 3 B)P 2 P 1 P 3 C)P 3 P 1 P 2D)P 1 P 3 P 28)设随机变量 X ~t(n),Y~ F (1,n),给定 a(0 a 0.5),常数 c 满足 P{X c} a ,则 P{Y c 2} ( ) A ) B )1 C ) 2 D )1 2A )矩阵 C 的行向量组与矩阵B )矩阵C 的列向量组与矩阵 C )矩阵 C 的行向量组与矩阵1a12 6)矩阵 aba与 01a1A 的行向量组等价 A 的列向量组等价B 的行向量组等价 B 的列向量组等价00b 0 相似的充分必要条件为00、填空题: 9 14 小题,每小题 4分,共 24分,请将答案写在答题.纸..指定位置上 .1(9) 设函数 f (x) 由方程 y x e x(1 y )确定,则 lim n(f ( ) 1) . n n (10) 已知 y 1 e 3x xe 2x , y 2 e x xe 2x , y 3xe 2x 是某二阶常系数非齐次线性微分方程的 3 个解,该方程的通解为 yln x 2 dx (1 x)213)设 A (a ij ) 是三阶 非零矩阵, |A| 为 A 的行列 式, A ij 为 a ij 的代数余子式,若a ij A ij 0(i,j 1,2,3),则 A14)设随机变量 Y 服从参数为 1 的指数分布 , a 为常数且大于零,则 P{Y a 1|Y a} ____________ 三、解答题: 15— 23 小题,共 94 分.请将解答写在答题.纸..指定位置上 .解答应写出文字说明、证明过程或 演算步骤 .( 15 )(本题满分 10 分) 计算 1 f ( x) dx,其中 f (x) x ln(t 1)dt ( 16 )(本题满分 10 分)设数列{a n }满足条件: a 0 3,a 1 1,a n 2 n(n 1)a n 0(n 2), S(x)是幂级数a n x n 的和函数,n0(I ) 证明:S (x) S(x) 0,(II ) 求S(x)的表达式 .(17)( 本题满分 10 分) 求函数 f(x,y)3(y x )e x y的极值3(18)( 本题满分 10 分)设奇函数 f (x)在[-1,1] 上具有 2阶导数,且 f (1) 1,证明: (I )存在(0,1),使得f '( ) 1存在 1,1 ,使得 f ''( ) f '( ) 1(11) 设 x sintt 为参数),则y tsint costd 2y dx 2 t4(12)II )( 19 )(本题满分 10 分)设直线 L 过 A (1,0,0),B (0,1,1)两点,将L 绕 Z 轴旋转一周得到曲面 , 与平面 z 0,z 2所围成的立体 为, ( I ) 求曲面 的方程 (II )求 的形心坐标 .I )证明二次型 f 对应的矩阵为 2 T T ; (II )若 , 正交且均为单位向量,证明二次型 f 在正交变化下的标准形为二次型 2y 12 y 22 。
2013年考研数学一真题及答案解析
2013硕士研究生入学考试数学一真题及解析1. 已知极限0arctan lim kx x xc x→-=,其中k ,c 为常数,且0c ≠,则() A. 12,2k c ==-B. 12,2k c == C. 13,3k c ==-D. 13,3k c ==答案(D )解析:用洛必达法则222112111arctan 1111limlimlimlim(1)kk k k x x x x x xx x x cxkxkxx kx---→→→→--+-+====+因此112,k ck-==,即13,3kc ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,12()sin (1,2,)n b f x n xdx n π==⎰ ,令1()s i n nn S x b n x π∞==∑,则( )A .34B.14C. 14-D. 34-答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
4.设221:1L x y +=,222:2L x y +=,223:22L x y +=,224:22L x y +=为四条逆时针方向的平面曲线,记33()(2)(1,2,3,4)63ii L yxI y dx x dy i =++-=⎰ ,则{}1234ma x ,,,I I I I =A. 1IB. 2IC. 3I D 4I 答案(D )解析:由格林公式,22(1)2iiD yI xdxdy=--⎰⎰ 14D D ⊂,在4D 内22102yx -->,因此14I I <24242222222\(1)(1)(1)222D D D D yyyI xdxdy xdxdy x dxdy=--=--+--⎰⎰⎰⎰⎰⎰在4D 外22102yx--<,所以24I I <32cos 2222223[0,1][0,2]2121/2/22323221(1)(12cos sin )22111122cos sin 224cos sin 24241!!111!!22442!!2422!!2x r y D r yI xdxdy r r rdrd d r dr d r dr d d θθθπππππθθθπθθθπθθθθπππ∈∈=--=--=--=-⋅⋅-⋅=-⋅⋅⋅⋅-⋅⋅⋅⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰11124288ππππ=--=3cos 22sin 222224[0,1][0,2]2121/2/2232322(1)(1cos sin )2112cos sin 24cos sin 441!!11!!1324422!!242!!24442x r y r D r yI xdxdy r r rdrd d r dr d r dr d d θθθπππππθθθπθθθπθθθθπππππππ∈∈=----=--=-⋅-⋅=-⋅⋅⋅-⋅⋅⋅=--=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰34I I <5.设A,B,C 均为n 阶矩阵,若AB=C ,且B 可逆,则( ) A.矩阵C 的行向量组与矩阵A 的行向量组等价B 矩阵C 的列向量组与矩阵A 的列向量组等价 C 矩阵C 的行向量组与矩阵B 的行向量组等价D 矩阵C 的列向量组与矩阵B 的列向量组等价 6.矩阵1111a ab a a⎛⎫⎪ ⎪ ⎪⎝⎭与2000000b ⎛⎫⎪⎪ ⎪⎝⎭相似的充分必要条件为( ) A. 0,2a b == B. 0,a b = 为任意常数 C. 2,0a b == D. 2,a b = 为任意常数7.设123,,X X X 是随机变量,且1(0,1)X N ,22(0,2)X N ,23(5,3)X N ,{}122(1,2,3)i P P X i =-≤≤=,则( )A. 123P P P >>B. 213P P P >>C. 322P P P >> D 132P P P >>8.设随机变量()X t n ,(1,)Y F n ,给定(00.5)a a <<,常数c 满足{}P X c a >=,则{}2P Y c>=( )(9)设函数y=f(x)由方程y-x=e x(1-y) 确定,则01lim [()1]n n f n→-= 。
2013年考研数学三真题答案解析(pdf)
2013年全国硕士研究生入学统一考试数学三试题答案一、选择题:1~8 小题,每小题4 分,共32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答.题.纸.指定位置上.(1)当x →0 时,用o (x ) 表示比x 高阶的无穷小,则下列式子中错误的是( )(A )23()()x o x o x ⋅=(B )23()()()o x o x o x ⋅=(C )222()()()o x o x o x +=(D )22()()()o x o x o x +=【答案】D【解析】2()()()o x o x o x +=,故D 错误。
(2)函数||1()(1)ln ||x x f x x x x -=+的可去间断点的个数为()(A )0(B )1(C )2(D )3【答案】C【解析】由题意可知()f x 的间断点为0,1±。
又ln x 0x 0x 0x 011ln lim ()lim lim lim 1(1)ln (1)ln (1)ln x x x x e x xf x x x x x x x x x x ++++→→→→--====+++ln()x 0x 0x 0x 0()11ln()lim ()lim lim lim 1(1)ln()(1)ln()(1)ln()x x x x e x x f x x x x x x x x x x -+++-→→→→----====+-+-+-ln x 1x 1x 1x 111ln 1lim ()lim lim lim (1)ln (1)ln (1)ln 2x x x x e x x f x x x x x x x x x x →→→→--====+++ln()x 1x 1x 1x 1()11ln()lim ()lim lim lim (1)ln()(1)ln()(1)ln()x x x x e x x f x x x x x x x x x x -→-→-→-→-----===∞+-+-+-故()f x 的可去间断点有2个。
2013年考研数二真题及详细解析
2013年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设cos 1sin ()x x x α-=,其中()2x πα<,则当0x →时,()x α是( )(A )比x 高阶的无穷小 (B )比x 低阶的无穷小 (C )与x 同阶但不等价的无穷小 (D )与x 等价的无穷小(2)设函数()y f x =由方程cos()ln 1xy y x +-=确定,则2lim ()1n n f n→∞⎡⎤-=⎢⎥⎣⎦( )(A )2 (B )1 (C )1- (D )2- (3)设函数sin ,0()=2,2x x f x x πππ≤<⎧⎨≤≤⎩,0()()x F x f t dt =⎰,则( )(A )x π= 是函数()F x 的跳跃间断点 (B )x π= 是函数()F x 的可去间断点(C )()F x 在x π=处连续但不可导 (D )()F x 在x π=处可导(4)设函数111,1(1)()=1,ln x e x f x x e x xαα-+⎧<<⎪-⎪⎨⎪≥⎪⎩,若反常积分1()f x dx +∞⎰收敛,则( )(A )2α<- (B )2α> (C )20α-<< (D )02α<< (5)设()yz f xy x=,其中函数f 可微,则x z z y x y ∂∂+=∂∂( ) (A )2()yf xy ' (B )2()yf xy '- (C )2()f xy x (D )2()f xy x- (6)设k D 是圆域{}22(,)|1D x y x y =+≤在第k 象限的部分,记()(1,2,3,4)kk D I y x dxdy k =-=⎰⎰,则( )(A )10I > (B )20I > (C )30I > (D )40I > (7)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价2(8)矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫ ⎪⎪ ⎪⎝⎭相似的充分必要条件为(A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a(D )为任意常数b a ,2=二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 1ln(1)lim(2)x x x x→∞+-= . (10) 设函数()xf x -=⎰,则()y f x =的反函数1()x f y -=在0y =处的导数y dx dy== .(11)设封闭曲线L 的极坐标方程为cos3()66r ππθθ=-≤≤,则L 所围成的平面图形的面积为 .(12)曲线arctan ln x ty =⎧⎪⎨=⎪⎩1t =的点处的法线方程为 .(13)已知321x x y e xe =-,22x x y e xe =-,23xy xe =-是某二阶常系数非齐次线性微分方程的3个解,该方程满足条件00x y==01x y ='=的解为y = .(14)设ij A (a )=是三阶非零矩阵,|A |为A 的行列式,ij A 为ij a 的代数余子式,若ij ij a A 0(i,j 1,2,3),____A +===则三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)当0x →时,1cos cos2cos3x x x -⋅⋅与nax 为等价无穷小,求n 与a 的值。
2013年全国硕士研究生入学统一考试数学二试题完整版附答案分析及详解
附答案分析及详解
一、选择题 1—8 小题.每小题 4 分,共 32 分.
1.设 cos x 1 xsin (x), (x) ,当 x 0 时, x ( )
2
(A)比 x 高阶的无穷小
(B)比 x 低阶的无穷小
(C)与 x 同阶但不等价无穷小
时由于 B 可逆,即 A CB1 ,同理可知矩阵 A 的列向量组可用矩阵 C 的列向量组线性表示,所以矩阵 C
的列向量组与矩阵 A 的列向量组等价.应该选(B).
1 a 1
2 0 0
8.矩阵 a b a 与矩阵 0 b 0 相似的充分必要条件是
1 a 1
0 0 0
(A) a 0,b 2
x
f (t)dt
连续点,但不可导.应
0
选(C).
4.设函数
f
(x)
( x
1 1) 1
,1
x
e
,且反常积分
x
1 ln 1
x
,
x
e
f xdx 收敛,则(
)
(A) 2
(B) a 2
(C) 2 a 0
(D) 0 2
【详解】
f (x)dx
1
e dx 1 (x 1) 1
e
.
x0
x
1
【详解】 lim 2 ln(1 x) x
lim1
1
x ln(1 x) x
xln(1 x)
lim
e x0
x2
x(x1 x2 o(x2 )
lim
2
e x0
x2
1
e2 .
x0
x x0
2013年全国硕士研究生入学考试数学一真题答案及解析
1 a 1 2 0 0 【解析】设 A a b a ,B 0 b 0 ,因为 A与 B 为实对称矩阵, 1 a 1 0 0 0
则 A与B 相似的充要条件是 A 的特征值分别为 2,b, 0 ,
1
A的特征方程 E-A a 1
1 /2 1 2 2 1 1 /2 2 1 3 2 sin d r dr 2 2 4 cos d sin d 0 0 0 0 2 0 4 2 0 4 1!! 1 1 1!! 1 11 . 2 2 4 4 2 2!! 2 4 2 2!! 2 4 2 8 8
/2 1 1 cos 2 d sin 2 d 0 4 4
I 3 I 4 故应选 (D). .
高学网教研中心整理
2013年考研真题
高学网权威发布
(5)设 A, B, C 均为 n 阶矩阵,若 AB C ,且 B 可逆,则( ). (A)矩阵 C 的行向量组与矩阵 A 的行向量组等价. (B)矩阵 C 的列向量组与矩阵 A 的列向量组等价. (C)矩阵 C 的行向量组与矩阵 B 的行向量组等价. (D)矩阵 C 的列向量组与矩阵 B 的列向量组等价. 【答案】B. 【解析】将 A, C 按列分块,若 A=(1 ,..., n ),C=( 1 ,..., n ) 由于 AB C ,故
a
1
a
1
b
a
a 0 b a 1 0 2a 2
[( b)( 2) 2a 2 ]
因为 0, 2,b 是 A 的特征值,所以 2a 0,即a 0 .
2
当a 0时
2013年考研数学试题详解及评分参考
y2 2
)]
dxdy
=
[1- x2 -
Di
y2 ]dxdy . 2
显然 D1
Ì
D4
,且在
D4
内,有1- (x2
+
y2 2
)
>
0
,故由
D1
Ì
D4
,知
I1
<
I4
;
òò 同理,由于 D2
É
D4
,而在 D4
外,有1- (x2
+
y2 ) 2
<
0
,即 [1- (x2
D2 -D4
+
y2 2
)] dxdy
<
0,
2013 年 • 第 3 页
郝海龙:考研数学复习大全·配套光盘·2013 年数学试题详解及评分参考
似的充要条件是 A 与 B 有相同的特征值. 由 lE - A = l[(l - 2)(l - b) - 2a2 ] 可见,
当且仅当 a = 0 ,且 b 为任意常数时,矩阵 A 的特征值与 B 的特征值 2,b, 0 相同,所以 A 与 B 相似的充要条件是 a = 0 ,且 b 为任意常数. 故选 (B) .
【答】 应选 (A) .
【解】 记 F (x, y, z) = x2 + cos(xy) + yz + x ,有
Fx¢(x, y, z) = 2x - y sin(xy) +1, Fy¢(x, y, z) = -x sin(xy) + z, Fz¢(x, y, z) = y .于是
Fx¢(0,1, -1) = 1, Fy¢(0,1, -1) = -1, Fz¢(0,1, -1) = 1. 因而曲面 F (x, y, z) = 0 在点 (0,-1,1) 处的切平面方程为 x - (y-1) + z+1 = 0 ,即
2013年考研数学真题及参考答案(数学二)
π
2
, 则当 x → 0 时, α ( x ) 是
【 】 .
(A) 比 x 高阶的无穷小 (C) 与 x 同阶但不等价的无穷小 【答案】 答案】C.
(B) 比 x 低阶的无穷小 (D) 与 x 等价的无穷小
【考点】 考点】计算极限的方法:常用的等价无穷小.
【解析】 解析】 x sin α ( x) = cos x − 1 ~ −
(D) I 4 > 0
【解析】 解析】在第 II 象限除原点外被积函数 y − x > 0 ,因此 I 2 > 0 . 【评注】 评注】在第 IV 象限除原点外被积函数 y − x < 0 ,因此 I 4 < 0 ; 在第 I 象限和第 III 象限,根据轮换对称性得
I1 = I 3 = 0 .
(7)设 A, B, C 均为 n 阶矩阵,若 AB = C ,且 B 可逆,则 (A) 矩阵 C 的行向量组与矩阵 A 的行向量组等价 (C) 矩阵 C 的行向量组与矩阵 B 的行向量组等价 【答案】 答案】B. 【考点】 考点】向量组的线性表示方法. 【解析】 解析】将矩阵 A 和 C 按列分块,设 A = (α1 , α 2 ,⋯ , α n ) , B = (bij ) , C = (γ 1 , γ 2 ,⋯ , γ n ) . ①由 AB = C 组线性表示; 【 】 . (B) 矩阵 C 的列向量组与矩阵 A 的列向量组等价 (D) 矩阵 C 的列向量组与矩阵 B 的列向量组等价
π
6
≤θ ≤
π
6
),则 L 所围平面图形的面积为
.
【答案】 答案】
π
12
.
【考点】 考点】计算极坐标曲线所围图形的面积.
2013考研数一真题及解析
2013年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)已知极限0arctan limkx x xc x→-=,其中,c k 为常数,且0c ≠,则( ) (A )12,2k c ==- (B )12,2k c == C )13,3k c ==- (D )13,3k c ==(2)曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) (A )2x y z -+=- (B )2x y z ++= (C )23x y z -+=- (D )0x y z --=(3)设1()2f x x =-,102()sin (1,2,...)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则9()4S -=( ) (A )34 (B )14 (C )14- (D )34-(4)设222222221234:1,:2,:22,:22,l x y l x y l x y l x y +=+=+=+=为四条逆时针的平面曲线,记33()(2)(1,2,3,4)63ii l y x I y dx x dy i =++-=⎰Ñ,则= ( )(A )1I (B )2I (C )3I (D )3I(5)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价(C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价(6)矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫⎪⎪ ⎪⎝⎭相似的充分必要条件为 (A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a (D )为任意常数b a ,2=(7)设123X X X ,,是随机变量,且22123~N(0,1)~N(~(5,3)X N ,X 0,2),X ,{22}(1,2,3),j j P P X j =-≤≤=则( )(A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >>(8)设随机变量~(),~(1,),X t n Y F n 给定(00.5),a a <<常数c 满足{}P X c a >=,则2{}P Y c >=( )(A )α (B )1α- (C )2α (D )12α-二、填空题:9?14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)设函数()f x 由方程(1)x y y x e --=确定,则1lim (()1)n n f n→∞-= . (10)已知321x x y e xe =-,22x x y e xe =-,23x y xe =-是某二阶常系数非齐次线性微分方程的3个解,该方程的通解为y = .(11)设sin sin cos x t y t t t=⎧⎨=+⎩(t 为参数),则224t d ydx π== .(12)21ln (1)xdx x +∞=+⎰ .(13)设ij A (a )=是三阶非零矩阵,|A |为A 的行列式,ij A 为ij a 的代数余子式,若ij ij a A 0(i,j 1,2,3),____A +===则(14)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则{1|}P Y a Y a ≤+>=________。
2013年考研数学真题及参考答案(数学一)
⑻ 设随机变量 X t ( n) ,Y F (1, n) ,给定 (0 0.5) ,常数 c 满足 P X c , 则P Y c
2
(
)
(A) (B) 1 (C) 2 (D) 1 2 二、填空题:9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸 指定位置上. ... ⑼ 设函数 y f ( x) 由方程 y x e ⑽ 已知 y1 e
x3 x y )e 的极值. 3
z 0 , z 2 所围成的立体为 . (Ⅰ)求曲面 的方程; (Ⅱ)求 的形心坐标.
(20) (本题满分 11 分) 设A
1 a 0 1 ,B ,当 a, b 为何值时,存在矩阵 C 使得 AC CA B ,并 1 0 1 b
ቤተ መጻሕፍቲ ባይዱ
(1 x 2
Di
y2 )dxdy . 2
2
1 2 1 y 0 x2 y 2 1 , 所 以 被 积 函 数 在 2 2 1 1 D1 : x 2 y 2 1 内,恒有 f ( x, y ) 0 ;且 x 2 y 2 1 时,有 f ( x, y ) 0 2 2
(0,1, 1)
{1, 1,1} ,
于是切平面方程为 x ( y 1) ( z 1) 0 ,故应选(A). ⑶ 应选(C) . 【分析】本题考查傅里叶级数的收敛定理.先将函数延拓成 ( 1,1) 上的奇函数 F ( x) .对
9 F ( x) 使用傅里叶级数的收敛定理(狄里赫雷定理)得到 S ( ) 的值. 4
(D) a 2, b 为任意常数
N (0,1) , X 2
N (0, 22 ) , X 3
2013年考研数学一真题与解析完整版
2013硕士研究生入学考试数学一真题及解析来源:文都教育1. 已知极限0arctan lim k x x xc x→-=,其中k ,c 为常数,且0c ≠,则() A. 12,2k c ==- B. 12,2k c == C. 13,3k c ==- D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111limlimlim lim (1)kk k k x x x x x xx x x c x kx kx x k x ---→→→→--+-+====+因此112,k c k-==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=- 切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34- 答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013考研数一真题答案及详细解析
—勹 B = fxy (1,
= e-½'
—勹 C = fyy (1,
= e-½
(1.-f) 因为 A>o,AC — B2 =2e气>O, 所以
是极小值点,极小值为
(-+ !(1, —:片) =
+½)e··½ = -e勹 .
(18) 证 CI)设F(x)= f(x)-.1::, xE[—1,l].
·; f(x) 是奇函数,:. f(O)=0.
解 记A�[�: �'考察矩阵A的特征值为2,b,O的条件.
首先,显然1At�:, 因L是A的特征值.
其次,矩阵A的迹tr(A) =2 -t-b, 因此如果2是矩阵A的特征值,则b就是矩阵A的另一个 特征值于是 “ 充要条件 ” 为2是A的特征值.由
lzE —Al = — a 2-b —a = — 4a 2 =O气=O.
故应选C.
二、填空题
(9) 1
解 把 X = O代入方程有八0)=1 . 方程y-X = exO-y)两端同时对x求导有 f'(工)-1= e[l-f(x)] [1-f(x)-xf'(x)J.
把 X =O代入上式得厂(0)=2 - f(O)=l.
f 又 lim 釭) - ]-= f'(O)=l,
x-o
厂 +厂 1
O
lnx +x)
2
dx=
_
lnx l+x
+=
1
1
dx
=O+ln
x
+=
1 =O — ln_l= ln2
O+x)x
l+x 1
2
(13) -1
2013考研数学一数三真题及答案word版
2013硕士研究生入学考试数学一真题及答案解析1.已知极限0arctan limk x x xc x →-=,其中k ,c 为常数,且0c ≠,则() A.12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案:D解析:用洛必达法则221121000011arctan 1111limlimlim lim (1)kk k k x x x x x xx x x cx kx kx x k x ---→→→→--+-+====+因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( )A. 2x y z -+=-B. 0x y z ++=C. 23x y z -+=-D. 0x y z --= 答案:A 解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()s i n n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34-答案:C解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P{Y > c2} = 2a ,故选 (C) .
二、填空题:9 : 14 小题,每小题 4 分,共 24 分. 请将答案写在答.题.纸.指定位置上.
(9)
设函数 y
=
f (x) 由方程 y - x =
e x (1-
y)
确定,则
lim
n®¥
n(
f
(
1 n
)
-
1)
=
.
【答】 应填 1
【解】 将 y 看作是 x 的函数,在方程 y - x = ex(1- y) 两端对 x 求导,得
(B) 矩阵 C 的列向量组与矩阵 A 的列向量组等价
(C) 矩阵 C 的行向量组与矩阵 B 的行向量组等价
(D) 矩阵 C 的列向量组与矩阵 B 的列向量组等价
【答】 应选 (B) .
【 解 】 记 A = (a1,a2 ,L,an ) , C = (g1,g 2 ,L,g n ) , 其 中 ai 与 g i 均 为 维 列 向 量 , i = 1, 2,L, n ,则由 AB = C ,知 (a1,a2 ,L,an )B = (g1,g 2 ,L,g n ) ,所以{g1,g 2,L,g n} 可由{a1,a2 ,L,an} 线性表示;又因 B 可逆,故有 (a1,a2 ,L,an ) = (g1,g 2 ,L,g n )B-1 , 于是{g1,g 2 ,L,g n} 可由{a1,a2 ,L,an} 线性表示,因此向量组{g1,g 2 ,L,g n} 与与向量 组{a1,a2 ,L,an} 等价,故选 (B) .
lim n ( f
n®¥
(
1 n
)
-
1)
=
lim
n®¥
f (1/ n) 1/ n
f (0)
=
f ¢(0)
=1.
(10) 已知 y1 = e3x - xe2x , y2 = ex - xe2x , y3 = - xe2x 是某二阶常系数非齐次线性微分方
【答】 应选 (A) .
【解】 设标准正态分布的分布函数及概率密度函数分别记为 F(x) 和j(x) ,则由题意有
ò ò p1 = F(2) - F(-2) =
2 j(x)dx
-2
, p2
=F
( 22)
-F
(
-2 2
)
== F (1) -F (-1)
=
1 j(x)dx ,
-1
ò p3
=F
(2
-5) 3
x - y + z = -2 . 故选 (A) .
ò å (3)
设
f
(
x)
=|
x
-
1 2
|
,
bn
=2
1 f (x) sin np xdx , (n = 1, 2,L) ,令 S(x) =
0
¥
bn sin np x ,
n=1
则
S
(-
9 4
)
=
(A)
3 4
(B)
1 4
(C)
-
1 4
(D)
-
3 4
【答】 应选 (C) .
【答】 应选 (A) .
【解】 记 F (x, y, z) = x2 + cos(xy) + yz + x ,有
Fx¢(x, y, z) = 2x - y sin(xy) +1, Fy¢(x, y, z) = -x sin(xy) + z, Fz¢(x, y, z) = y .于是
Fx¢(0,1, -1) = 1, Fy¢(0,1, -1) = -1, Fz¢(0,1, -1) = 1. 因而曲面 F (x, y, z) = 0 在点 (0,-1,1) 处的切平面方程为 x - (y-1) + z+1 = 0 ,即
Di
y2 2
)]
dxdy
=
[1- x2 -
Di
y2 ]dxdy . 2
显然 D1
Ì
D4
,且在
D4
内,有1- (x2
+
y2 2
)
>
0
,故由
D1
Ì
D4
,知
I1
<
I4
;
òò 同理,由于 D2
É
D4
,而在 D4
外,有1- (x2
+
y2 ) 2
<
0
,即 [1- (x2
D2 -D4
+
y2 2
)] dxdy
<
0,
【解】
设
F
(x)
是以
2
为周期的周期函数,且
F
(
x)
=
ì íî-
f f
( x), (- x),
0< -1 <
x x
<1 <0
,则
F
(
x)
的以 2 为周期的傅里叶系数为
ò ò ò an = 0 ; bn =
1 F(x)sin np xdx = 2 1 F(x)sin np xdx = 2 1f(x)sin np xdx . (n = 1, 2,L)
òò òò òò 知
I2
=
D2
[1- (x2
+
y2 2
)] dxdy
=
D4
[1- (x2
+
y2 2
)] dxdy
+
[1- (x2
D2 -D4
+
y2 2
)] dxdy
<
I4
;
òò òò 类似地,由 D
Ì
D4 ,知
D
[1- (x2
+
y2 )] dxdy 2
<
[1- (x2
D4
+
y2 )] dxdy 2
=
Ñò 时针方向的平面曲线.记 Ii
=
Li
(y +
y3 6
)dx
+
(2x
-
x3 )dy 3
(i
= 1, 2,3, 4) ,则
max{I1, I2, I3, I4} =
(A) I1
(B) I2
(C) I3
(D) I4
【答】 应选 (D) .
【解】
设 D1 : x2 + y2
£ 1, D2 : x2 + y2
¹
0
,故
lim
x®0
xk
=0
.
又
lim
x®0
1
-
(1 + kxk
x2
-1
)-1
=
lim
x®0
x2 kx k -1
=
lim
x®0
1 kxk -3
,故由洛比达法则,知
当k
> 3 时, lim x®0
x - arctan xk
x
=
lim
x®0
1
-
(1 + kxk
x2
-1
)-1
=
lim
x®0
1 kxk
-3
=¥
)
]
=
1 3
.
故选 (D) .
2013 年 • 第 1 页
郝海龙:考研数学复习大全·配套光盘·2013 年数学试题详解及评分参考
(2) 曲面 x2 + cos(xy) + yz + x = 0 在点 (0,-1,1) 处的切平面方程为 (A) x - y + z = -2 (B) x + y + z = 0 (C) x - 2 y + z = -3 (D) x - y - z = 0
(8) 设随机变量 X : t(n) ,Y : F (1, n) ,给定a (0 < a < 0.5) ,常数 c 满足 P{X > c} = a ,
则 P{Y > c2} =
(A) a
(B) 1 - a
(C) 2a
(D) 1 - 2a
【答】 应选 (C) .
【解】 因 X ~ t (n) ,且Y : F (1, n) ,故 X =
-1
0
0
¥
å 故 S ( x) = bn sin np x 是 F (x) 的傅里叶级数的和函数. 根据狄利克雷收敛定理,得
n=t
S
(-
9 4
)
=
S
(-
1 4
)
=
F
(-
1 4
)
=
-
f
(
1 4
)
=
-
1 4
.
故选 (C) .
(4) 设 L1 : x2 + y2 = 1 , L2 : x2 + y2 = 2 , L3 : x2 + 2 y2 = 2 , L4 : 2x2 + y2 = 2 为四条逆
£
2
,
D3
:
x2 2
+ y2
£ 1, D4 :
x2 +
y2 2
£1,
并记 D = D3 I D4 . 则由格林公式,有
2013 年 • 第 2 页
郝海龙:考研数学复习大全·配套光盘·2013 年数学试题详解及评分参考
Ñò òò òò Ii
=
Li
(y+
y3 6
)
dx
+
(2x
-
x3 ) dy 3
=