2018年高考南通市数学学科基地密卷(7)
2018年高考南通市数学学科基地密卷(8)
02While 41End While Pr intS I I I I S S I S←←←+←+≤(第5题)2018年高考模拟试卷(8)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分. 1. 已知集合{2 3}A =,,2{1 log }B a =,,若{3}A B =,则实数a 的值为 ▲ .2. 已知复数z 满足i 1i z =+(i 为虚数单位),则复数i z -的模为 ▲ .3. 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则向上的点数之差的绝对值...是2的概率为 ▲ . 4. 工人甲在某周五天的时间内,每天加工零件的个数用茎叶图表示如下图(左边一列的 数字表示零件个数的十位数,右边的数字表示零件个数的个位数),则该组数据的 方差2s 的值为 ▲ .5. 根据上图所示的伪代码,可知输出的结果S为 ▲ .6.设实数y x ,满足0121x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥,则32x y +的最大值为 ▲ .7. 若“122x ⎡⎤∃∈⎢⎥⎣⎦, ,使得2210x x -λ+<成立”是假命题,则 实数λ的取值范围是 ▲ .8. 设等差数列{}n a 的公差为d (0≠d ),其前n 项和为n S .若22410a a =,122210S S =+,则d 的值为 ▲ .9. 若抛物线24=x y 的焦点到双曲线C :22221-=y x a b(00)>>a b ,的渐近线距离等于13,则双曲线C 的离心率为 ▲ .10.将一个半径为2的圆分成圆心角之比为1:2的两个扇形,且将这两个扇形分别围成圆锥的侧面,则所得体积较小的圆锥与较大圆锥的体积之比为 ▲ .11.若函数()()ππ()sin 63f x a x x =++-是偶函数,则实数a 的值为 ▲ .12.若曲线21()ln (2)+12f x x ax a x =+-+上存在某点处的切线斜率不大于5-,则正实数a的最小值为 ▲ .13.在平面凸四边形ABCD中,AB =3CD =,点E 满足2DE EC =,且||||2A E B E ==.若165AE DE ⋅=,则AD BC ⋅的值为 ▲ . (第4题)14.设函数()()21f x x a x a x x a =---++(0a <).若存在[]011x ∈-,,使0()0f x ≤,则a 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)已知向量m =(cos α,sin α),n =(-1,2). (1)若m ∥n ,求sin α-2cos αsin α+cos α的值;(2)若|m -n |= 2,α∈()ππ2,,求cos ()π4+α的值.16.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,平面ABP ⊥平面BCP ,90APB ∠=︒,BP BC =,M 为CP 的中点.求证:(1)AP //平面BDM ; (2)BM ACP ⊥平面. 17.(本小题满分14分)如图,是一个半径为2千米,圆心角为3π的扇形游览区的平面示意图.点C 是半径OB 上一点,点D 是圆弧AB 上一点,且//CD OA .现在线段OC 、线段CD 及圆弧DB 三段所示位置设立广告位,经测算广告位出租收入是:线段OC 处每千米为2a 元,线段CD 及圆弧DB 处每千米均为a 元.设AOD x ∠=弧度,广告位出租的总收入为y 元.(1)求y 关于x 的函数解析式,并指出该函数的定义域;(2)试问x 为何值时,广告位出租的总收入最大,并求出其最大值. 18.(本小题满分16分)已知椭圆22122:1(0)x y C a b a b +=>>的离心率为12,右焦点为圆2222:(1)C x y r -+=的圆心,且圆2C 截y 轴所得弦长为4.(1)求椭圆1C 与圆2C 的方程;(2)若直线l 与曲线1C ,2C 都只有一个公共点,记直线l 与圆2C 的公共点为A ,求点A 的坐标.19.(本小题满分16分)设区间[33]D =-,,定义在D 上的函数3()1f x ax bx =++(0a b >∈R ,),集合 {|()0}A a x D f x =∀∈,≥.(1)若16b =,求集合A ;AB CDPM(第16题) O ABC D (第17题)(2)设常数0b <.① 讨论()f x 的单调性; ② 若1b <-,求证:A =∅.20.(本小题满分16分)已知数列{}n a 的各项均为正数,11=a ,前n 项和为n S ,且n n S n a λλ21221=--+,λ为正常数.(1)求数列{}n a 的通项公式; (2)记nn nS b a =,11n n k n c S S -=+(*22k n k n ∈+N ,,≥).求证:① 1+<n n b b ;② 1n n c c +>.2018年高考模拟试卷(8)数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定两题,并在相应的答题区域内作答.................. A .[选修4-1:几何证明选讲](本小题满分10分)如图,已知AB ,CD 是圆O 的两条弦,且AB 是线段CD 的垂直平分线,已知AB =6,C .[选修4-4:坐标系与参数方程](本小题满分10分)在直角坐标系xOy 中,已知曲线C 的参数方程是3cos 13sin 3x y αα=+⎧⎨=+⎩,(α是参数).若以O 为极点,x 轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,直线l 的极坐标方程为sin()4π+=ρθ求直线l 被曲线C 截得的线段长.D .[选修4-5:不等式选讲] (本小题满分10分)已知,,a b c ∈R ,且3a b c ++=, 22226a b c ++=,求a 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.请在答卷纸指定区域内........作答. 22.如图,在直三棱柱111ABC A B C -中,已知AB AC ⊥,2AB =,4AC =,13AA =.D 是线段BC 的中点.(1)求直线1DB 与平面11A C D 所成角的正弦值; (2)求二面角111B A D C --的大小的余弦值. 23.(本小题满分10分)在教材中,我们已研究出如下结论:平面内n条直线最多可将平面分成211122n n ++个部分.现探究:空间内n 个平面最多可将空间分成多少个部分,N*n ∈. 设空间内n 个平面最多可将空间分成32()1f n an bn cn =+++个部分.(1)求a b c ,,的值;(2)用数学归纳法证明此结论.2018年高考模拟试卷(8)参考答案一、填空题:本大题共14小题,每小题5分,共70分. 1.【答案】8 【解析】因为{3}A B =,所以2log 3a =,即8a =.2.【解析】本题考查了复数的运算和模的概念. 因为zi 1i =+,所以1z i =-.|i |12z i -=-= 3.【答案】29【解析】设向上的点数之差的绝对值...是2为随机事件A ,将一颗质地均匀的骰子先后 抛掷2次共有36个基本事件,事件A 共包含(13)-,(24)-,(31)-,(35)-,(42)-, (46)-,(53)-,(64)-共8个基本事件 ,所以82()369P A ==.4.【答案】225【解析】由茎叶图可以得到样本的平均值20x =,所以 ()()()()()222222182017202220212022202255s -+-+-+-+-==.5.【答案】12ABCDA 1B 1C 1(第22题)(A 33⎪⎭【解析】第一次执行循环体计算两个变量的结果为3,3I S ==;第二次执行循环体计算两个变量的结果为4,7I S ==;第三次执行循环体计算两个变量的结果为5,12I S ==;所以 输出的结果为12. 6.【答案】3【解析】画出可性域如图所示,求出代入点(1,0)A , 求出32x y +最大值为3. 7.【答案】λ≤【解析】命题的否定是“122x ⎡⎤∀∈⎢⎥⎣⎦, ,都有2210x x -λ+≥成立”,且是真命题,所以12x x λ+≤对122x ⎡⎤∀∈⎢⎥⎣⎦,恒成立,所以()min12x x λ+≤.因为12x x +≥122x ⎥⎡⎤⎢⎣⎦,时成立,所以()min12x x +=λ≤8.【答案】10-【解析】因为22410a a =(0d ≠),所以410a a =-.又因为410a a =-即70a =,122210S S =+, 所以11160,24132210,a d a d a d +=⎧⎨+=++⎩解答10d =-.9.【答案】3【解析】本题考查了抛物线焦点坐标和双曲线的离心率.因为抛物线24x y =的焦点为()0,1P ,双曲线22221x y a b-=的渐近线为b y x a=±.根据点到直线的距离有13=,化简有3c e a ==.10.【答案】1【解析】本题考查了空间几何体的体积问题.因为圆分成圆心角之比为1:2的两个扇形,所以两个扇形圆心角分别为123l π=和243l π=.1223r ππ=和2423r ππ=,解得123r =,243r =.1h ==,23h ==.所以21112222114313r h v v r h πππ⋅⋅=== 11.【答案】1-【解析】()()()πππ()sin 666f x a x x x ϕ=+-+=++,因为()f x 是偶函数,所以(0)f =,即32a -=1a =-. 12.【答案】9 本题考查了曲线的切线存在性的问题.【解析】因为21()ln (2)+12f x x ax a x =+-+,所以`1()(2)f x ax a x=+-+.存在某点处的切线斜率不大于5-,所以存在()0,x ∈+∞,1(2)5ax a x+-+≤-.得到(2)5a +≤-,当且仅当1ax x =取“=”,化简得30a -≥,解得9a ≥.13.【答案】2【解析】本题考查了平面向量的线性运算和平面向量数量积. 因为3CD =,点E 满足2DE EC =,所以2DE =,1EC =. ||||2AE BE ==,AB =2AEC π∠=.又因为165AE DE ⋅=,所以16cos 5AE DE AED ∠=,得到4cos 5AED ∠=. 又()3cos cos 5BEC AEB AED π∠=-∠-∠=. ()()A D B C A E E D B EE C ⋅=+∙+,AE EC ED BE ED EC =∙+∙+∙,()()cos cos AE EC AEC ED BE BED ED EC ππ=-∠+-∠-, 4321221255=⨯⨯+⨯⨯-⨯, 2=. 14.【答案】[32]-【解析】① 若1a -≤,222222110()2210 1.x ax a a x f x ax a a x ⎧-+++-<⎪=⎨-+++⎪⎩,≤,,≤≤ 当01x ≤≤时,2()221f x ax a a =-+++为递增函数,且2(0)(1)f a =+, 当10x -<≤时,22()2221f x x ax a a =-+++的对称轴为2a x =,若存在0[11]x ∈-,,使得0()0f x ≤,则12(1)0a f ⎧-⎪⎨⎪-⎩≤≤或12()02a a f ⎧>-⎪⎨⎪⎩≤,即22430a a a -⎧⎨++⎩≤≤或221420a a a -<-⎧⎨++⎩≤≤,解得31a --≤≤.② 若10a -<<,22222211()222102210 1.ax a a x a f x x ax a a a x ax a a x ⎧-++-<⎪=-+++<⎨⎪-+++⎩,≤,,≤,,≤≤当01x ≤≤时,2()221f x ax a a =-+++为递增函数,且2(0)(1)f a =+, 当1x a -<≤时,2()221f x ax a a =-++为递减函数,且2()(1)f a a =+, 当0a x <≤时,22()2221f x x ax a a =-+++的对称轴为2a x =,若存在[]011x ∈-,,使得0()0f x ≤, 则()02a f ≤,即2420a a ++≤,解得22a --≤,又10a -<<,所以12a -<.综上可得,32a -≤,即a的取值范围为[32]-. 二、解答题:15.【解】(1)因为 m ∥n ,所以sin α=-2cos α. …… 4分所以原式=4. …… 6分 (2)因为 |m -n |=2,所以2sin α-cos α=2. …… 9分所以cos 2α=4(sin α-1)2,所以1-sin 2α=4(sin α-1)2, 所以α∈()ππ2,, 所以34sin ,cos 55αα==-. …… 12分所以原式=10-. …… 14分 16.【解】(1)设AC 与BD 交于点O ,连结OM ,因为ABCD 是平行四边形,所以O 为AC 中点,………2分 因为M 为CP 的中点,所以AP ∥OM ,…………………4分 又AP ⊄平面BDM ,OM ⊂平面BDM ,A BCD PM(第16题)O所以AP ∥平面BDM .…………………………7分 (2)平面ABP ⊥平面BCP ,交线为BP , 因为90APB ∠=︒,故A P B P ⊥,因为AP ⊂平面ABP ,所以AP ⊥平面BCP ,……………9分 因为BM ⊂平面BCP ,所以AP ⊥BM . ……………11分 因为BP BC =,M 为CP 的中点,所以BM CP ⊥.……12分 因为APCP P =,AP CP ⊂,平面ACP ,所以BM ⊥平面ACP ,……………………………………………………………14分 17.【解】(1)因为CD ∥OA ,所以rad ODC AOD x ∠=∠=, 在△OCD 中,23OCD π∠=,3COD x π∠=-,2OD =km ,由正弦定理得22sin 3sin()sin 33OC CD x x ===ππ- …………………………4分(注:正弦定理要呈现,否则扣2分)得OC x =km,sin()3CD x π=- km .…………………………5分 又圆弧DB 长为2()3x π- km .所以2)2()]33y a x a x x ππ=+⨯-+-2cos )3a x x x π=⨯+-+,(0)3x π∈,.…………………………7分 (2)记()2(cos )3f x a x x x π=⨯+-+,则()2sin 1)2[2cos()1]6f x a x x a x π'=⨯--=⨯+-,………………8分 令()0f x '=,得6x π=. ……………………………………………………9分 当x 变化时,()f x ',()f x 的变化如下表:所以()f x 在6x π=处取得极大值,这个极大值就是最大值.即()2)66f a ππ=⨯.………………………………………………………12分 答:(1)y 关于x的函数解析式为2cos )3y a x x x π=⨯+-+,其定义域为(0)3π,;(2)广告位出租的总收入的最大值为)6a π元.………………………14分18.【解】(1)由题意知:112c c a =⎧⎪⎨=⎪⎩,,解得12c a =⎧⎨=⎩,,又2223b a c =-=,所以椭圆1C 的方程为22143x y +=. …………………………………………3分因为圆2C 截y 轴所得弦长为4,所以222215r =+=,所以圆2C 的方程为22(1)5x y -+=. …………………………………………6分 (2)设直线l 的方程为y kx m =+,则=即 22425k m km -=-①…………………………………………………………8分由22143y kx m x y =+⎧⎪⎨+=⎪⎩,,得222(34)84120k x kmx m +++-=,…………………………10分因为直线l 与曲线1C 只有一个公共点,所以22226416(3)(34)0k m m k ∆=--+=,化简,得 22430k m -+=②……………………………………………………12分①②联立,解得122k m ⎧=⎪⎨⎪=⎩,,或122k m ⎧=-⎪⎨⎪=-⎩.,……………………………………………13分由22122(1)5y x x y ⎧=+⎪⎨⎪-+=⎩,,解得02A (,), ………………………………………………14分 由22122(1)5y x x y ⎧=--⎪⎨⎪-+=⎩,,解得02A -(,),………………………………………………15分 故直线l 与圆2C 的公共点A 的坐标为02(,)或(02)-,.…………………………16分 19.【解】(1)当16b =时,31()16f x ax x =++,则21()36f x ax '=+.由0a >可知()0f x '>恒成立,故函数()f x 在[33]-,上单调递增,…… 2分 所以min 1()(3)2702f x f a =-=-+≥,解得1054a <≤,所以集合1{|0}54A a a =<≤. …… 4分(2)① 由3()1f x ax bx =++得2()3f x ax b '=+,因为00a b ><,,则由()0f x '=,得1,212)x x x =<.在R 上列表如下:(ⅰ)当23x ≥,即027b a <-≤时,则12[33][]x x -⊆,,,所以()f x 在[33]-,上单调递减; …… 6分 (ⅱ)当23x <,即27b a >-时,此时13x >-,()f x 在1[3]x -,和2[3]x ,上单调递增;在12()x x ,上单调递减. 综上,当027b a <-≤时,()f x 在[33]-,上单调递减; 当27b a >-时,()f x 在3⎡--⎢⎣,,3⎤⎥⎦上单调递增; 在(上单调递减. …… 8分 ②(方法一)当1b <-时,由①可知,(ⅰ)当027b a <-≤时,()f x 在[33]-,上单调递减,所以min ()(3)2731312110f x f a b b b b ==++-++=+<-<≤,这与()0x D f x ∀∈,≥恒成立矛盾,故此时实数a 不存在; …… 10分(ⅱ)当27b a >-时,()f x 在3⎡-⎢⎣,,3⎤⎥⎦上单调递增;在(上单调递减,所以min 2()min{(3)()}f x f f x =-,. …… 12分 若(3)27310f a b -=--+<,这与()0x D f x ∀∈,≥恒成立矛盾, 故此时实数a 不存在;若(3)27310f a b -=--+>,此时3222()1f x ax bx =++, 又222()30f x ax b '=+=,则223b ax =-,32222222()1()111133bx b f x ax bx x bx =++=-++=+==.…… 14分下面证明10<,也即证:3427b a ->. 因为27ba >-,且27310a b --+>,则2731a b <-+, 下证:3431b b ->-+.令3()431(1)g b b b b =-+<-,则2()1230g b b '=->,所以()g b 在(,1]-∞-上单调递增,所以()(1)0g b g <-=,即2()0f x <. 这与()0x D f x ∀∈,≥恒成立矛盾,故此时实数a 不存在.综上所述,A =∅. …… 16分 (方法二)(ⅰ)当0x =时,(0)1f =≥0成立;(ⅱ)当(0,3]x ∈时,由题意可知31ax bx -≥-恒成立,则231b a x x -≥-,设231()b g x x x =--,则3442323()b bx g x x x x+'=+=, 令()0g x '=,解得32x b =-.因为1b <-,所以3032b<-<,所以()g x 在3(0)2b -,上单调递增,在3(3]2b-,上单调递减, 所以333max3484()()292727b b b g x g b =-=-+=-,所以3427b a ≥-; …… 12分 (ⅲ)当[30)x ∈-,时,由题意可知31ax bx -≥-恒成立,则231b a x x -≤-.设231()b g x x x =--,则3442323()b bx g x x x x+'=+=, 因为1b <-,所以()0g x '>恒成立,所以()g x 在[3,0)-上单调递增,所以min 1()(3)927b g x g =-=-+,所以1927b a -+≤.若A ≠∅,则存在实数a 满足34127927b b a -+-≤≤,则34127927b b -+-≤成立,即34310b b -+≥, 也即2(1)(21)0b b +-≥成立,则1b -≥,这与1b <-矛盾,所以A =∅. …… 16分20.【解】(1)由22112n n a n S λλ+--=,得221(1)12(2)n n a n S n λλ----=≥,两式相减得22212n n n a a a λλ+--=,也即221()n n a a λ+=+.又00n a λ>>,,所以1(2)n n a a n λ+=+≥. …… 2分当1n =时,2221122a a λλλ--==,则211a a λλ=+=+, 所以1n n a a λ+=+(*n ∈N ),所以数列{}n a 是首项为1,公差为λ的等差数列,所以1(1)1n a n n λλλ=+-=+-. …… 4分 (2)① 由(1)知2(2)2n n nS λλ+-=,所以22(2)(2)12()12(1)21n n nn nSn n n b n a n n n λλλλλλλλλλ+-+-====++-+-+-,…… 6分 则21111(1)(22)2(1)021(1)12(1)((1)1)n n n n n n n b b n n n n ++-+-+-=+-=⋅>+-++-+λλλλλλ, 所以1n n b b +<得证. …… 8分 ② 1111111()()n n n k n n k nc c S S S S ++----=+-+ 111111k n k n n n S b S b ---+=⋅-⋅, …… 12分 因为22k n +≥,所以1n k n +<-,1n k n <--. 由0n a >,所以10n k n S S --<<,所以1110k n nS S --<<, 又因为10n k n b b +-<<,所以1110k n n b b -+<<,所以10n n c c +-<,所以1n n c c +>得证. …… 16分数学Ⅱ(附加题)参考答案21-A .连接BC 设,AB CD 相交于点E ,AE x =,因为AB 是线段CD 的垂直平分线,所以AB 是圆的直径,∠ACB =90° ……………………2分 则6EB x =-,CE ……………………………4分 由射影定理得2CE AE EB = ……………………………6分 即有(6)5x x -=解得1x =(舍)或5x = ………………………………8分 所以 25630AC AE AB ==⨯=,AC ……………………………………………10分21-B .由条件知,2=A αα,即1222111a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,即2422a b +⎡⎤⎡⎤=⎢⎥⎢⎥-+⎣⎦⎣⎦, 所以24,22,a b +=⎧⎨-+=⎩ 解得2,4.a b =⎧⎨=⎩所以1214⎡⎤=⎢⎥-⎣⎦A . …… 5分 则12221444x x x y y y x y +⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦A ,所以22,44,x y x y +=⎧⎨-+=⎩解得0,1.x y =⎧⎨=⎩ 所以x ,y 的值分别为0,1. …… 10分21-C .由3cos 1,3sin 3,x y αα=+⎧⎨=+⎩得13cos ,33sin ,x y αα-=⎧⎨-=⎩两式平方后相加得22(1)(3)9x y -+-=. ………………………………4分 所以曲线C 是以(1,3)为圆心,半径等于3的圆.直线l 的直角坐标方程为20x y +-=, ……………… …………………………6分 圆心C 到l的距离是d ==,所以直线l 被曲线C截得的线段长为 ……………………………10分 21-D .因为22262a b c -=+ ………………………………………………………………2分2221(2)(1)32b c =++2222()(3)33b c a +=-≥,………………………6分 即25120a a -≤,所以 1205a ≤≤.……………………………………………10分22.解:因为在直三棱柱111ABC A B C -中,AB AC ⊥,所以分别以AB 、AC 、1AA 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,则111(0,0,0),(2,0,0),(0,4,0),(0,0,3),(2,0,3),(0,4,3)A B C A B C .因为D 是BC 的中点,所以(1,2,0)D , …… 2分 (1)因为111(0,4,0),(1,2,3)AC A D ==-,设平面11A C D 的法向量1111(,,)n x y z =,则1111100n A C n A D ⎧⋅=⎪⎨⋅=⎪⎩,即111140230y x y z =⎧⎨+-=⎩,取111301x y z =⎧⎪=⎨⎪=⎩,所以平面11A C D 的法向量1(3,0,1)n =,而1(1,2,3)DB =-,所以111111335cos ,n DB n DB n DB ⋅<>==⋅ 所以直线1DB 与平面11A C D . …… 5分 (2)11(2,0,0)A B =,1(1,2,3)DB =-,设平面11B A D 的法向量2222(,,)n x y z =,则2112100n A B n DB ⎧⋅=⎪⎨⋅=⎪⎩,即222220230x x y z =⎧⎨-+=⎩,取222032x y z =⎧⎪=⎨⎪=⎩,平面11B A D 的法向量2(0,3,2)n =,所以121212130cos ,n n n n n n ⋅<>==⋅, 二面角111B A D C -- …… 10分 23. (1)由(1)2(2)4(3)8f f f ===,,,得18+42327937a b c a b c a b c ++=⎧⎪+=⎨⎪++=⎩,,,解得15066a b c ===,,.3分(2)用数学归纳法证明315()1N*66f n n n n =++∈,.①当1n =时,显然成立. ……………………………………………4分 ②假设当n k =时成立,即315()166f k k k =++,那么当+1n k =时,在k 个平面的基础上再添上第1k +个平面,因为它和前k 个平面都相交,所以可得到k 条互不平行且不共点的交线,且其中任 何3条直线不共点,这k 条交线可以把第1k +个平面划分成211122k k ++个部分. 每个部分把它所在的原有空间区域划分成两个区域,因此,空间区域的总数增加了211122k k ++个,所以 (1)()f k f k +=+211122k k ++……………………………………………7分315166k k =+++211122k k ++ 315(1)(1)166k k =++++, 即+1n k =时,结论成立. ……………………………………………9分根据①②可知,315()1N*66f n n n n =++∈,.…………………………………10分。
江苏省南通基地2018年高考密卷数学(理)(6)
2018年高考模拟试卷(6) 南通市数学学科基地命题 第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分. 1.已知集合{|0}U x x =>,={|2}A x x >,则U A ð= ▲ .2.已知复数z =21-i-i 3,其中i 虚数单位,则z 的模为 ▲ .3.某高级中学高一,高二,高三在校生数分别为1200,1180,1100.为了了解学生视力情况,现用分层抽样的方法抽若干名学生测量视力,若高二抽到118名学生测视力,则全校共抽到测视力的人数为 ▲ .4.在平面直角坐标系xOy 中,若抛物线22(0)x py p =>上纵坐标为1的一点到焦点的距离为4,则该抛物线的 焦点到准线的距离为 ▲ .5.执行如图所示的流程图,则输出S 的值为 ▲ .6.已知一球与一个正三棱柱的三个侧面及两个底面都相切.若该球的体积为4π3,则该三棱柱的体积是 ▲ .7.将函数()π()sin 6f x x ω=-(0ω>)的图象向左平移π3个单位后,所得图象关于直线πx =对称,则ω的最小值为 ▲.8.两人约定:在某天一同去A 地,早上7点到8点之间在B 地会合,但先到达B 地者最多在原地等待5分钟,如果没有见到对方则自己先行.设两人到达B 的时间是随机的、独立的、等可能的.那么,两人能够在当天一同去A 地概率是 ▲ .9.在平面直角坐标系xOy 中,已知圆22:810C x y x m ++-+=与直线10x ++=相交于A ,B 两点.若△ABC 为等边三角形,则实数m 的值为 ▲ .10.设正△ABC 的边长为1,t 为任意的实数.则|AB →+t AC →|的最小值为 ▲ . 11.若函数()1()log 1a x f x a x =+-(0a >且1a ≠)没有最小值,则a 的取值范围是 ▲ .12.数列{a n }满足a 1=14,a 2=15,且a 1a 2+a 2a 3+…+a n a n +1=na 1 a n +1对任何正整数n 成立,则1a 1+1a 2+…+1a 10的值为 ▲ .13.已知函数2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,,若函数()f x 有四个不同的零点,则实数m 的取值范围是 ▲ .14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin sin sin 0A B A B λ++=,且2a b c +=,则实数λ的取值范围是 ▲ . 二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)已知向量(1,)m =a ,(2,)n =b .(1)若3m =,1n =-,且()λ⊥+a a b ,求实数λ的值; (2)若5+=a b ,求⋅a b 的最大值.16.(本小题满分14分)在平行六面体ABCD -A 1B 1C 1D 1中,AB AC =,平面BB 1C 1C ⊥底面ABCD ,点M 、F 分别是线段1AA 、BC 的中点. (1)求证:AF ⊥DD 1; (2)求证:AD //平面1MBC .17.(本小题满分16分)如图,设椭圆C :x 2a 2+y 2b 2=1(a >b >0),离心率e =12,F 为椭圆右焦点.若椭圆上有一点BA(第16题)B 1A 1C 1MCF DD 1P 在x 轴的上方,且PF ⊥x 轴,线段PF =32.(1)求椭圆C 的方程;(2)过椭圆右焦点F 的直线(不经过P 点)与椭圆交于A ,B 两点,当APB ∠的平分线为PF 时,求直线AB 的方程.18.(本小题满分16分)某公司拟购买一块地皮建休闲公园,如图,从公园入口A 沿AB ,AC 方向修建两条小路, 休息亭P与入口的距离为米(其中a 为正常数),过P 修建一条笔直的鹅卵石健身步行带,步行带交两条小路于E 、F 处,已知045BAP ∠=,12tan 5CAB ∠=. (1)设AE x =米,AF y =米,求y 关于x 的函数关系式及定义域; (2)试确定E ,F 的位置,使三条路围成的三角形AEF 地皮购价最低.A OB OC OP O(17题图)F E19.(本小题满分16分)已知函数21()2ln (R)2f x x x ax a =+-∈.(1)当3=a 时,求函数)(x f 的单调区间;(2)若函数)(x f 有两个极值点21x x ,,且]10(1,∈x ,求证:2ln 223)()(21-≥-x f x f ; (3)设ax x f x g ln )()(-=,对于任意)2,0(∈a 时,总存在]2,1[∈x ,使2)2()(-->a k x g 成立,求实数k 的取值范围.20.(本小题满分16分)已知{a n }为等差数列,{b n }为等比数列,公比为q (q ≠1).令A ={k |a k =b k ,k ∈N*}. (1)若A ={1,2},①当a n =n ,求数列{b n }的通项公式;②设a 1>0,q >0,试比较a n 与b n (n ≥3)的大小?并证明你的结论. (2)问集合A 中最多有多少个元素?并证明你的结论.2018年高考模拟试卷(6)数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定两题,并在相应的答题区域内...............作答... A .[选修4-1:几何证明选讲](本小题满分10分)如图,圆O 内接四边形ABCD ,直线PA 与圆O 相切于点A ,与CD 的延长线交于点P ,AD ·BC =DP ·AB ,求证:AD =BC .B .[选修4-2:矩阵与变换](本小题满分10分)二阶矩阵M 对应的变换将△ABC 变换成△A 1B 1C 1,其中△ABC 三个顶点坐标分别为A (1,-1)、B (-2,1),C (2,2),△A 1B 1C 1中与A 、B 对应的两个坐标分别为 A 1(-1,-1)、B 1(0,-2).求C 1点的坐标.C .[选修4-4:坐标系与参数方程](本小题满分10分)若两条曲线的极坐标方程分别为ρsin(θ+π3)=1与ρ=2sin(θ+π3),它们相交于A 、B两点,求线段AB 的长.D .[选修4-5:不等式选讲](本小题满分10分)求证:对任意x ,y ∈R,不等式x 2+xy +y 2≥3(x +y -1)总成立.(第21题(A )【必做题】第22题、第23题,每题10分,共计20分.请在答卷纸指定区域内........作答. 22.(本小题满分10分)如图,在三棱锥A BCD -中,已知,ABD BCD ∆∆都是边长为2的等边三角形,E 为BD 中点,且AE ⊥平面BCD ,F 为线段AB 上一动点,记BF BAλ=.(1)当13λ=时,求异面直线DF 与BC 所成角的余弦值;(2)当CF 与平面ACD时,求λ的值.23.(本小题满分10分)设函数f n (x )=1+x +12!x 2+…+1n !x n,n ∈N*.(1)求证:当x ∈(0,+∞)时,e x>f n (x );(2)若x >0,且e x=f n (x )+1(n +1)!x n +1e y ,求证:0<y <x .BC2018年高考模拟试卷(6)参考答案数学Ⅰ一、填空题: 1.(]02,2. 5 解:z =21-i-i 3=1+i +i =1+2i ,所以| z |= 5.3.348 解:因为高二学生总数1180人,抽到118人,故抽了10%,所以高三学生抽到的人数为120,高一抽到的人数为110,共348人. 4.6 解:由题意抛物线定义可知,142p+=,所以6p =,即焦点到准线的距离为6. 5.4860 解:由题设可知,S =100+99+98+…+20=4860.6.6 3 解:由体积得球半径R =1,三棱柱的高为2,底面边长为2 3.V = 34(2 3)2×2=6 3.7. 12 解:将()f x 的图象向左平移π3个单位得到()ππsin 36y x ωω=+-,因为图象关于直线πx =对称,所以()4ππsin 136ω-=±,所以4ππππ362k ω-=+,即3142k ω=+,k ∈Z ,所以ω的最小值为12.8.23144 解:设两人到达A 地的时间分别是7点边m 分和7点过n 分(0≤m 、n ≤60). 用数对(m ,n )表示两人分别到达A 地的时间.则在直角坐标系中, 点(m ,n )的存在域是一个边长为60的正方形,其面积为3600. 两人能够在当天一同去A 地等价于|m -n |≤5.此时,相应点的存在 域是正方形中位于两直线m -n =±5之间的部分区域(如图), 其面积为3600-552=575.故所求概率为5753600=23144.9.11- 解:圆C 的半径r ABC 为等边三角形,所以圆心C 到直线AB 的距离d ==11m =-.10.32解:令a =AB →,b =AC →.则|a |=|b |=1,a 、b 的夹角为60°.于是,|AB →+t AC →|2=|a +t b |2=a 2+t 2b 2+2 t a ·b =t 2+t +1=(t +12)2+34≥34.所以|AB →+t AC →|≥32.11.01a <<或4a ≥ 解:令11x t a x =+-,则log a y t =.若01a <<,因为t 没有最大值,所以符合;若1a >,因为111x t a x =+-≥,要使原函数没有最小值,必须10≤,解得4a ≥.12.85 解法一:由a 1a 2+a 2a 3=2a 1a 3及a 1=14,a 2=15,得a 3=16,再由a 1a 2+a 2a 3+ a 3a 4=3a 1a 4,a 4=17.进一步得a 5=18,a 6=19, a 7=110,a 8=111,a 9=112,a 10=113,故1a 1+1a 2+…+1a 10=4+5+6+7+8+9+10+11+12+13=85.解法二:由a 1a 2+a 2a 3+…+a n a n +1=na 1 a n +1 ①,a 1a 2+a 2a 3+…+a n a n +1+ a n +1a n +2=(n +1)a 1 a n +2 ②,②-①得,a n +1a n +2=(n +1)a 1 a n +2-na 1 a n +11a 1=n +1a n +1-n a n +2=n a n -n -1a n +12a n +1=1a n +1a n +2,(n ≥2),则a 1a 2+a 2a 3=2a 1a 32a 2=1a 1+1a 3,所以数列{1a n}成等差数列,公差为1,即1a n =n +3,a n =1n +3.代入可得1a 1+1a 2+…+1a 10=85.13. 2(,)4e -∞- 解:由对称性,只需当0x >时,2x e mx =-有两解即可.即2x e m x =-在0x >时有两解.设2()xe g x x =,由3(2)()0x e x g x x -'=>得()g x 在(0,2)上递减,在(2,)+∞上递增. 由图可知24e m ->,所以24e m <-.14.λ≤ 解:由条件,sin sin sin sin A B A B λ+=-.因为2a b c +=,所以sin sin 2sin A B C +=, 所以sin sin 12sin A B C +=,所以22()sin sin sin sin 2sin sin 2sin 2sin sin a b A B A B cA B C ab C ab Cλ+++=-⨯=-=-. 而2222()2323cos 1222a b ab c c ab c C ab ab ab+---===-,所以22(1cos )3c C ab =+.由2a b c +=,得1cos 2C ≥,即π03C <≤,所以41cos 3sin C C λ=-+⋅≤.二、解答题:15.解:(1)当3m =,1n =-时,(1,3)=a ,又(2,1)=-b ,所以(1,3)(2,1)(12,3)λλλλ+=+-=+-a b , 若(λ⊥+)a a b ,则(0λ⋅+)=a a b ,即(12)3(3)0λλ++-=,解得10λ=. …… 7分(2)因为(1,)m =a ,(2,)n =b ,所以(3,)m n ++a b =, 因为5+=a b ,所以2223()5m n ++=,则2()16m n +=, 所以211122()216644mn m n ⋅⨯+++=+⨯=≤a b =,故当2m n ==或2m n ==-时,⋅a b 的最大值为6. …… 14分16.证明:(1)∵AB =AC ,点F 是线段BC 的中点,∴AF ⊥BC .…………………………………………2分 又∵平面11BB C C ⊥底面ABC ,AF ⊂平面ABC , 平面11BB C C ⋂底面ABC BC =,∴AF ⊥平面11BB C C . ……………………………………………………………………5分 又CC 1⊂平面11BB C C ,∴AF ⊥CC 1,又CC 1∥DD 1,∴AF ⊥DD 1.………………………………………………………………7分 (2)连结B 1C 与BC 1交于点E ,连结EM ,FE .在斜三棱柱111ABC A B C -中,四边形BCC 1B 1是平行四边形, ∴点E 为B 1C 的中点. ∵点F 是BC 的中点, ∴FE //B 1B ,FE 12=B 1B .…………………………10分 又∵点M 是平行四边形BCC 1B 1边AA 1的中点, ∴AM //B 1B ,AM 12=B 1B . ∴AM // FE ,AM =FE .∴四边形AFEM 是平行四边形.∴EM // AF .…………………………………………12分 又EM ⊂平面MBC 1,AF ⊄平面MBC 1,BAE (第15(2)题图)B 1A 1C 1M C FDD 1∴AF //平面MBC 1.……………………………………………………………………14分 17.解:(1)设右焦点)0,(c F ,由x PF ⊥轴,设),(t c P 代入椭圆方程,即得),(2ab c P ,所以232==a b PF ,联立2222321e 2b a c a b c a ⎧=⎪⎪⎪==⎨⎪+=⎪⎪⎩, …………………3分解得1,3,2===c b a ,所以椭圆方程为13422=+y x ,右准线l 的方程为42==ca x . (6)分(2)设)1)(,(000≠x y x A ,则直线AB 的方程为)1(100--=x x y y ,即100-=x y k , 联立⎪⎪⎩⎪⎪⎨⎧=+--=134)1(12200y x x x y y , 消去y , 即得0)1(1248]4)1(3[20202022020=--+-+-x y x y x y x (※), ………………… 9分 又0x 为方程(※)的一根,所以另一根为()02020204138x y x y x B -+-=,又点)1)(,(000≠x y x A 在椭圆上,所以满足134220=+y x ,代入另一根即得528500--=x x x B , 所以⎪⎪⎭⎫ ⎝⎛---523,52850000x y x x B .由(1)知,点⎪⎭⎫⎝⎛231,P 则直线PA 的斜率()1232001--=x y k ,直线PB 的斜率)1(25220002-+-=x x y k , (12)分①当APB ∠的平分线为PF 时,PA ,PB 的斜率1k ,2k 满足021=+k k , 所以0)1(2522)1(2320000021=-+-+--=+x x y x y k k ,即1200-=x y ,所以21=k ,故直线AB 的方程为 x -2y -1=0. …………… 14分18.(方法一)(1)由12tan 5CAB ∠=得12sin 13CAB =∠,5cos 13CAB =∠且sin sin()sin(45)FAP CAB PAE CAB ∠=∠-∠=∠-︒=由题可知AEFAEPAFPS SS=+所以111sin sin sin 222AE AF CAB AEAP PAE AP AF FAP ∠=∠+∠得1121121322xy x y ⋅=⋅+⋅⋅ 即1232113213xy ax ay =+ 所以1347axy x a=-由013047x axy x a >⎧⎪⎨=>⎪-⎩得定义域为7(,)4a +∞ ……………………6分 (2) 设三条路围成地皮购价为y 元,地皮购价为k 元/平方米,则AEFy k S =⋅(k 为常数),所以要使y 最小,只要使AEFS 最小由题可知2111266136sin 221313134747AEFax ax S AE AF CAB xy xy x x a x a=⋅⋅∠=⋅==⋅=-- 定义域为7(,)4a+∞ 令470t x a =-> 则2222763144934941488AEFt a a a t at a a a St a t t t +⎛⎫ ⎪⎛⎫++⎝⎭==⋅=++ ⎪⎝⎭23211482a a a ⎛⎫≥= ⎪ ⎪⎝⎭当且仅当7t a =即72ax =时取等号 所以,当72ax =时,AEFS 最小,所以y 最小答:当点E 距离点A72a米远时,三条路围成地皮购价最低……………14分 (方法二)(1) 由12tan 5CAB ∠=得12sin 13CAB =∠,5cos 13CAB =∠ sin sin()sin(45)FAP FAE PAE FAE ∠=∠-∠=∠-︒=设FPA θ∠=APF 中,由正弦定理sin sin sin AF PF APAPF FAP AFE==∠∠∠所以26,sin sin yPF AFE θ=∠=同理可得122,sin xy xPE FE θ==由PF PE FE +=即12262sin sin y xy x θθ+整理得1347axy x a=-,由013047x axy x a >⎧⎪⎨=>⎪-⎩得定义域为7(,)4a +∞ ……………………6分 (方法三)(1)以AB 所在直线为x 轴,点A 为坐标原点,建立如图直角坐标系,则(),0E x ,()3,3P a a ,由12tan 5CAB ∠=,得12sin 13CAB =∠,5cos 13CAB =∠所以512,1313F y y ⎛⎫ ⎪⎝⎭因为PE 与PF 共线所以()()51233331313y a a y a x a ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭所以1347axy x a=-由013047x axy x a >⎧⎪⎨=>⎪-⎩得定义域为7(,)4a +∞ ……………………6分 19.解:)0(22)(2>+-=-+='x xax x a x x x f(1)当3=a 时,xx x x x x x f )1)(2(23)(2--=+-=', 令100)(<<⇒>'x x f 或2>x ,令210)(<<⇒<'x x f , 所以)(x f 的递增区间为)1,0(和),2(+∞,递减区间为)2,1(. (2)由于)(x f 有两个极值点21,x x ,则022=+-ax x 在),0(+∞∈x 上有两个不等的实根21,x x ,⎪⎪⎩⎪⎪⎨⎧=+=>⇒≤<⎪⎪⎪⎩⎪⎪⎪⎨⎧>==+>-=∆∴1221121212222)10(02208x x x x a a x a x x a x x a )21ln 2()21ln 2()()(2222121121ax x x ax x x x f x f -+--+=- ))((2121)ln (ln 22121222121x x x x x x x x -+--+-= 21211121)2(21)2ln (ln 2x x x x -+-= )10(2ln 222ln 4121211≤<--+=x x x x设)10(2ln 222ln 4)(22≤<--+=x x xx x F ,所以0)2(4444)(3223423<--=--=--='xx x x x x x x x F 所以)(x F 在]1,0(上递减,所以2ln 223)1()(-=≥F x F即2ln 223)()(21-≥-x f x f . (3)由题意知:只需2)2()(max -->a k x g 成立即可.因为a ax x x x g ln 21ln )(2--+=, 所以a xx x g -+='1)(,因为]2,1[∈x ,所以⎥⎦⎤⎢⎣⎡∈+25,21x x ,而)2,0(∈a ,所以0)(>'x g ,所以)(x g 在]2,1[∈x 递增, 当2=x 时,a a g x g ln 222ln )2()(max +-+==. 所以2)2(ln 222ln -->--+a k a a 在上)2,0(∈a 恒成立,令42ln )2(2ln )(++----=a k a a a h ,则0)(>a h 在上)2,0(∈a 恒成立,aa k k a a h 1)2(21)(---=---=',又0)2(=h 当02≤--k 时,0)(<'a h ,)(a h 在)2,0(∈a 递减,当0→a 时,+∞→)(a h , 所以0)2()(=>h a h ,所以2-≥k ; 当02>--k 即2-<k 时,ka a h --=⇒='210)( ①2210<--<k即25-<k 时,)(a h 在)2,21(k --上递增,存在ka --=21,使得0)2()(=<h a h ,不合; ②221≥--k 即225-<≤-k 时,0)(<'a h ,)(a h 在)2,0(∈a 递减, 当0→a 时,+∞→)(a h ,所以0)2()(=>h a h ,所以225-<≤-k 综上, 实数k 的取值范围为),25[+∞-.20.解:(1) 由A ={1,2},得a 1=b 1,a 2=b 2.设数列{a n }公差为d ,数列{b n }公比为我q ,由a 2=b 2 a 1+ d =a 1q ,故d =a 1(q -1) ①因为a n =n ,a 1=b 1=1,a 2=b 2=2,所以数列{b n }的公比q =b 2b 1=2,所以,b n =2n -1.……2分② 答:a n <b n (n =1,2,…).证明如下: 因为a 1>0,q >0,q ≠1,所以b n -a n =a 1q n -1-[(a 1+(n -1) a 1(q -1)]=a 1( q n -1-1)-a 1(q -1) (n -1)=a 1(q -1)(q n -2+q n -1+…+1)-a 1(q -1) (n -1)=a 1(q -1)[q n -2+q n -3+…+1-(n -1)] =a 1(q -1)[(q n -2-1)+( q n -3-1)+…+(q -1)]=a 1(q -1)2[(q n -3+q n -4+…+1)+(q n -4+q n -5+…+1)+…+(q +1)+1]>0.所以a n <b n (n =1,2,…). ……………………………… 6分(2)不妨设a n =a +bn (b ≠0),b n =pq n,由a n =b n a +bn =pq na p +b pn =q n. 令s =a p ,t =b p,(t ≠0),原问题转化为关于n 的方程q n-tn -s =0 ① ……………………………… 8分 最多有多少个解.下面我们证明:当q >0时,方程①最多有2个解;q <0时,方程②最多有3个解. 当q >0时,考虑函数f (x )=q x-tx -s ,则f ′(x )=q xln q -t 如果t ln q <0,则f (x )为单调函数,故方程①最多只有一个解;如果t ln q >0,且不妨设由f ′(x )=0得f ′(x )有唯一零点x 0=log q tln q,于是当x >x 0时,f ′(x )恒大于0或恒小于0,当x <x 0时,f ′(x )恒小于0或恒大于0,这样f (x )在区间(0,x 0)与(x 0,+∞)上是单调函数,故方程①最多有2个解. …………………… 10分 当q <0时,如果t >0. 如果n 为奇数,则方程①变为 |q |n+tn +s =0,显然方程最多只有一个解,即最多只有一个奇数满足方程①. 如果n 为偶数,则方程①变为|q |n -tn -s =0.由q >0的情形,上式最多有2个解,即满足①的偶数最多有2个. 这样,最多有3个正数满足方程①.对于t <0,同理可以证明,方程①最多有3个解.综上所述,集合A 中的元素个数最多有3个. ……………………………… 12分 再由当a n =6n -8,,b n =(-2)n,则a 1=b 1,a 2=b 2,a 4=b 4.A ={1,2,4}. 由此,可知集合A 中的元素个数最多有3个. ………………… 16分数学Ⅱ(附加题)21A .证明:连AC ,在△ABC 与△ADP 中, 因为A 、B 、C 、D 四点共圆,所以∠ADP =∠ABC , 又因为AD ·BC =DP ·AB ,即 AD DP =ABBC, 所以 △ABC ∽△ADP , 所以 ∠BAC =∠DAP .因为 直线PA 与圆O 相切,所以 ∠DAP =∠ACD , 所以 ∠BAC =∠ACD ,所以,A B ∥CD ,所以圆内接四边形ABCD 为等腰梯形,所以AD =BC .21B .解:设M =a b c d ⎡⎤⎢⎥⎣⎦,则有a b c d ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥-⎣⎦=11-⎡⎤⎢⎥-⎣⎦,a b c d ⎡⎤⎢⎥⎣⎦21-⎡⎤⎢⎥⎣⎦=02⎡⎤⎢⎥-⎣⎦, 所以11a b c d -=-⎧⎨-=-⎩,,且2022a b c d -+=⎧⎨-+=-⎩,.解得1234a b c d =⎧⎪=⎪⎨=⎪⎪=⎩,所以M =12 34⎡⎤⎢⎥⎣⎦.所以⎣⎢⎡⎦⎥⎤1234 ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤614,即C 点坐标为(6,14).21C .解:由ρsin(θ+π3)=1得, 3x +y -2=0,由ρ=2sin(θ+π3) 得,x 2+y 2- 3x-y =0,直线3x +y -2=0过圆x 2+y 2-3x -y =0的圆心(32,12), 所以线段AB 的长为圆ρ=2sin(θ+π3)的直径长,即AB =2.21D .法一:左-右=x 2 +(y -3) x +y 2 -3y +3∵Δ=(y -3)2-4(y 2 -3y +3)=-3 y 2+6 y -3 ≤ 0 ∴左-右≥0 得证。
高考南通市数学学科基地密卷
2018年高考模拟试卷(4)南通市数学学科基地命题 第I 卷(必做题,共160分)、填空题:本大题共 14小题,每小题5分,共70分. 1 •设复数z 满足(2 -i)z =1 i ( i 为虚数单位),则复数z 二▲ 2 •已知集合, B 」0,2?,贝U AUB 共有 ▲ 个子集.3 •根据如图所示的伪代码,可知输出的结果 S 为 ▲ •4 •在某频率分布直方图中,从左往右有10个小矩形,若第一个小矩形的面积等于其余 9个小矩形的面积和的 丄,且第一组5 数据的频数为25,则样本容量为▲在平面直角坐标系 xOy 中,已知双曲线 C 的渐近线方程为y = x ,若函数y 二sin( •・x W )(门,0)的部分图象如图所示, 则•,的值为 ▲•现有5张分别标有数字1, 2, 3, 4, 5的卡片,它们的大小和颜色完全相同.从中随机抽取 2张组成两位数,则该两位数为奇数的概率为 •9 •在三棱锥P-ABC 中,D , E 分别为PB , PC 的中点,记三棱锥 D-ABE 的体积为 V ,三棱锥P - ABC 的体积为V ,则也=▲•V 2T ■ T10 •设点P 是 ABC 所在平面上的一点,点D 是BC 的中点,且BC • 2BA =3BP ,设1011 .已知数列{a n }中,a 1 =1, a ? =4 , a^10 .若{a n ^a n }是等比数列,则a^_▲_i=12212.已知 a , b R , a b ,若 2a -ab -b -4=0,则 2a-b 的最小值为▲ •2 2 2 2 213•在平面直角坐标系 xOy 中,动圆C:(x-3),(y-b)二r (其中r -b <9)截x 轴所得的弦长恒为4 .若过点O 作圆C 的一条切线,切点为 P ,则点P 到直线2x • y -10 =0距离的 最大值为S —1IT Whil e 1 :::7S — S + 3I — I + 2End While Print S--1PD = h AB +P AC 贝V 九+ 卩=(2,0),则双曲线C 的方程为 ▲ 函数f(x)二-4的定义域为_▲且它的一个焦点为(第 7题)▲ .14.已知 —〔0,2二,若关于k 的不等式•而一 .CO^^k si n 3v_cos 3r 在「:,-2 ]上恒成立, 则二的取值范围为 ▲.二、解答题:本大题共 6小题,共计90分.15. 已知向量 订二(sin 今,舟),n 二(-2 厂.3cos|),函数 f(x)二m n .(1) 求函数f(x)的最小正周期;T 呻7T(2) 若 m // n ,且 x 三(0,—),求 f (4x)的值.216.如图,在四棱锥 P-ABCD 中,底面 ABCD 为梯形,CD // AB , AB=2CD , AC 交BD于O ,锐角 PAD 所在平面 PAD 丄底面 ABCD ,圆 O 是一块半径为1米的圆形钢板,为生产某部件需要,需从中截取一块多边形ABCDFGE .其中AD 为圆O 的直径,B ,C ,G 在圆O 上,BC // AD , E ,F 在AD 上,且 1OE =OF BC, EG 二 FG .2(1)设.AOB -二,试将多边形 ABCDFGE 面积S 表示成二的函数关系式;(1) 求证: (2) 求证:PA// 平面 QBD ;BD _AD . 17.如图所示,(2)多边形已知函数f(x) =(x-1)e x ax 2,其中a R , e 是自然对数的底数. (1)若a =0 ,求函数y = f (x)的单调增区间; (2)若函数f (x)为R 上的单调增函数,求 a 的值;(3) 当a 0时,函数y = f (x)有两个不同的零点 x ! , x 2,求证:为x 2 0 .已知数列 江[的前n 项和为S n ,把满足条件空S n (N *)的所有数列〈aj 构成的集合 (1) 若数列订」通项公式为a n 1,求证:爲〕M ;2(2) 若数列faj 是等差数列,且^a n - n» M ,求2a^a 1的取值范围;(3 )设b n 二丄(n ・N *),数列Sn [的各项均为正数,且 'a n 〉M •问数列 Y 中是否存在 a n无穷多项依次成等差数列?若存在, 给出一个数列:a 的通项;若不存在,说明理由.18.2 2在平面直角坐标系 xOy 中,已知F ,2分别为椭圆 笃•爲=1 ( a b 0 )的左、右a b A(2 ,0)和点(1,3e),其中e 为椭圆的离心率. 焦点,且椭圆经过点 (1)求椭圆的方程; (2)过点A 的直线I交椭圆于另一点 B ,点M 在直线I 上,且OM =MA .若 MF ! _ BF 2 , 求直线I 的斜率.19.20.21 •【选做题】本题包括学习必备欢迎下载2018年高考模拟试卷(4)数学u (附加题)A、B、C、D四小题,请选定两题,并在相应的答题区域内作答A •[选修4』:几何证明选讲](本小题满分10分)如图,AB为O O的直径,D为O O上一点,过若DA = DC,求证:AB = 2BC.C •B .[选修4 _2:矩阵与变换](本小题满分10分)已知a,b・R,向量为r二2是矩阵A J a 2的属于特征值-3的一个特征向量.1 b 1(1)求矩阵A的另一个特征值;(2)求矩阵A的逆矩阵A」.C .[选修4 Y:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy中,已知直线I的参数方程为x - -1 -电t5— ft (t为参数)•以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为匸= 2-2cos(—.—).4 求直线l被曲线C所截得的弦长.D .[选修4七:不等式选讲](本小题满分10分)已知实数x, y, z满足x + y + z = 2,求2x2 3y2 z2的最小值.【必做题】第22题、第23题,每题10分,共计20分•请在答卷纸指定区域内.作答.22. (本小题满分10分)某小组共10人,利用寒假参加义工活动,已知参加义工活动次数为1, 2, 3的人数分别为3, 3, 4 .现从这10人中选出2人作为该组代表参加座谈会.(1)记“选出2人参加义工活动的次数之和为4”为事件A,求事件A发生的概率;(2)设X为选出2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.23. (本小题满分10分)在各项均不相同的数列a1 , a2, a s,…,a. (N*)中,任取k(k・N ,且k_n)项变动位置,其余n-k项保持位置不动,得到不同的新数列,由此产生的不同新数列的个数记为P n(k).(1 )求P4(0) F4(1) F4(2) F4(3)的值;(2)求P5(5)的值;n nA kF n(n—k) A n 1=(n 1)、P n(n—k)(3)设k - ,求证:k=°.2018年高考模拟试卷(4)参考答案数学I一、填空题: 1. 1 + 3i [解析】i)(2 D =口 . 5 5 2 _i (2 —i)(2 i) 52. 8【解析】由条件得 AUB 二{-1,0,2},所以AUB 的子集有8个.3. 10【解析】由题意可知 ^1 3 3 ^10.4. 150【解析】设第一个小矩形面积为 x ,由6x =1,得x = 2,从而样本容量为 25 6 = 150 .62 25.x 2 -y 2 =1【解析】设双曲线 C 的方程为 笃-爲=1(a 0,b ■ 0),因为双曲线C 的渐近线方a b程为y =_x ,所以a =b ,又因为一个焦点为(.2,0),所以c= .2,所以a=b=1,所以双曲线 C 的方程为x 2 - y 2 =1g)x -4 _0,所以 X 乞-2号音2込,所以.牛4.210=3 2n 丄—2,所以送 a =3049 .i 士12. 3【解析】因为 a , b R , a b , 2a 2 -ab -b 2 -4 =0 ,所以(a -b)(2a b) =4 .6. (_::, -2]【解析】由已知得,7. 4【解析】由图知函数的周期为8 . 3【解析】从5张分别标有数字1, 2, 3, 4, 55 的卡片中随机种情况,要使1,2,3,4,5中的两个数组成两位奇数,有 12种情况,_ 1 __PABS PAB h , V | = V E39.-【解析】因为V 2 =V C4所以也V 2 2_ABDS DAB3所以其概率为聖.20 51 1 h 1S PAB V2 ,3 2 2 410三【解析】因为BC 2BA =3BP ,所以BC -BP =2(BP -BA),即3 1—?=P ,所以AP 」AC ,3TT T 1 T —I T 1 T 所以 ADAD 11. 3049【解析】 a n 1 一弘=3 2n1,所以 a n 二印•(a ? —aj •—a ?) - (a^a nJ )3令 a _b =t , 2a b =4 , t 0 ,则 a =丄 t 4 , b =2 2 _t , t t f 3*t ' 所以2a _b 令 1) > 3 2. t -J =8,当且仅当t =1时取等号. 所以2a - b 的最小值为8 .313. 3 5 [解析】因为动圆C:(x —3)2・(y-b)2 =r 2 (其中r 2 -b 2 <9 )截x 轴所得的弦长恒为4,所以r 2 =b 2 4 ,设P(x °, y °),由已知条件得,9 b^r 2 x 2 - y 2 ,所以x ] y 2 = 5 ,即点P 在10 圆x 2+y 2=5,所以点P 到直线2x+y_10=0距离的最大值为 ~^卡屈=3眞. V 53' cos 3v - sinv -• cosv ,题意即为 f (k) > 0在[-匚j -2 ]上恒成立,即f min (k) > 0 .由于日€0,2兀),Si n 日> 0且cose > 0,则日乏|0,弓.f(k) =0 > 0恒成立,符合;sin ? v -COS3.0 ,所以f (k)在[-匚3 -2 1上单调递增,不符合;sin J-cosJ :::0,所以 f (k)在-:,-2 1 上单调递减,此时 f min (k) = f (-2) = -2 sin : - cos - 、. sin- cos 二 > 0 , 即 2sin % sin v < 2cos % COST .令 f(x)=2x 3+7X ( x > 0),不等式即为 f (sin6) < f(cos0),J由于f (x) =6x 2 1x^ > 0 ,所以f(x)在0,匚 上单调递增, 而当 v -[0, -j)时,si n^ ::: COST ,所以 f(sin 二)< f(cos^)恒成立.综上所述,二的取值范围是1), =(|, ■ 3COS 2),x C0S2 = sin -15 .解:(1) ; m = (si 门乡, 1 x 3 .f (x)二 m n sin2 2 2 =sinXCOSn+ COS -S in n= sin x n,23 2 3 2 3所以函数f (x)的最小正周期为T 二肚=4 n 1 鸣 2 (2)T m= (si 门乡,* , n =(* , ^3 COS |)T 呻,且 m // n ,..... ^4 分'14.0,才【解析】f(k)=ksi n 3 —_02当-(「,亍]时,当 二[0,;)时,.Xx 1 1sin ■ 3cos0 ,222 2sin X蔷,因为侧面 PAD_底面ABCD ,平面PAD^l 平面ABCD 二AD ,PH 平面PAD ,所以PH _平面ABCD , ...................... 8分 又BD 二平面 ABCD ,所以PH _BD , ...................... 10分 因为「PAD 是锐角三角形,所以 PA 与PH 不重合, 即PA 和PH 是平面PAD 内的两条相交直线,又PA_BD ,所以BD _平面PAD , ....................... 12分又AD 平面PAD ,所以BD _AD . ...................... 14分17•解:连接 EF ,BE,OB,OG ,-OE =OF 」BC , ■ BC =EF _ BE _ EO , 2 - EG =FG , OG _ EF ,......... 2 分(1 )在 Rt BEO 中,BO =1 , AOB - J ,EO =cos v , BE =sin :, BC =EF =2cos 丁 ,.... 4分1 1s 弟形ABCD S EGF (AD BC) BE — EF OG2 211 二(2 2cosRsin 2cos^ 1 =sin^cos 亠sin 亠 cos^,寫:二(0,—).2 2 2(0,2),10分.sin 2x =2sin c 矗^'33吊x cos x 二 2 - 6 6 6 512分2\t3cos2x =1 -2sin x =1 -2 () 6 1.f (4x) sin 2x cos2x211 53 1216.证明:(1) 因为 AB//CD , 所 AO =2OC , 又 PQ =2QC , 所以 PA / /OQ , 又OQ 二平面QBD , PA 二平面QBD , 所以PA//平面QBD . ........... 6分 (2)在平面PAD 内过P 作PH _ AD 于H ,如图,连接 AB =2CD , OQ , .cosx = 1 —sin 2 x =33""6"14分B学习必备欢迎下载(2)令t 二sin v cos J,匚三(0, —),2学习必备 欢迎下载=0,t 2 _1兀则 sin ncos,且 t = 2 sin(r —)三(1, . 2], 2 4t 2 _1 t 2 1 1s - t =- t 一一 = —(t i )2 -1, t ・(1, 2],2 2 2 2当 t = 2,即 时,S max =—2 ,42即多边形ABCDFGE 面积S 的最大值为—2平方米.2 18 •解:(1)因为椭圆经过点 A(2,0)和点(1,3e),a =2,所以 1 9c i =1,|4 4 b 2 b 2 c 2 二a 2,2 2 解得a =2, b = •3, c =1,所以椭圆的方程为 丄 11 .4 3(2)解法一:由(1)可得 F(-1 ,0) , F 2(1,0), 设直线I 的斜率为k ,则直线I 的方程为y =k(x -2).y =k(x 「2),由方程组 2 y 2 消去y ,整理得(4k 23)x 2 -16k 2x 16k 2乞 +L —1 4 3 _1 ,2f 2\解得x =2或X =8k2 _6 ,所以B 点坐标为8k2 _6 , -12k.4k 2 +3\4k +3 4k +3丿由OM =MA 知,点 M 在OA 的中垂线x =1上, 所以 F 1M =(2,-k) , F 2B = 8k ^6 -1,4k +3 4k +34k +3 4k +3222若 MF — BF 2,贝y FM F 2B =8k2一18 ¥4k +3 4k+3解法二:由(1)可得 Fd-1,0) , F 2(1, 0),设 B(x 0, y 0) ( X 。
江苏省南通基地2018年高考数学密卷7理201902270175
3 . 5
6 ,求 AB 的长; 5 1 (2)若 tan A B ,求 tan C 的值. 3
16.(本小题满分 14 分) 如图,在三棱锥 P ABC 中, AC BC ,点 D 在 AB 上,点 E 为 AC 的中点,且
BC // 平面 PDE.
(1)求证: DE // 平面 PBC; (2)若平面 PCD⊥平面 ABC, 求证:平面 PAB⊥平面 PCD. A D
23.(本小题满分 10 分) 已知数列 an 满足 an C n
0
C1 C 2 2 C3 Cn n n 1 3 n2 n3 … nn ,n N* . 2 2 2 2
(1)求 a1 , a2 , a3 的值;
-5-
(2)猜想数列 an 的通项公式,并证明.
2 2
截得的弦长是定值(与实数 m 无关) ,则实数 k 的值为
▲
. ▲ .
12.在△ABC 中, cos A 2sin B sin C , tan B tan C 2 ,则 tan A 的值为 13.设 F 是椭圆
x2 y 2 + =1(a>0,且 a≠2)的一焦点,长为 3 的线段 AB 的两个端点在椭圆 a2 4
x t cos m x 5cos (t 为参数)恒经过椭圆 C: (为参数) y t sin y 3sin
的右焦点,求实数 m 的值.
D.[选修 4-5:不等式选讲](本小题满分 10 分) 设 a1 ,a2 ,a3 均为正数,且
1 1 1 1 ,求证: a1 a2 a3≥ 9 . a1 a2 a3
x y 1 k k 3
▲ .
(第 6 题)
2018年江苏省南通基地高考密卷数学(理)(6)(PDF版)
▲
. ▲ . .
→ → 10.设正△ABC 的边长为 1,t 为任意的实数.则| AB +t AC |的最小值为
11.若函数 f ( x) loga x 1 1 ( a 0 且 a 1)没有最小值,则 a 的取值范围是 ▲ a x 1 1 12.数列{an }满足 a1 = ,a2 = ,且 a1 a2 +a2 a3 +…+an an +1 =na1 an +1 对任何正整数 n 成立,则 4 5 1
(第 21 题(A)
B .[选修 4-2:矩阵与变换](本小题满分 10 分) 二阶矩阵 M 对应的变换将△ABC 变换成△A1 B1 C1 ,其中△ABC 三个顶点坐标分别为
A(1,-1)、B(-2,1),C(2,2),△A1 B1 C1 中与 A、B 对应的两个坐标分别为 A1 (-1,-1)、B1 (0,-2).求 C1 点的坐标.
C .[选修 4-4:坐标系与参数方程](本小题满分 10 分) 若两条曲线的极坐标方程分别为 ρ sin(θ + 两点,求线段 AB 的长. π π )=1 与 ρ =2sin(θ + ),它们相交于 A、B 3 3
D .[选修 4-5:不等式选讲](本小题满分 10 分) 求证:对任意 x,y∈R,不等式 x +xy+y ≥3(x+y-1)总成立.
3 2 ln 2 ; 2
(3)设 g ( x) f ( x) ln ax ,对于任意 a (0,2) 时,总存在 x [1,2] ,使 g ( x) k (a 2) 2 成立,求实数 k 的取值 范围.
20. (本小题满分 16 分) 已知{an }为等差数列,{bn }为等比数列,公比为 q(q≠1).令 A={k|ak =bk ,k∈N*}. (1)若 A={1,2}, ①当 an =n,求数列{bn }的通项公式; ②设 a1 >0,q>0,试比较 an 与 bn (n≥3)的大小?并证明你的结论. (2)问集合 A 中最多有多少个元素?并证明你的结论.
高考南通市数学学科基地密卷
2018年高考模拟试卷(9)南通市数学学科基地命题 第I 卷(必做题,共160分)一、填空题:本大题共 14小题,每小题5分,共70分.1 .设集合 A = {1 , x }, B = {2 , 3, 4},若 A AB ={4},则 x 的值为 ▲ 2 .若复数 z 1=2+i, z 1 z2() z2=5,则 z 2= ▲ .3 .对一批产品的长度(单位:毫米)进行抽样检测,样本容量为200,右图为检测结果的 频率分布直方图,根据产品标准,单件产品长度在区间[25, 30)的为一等品,在区间[20, 25)和[30, 35)的为二等品,其余均为三等品,则样本中三等品的件数为 -4为活跃气氛,某同学微信群进行了抢红包活动.某同学发了一个“长长久久”随机分配红包,总金额为元,随机分配成5份,金额分别为元,元,元,元,元,则身处海外的两名同学抢得的金额之和不低于 5元的概率为 ▲ .2.6 .函数y log 2(3 2x x )的值域为 ▲.7 . 已知P ABC 是正三棱锥,其外接球 。
的表面积为16国 且/ APO = /BPO = / CPO = 30°,则三棱锥的体积为▲.28 .已知双曲线x 22— 1的左、右顶点为 A 、B,焦点在y 轴上的椭圆以A 、B 为顶点,4—,过A 作斜率为k 的直线l 交双曲线于另一点 M,交椭圆于另一点 N,2uur uuLur-4. 执行如图所示的流程图,会输出一列数,则这列数中的第(第4题)3个数为一^5. 且离心率为1020 25 30 33 长度,室:朱(第3题)姨率 娟跖0.06250.05W 0.0375 (J.02500.01右AN NM,则k的值为_A19 . 已知函数 f(x) = cosx(sin x+cosx) 5,右 f()a n 1 a n a n 1 L a 2 a 1 ( n > 2,n N ),若a m (b m 28) 2018,则m 的值为 ▲. 11 .定义在1,1上的函数f (x) sinx ax b(a 1)的值恒非负,则 a b 的最大值为 ▲ .3521 15 一 ......... .....12 .在△ ABC 中,若 uur uur uuu uuur ■uumur .贝cosC 的值为 ▲ . CA AB AB BC BCCA13 .在平面直角坐标系 xOy 中,圆O : x 2y 21,直线l : x ay 3 0 ,过直线l 上一点 M (一,1) .3(1)求f (x)的解析式;8 24 .,(2)已知,(0,一),且 f( ) 8 , f() 一,求 f( )的值.2 5 13—,则cos(— 2 )的值为 ▲6410 .已知a n 是首项为1,公比为2的等比数歹U,数列b n 满足匕a 1 ,且b n a 1 a 2 Luur 点Q 作圆O 的切线,切点为P, N ,且QP 14 .已知偶函数y f(x)满足f(x 2) f (2 若存在x 1, x 2,L , x n 满足 0W x 1 x 2 L 且 f x 1 fx 2 f x> f x 3 L 为 ▲ .二、解答题:本大题共 6小题,共计90分. 15 .(本小题满分14分)已知函数 f (x) Asin x A 0,0uuir 2QN 2,则正实数a 的取值范围是▲.32f x n 1 f x n 2017,则 x n 最小值的最小值是一2,其图象经过有一块以点O 为圆心,半径为2百米的圆形草坪,草坪内距离 。
(完整word版)2018年高考南通市数学学科基地密卷(2)
4高三数学试卷第1页共17页2018年高考模拟试卷(2)南通市数学学科基地命题 第I 卷(必做题,共160分) 一、填空题:本大题共 14小题,每小题5分,共70分. 1 .已知集合 A={1 , 4}, B={ x|1< x <3},则 A H B= ▲ .22. 设复数z (2 i ) (i 为虚数单位),则z 的共轭复数为 ▲3. 函数的y ... 3 log 2 x 定义域为 ▲4. 阅读下面的伪代码,由这个算法输出的结果为:s 0i[| :t 1t I 'For I From 1 To 3 !|:s s+I :'t 11 II:End For 丨r stii:Print ri i ! ________________________________________ i(第4题)5. 如图是甲、乙两位同学在 5次数学测试中得分的茎叶图,则成绩较稳定(方差较小) 的那一位同学的方差为 ▲.6. 将黑白2个小球随机放入编号为 1, 2, 3的三个盒子中,则黑白两球均不在 1号盒子 的概率为 ▲ .7. 在平面直角坐标系 xOy 中,将函数y cos2x 的图象向右平移 一个单位得到g (x )的图6象,贝U g (—)的值为▲ .22y 28.在平面直角坐标系 xOy 中,双曲线x 198 79 210013(第 5 题)近线的距离为—▲卄丄冗 c r「sinx 2cosx砧/古斗▲9. 若tan x 3,贝U 的值为▲4 3sinx 4cosx10. 已知函数f(x)是定义在R上的偶函数,且对于任意的x€ R都有f(x+4)= f(x)+ f(2), f(1)= 4,则f(3)+ f(10)的值为▲.11.已知S n为数列{a n}的前n项和,且a; 1 a n1a n 1, S I32a13 , 则{a n}的首项的所有可能值为▲.5 0与圆C 2212.在平面直角坐标系xOy中,已知直线丨:3x 4y:x y 10x 0交A, B两点,P为x轴上一动点,则△ ABP周长的最小值为▲.2 亠x x a , x > a ,、卄13. 已知函数f (x) 2记A {x|f(x) 0},右AI ( ,2)x x 3a, x a .则实数a的取值范围为▲.14. 若厶ABC中,AB= , 2,BC=8, B 45°,D ABC所在平面内一点且满足uuu uuur uuur uur(AB AD) (AC AD) 4,贝V AD长度的最小值为▲二、解答题:本大题共 6小题,共90分. 说明、证明过程或演算步骤. 15. (本小题满分14分)如图,在厶ABC 中,a, b, c 为A B, (1)求证:sinC 2sin( A B);3(2 )若 cos A,求 tanC 的值.5请在答题卡指定区域内作答•解答时应写出文字 1C 所对的边,CD 丄AB 于D ,且BD AD c .2(第 15 题)16. (本小题满分14分)在正四棱锥V ABCD 中,E , F 分别为棱VA , VC 的中点. (1) 求证:EF //平面 ABCD ; (2) 求证:平面 VBD 丄平面BEF .锥的底面半径都为r cm .圆锥的高为h 1 cm ,母线与底面所成的角为 45° ;圆柱的高为18. (本小题满分16分)已知在平面直角坐标系 xOy 中,椭圆C : £ 占1(a b 0)离心率为甘,其短轴a b 2长为2.(1) 求椭圆C 的标准方程;(2) 如图,A 为椭圆C 的左顶点,P , Q 为椭圆C 上两动点,直线 PO 交AQ 于E ,17. (本小题满分14分)如图所示的某种容器的体积为 90 n cm 3, (第16题)它是由圆锥和圆柱两部分连接而成, 圆柱与圆h 2 cm .已知圆柱底面的造价为 2a 元/ cm 2,圆柱侧面造价为a 元/ cm 2,圆锥侧面造价为、.2a 元/cm 2. (1) 将圆柱的高h 2表示为底面半径r 的函数,并求出定义域; (2)当容器造价最低时,圆柱的底面半径r 为多少?h 2(第 17题)存在,请说明理由.20. (本小题满分16分)已知函数 f(x) x k lnx, k N *, g(x) cx 1,c R . (1) 当k 1时,① 若曲线y f (x)与直线y g(x)相切,求c 的值;② 若曲线y f (x)与直线y g(x)有公共点,求c 的取值范围.(2) 当k >2时,不等式f (x)>ax 2 bx >g(x)对于任意正实数x 恒成立,当c 取得 最大值时,求a ,b 的值.直线 QO 交AP 于 D ,直线OP 与直线OQ 的斜率分别为k 1 , k 2,且k ,k 2 luir ADuir uur DP , AEuu n EQ19.(本小题满分 16分)设数列{a “}的前n 项和为 S n , 已知 a 1 1 ,S n 1 1 ( n N ).(1)求证:数列{a n }为等比数列;(2)若数列{b n }满足:b! 1,b n b n7an 1①求数列{b n }的通项公式; ②是否存在正整数n ,使得4 n 成立?若存在,求出所有 n 的值;若不为非零实数)2S n2018年高考模拟试卷(2)数学u (附加题)21. 【选做题】本题包括 A 、B 、C 、D 四小题,请选定 两题,并在相应的答题区域内作答 A .[选修4 —1:几何证明选讲](本小题满分10分)如图,ABCD 为圆内接四边形,延长两组对边分别交于点 上两点,EM = EN ,点F 在MN 的延长线上.求证:/B .[选修4— 2:矩阵与变换](本小题满分10分)已知在二阶矩阵 M 对应变换的作用下,四边形 ABCD 变成四边形 ABCD ,其中 A(1 ,1) , B( 1 , 1) , C( 1 , 1) , A (3,3) , B( 1 ,1) , D (1, 1). (1) 求矩阵M ;(2) 求向量DC 的坐标.x = t ,l 的参数方程是(t 为参数),圆C 的极坐标方y = t — 3程是p= 4cos 0,求直线I 被圆C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)E ,F . M , N 为 AB , CD BFM = Z AFM .C .[选修4—4:坐标系与参数方程](本小题满分10分)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中 取相同的长度单位.已知直线 A已知 x>0, y>0, z>0, 2x 2y z 1,求证:【必做题】第22题、第23题,每题10分,共计20分.请在答卷纸指定区域内.作答. 22. (本小题满分10分)某同学理科成绩优异,今年参加了数学,物理,化学,生物4门学科竞赛.已知该同学数学获一等奖的概率为 2,物理,化学,生物获一等奖的概率都是-1,且四门学科 32是否获一等奖相互独立.(1) 求该同学至多有一门学科获得一等奖的概率; (2) 用随机变量X 表示该同学获得一等奖的总数,求X 的概率分布和数学期望 E X23. (本小题满分10分)已知函数 f(x) x x 1,记 f ’(x) f(x),当 n 》2 时,f n (x) f n1(f(x)). (1) 求证:f 2(x)在(1,)上为增函数;(2) 对于任意n N *,判断f n (x)在(1,)上的单调性,并证明.3xy yz zx < -.52018年高考模拟试卷(2)参考答案、填空题:本大题共14小题,每小题5分,共70 分.{1}【解析】依题意,A n B={1} 3 4i 【解析】由于z (2 i)23 4i ,所以z 的共轭复数为3 4i .0,8【解析】由3 log 2x > 0,解得0 x < 8 .36【解析】s 1 2 3 6, t 1 2 3 6,输出的结果r 6 6 36.2【解析】由茎叶图可知, x 88 89 90 91 9290 ,c1 5一 c所以甲的方差为s2 5,1(x ' x)2 2;有2 2 4种,所以概率为4 .2x的距离为4.3 1 2 得 sin x 2cos x tan x 21 ( 3)' 3sin x 4cos x 3tan x 4【解析】令f(x+4)= f(x)+ f(2)中又因为f(x)是定义在R 上的偶函数,所以2,得 f(2)= f( 2)+ f(2),所以 f( 2)=0,f(2)=0,所以 f(x+4)= f(x),所以f(x)是周期为4的周期函数,所以f(3)+ f(10)= f(2【解析】g(x) cos 2x3,所以 【解析】一条渐近线 y2x 与右准线xg (2) cos 5的交点为 5_1 32 .乙卫),其到另一条渐近 5将以上各式相加,得 12. 14【解析】设直线11. 3, 4【解析】因为 所以 a 2 1 a ; a :, 又S 3a 123,所以a f同理乙的方差为 4,所以比较稳定的是甲.9【解析】所3 3 9 种, “黑白两球均不在1号盒子”【解析】由tan x tan x10.x= 1) + f(2)= f(1)+0= 4 .对称点为B ,易知B B 恰为圆C 的直径,记A B 与x 轴 交于点 Q ,则 PA PB PA PB >AB ,所以△ ABP 的周长的最小值为 AB AB ,易求得结果为14.再考虑临界位置不难求解.14. 2【解析】建立如图所示的平面直角坐标系,由题意,设所以uuuuur设 D(x , y),所以 AB ( 1 ,1),AC1v (m n)2 (7m n)2 1 .50m 2 2n 2 12mn8 8当且仅当5m= n= 2 5时,AD 取得最小值 2 . 二、解答题:本大题共 6小题,共90分. 15. (本小题满分14分)(1)证明:因为BD AD ,2n24> 8210mn2413.,丄【解析】条件可转化为函数 f(x)4在(,2)上存在零点, 所以方程x 2 | x a | 2a 有根,所以函数g (x) x 2与h(x) | x a | 2a 的图象 有交点的横坐标在(,2)上,注意到函数h(x) | x a | 2a 的图象为顶点(x 2 |x a| 2a 6•—2a 」.,2一1—・一4 —_2 .a , 2a )在直线y=2x 上移动的折线,uuu UULT 所以(AB AD)LULT uur(AC AD) (x y)(7x 即(x y)(y 7x)x 4,令y m,则 y 7x n 所以AD x 2 y 213B( 1 , 1y(7 ,y) xy8216. (本小题满分14分)(1)因为E ,F 分别为棱VA ,VC 的中点,所以EF // AC ,……3分又因为 EF 平面ABCD , AC 平面ABCD , 所以EF //平面ABCD .(2)连结 AC , BD 交于点O ,连结VO . 因为V ABCD 为正四棱锥, 所以VO 丄平面ABCD .又AC 平面ABCD ,所以VO X AC . 又因为 BD X AC , EF // AC , 所以EF 丄VO , EF 丄BD . •…又 VO , BD 平面 VBD , VO A BD=O 所以EF 丄平面VBD ,……12分又EF 平面BEF ,所以平面 VBD 丄平面BEF .……14分所以 acosB bcosAlC,由正弦定理,得sin AcosB 1sin B cos A —sin C ,所以 sin C 2sin(A B).(2)解:由(1)得,sin(A B) 2sin( A B),所以 sin AcosB cosAsinB 2(sin AcosB cos As in B),化简,得 3cos A si nB si n AcosB . 10分 又cosA 3,所以sinA 害,所以tanA ,tan B 9,12分所以 tanCtan(A B)tan A tan B 1 tan Ata nB48 1114分6分(第 16题)18.17. (本小题满分14分)(1)解:因为圆锥的母线与底面所成的角为45°,所以h r ,圆锥的体积为V 3 n 2h 1 3 n 3,圆柱的体积为 V n 2h 2 ...... 2分3 32d 3因为V V 90n ,所以 V 2n h 2 90 n 3n ,o所以h 2270 r 3 3r 290 rF 3...... 4分因为V 1 n390 n,所以 r 3-10 .因此0r 3310 .所以h 2270 r 33r 2 90 r孑3,定义域为 {r |0 r3310}....... 6分(2)圆锥的侧面积Sn . 2r 2 n 2,圆柱的侧面积Sa2 n h 2,底面积S 32n .……8分当3 r 3110时,f (r) 0 , f (r)在3,33 10上为单调增函数.因此,当且仅当r 3时,f(r)有最小值,y 有最小值90 n a 元.……13分(本小题满分16分) (1 )解:因为短轴长2b=2,所以b=1, ....................................................... 又离心率-¥,所以a 2c ,…… a 2 2 2 2 2 2所以a 2c 2(a b ),所以a 2 ,高三数学试卷第102 ni(r 2 rh 2 r 2) 2n a 2r 2「9° 310n a 「254••…10分3r令 f (r) r 254,则 f (r)2r 54r 2.令 f (r) 0 ,得 r 3 .容器总造价为y 2aS aS 2 2aQ当0 r 3时, f (r) 0 , f(r)在(0,3)上为单调减函数; 所以,总造价最低时,圆柱底面的半径为3cm . 14分2 22 n a 2 n h 2a2 n ay|L2 分.JP4分、丿XX.E页共17页2对任意n N 都成立,高三数学试卷 第13页共17页2所以椭圆C 的标准方程为今 y 2 1 .……6分 (2)由(1),点 A( 42,0),设 P(x ,yj , D(X o ,y °),则% 匕儿,y ok 2X o ,所以221.所以数列{ a n }为等比数列,首项为 1,公比为2.19. (本小题满分16分) (1 )解:由 S n 12£1,得 S n 2£ 1n 》2),两式相减,得a n 1 2a n o ,即an 12a n因为印1,由佝 a 2) 2耳1,得a 22,所以竺2 ,a 1an 1所以a nuur 因为ADiuur X DP ,所以Xoy o2(X 1 X o )L ①L ②’(y i y o )L L 由①得,■^X o X 1由②得,y 1宜 k X )k 2(X i 11分两边同时乘以k i 得,k 12x k i k 2(x i 所以 X1(1 2k 12)y i.2k 12,(1 2kf)代入椭圆的方程得, 1,14分同理可得, 2 -A122 丄2 k2k'1 2 k ;'16分(2)①由(1)知,a n 2n 116分由7冷,得b n1 7 2,n n 1 n n 1. _即 2 b n 1 2 b n 1,即 2 b n 1 2 b n 1 ,因为b 1,所以数列2n1b n是首项为1,公差为1的等差数列. 所以2n1b n 1 (n 1)所以b n茹.nb i ,i 1两式相减,(2)0(2)1(2)2 L (护1(1)n 1 ($TT22 (n 2) (2)n,所以T n 4 (2n 4) (l)n.12分n由b ii 14 n,得4 (2n 4) (A n,即显然当n2时,上式成立,设 f (n) 山 2n1( n Nn),即f(2)因为f(n 1) f(n)常(罟 2所以数列f(n)单调递减,所以f(n) 0只有唯一解n所以存在唯一正整数n 2 , 使得nb 4 n成立.i 120.(本小题满分16分)(1)解:当k 1 时,f (x) xlnx,所以 f (x) 1高三数学试卷第12页共ln x .17页10分②设T n则T n 1 2 (2)11 23 G)2 L n (1)n1,所以1T n 1 ($ 2 3 (2)31、nn (寸),16分1ln沟c①①设切点为P(x°, y°),则y。
高三数学-2018南通市学科基地数学科研卷2018531 精品
2018南通市学科基地数学科研卷 18.5.31一、填空题1.若不等式|ax+2|<6的解集为(-1,2),则实数a 等于 . 2.x 为三角形的一个内角,且22cos sin =+x x ,则x 2sin 等于 。
3.在某次数学测试中,学号为i(i=1,2,3,4)的四位学生的考试成绩f(i)∈{86,87,88,89, 90},且满足f(1)<f(2)≤ f(3)<f(4).则这四位学生考试成绩所有可能情况有_ _ __种. 4.已知命题p :若a ≥b ,则c d >.命题q :若e f ≤,则a b <.若p 为真且q 的否命题为真,则“c d ≤”是“e f ≤”的 条件 . 5.等比数列{}n a 的首项11a =-,前n 项和为,n S 若3231510=S S ,则公比q 等于 . 6.已知集合(){}{}25log 5112,121A x x x B x m x m =-+≤=+<<-,若A B A =,则 .7.已知函数f(2x +1)是偶函数,则的f(2x )图象的对称轴是 .8.在二项式()0,,0,0)(12≠>>+n m b a bx ax n m 中有02=+n m ,如果它的展开式里最大系数项恰是常数项,则ba的取值范围为 _ _. 9.P 是椭圆12222=+by a x 上的任意一点,F 1、F 2是它的两焦点,O 为坐标原点,21PF +=,则动点Q 的轨迹方程是 .10.锐角△ABC 中,若B=2A ,则ab的取值范围是 。
11. 已知函数)(x f 是R 上的减函数,A (0,-2),B (-3,2)是其图象上的两点,那么不等式2|)2(|>-x f 的解集是 .12.在下面等号右侧两个分数的分母方块处,各填上一个自然数,并且使这两个自然数的和最小:1=91+.二、填空题14.已知函数f(x) = 2sin ωx + 1在[0,4π]上单调递增,且在这个区间上的最大值为13+,则实数ω的一个可能值是 ( )A.32 B. 38C. 38或34D. 3415.在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,EF 是棱AB 上的一条定长为b 的线段, Q 是A 1D 1上的定点,P 是C 1D 1上的动点,则四面体PQEF 的体积 ( ) (A)变量且有最大值;(B)是变量且有最小值;(C)是变量无最大值最小值;(D)是常量.16.在圆x y x 522=+内,过点),(2325有n 条弦的长度成等差数列,最短弦长为 数列的首项1a ,最长弦长为n a ,若公差],(11∈d ,则n 的取值集合为 ( ) A.{4,5,6} B.{6,7,8,9} C.{3,4,5} D.{3,4,5,6} 三、解答题17.已知:a R a a x x x f ,.(2sin 3cos 2)(2∈++=为常数) (1)若R x ∈,求)(x f 的最小正周期; (2)若)(x f 在[]6,6ππ-上最大值与最小值之和为3,求a 的值; (3)在(2)条件下)(x f 先按平移后再经过伸缩变换后得到.sin x y =求. 解:18.已知函数ab a x b ax x f ---+=)8()(2,当∈x (2,3-)时,;0)(>x f当∈x (3,-∞-)),2(+∞ 时,0)(<x f (Ⅰ)求)(x f 在[0,1]内的值域;(Ⅱ)c 为何值时,c bx ax ++2≤0的解集为R. 解:19. 如图所示,△ABC 是正三角形,AE 和CD 都垂直于平面ABC ,且AE=AB=2a ,CD=a ,F 为BE 的中点。
江苏省南通基地2018年高考数学密卷6理
- 1 -江苏省南通基地2018年高考数学密卷(6)理第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分.1.已知集合,,则= ▲ .2.已知复数=21-i-i 3,其中i 虚数单位,则的模为 ▲ .3.某高级中学高一,高二,高三在校生数分别为1200,1180,1100.为了了解学生视力情况,现用分层抽样的方法抽若干名学生测量视力,若高二抽到118名学生测视力,则全校共抽到测视力的人数为 ▲ .4.在平面直角坐标系中,若抛物线上纵坐标为1的一点到焦点的距离为4,则该抛物线的焦点到准线的距离为 ▲ .5.执行如图所示的流程图,则输出S 的值为 ▲ .6.已知一球与一个正三棱柱的三个侧面及两个底面都相切.若该球的体积为4π3,则该三棱柱的体积是 ▲ .7.将函数()的图象向左平移个单位后,所得图象关于直线对称,则的最小值为 ▲ .8.两人约定:在某天一同去A 地,早上7点到8点之间在B 地会合,但先到达B 地者最多在原地等待5分钟,如果没有见到对方则自己先行.设两人到达B 的时间是随机的、独立的、等可能的.那么,两人能够在当天一同去A 地概率是 ▲ . 9.在平面直角坐标系中,已知圆与直线相交于,两点.若△为等边三角形,则实数的值为 ▲ .10.设正△ABC 的边长为1,t 为任意的实数.则|AB →+tAC →|的最小值为 ▲ . 11.若函数(且)没有最小值,则的取值范围是 ▲ .12.数列{a n }满足a 1=14,a 2=15,且a 1a 2+a 2a 3+…+a n a n +1=na 1 a n +1对任何正整数n 成立,则1a 1+1a 2+…+1a 10的值为 ▲ .- 2 -13.已知函数,若函数有四个不同的零点,则实数m 的取值范围是 ▲ .14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知,且,则实数的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.15.(本小题满分14分)已知向量,.(1)若,,且,求实数的值; (2)若,求的最大值.16.(本小题满分14分)在平行六面体ABCD -A 1B 1C 1D 1中,,平面BB 1C 1C ⊥底面ABCD ,点、F 分别是线段、BC 的中点.(1)求证:AF ⊥DD 1; (2)求证:AD //平面.17.(本小题满分16分)如图,设椭圆C :x 2a 2+y 2b 2=1(a >b >0),离心率e =12,F 为椭圆右焦点.若椭圆上有一点P 在轴的上方,且PF ⊥轴,线段PF =32.(1)求椭圆C 的方程;(2)过椭圆右焦点F 的直线(不经过P 点)与椭圆交于A ,B 两点,当的平分线为时,求直线AB的方程.18.(本小题满分16分)某公司拟购买一块地皮建休闲公园,如图,从公园入口A沿AB,AC方向修建两条小路,休息亭P与入口的距离为米(其中a为正常数),过P修建一条笔直的鹅卵石健身步行带,步行带交两条小路于E、F处,已知,.(1)设米,米,求y关于的函数关系式及定义域;(2)试确定E,F的位置,使三条路围成的三角形AEF地皮购价最低.19.(本小题满分16分)已知函数.(1)当时,求函数的单调区间;(2)若函数有两个极值点,且,求证;;AOBOCOPO(17题图)FE- 3 -- 4 -(3)设,对于任意时,总存在,使成立,求实数的取值范围.20.(本小题满分16分)已知{a n }为等差数列,{b n }为等比数列,公比为q (q ≠1).令A ={|a =b ,∈N*}. (1)若A ={1,2},①当a n =n ,求数列{b n }的通项公式;②设a 1>0,q >0,试比较a n 与b n (n ≥3)的大小?并证明你的结论. (2)问集合A 中最多有多少个元素?并证明你的结论.2018年高考模拟试卷(6)数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定两题,并在相应的答题区域内作答.................. A .[选修4-1:几何证明选讲](本小题满分10分)如图,圆O 内接四边形ABCD ,直线PA 与圆O 相切于点A ,与CD 的延长线交于点P ,AD ·BC =- 5 - DP ·AB ,求证:AD =BC .B .[选修4-2:矩阵与变换](本小题满分10分)二阶矩阵M 对应的变换将△ABC 变换成△A 1B 1C 1,其中△ABC 三个顶点坐标分别为A (1,-1)、B (-2,1),C (2,2),△A 1B 1C 1中与A 、B 对应的两个坐标分别为 A 1(-1,-1)、B 1(0,-2).求C 1点的坐标.C .[选修4-4:坐标系与参数方程](本小题满分10分)若两条曲线的极坐标方程分别为ρsin(θ+π3)=1与ρ=2sin(θ+π3),它们相交于A 、B两点,求线段AB 的长.D .[选修4-5:不等式选讲](本小题满分10分) 求证:对任意,y ∈R,不等式2+y +y 2≥3(+y -1)总成立.【必做题】第22题、第23题,每题10分,共计20分.请在答卷纸指定区域内........作答. 22.(本小题满分10分)如图,在三棱锥中,已知都是边长为的等边三角形,为 中点,且平面,为线段上一动点,记. (1)当时,求异面直线与所成角的余弦值; (2)当与平面所成角的正弦值为时,求的值.- 6 -23.(本小题满分10分)设函数f n ()=1++12!2+…+1n !n,n ∈N*.(1)求证:当∈(0,+∞)时,e >f n ();(2)若>0,且e =f n ()+1(n +1)!n +1e y,求证:0<y <.2018年高考模拟试卷(6)参考答案数学Ⅰ一、填空题:1.- 7 - 2. 5 解:=21-i-i 3=1+i +i =1+2i ,所以| |=5.3.348 解:因为高二学生总数1180人,抽到118人,故抽了10%,所以高三学生抽到的人数为120, 高一抽到的人数为110,共348人.4.6 解:由题意抛物线定义可知,,所以,即焦点到准线的距离为6. 5.4860 解:由题设可知,S =100+99+98+…+20=4860.6.6 3 解:由体积得球半径R =1,三棱柱的高为2,底面边长为2 3.V = 34(2 3)2×2=6 3. 7. 解:将的图象向左平移个单位得到,因为图象关于直线对称, 所以,所以,即,,所以的最小值为.8.23144 解:设两人到达A 地的时间分别是7点边m 分和7点过n 分(0≤m 、n ≤60). 用数对(m ,n )表示两人分别到达A 地的时间.则在直角坐标系中, 点(m ,n )的存在域是一个边长为60的正方形,其面积为3600. 两人能够在当天一同去A 地等价于|m -n |≤5.此时,相应点的存在 域是正方形中位于两直线m -n =±5之间的部分区域(如图), 其面积为3600-552=575.故所求概率为5753600=23144.9. 解:圆的半径,因为△为等边三角形,所以圆心到直线的距离 .所以,解得. 10.32解:令a =AB →,b =AC →.则|a |=|b |=1,a 、b 的夹角为60°.于是,|AB →+tAC →|2=|a +t b |2=a 2+t 2b 2+2 t a ·b =t 2+t +1=(t +12)2+34≥34.所以|AB →+tAC →|≥32.11.或 解:令,则.若,因为没有最大值,所以符合; 若,因为,要使原函数没有最小值,必须,解得.12.85 解法一:由a 1a 2+a 2a 3=2a 1a 3及a 1=14,a 2=15,得a 3=16,再由a 1a 2+a 2a 3+ a 3a 4=3a 1a 4,a 4=17.进一步得a 5=18,a 6=19, a 7=110,a 8=111,a 9=112,a 10=113,故1a 1+1a 2+…+1a 10=4+5+6+7+8+9+10+11+12+13=85.解法二:由a 1a 2+a 2a 3+…+a n a n +1=na 1 a n +1 ①,a 1a 2+a 2a 3+…+a n a n +1+ a n +1a n +2=(n +1)a 1 a n +2 ②,②-①得,a n +1a n +2=(n +1)a 1 a n +2-na 1 a n +11a 1=n +1a n +1-n a n +2 =na n-n -1 a n+12a n+1=1a n+1a n+2,(n≥2),则a1a2+a2a 3=2a1a32a2=1a1+1a3,所以数列{1a n}成等差数列,公差为1,即1a n=n+3,a n=1n+3.代入可得1a1+1a2+…+1a10=85.13.解:由对称性,只需当时,有两解即可.即在时有两解.设,由得在(0,2)上递减,在上递增. 由图可知,所以.14.解:由条件,.因为,所以,所以,所以.而,所以.由,得,即,所以.二、解答题:15.解:(1)当,时,,又,所以,若,则,即,解得.……7分(2)因为,,所以,因为,所以,则,所以,故当或时,的最大值为6.……14分16.证明:(1)∵ABAC,点F是线段BC的中点,∴AF⊥BC.…………………………………………2分又∵平面底面,AF平面ABC,平面底面,∴AF⊥平面.……………………………………………………………………5分又CC1平面,∴AF⊥CC1,又CC1∥DD1,∴AF⊥DD1.………………………………………………………………7分(2)连结B1C与BC1交于点E,连结EM,FE.在斜三棱柱中,四边形BCC1B1是平行四边形,∴点E为B1C的中点.∵点F是BC的中点,∴FE//B1B,FEB1B.…………………………10分- 8 -又∵点M是平行四边形BCC1B1边AA1的中点,∴AM//B1B,AMB1B.∴AM// FE,AMFE.∴四边形AFEM是平行四边形.∴EM // AF.…………………………………………12分又EM平面MBC1,AF平面MBC1,∴AF //平面MBC1.……………………………………………………………………14分17.解:(1)设右焦点,由轴,设代入椭圆方程,即得,所以,联立,…………………3分解得,所以椭圆方程为,右准线的方程为. …………………6分(2)设,则直线的方程为,即,联立消去,即得(※),…………………9分又为方程(※)的一根,所以另一根为,又点在椭圆上,所以满足,代入另一根即得,所以.由(1)知,点则直线的斜率,直线的斜率,…………………12分①当的平分线为时,,的斜率,满足,所以,即,所以,故直线AB的方程为-2y-1=0.……………14分18.(方法一)(1)由得,且由题可知所以得即所以由得定义域为……………………6分- 9 -(2) 设三条路围成地皮购价为元,地皮购价为元/平方米,则(为常数),所以要使最小,只要使最小由题可知定义域为令则当且仅当即时取等号所以,当时,最小,所以最小答:当点E距离点米远时,三条路围成地皮购价最低……………14分(方法二)(1) 由得,设中,由正弦定理所以同理可得由即整理得,由得定义域为……………………6分(方法三)(1)以所在直线为轴,点为坐标原点,建立如图直角坐标系,则,,由,得,所以因为与共线所以所以由得定义域为……………………6分19.解:(1)当时,,令或,令,所以的递增区间为和,递减区间为.- 10 -(2)由于有两个极值点, 则在上有两个不等的实根,设, 所以所以在上递减,所以 即.(3)由题意知:只需成立即可.因为,所以,因为,所以,而, 所以,所以在递增, 当时,.所以在上恒成立, 令,则在上恒成立, ,又当时,,在递减,当时,, 所以,所以; 当即时,①即时,在上递增, 存在,使得,不合; ②即时,,在递减, 当时,,所以,所以 综上, 实数的取值范围为.20.解:(1) 由A ={1,2},得a 1=b 1,a 2=b 2.设数列{a n }公差为d ,数列{b n }公比为我q ,由a 2=b 2a 1+ d =a 1q ,故d =a 1(q -1)①因为a n =n ,a 1=b 1=1,a 2=b 2=2,所以数列{b n }的公比q =b 2b 1=2,所以,b n =2n -1.……2分② 答:a n <b n (n =1,2,…).证明如下: 因为a 1>0,q >0,q ≠1,所以b n -a n =a 1q n -1-[(a 1+(n -1) a 1(q -1)]=a 1( q n -1-1)-a 1(q -1) (n -1)=a 1(q -1)(q n -2+q n -1+…+1)-a 1(q -1) (n -1)=a 1(q -1)[q n -2+q n -3+…+1-(n -1)] =a 1(q -1)[(q n -2-1)+( q n -3-1)+…+(q -1)]=a 1(q -1)2[(q n -3+q n -4+…+1)+(q n -4+q n -5+…+1)+…+(q +1)+1]>0.所以a n <b n (n =1,2,…). ……………………………… 6分 (2)不妨设a n =a +bn (b ≠0),b n =pq n ,由a n =b na +bn =pq na p +bpn =q n . 令s =a p ,t =bp,(t ≠0),原问题转化为关于n 的方程q n -tn -s =0 ① ……………………………… 8分 最多有多少个解.下面我们证明:当q >0时,方程①最多有2个解;q <0时,方程②最多有3个解. 当q >0时,考虑函数f ()=q -t -s ,则f ′()=q ln q -t 如果t ln q <0,则f ()为单调函数,故方程①最多只有一个解;如果t ln q >0,且不妨设由f ′()=0得f ′()有唯一零点0=log q tln q,于是当>0时,f ′()恒大于0或恒小于0,当<0时,f ′()恒小于0或恒大于0,这样f ()在区间(0,0)与(0,+∞)上是单调函数,故方程①最多有2个解. …………………… 10分 当q <0时,如果t >0. 如果n 为奇数,则方程①变为 |q |n +tn +s =0,显然方程最多只有一个解,即最多只有一个奇数满足方程①. 如果n 为偶数,则方程①变为|q |n -tn -s =0.由q >0的情形,上式最多有2个解,即满足①的偶数最多有2个. 这样,最多有3个正数满足方程①.对于t <0,同理可以证明,方程①最多有3个解.综上所述,集合A 中的元素个数最多有3个. ……………………………… 12分再由当a n =6n -8,,b n =(-2)n ,则a 1=b 1,a 2=b 2,a 4=b 4.A ={1,2,4}.由此,可知集合A 中的元素个数最多有3个. ………………… 16分数学Ⅱ(附加题)21A .证明:连AC ,在△ABC 与△ADP 中, 因为A 、B 、C 、D 四点共圆,所以∠ADP =∠ABC , 又因为AD ·BC =DP ·AB ,即 AD DP =AB BC, 所以 △ABC ∽△ADP , 所以 ∠BAC =∠DAP .因为 直线PA 与圆O 相切,所以 ∠DAP =∠ACD , 所以 ∠BAC =∠ACD ,所以,A B ∥CD ,所以圆内接四边形ABCD 为等腰梯形,所以AD =BC . 21B .解:设M =,则有=,=, 所以且解得,所以M =.所以⎣⎢⎢⎡⎦⎥⎥⎤1234⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤614,即C 点坐标为(6,14).21C .解:由ρsin(θ+π3)=1得, 3+y -2=0,由ρ=2sin(θ+π3) 得,2+y 2-3-y =0,直线 3+y -2=0过圆2+y 2-3-y =0的圆心(32,12), 所以线段AB 的长为圆ρ=2sin(θ+π3)的直径长,即AB =2.21D .法一:左-右=2 +(y -3) +y 2 -3y +3∵Δ=(y -3)2-4(y 2 -3y +3)=-3 y 2+6 y -3 ≤ 0 ∴左-右≥0 得证。
江苏省南通基地2018年高考密卷数学(理)(8)
02While 41End While Pr intS I I I I S S I S←←←+←+≤(第5题)2018年高考模拟试卷(8) 南通市数学学科基地命题 第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分. 1. 已知集合{2 3}A =,,2{1 log }B a =,,若{3}A B =,则实数a 的值为 ▲ .2. 已知复数z 满足i 1i z =+(i 为虚数单位),则复数i z -的模为 ▲ .3. 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则向上的点数之差的绝对值...是2的概率为 ▲ . 4. 工人甲在某周五天的时间内,每天加工零件的个数用茎叶图表示如下图(左边一列的 数字表示零件个数的十位数,右边的数字表示零件个数的个位数),则该组数据的 方差2s 的值为 ▲ .5. 根据上图所示的伪代码,可知输出的结果S为 ▲ .6.设实数y x ,满足0121x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥,则32x y +的最大值为 ▲ .7. 若“122x ⎡⎤∃∈⎢⎥⎣⎦, ,使得2210x x -λ+<成立”是假命题,则 实数λ的取值范围是 ▲ .8. 设等差数列{}n a 的公差为d (0≠d ),其前n 项和为n S .若22410a a =,122210S S =+,则d 的值为 ▲ .9. 若抛物线24=x y 的焦点到双曲线C :22221-=y x a b(00)>>a b ,的渐近线距离等于13,则双曲线C 的离心率为 ▲ .10.将一个半径为2的圆分成圆心角之比为1:2的两个扇形,且将这两个扇形分别围成圆锥的侧面,则所得体积较小的圆锥与较大圆锥的体积之比为 ▲ .11.若函数()()ππ()sin 63f x a x x =++-是偶函数,则实数a 的值为 ▲ .12.若曲线21()ln (2)+12f x x ax a x =+-+上存在某点处的切线斜率不大于5-,则正实数a的最小值为 ▲ .13.在平面凸四边形ABCD中,AB =3CD =,点E 满足2DE EC =,且 ||||2AE BE ==.若165AE DE ⋅=,则AD BC ⋅的值为 ▲ . 14.设函数()()21f x x a x a x x a =---++(0a <).若存在[]011x ∈-,,使0()0f x ≤, 1872212(第4题)则a 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)已知向量m =(cos α,sin α),n =(-1,2). (1)若m ∥n ,求sin α-2cos αsin α+cos α的值;(2)若|m -n |= 2,α∈()ππ2,,求cos ()π4+α的值.16.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,平面ABP ⊥平面BCP ,90APB ∠=︒,BP BC =,M 为CP 的中点.求证:(1)AP //平面BDM ; (2)BM ACP ⊥平面.17.(本小题满分14分)如图,是一个半径为2千米,圆心角为3π的扇形游览区的平面示意图.点C 是半径OB 上一点,点D 是圆弧AB 上一点,且//CD OA .现在线段OC 、线段CD 及圆弧DB 三段所示位置ABCDPM(第16题)设立广告位,经测算广告位出租收入是:线段OC 处每千米为2a 元,线段CD 及圆弧DB 处每千米均为a 元.设AOD x ∠=弧度,广告位出租的总收入为y 元. (1)求y 关于x 的函数解析式,并指出该函数的定义域;(2)试问x 为何值时,广告位出租的总收入最大,并求出其最大值.18.(本小题满分16分)已知椭圆22122:1(0)x y C a b a b +=>>的离心率为12,右焦点为圆2222:(1)C x y r -+=的圆心,且圆2C 截y 轴所得弦长为4. (1)求椭圆1C 与圆2C 的方程;(2)若直线l 与曲线1C ,2C 都只有一个公共点,记直线l 与圆2C 的公共点为A ,求点A的坐标.OABCD(第17题)19.(本小题满分16分)设区间[33]D =-,,定义在D 上的函数3()1f x ax bx =++(0a b >∈R ,),集合 {|()0}A a x D f x =∀∈,≥.(1)若16b =,求集合A ;(2)设常数0b <.① 讨论()f x 的单调性; ② 若1b <-,求证:A =∅.20.(本小题满分16分)已知数列{}n a 的各项均为正数,11=a ,前n 项和为n S ,且n n S n a λλ21221=--+,λ为正常数.(1)求数列{}n a 的通项公式; (2)记nn nS b a =,11n n k n c S S -=+(*22k n k n ∈+N ,,≥).求证:① 1+<n n b b ;② 1n n c c +>.2018年高考模拟试卷(8)数学Ⅱ(附加题)21.【选做题】本题包括A、B、C、D四小题,请选定两题,.....并在相应的答题区域内作答.............A.[选修4-1:几何证明选讲](本小题满分10分)如图,已知AB,CD是圆O的两条弦,且AB是线段CD的垂直平分线,已知AB=6,CD=AC的长度.B.[选修4-2:矩阵与变换] (本小题满分10分)已知矩阵11ab⎡⎤=⎢⎥-⎣⎦A的一个特征值为2,其对应的一个特征向量为21⎡⎤=⎢⎥⎣⎦α.若x ay b⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A,求x,y的值.C.[选修4-4:坐标系与参数方程](本小题满分10分)D CBA(第21—A题)在直角坐标系xOy 中,已知曲线C 的参数方程是3cos 13sin 3x y αα=+⎧⎨=+⎩,(α是参数).若以O 为极点,x 轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,直线l的极坐标方程为sin()4π+=ρθl 被曲线C 截得的线段长.D .[选修4-5:不等式选讲] (本小题满分10分)已知,,a b c ∈R ,且3a b c ++=, 22226a b c ++=,求a 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.请在答卷纸指定区域内........作答. 22.如图,在直三棱柱111ABC A B C -中,已知AB AC ⊥,2AB =,4AC =,13AA =.D 是线段BC 的中点.(1)求直线1DB 与平面11A C D 所成角的正弦值; (2)求二面角111B A D C --的大小的余弦值.23.(本小题满分10分)AB CDA 1B 1C 1(第22题)在教材中,我们已研究出如下结论:平面内n 条直线最多可将平面分成211122n n ++个部分.现探究:空间内n 个平面最多可将空间分成多少个部分,N*n ∈. 设空间内n 个平面最多可将空间分成32()1f n an bn cn =+++个部分. (1)求a b c ,,的值;(2)用数学归纳法证明此结论.2018年高考模拟试卷(8)参考答案一、填空题:本大题共14小题,每小题5分,共70分. 1.【答案】8 【解析】因为{3}A B =,所以2log 3a =,即8a =.2.【解析】本题考查了复数的运算和模的概念.因为zi 1i =+,所以1z i =-.|i |12z i -=-= 3.【答案】29【解析】设向上的点数之差的绝对值...是2为随机事件A ,将一颗质地均匀的骰子先后 抛掷2次共有36个基本事件,事件A 共包含(13)-,(24)-,(31)-,(35)-,(42)-, (46)-,(53)-,(64)-共8个基本事件 ,所以82()369P A ==.4.【答案】225【解析】由茎叶图可以得到样本的平均值20x =,所以 ()()()()()222222182017202220212022202255s -+-+-+-+-==.5.【答案】12【解析】第一次执行循环体计算两个变量的结果为3,3I S ==;第二次执行循环体计算两个(A 33⎪⎭变量的结果为4,7I S ==;第三次执行循环体计算两个变量的结果为5,12I S ==;所以 输出的结果为12. 6.【答案】3【解析】画出可性域如图所示,求出代入点(1,0)A , 求出32x y +最大值为3.7.【答案】λ≤【解析】命题的否定是“122x ⎡⎤∀∈⎢⎥⎣⎦, ,都有221x x -λ+12x x λ+≤对122x ⎡⎤∀∈⎢⎥⎣⎦,恒成立,所以()min12x x λ+≤.因为12x x +≥122x ⎥=⎡⎤⎢⎣⎦,时成立,所以()min12x x +=,即λ≤8.【答案】10-【解析】因为22410a a =(0d ≠),所以410a a =-.又因为410a a =-即70a =,122210S S =+, 所以11160,24132210,a d a d a d +=⎧⎨+=++⎩解答10d =-.9.【答案】3【解析】本题考查了抛物线焦点坐标和双曲线的离心率.因为抛物线24x y =的焦点为()0,1P ,双曲线22221x y a b -=的渐近线为b y x a=±.根据点13=,化简有3c e a ==.10.【答案】1【解析】本题考查了空间几何体的体积问题.因为圆分成圆心角之比为1:2的两个扇形,所以两个扇形圆心角分别为123l π=和243l π=.1223r ππ=和2423r ππ=,解得123r =,243r =.1h ==,23h ==.所以21112222114313r h v v r h πππ⋅===11.【答案】1-【解析】()()()πππ()sin 666f x a x x x ϕ=+-+=++,因为()f x 是偶函数,所以(0)f =,即32a -=1a =-. 12.【答案】9 本题考查了曲线的切线存在性的问题.【解析】因为21()ln (2)+12f x x ax a x =+-+,所以`1()(2)f x ax a x=+-+.存在某点处的切线斜率不大于5-,所以存在()0,x ∈+∞,1(2)5ax a x+-+≤-.得到(2)5a +≤-,当且仅当1ax x =取“=”,化简得30a -≥,解得9a ≥.13.【答案】2【解析】本题考查了平面向量的线性运算和平面向量数量积. 因为3CD =,点E 满足2DE EC =,所以2DE =,1EC =.||||2AE BE ==,AB =2AEC π∠=.又因为165AE DE ⋅=,所以16cos 5AE DE AED ∠=,得到4cos 5AED ∠=. 又()3cos cos 5BEC AEB AED π∠=-∠-∠=. ()()AD BC AE ED BE EC ⋅=+∙+,AE EC ED BE ED EC =∙+∙+∙,()()cos cos AE EC AEC ED BE BED ED EC ππ=-∠+-∠-, 4321221255=⨯⨯+⨯⨯-⨯, 2=.14.【答案】[32]-【解析】① 若1a -≤,222222110()2210 1.x ax a a x f x ax a a x ⎧-+++-<⎪=⎨-+++⎪⎩,≤,,≤≤ 当01x ≤≤时,2()221f x ax a a =-+++为递增函数,且2(0)(1)f a =+, 当10x -<≤时,22()2221f x x ax a a =-+++的对称轴为2a x =,若存在0[11]x ∈-,,使得0()0f x ≤,则12(1)0a f ⎧-⎪⎨⎪-⎩≤≤或12()02a a f ⎧>-⎪⎨⎪⎩≤,即22430a a a -⎧⎨++⎩≤≤或221420a a a -<-⎧⎨++⎩≤≤,解得31a --≤≤.② 若10a -<<,22222211()222102210 1.ax a a x a f x x ax a a a x ax a a x ⎧-++-<⎪=-+++<⎨⎪-+++⎩,≤,,≤,,≤≤当01x ≤≤时,2()221f x ax a a =-+++为递增函数,且2(0)(1)f a =+, 当1x a -<≤时,2()221f x ax a a =-++为递减函数,且2()(1)f a a =+, 当0a x <≤时,22()2221f x x ax a a =-+++的对称轴为2a x =,若存在[]011x ∈-,,使得0()0f x ≤, 则()02a f ≤,即2420a a ++≤,解得22a ---≤10a -<<,所以12a -<.综上可得,32a -≤,即a的取值范围为[32]-. 二、解答题:15.【解】(1)因为 m ∥n ,所以sin α=-2cos α. …… 4分所以原式=4. …… 6分 (2)因为 |m -n |=2,所以2sin α-cos α=2. …… 9分所以cos 2α=4(sin α-1)2,所以1-sin 2α=4(sin α-1)2, 所以α∈()ππ2,, 所以34sin ,cos 55αα==-. …… 12分所以原式= …… 14分16.【解】(1)设AC 与BD 交于点O ,连结OM ,因为ABCD 是平行四边形,所以O 为AC 中点,………2分 因为M 为CP 的中点,所以AP ∥OM ,…………………4分ABCDP M(第16题)O又AP ⊄平面BDM ,OM ⊂平面BDM ,所以AP ∥平面BDM .…………………………7分 (2)平面ABP ⊥平面BCP ,交线为BP , 因为90APB ∠=︒,故A P B P ⊥,因为AP ⊂平面ABP ,所以AP ⊥平面BCP ,……………9分 因为BM ⊂平面BCP ,所以AP ⊥BM . ……………11分 因为BP BC =,M 为CP 的中点,所以BM CP ⊥.……12分 因为APCP P =,AP CP ⊂,平面ACP ,所以BM ⊥平面ACP ,……………………………………………………………14分 17.【解】(1)因为CD ∥OA ,所以rad ODC AOD x ∠=∠=, 在△OCD 中,23OCD π∠=,3COD x π∠=-,2OD =km ,由正弦定理得22sin 3sin()sin 33OC CD x x ===ππ- …………………………4分 (注:正弦定理要呈现,否则扣2分)得OC x =km,sin()3CD x π=- km .…………………………5分 又圆弧DB 长为2()3x π- km .所以2)2()]33y a x a x x ππ=+⨯-+-2cos )3a x x x π=⨯+-+,(0)3x π∈,.…………………………7分(2)记()2(cos )3f x a x x x π=⨯+-+,则()2sin 1)2[2cos()1]6f x a x x a x π'=⨯--=⨯+-,………………8分 令()0f x '=,得6x π=. ……………………………………………………9分 当x 变化时,()f x ',()f x 的变化如下表:所以()f x 在6x π=处取得极大值,这个极大值就是最大值.即()2)66f a ππ=⨯.………………………………………………………12分答:(1)y 关于x的函数解析式为2cos )3y a x x x π=⨯+-+,其定义域为(0)3π,;(2)广告位出租的总收入的最大值为)6a π元.………………………14分18.【解】(1)由题意知:112c c a =⎧⎪⎨=⎪⎩,,解得12c a =⎧⎨=⎩,,又2223b a c =-=,所以椭圆1C 的方程为22143x y +=. …………………………………………3分因为圆2C 截y 轴所得弦长为4,所以222215r =+=,所以圆2C 的方程为22(1)5x y -+=. …………………………………………6分 (2)设直线l 的方程为y kx m =+,则=即 22425k m km -=-①…………………………………………………………8分由22143y kx m x y =+⎧⎪⎨+=⎪⎩,,得222(34)84120k x kmx m +++-=,…………………………10分因为直线l 与曲线1C 只有一个公共点,所以22226416(3)(34)0k m m k ∆=--+=,化简,得 22430k m -+=②……………………………………………………12分①②联立,解得122k m ⎧=⎪⎨⎪=⎩,,或122k m ⎧=-⎪⎨⎪=-⎩.,……………………………………………13分由22122(1)5y x x y ⎧=+⎪⎨⎪-+=⎩,,解得02A (,), ………………………………………………14分由22122(1)5y x x y ⎧=--⎪⎨⎪-+=⎩,,解得02A -(,),………………………………………………15分 故直线l 与圆2C 的公共点A 的坐标为02(,)或(02)-,.…………………………16分 19.【解】(1)当16b =时,31()16f x ax x =++,则21()36f x ax '=+.由0a >可知()0f x '>恒成立,故函数()f x 在[33]-,上单调递增,…… 2分 所以min 1()(3)2702f x f a =-=-+≥,解得1054a <≤,所以集合1{|0}54A a a =<≤. …… 4分(2)① 由3()1f x ax bx =++得2()3f x ax b '=+,因为00a b ><,,则由()0f x '=,得1,212)x x x =<.在R 上列表如下:(ⅰ)当23x ≥,即027b a <-≤时,则12[33][]x x -⊆,,,所以()f x 在[33]-,上单调递减; …… 6分(ⅱ)当23x <,即27b a >-时,此时13x >-,()f x 在1[3]x -,和2[3]x ,上单调递增;在12()x x ,上单调递减.综上,当027b a <-≤时,()f x 在[33]-,上单调递减;当27b a >-时,()f x 在3⎡-⎢⎣,,3⎤⎥⎦上单调递增;在(上单调递减. …… 8分 ②(方法一)当1b <-时,由①可知,(ⅰ)当027b a <-≤时,()f x 在[33]-,上单调递减,所以min ()(3)2731312110f x f a b b b b ==++-++=+<-<≤,这与()0x D f x ∀∈,≥恒成立矛盾,故此时实数a 不存在; …… 10分(ⅱ)当27b a >-时,()f x 在3⎡-⎢⎣,,3⎤⎥⎦上单调递增;在(上单调递减,所以min 2()min{(3)()}f x f f x =-,. …… 12分 若(3)27310f a b -=--+<,这与()0x D f x ∀∈,≥恒成立矛盾, 故此时实数a 不存在;若(3)27310f a b -=--+>,此时3222()1f x ax bx =++, 又222()30f x ax b '=+=,则223b ax =-,32222222()1()111133bx b f x ax bx x bx =++=-++=+==.…… 14分下面证明10<,也即证:3427b a ->.因为27ba >-,且27310a b --+>,则2731a b <-+, 下证:3431b b ->-+.令3()431(1)g b b b b =-+<-,则2()1230g b b '=->,所以()g b 在(,1]-∞-上单调递增,所以()(1)0g b g <-=,即2()0f x <. 这与()0x D f x ∀∈,≥恒成立矛盾,故此时实数a 不存在.综上所述,A =∅. …… 16分 (方法二)(ⅰ)当0x =时,(0)1f =≥0成立;(ⅱ)当(0,3]x ∈时,由题意可知31ax bx -≥-恒成立,则231b a x x-≥-,设231()b g x x x =--,则3442323()b bx g x x x x+'=+=, 令()0g x '=,解得32x b =-.因为1b <-,所以3032b<-<,所以()g x 在3(0)2b -,上单调递增,在3(3]2b-,上单调递减, 所以333max3484()()292727b b b g x g b =-=-+=-,所以3427b a ≥-; …… 12分 (ⅲ)当[30)x ∈-,时,由题意可知31ax bx -≥-恒成立,则231b a x x -≤-.设231()b g x x x =--,则3442323()b bx g x x x x+'=+=, 因为1b <-,所以()0g x '>恒成立,所以()g x 在[3,0)-上单调递增, 所以min 1()(3)927b g x g =-=-+,所以1927b a -+≤.若A ≠∅,则存在实数a 满足34127927b b a -+-≤≤, 则34127927b b -+-≤成立,即34310b b -+≥, 也即2(1)(21)0b b +-≥成立,则1b -≥,这与1b <-矛盾,所以A =∅. …… 16分20.【解】(1)由22112n n a n S λλ+--=,得221(1)12(2)n n a n S n λλ----=≥,两式相减得22212n n n a a a λλ+--=,也即221()n n a a λ+=+.又00n a λ>>,,所以1(2)n n a a n λ+=+≥. …… 2分当1n =时,2221122a a λλλ--==,则211a a λλ=+=+, 所以1n n a a λ+=+(*n ∈N ),所以数列{}n a 是首项为1,公差为λ的等差数列,所以1(1)1n a n n λλλ=+-=+-. …… 4分 (2)① 由(1)知2(2)2n n nS λλ+-=,所以22(2)(2)12()12(1)21n n nn nSn n n b n a n n n λλλλλλλλλλ+-+-====++-+-+-,…… 6分则21111(1)(22)2(1)021(1)12(1)((1)1)n n n n n n n b b n n n n ++-+-+-=+-=⋅>+-++-+λλλλλλ,所以1n n b b +<得证. …… 8分 ② 1111111()()n n n k n n k nc c S S S S ++----=+-+ 111111()()n n k n k nS S S S +---=-+- 111n k nn n k n k n a a S S S S +-+----=+⋅⋅ 11111k n n k n k n n n a a S S S S -+---+=⋅-⋅111111k n k n n n S b S b ---+=⋅-⋅, …… 12分 因为22k n +≥,所以1n k n +<-,1n k n <--. 由0n a >,所以10n k n S S --<<,所以1110k n nS S --<<, 又因为10n k n b b +-<<,所以1110k n n b b -+<<,所以10n n c c +-<,所以1n n c c +>得证. …… 16分数学Ⅱ(附加题)参考答案21-A .连接BC 设,AB CD 相交于点E ,AE x =,因为AB 是线段CD 的垂直平分线,所以AB 是圆的直径,∠ACB =90° ……………………2分 则6EB x =-,CE ……………………………4分 由射影定理得2CE AE EB = ……………………………6分 即有(6)5x x -=解得1x =(舍)或5x = ………………………………8分 所以 25630AC AE AB ==⨯=,AC ……………………………………………10分21-B .由条件知,2=A αα,即1222111a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,即2422a b +⎡⎤⎡⎤=⎢⎥⎢⎥-+⎣⎦⎣⎦, 所以24,22,a b +=⎧⎨-+=⎩ 解得2,4.a b =⎧⎨=⎩所以1214⎡⎤=⎢⎥-⎣⎦A . …… 5分则12221444x x x y y y x y +⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦A ,所以22,44,x y x y +=⎧⎨-+=⎩解得0,1.x y =⎧⎨=⎩ 所以x ,y 的值分别为0,1. …… 10分21-C .由3cos 1,3sin 3,x y αα=+⎧⎨=+⎩得13cos ,33sin ,x y αα-=⎧⎨-=⎩两式平方后相加得22(1)(3)9x y -+-=. ………………………………4分 所以曲线C 是以(1,3)为圆心,半径等于3的圆.直线l 的直角坐标方程为20x y +-=, ……………… …………………………6分 圆心C 到l的距离是d ==,所以直线l 被曲线C截得的线段长为 ……………………………10分21-D .因为22262a b c -=+ ………………………………………………………………2分2221(2)(1)32b c =++2222()(3)33b c a +=-≥,………………………6分 即25120a a -≤,所以 1205a ≤≤.……………………………………………10分 22.解:因为在直三棱柱111ABC A B C -中,AB AC ⊥,所以分别以AB 、AC 、1AA 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,则111(0,0,0),(2,0,0),(0,4,0),(0,0,3),(2,0,3),(0,4,3)A B C A B C .因为D 是BC 的中点,所以(1,2,0)D , …… 2分 (1)因为111(0,4,0),(1,2,3)A C A D ==-,设平面11A C D 的法向量1111(,,)n x y z =,则1111100n A C n A D ⎧⋅=⎪⎨⋅=⎪⎩,即111140230y x y z =⎧⎨+-=⎩,取111301x y z =⎧⎪=⎨⎪=⎩,所以平面11A C D 的法向量1(3,0,1)n =,而1(1,2,3)DB =-, 所以1111113cos ,n DB n DB n DB ⋅<>==⋅所以直线1DB 与平面11A C D…… 5分 (2)11(2,0,0)A B =,1(1,2,3)DB =-,设平面11B A D 的法向量2222(,,)n x y z =,则2112100n A B n DB ⎧⋅=⎪⎨⋅=⎪⎩,即222220230x x y z =⎧⎨-+=⎩,取222032x y z =⎧⎪=⎨⎪=⎩,平面11B A D 的法向量2(0,3,2)n =,所以121212130cos ,n n n n n n ⋅<>==⋅, 二面角111B A D C --. …… 10分 23. (1)由(1)2(2)4(3)8f f f ===,,,得18+42327937a b c a b c a b c ++=⎧⎪+=⎨⎪++=⎩,,,解得15066a b c ===,,.3分(2)用数学归纳法证明315()1N*66f n n n n =++∈,.①当1n =时,显然成立. ……………………………………………4分 ②假设当n k =时成立,即315()166f k k k =++,那么当+1n k =时,在k 个平面的基础上再添上第1k +个平面,因为它和前k 个平面都相交,所以可得到k 条互不平行且不共点的交线,且其中任 何3条直线不共点,这k 条交线可以把第1k +个平面划分成211122k k ++个部分. 每个部分把它所在的原有空间区域划分成两个区域,因此,空间区域的总数增加了 211122k k ++个,所以(1)()f k f k +=+211122k k ++……………………………………………7分315166k k =+++211122k k ++ 315(1)(1)166k k =++++, 即+1n k =时,结论成立. ……………………………………………9分根据①②可知,315()1N*66f n n n n =++∈,.…………………………………10分。
2018年高考南通市数学学科基地密卷(6)
2018年高考模拟试卷〔6〕南通市数学学科基地命题 第Ⅰ卷〔必做题,共160分〕一、填空题:本大题共14小题,每题5分,共70分. 1.已知集合{|0}U x x =>,={|2}A x x >,则UA = ▲ .2.已知复数z =21-i-i 3,其中i 虚数单位,则z 的模为 ▲ .3.某高级中学高一,高二,高三在校生数分别为1200,1180,1100.为了了解学生视力情况,现用分层抽样的方法抽假设干名学生测量视力,假设高二抽到118名学生测视力,则全校共抽到测视力的人数为 ▲ .4.在平面直角坐标系xOy 中,假设抛物线22(0)x py p =>上纵坐标为1的一点到焦点的距离为4,则该抛物线的 焦点到准线的距离为 ▲ .5.执行如下图的流程图,则输出S 的值为 ▲ .6.已知一球与一个正三棱柱的三个侧面及两个底面都相切.假设该球的体积为4π3,则该三棱柱的体积是 ▲ .7.将函数()π()sin 6f x x ω=-〔0ω>〕的图象向左平移π3个单位后,所得图象关于直线πx =对称,则ω的最小值为 ▲ .8.两人约定:在某天一同去A 地,早上7点到8点之间在B 地会合,但先到达B 地者最多在原地等待5分钟,如果没有见到对方则自己先行.设两人到达B 的时间是随机的、独立的、等可能的.那么,两人能够在当天一同去A 地概率是 ▲ .9.在平面直角坐标系xOy 中,已知圆22:810C x y x m ++-+=与直线10x ++=相交于A ,B 两点.假设△ABC 为等边三角形,则实数m 的值为 ▲ .10.设正△ABC 的边长为1,t 为任意的实数.则|AB →+tAC →|的最小值为 ▲ .11.假设函数()1()log 1a x f x =+-〔0a >且1a ≠〕没有最小值,则a 的取值范围是 ▲ .12.数列{a n }满足a 1=14,a 2=15,且a 1a 2+a 2a 3+…+a n a n +1=na 1 a n +1对任何正整数n 成立,则1a 1+1a 2+…+1a 10的值为 ▲ . 13.已知函数2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,,假设函数()f x 有四个不同的零点,则实数m 的取值范围是 ▲ .14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin sin sin 0A B A B λ++=,且2a b c +=,则实数λ的取值范围是 ▲ . 二、解答题:本大题共6小题,共计90分. 15.(本小题总分值14分)已知向量(1,)m =a ,(2,)n =b .〔1〕假设3m =,1n =-,且()λ⊥+a a b ,求实数λ的值; 〔2〕假设5+=a b ,求⋅a b 的最大值.16.(本小题总分值14分)在平行六面体ABCD -A 1B 1C 1D 1中,AB AC =,平面BB 1C 1C ⊥底面ABCD ,点M 、F 分别是线段1AA 、BC 的中点. 〔1〕求证:AF ⊥DD 1; 〔2〕求证:AD //平面1MBC . BA〔第16题〕B 1A 1C 1MCFDD 117.(本小题总分值16分)如图,设椭圆C :x 2a 2+y 2b 2=1(a >b >0),离心率e =12,F 为椭圆右焦点.假设椭圆上有一点P 在x 轴的上方,且PF ⊥x 轴,线段PF =32.〔1〕求椭圆C 的方程; 〔2〕过椭圆右焦点F 的直线〔不经过P 点〕与椭圆交于A ,B 两点,当APB ∠的平分线为PF 时,求直线AB 的方程.18.〔本小题总分值16分〕某公司拟购买一块地皮建休闲公园,如图,从公园入口A 沿AB ,AC 方向修建两条小路, 休息亭P与入口的距离为米〔其中a 为正常数〕,过P 修建一条笔直的鹅卵石健身步 行带,步行带交两条小路于E 、F 处,已知045BAP ∠=,12tan 5CAB ∠=. 〔1〕设AE x =米,AF y =米,求y 关于x 的函数关系式及定义域; 〔2〕试确定E ,F 的位置,使三条路围成的三角形AEF 地皮购价最低.A OB OC OP O〔17题图〕F E19.〔本小题总分值16分〕已知函数21()2ln (R)2f x x x ax a =+-∈.(1)当3=a 时,求函数)(x f 的单调区间;(2)假设函数)(x f 有两个极值点21x x ,,且]10(1,∈x ,求证:2ln 223)()(21-≥-x f x f ; (3)设ax x f x g ln )()(-=,对于任意)2,0(∈a 时,总存在]2,1[∈x ,使2)2()(-->a k x g 成立,求实数k的取值范围.20.(本小题总分值16分)已知{a n }为等差数列,{b n }为等比数列,公比为q (q ≠1).令A ={k |a k =b k ,k ∈N*}. (1)假设A ={1,2},①当a n =n ,求数列{b n }的通项公式;②设a 1>0,q >0,试比较a n 与b n (n ≥3)的大小?并证明你的结论. (2)问集合A 中最多有多少个元素?并证明你的结论.2018年高考模拟试卷〔6〕数学Ⅱ(附加题)21.【选做题】此题包括A 、B 、C 、D 四小题,请选定..两题,并在相应的答题区域............内作答.... A .[选修4-1:几何证明选讲]〔本小题总分值10分〕如图,圆O 内接四边形ABCD ,直线P A 与圆O 相切于点A ,与CD 的延长线交于点P ,AD ·BC =DP ·AB ,求证:AD =BC .B .[选修4-2:矩阵与变换]〔本小题总分值10分〕二阶矩阵M 对应的变换将△ABC 变换成△A 1B 1C 1,其中△ABC 三个顶点坐标分别为A (1,-1)、B (-2,1),C (2,2),△A 1B 1C 1中与A 、B 对应的两个坐标分别为 A 1(-1,-1)、B 1(0,-2).求C 1点的坐标.C .[选修4-4:坐标系与参数方程]〔本小题总分值10分〕假设两条曲线的极坐标方程分别为ρsin(θ+π3)=1与ρ=2sin(θ+π3),它们相交于A 、B两点,求线段AB 的长.D .[选修4-5:不等式选讲]〔本小题总分值10分〕求证:对任意x ,y ∈R,不等式x 2+xy +y 2≥3(x +y -1)总成立.〔第21题〔A 〕【必做题】第22题、第23题,每题10分,共计20分.请在答卷纸指定区域内........作答. 22.〔本小题总分值10分〕如图,在三棱锥A BCD -中,已知,ABD BCD ∆∆都是边长为2的等边三角形,E 为BD 中点,且AE ⊥平面BCD ,F 为线段AB 上一动点,记BF BAλ=.〔1〕当13λ=时,求异面直线DF 与BC 所成角的余弦值;〔2〕当CF 与平面ACDλ的值.23.〔本小题总分值10分〕设函数f n (x )=1+x +12!x 2+…+1n !x n ,n ∈N*.(1)求证:当x ∈(0,+∞)时,e x >f n (x );(2)假设x >0,且e x =f n (x )+1(n +1)!x n +1e y,求证:0<y <x .2018年高考模拟试卷〔6〕参考答案数学Ⅰ1.(]02,2. 5 解:z =21-i-i 3=1+i +i =1+2i ,所以| z |=5.3.348 解:因为高二学生总数1180人,抽到118人,故抽了10%,所以高三学生抽到的人数为120,高一抽到的人数为110,共348人. 4.6 解:由题意抛物线定义可知,142p+=,所以6p =,即焦点到准线的距离为6. 5.4860 解:由题设可知,S =100+99+98+…+20=4860.6.6 3 解:由体积得球半径R =1,三棱柱的高为2,底面边长为23.V =34(23)2×2=63.7. 12 解:将()f x 的图象向左平移π3个单位得到()ππsin 36y x ωω=+-,因为图象关于直线πx =对称,所以()4ππsin 136ω-=±,所以4ππππ362k ω-=+,即3142k ω=+,k ∈Z ,所以ω的最小值为12.8.23144 解:设两人到达A 地的时间分别是7点边m 分和7点过n 分(0≤m 、n ≤60). 用数对(m ,n )表示两人分别到达A 地的时间.则在直角坐标系中, 点(m ,n )的存在域是一个边长为60的正方形,其面积为3600. 两人能够在当天一同去A 地等价于|m -n |≤5.此时,相应点的存在 域是正方形中位于两直线m -n =±5之间的部分区域(如图), 其面积为3600-552=575.故所求概率为5753600=23144.9.11- 解:圆C的半径r =ABC 为等边三角形,所以圆心C 到直线AB 的距离d ==11m =-.10.3 解:令a =AB →,b =AC →.则|a |=|b |=1,a 、b 的夹角为60°.于是,|AB →+tAC →|2=|a+t b |2=a 2+t 2b 2+2 t a ·b =t 2+t +1=(t +12)2+34≥34.所以|AB →+tAC →|≥32.11.01a <<或4a ≥ 解:令11x t a x =+-,则log a y t =.假设01a <<,因为t 没有最大值,所以符合;假设1a >,因为111x t a x =+-≥,要使原函数没有最小值,必须10≤,解得4a ≥.12.85 解法一:由a 1a 2+a 2a 3=2a 1a 3及a 1=14,a 2=15,得a 3=16,再由a 1a 2+a 2a 3+ a 3a 4=3a 1a 4,a 4=17.进一步得a 5=18,a 6=19, a 7=110,a 8=111,a 9=112,a 10=113,故1a 1+1a 2+…+1a 10=4+5+6+7+8+9+10+11+12+13=85.解法二:由a 1a 2+a 2a 3+…+a n a n +1=na 1 a n +1 ①,a 1a 2+a 2a 3+…+a n a n +1+ a n +1a n +2=(n +1)a 1 a n +2 ②,②-①得,a n +1a n +2=(n +1)a 1 a n +2-na 1 a n +1⇒1a 1=n +1a n +1-na n +2 =n a n -n -1a n +1⇒2a n +1=1a n +1a n +2,(n ≥2),则a 1a 2+a 2a 3=2a 1a 3⇒2a 2=1a 1+1a 3,所以数列{1a n }成等差数列,公差为1,即1a n =n +3,a n =1n +3.代入可得1a 1+1a 2+…+1a 10=85.13. 2(,)4e -∞- 解:由对称性,只需当0x >时,2x e mx =-有两解即可.即2x e m x =-在0x >时有两解.设2()xe g x x =,由3(2)()0x e x g x x -'=>得()g x 在〔0,2〕上递减,在(2,)+∞上递增. 由图可知24e m ->,所以24e m <-.14.λ≤ 解:由条件,sin sin sin sin A B A B λ+=-.因为2a b c +=,所以sin sin 2sin A B C +=, 所以sin sin 12sin A B C +=,所以22()sin sin sin sin 2sin sin 2sin 2sin sin a b A B A B c A B C ab C ab C λ+++=-⨯=-=-. 而2222()2323cos 1222a b ab c c ab c C ab ab ab+---===-,所以22(1cos )3c C ab =+.由2a b c +=,得1cos 2C ≥,即π03C <≤,所以41cos 3sin C C λ=-+⋅≤.二、解答题:15.解:〔1〕当3m =,1n =-时,(1,3)=a ,又(2,1)=-b ,所以(1,3)(2,1)(12,3)λλλλ+=+-=+-a b , 假设(λ⊥+)a a b ,则(0λ⋅+)=a a b ,即(12)3(3)0λλ++-=,解得10λ=. …… 7分 〔2〕因为(1,)m =a ,(2,)n =b ,所以(3,)m n ++a b =, 因为5+=a b ,所以2223()5m n ++=,则2()16m n +=, 所以211122()216644mn m n ⋅⨯+++=+⨯=≤a b =,故当2m n ==或2m n ==-时,⋅a b 的最大值为6. …… 14分 16.证明:〔1〕∵AB =AC ,点F 是线段BC 的中点,∴AF ⊥BC .…………………………………………2分 又∵平面11BB C C ⊥底面ABC ,AF ⊂平面ABC , 平面11BB C C ⋂底面ABC BC =,∴AF ⊥平面11BB C C . ……………………………………………………………………5分 又CC 1⊂平面11BB C C ,∴AF ⊥CC 1,又CC 1∥DD 1,∴AF ⊥DD 1.………………………………………………………………7分 〔2〕连结B 1C 与BC 1交于点E ,连结EM ,FE .在斜三棱柱111ABC A B C -中,四边形BCC 1B 1是平行四边形, ∴点E 为B 1C 的中点. ∵点F 是BC 的中点, ∴FE //B 1B ,FE 12=B 1B .…………………………10分 又∵点M 是平行四边形BCC 1B 1边AA 1的中点, ∴AM //B 1B ,AM 12=B 1B . ∴AM // FE ,AM =FE .∴四边形AFEM 是平行四边形.∴EM // AF .…………………………………………12分 又EM ⊂平面MBC 1,AF ⊄平面MBC 1,∴AF //平面MBC 1.……………………………………………………………………14分 17.解:〔1〕设右焦点)0,(c F ,由x PF ⊥轴,设),(t c P 代入椭圆方程,即得),(2ab c P ,BAE 〔第15〔2〕题图〕B 1A 1C 1M C FDD所以232==a b PF ,联立2222321e 2b a c a b c a ⎧=⎪⎪⎪==⎨⎪+=⎪⎪⎩, …………………3分解得1,3,2===c b a ,所以椭圆方程为13422=+y x ,右准线l 的方程为42==ca x . ………………… 6分〔2〕设)1)(,(000≠x y x A ,则直线AB 的方程为)1(100--=x x y y ,即100-=x y k , 联立⎪⎪⎩⎪⎪⎨⎧=+--=134)1(12200y x x x y y , 消去y , 即得0)1(1248]4)1(3[20202022020=--+-+-x y x y x y x (※), ………………… 9分 又0x 为方程(※)的一根,所以另一根为()0202024138x y x y x B -+-=,又点)1)(,(000≠x y x A 在椭圆上,所以满足134220=+y x ,代入另一根即得528500--=x x x B , 所以⎪⎪⎭⎫ ⎝⎛---523,52850000x y x x B .由〔1〕知,点⎪⎭⎫⎝⎛231,P 则直线PA 的斜率()1232001--=x y k ,直线PB 的斜率)1(25220002-+-=x x y k , (12)分①当APB ∠的平分线为PF 时,PA ,PB 的斜率1k ,2k 满足021=+k k , 所以0)1(2522)1(2320000021=-+-+--=+x x y x y k k ,即1200-=x y ,所以21=k ,故直线AB 的方程为 x -2y -1=0. …………… 14分18.〔方法一〕〔1〕由12tan 5CAB ∠=得12sin CAB =∠,5cos CAB =∠且sin sin()sin(45)FAP CAB PAE CAB ∠=∠-∠=∠-︒=由题可知AEFAEPAFPS SS=+所以111sin sin sin 222AE AF CABAE AP PAE AP AF FAP ∠=∠+∠得1121121322xy x y ⋅=⋅⋅⋅ 即1232113213xy ax ay =+ 所以1347axy x a=-由013047x axy x a >⎧⎪⎨=>⎪-⎩得定义域为7(,)4a +∞ ……………………6分 (2) 设三条路围成地皮购价为y 元,地皮购价为k 元/平方米,则AEFy k S =⋅(k 为常数),所以要使y 最小,只要使AEFS 最小由题可知2111266136sin 221313134747AEFax ax S AE AF CAB xy xy x x a x a=⋅⋅∠=⋅==⋅=-- 定义域为7(,)4a+∞ 令470t x a =-> 则2222763144934941488AEFt a a a t at a a a St a t t t +⎛⎫ ⎪⎛⎫++⎝⎭==⋅=++ ⎪⎝⎭23211482a a a ⎛⎫≥= ⎪ ⎪⎝⎭当且仅当7t a =即72ax =时取等号 所以,当72ax =时,AEFS 最小,所以y 最小答:当点E 距离点A72a米远时,三条路围成地皮购价最低……………14分 〔方法二〕(1) 由12tan 5CAB ∠=得12sin 13CAB =∠,5cos 13CAB =∠ sin sin()sin(45)FAP FAE PAE FAE ∠=∠-∠=∠-︒设FPA θ∠=APF 中,由正弦定理sin sin sin AF PF APAPF FAP AFE==∠∠∠所以26,sin sin yPF AFE θ=∠=同理可得122,sin xy PE FE θ= 由PF PE FE +=即12262sin sin y xy θθ+=整理得1347axy x a=-,由013047x axy x a >⎧⎪⎨=>⎪-⎩得定义域为7(,)4a +∞ ……………………6分 〔方法三〕〔1〕以AB 所在直线为x 轴,点A 为坐标原点,建立如图直角坐标系,则(),0E x ,()3,3P a a ,由12tan 5CAB ∠=,得12sin 13CAB =∠,5cos 13CAB =∠所以512,1313F y y ⎛⎫⎪⎝⎭因为PE 与PF 共线所以()()51233331313y a a y a x a ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭所以1347axy x a=-由013047x axy x a >⎧⎪⎨=>⎪-⎩得定义域为7(,)4a +∞ ……………………6分 19.解:)0(22)(2>+-=-+='x xax x a x x x f(1)当3=a 时,xx x x x x x f )1)(2(23)(2--=+-=', 令100)(<<⇒>'x x f 或2>x ,令210)(<<⇒<'x x f ,所以)(x f 的递增区间为)1,0(和),2(+∞,递减区间为)2,1(. (2)由于)(x f 有两个极值点21,x x ,则022=+-ax x 在),0(+∞∈x 上有两个不等的实根21,x x ,⎪⎪⎩⎪⎪⎨⎧=+=>⇒≤<⎪⎪⎪⎩⎪⎪⎪⎨⎧>==+>-=∆∴1221121212222)10(02208x x x x a a x a x x a x x a )21ln 2()21ln 2()()(2222121121ax x x ax x x x f x f -+--+=- ))((2121)ln (ln 22121222121x x x x x x x x -+--+-= 21211121)2(21)2ln (ln 2x x x x -+-= )10(2ln 222ln 4121211≤<--+=x x x x设)10(2ln 222ln 4)(22≤<--+=x x xx x F ,所以0)2(4444)(3223423<--=--=--='xx x x x x x x x F 所以)(x F 在]1,0(上递减,所以2ln 223)1()(-=≥F x F即2ln 223)()(21-≥-x f x f . (3)由题意知:只需2)2()(max -->a k x g 成立即可.因为a ax x x x g ln 21ln )(2--+=, 所以a xx x g -+='1)(,因为]2,1[∈x ,所以⎥⎦⎤⎢⎣⎡∈+25,21x x ,而)2,0(∈a ,所以0)(>'x g ,所以)(x g 在]2,1[∈x 递增,当2=x 时,a a g x g ln 222ln )2()(max +-+==.所以2)2(ln 222ln -->--+a k a a 在上)2,0(∈a 恒成立,令42ln )2(2ln )(++----=a k a a a h ,则0)(>a h 在上)2,0(∈a 恒成立,aa k k a a h 1)2(21)(---=---=',又0)2(=h 当02≤--k 时,0)(<'a h ,)(a h 在)2,0(∈a 递减,当0→a 时,+∞→)(a h , 所以0)2()(=>h a h ,所以2-≥k ; 当02>--k 即2-<k 时,ka a h --=⇒='210)(①2210<--<k即25-<k 时,)(a h 在)2,21(k --上递增, 存在ka --=21,使得0)2()(=<h a h ,不合; ②221≥--k 即225-<≤-k 时,0)(<'a h ,)(a h 在)2,0(∈a 递减, 当0→a 时,+∞→)(a h ,所以0)2()(=>h a h ,所以225-<≤-k 综上, 实数k 的取值范围为),25[+∞-.20.解:(1) 由A ={1,2},得a 1=b 1,a 2=b 2.设数列{a n }公差为d ,数列{b n }公比为我q ,由a 2=b 2⇒ a 1+ d =a 1q ,故d =a 1(q -1)①因为a n =n ,a 1=b 1=1,a 2=b 2=2,所以数列{b n }的公比q =b 2b 1=2,所以,b n =2n -1.……2分② 答:a n <b n (n =1,2,…).证明如下: 因为a 1>0,q >0,q ≠1,所以b n -a n =a 1q n -1-[(a 1+(n -1) a 1(q -1)]=a 1( q n -1-1)-a 1(q -1) (n -1)=a 1(q -1)(q n -2+q n -1+…+1)-a 1(q -1) (n -1)=a 1(q -1)[q n -2+q n -3+…+1-(n -1)] =a 1(q -1)[(q n -2-1)+( q n -3-1)+…+(q -1)]=a 1(q -1)2[(q n -3+q n -4+…+1)+(q n -4+q n -5+…+1)+…+(q +1)+1]>0.所以a n <b n (n =1,2,…). ……………………………… 6分 (2)不妨设a n =a +bn (b ≠0),b n =pq n ,由a n =b n ⇔ a +bn =pq n ⇒a p +bp n =q n .令s =a p ,t =bp,(t ≠0),原问题转化为关于n 的方程q n -tn -s =0 ① ……………………………… 8分 最多有多少个解.下面我们证明:当q >0时,方程①最多有2个解;q <0时,方程②最多有3个解. 当q >0时,考虑函数f (x )=q x -tx -s ,则f ′(x )=q x ln q -t如果t ln q <0,则f (x )为单调函数,故方程①最多只有一个解;如果t ln q >0,且不妨设由f ′(x )=0得f ′(x )有唯一零点x 0=log q tln q ,于是当x >x 0时,f ′(x )恒大于0或恒小于0,当x <x 0时,f ′(x )恒小于0或恒大于0, 这样f (x )在区间(0,x 0)与(x 0,+∞)上是单调函数,故方程①最多有2个解. …………………… 10分 当q <0时,如果t >0.如果n 为奇数,则方程①变为 |q |n +tn +s =0,显然方程最多只有一个解,即最多只有一个奇数满足方程①. 如果n 为偶数,则方程①变为|q |n -tn -s =0.由q >0的情形,上式最多有2个解,即满足①的偶数最多有2个. 这样,最多有3个正数满足方程①.对于t <0,同理可以证明,方程①最多有3个解.综上所述,集合A 中的元素个数最多有3个. ……………………………… 12分 再由当a n =6n -8,,b n =(-2)n ,则a 1=b 1,a 2=b 2,a 4=b 4.A ={1,2,4}.由此,可知集合A 中的元素个数最多有3个. ………………… 16分数学Ⅱ〔附加题〕21A .证明:连AC ,在△ABC 与△ADP 中, 因为A 、B 、C 、D 四点共圆,所以∠ADP =∠ABC ,又因为AD ·BC =DP ·AB ,即 AD DP =ABBC,所以 △ABC ∽△ADP , 所以 ∠BAC =∠DAP .因为 直线P A 与圆O 相切,所以 ∠DAP =∠ACD , 所以 ∠BAC =∠ACD ,所以,A B ∥CD ,所以圆内接四边形ABCD 为等腰梯形,所以AD =BC .21B .解:设M =a b c d ⎡⎤⎢⎥⎣⎦,则有a b c d ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥-⎣⎦=11-⎡⎤⎢⎥-⎣⎦,a b c d ⎡⎤⎢⎥⎣⎦21-⎡⎤⎢⎥⎣⎦=02⎡⎤⎢⎥-⎣⎦,所以11a b c d -=-⎧⎨-=-⎩,,且2022a b c d -+=⎧⎨-+=-⎩,.解得1234a b c d =⎧⎪=⎪⎨=⎪⎪=⎩,所以M =12 34⎡⎤⎢⎥⎣⎦.所以⎣⎢⎡⎦⎥⎤1234 ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤614,即C 点坐标为(6,14).21C .解:由ρsin(θ+π3)=1得,3x +y -2=0,由ρ=2sin(θ+π3) 得,x 2+y 2-3x -y =0,直线3x +y -2=0过圆x 2+y 2-3x -y =0的圆心(32,12), 所以线段AB 的长为圆ρ=2sin(θ+π3)的直径长,即AB =2.21D .法一:左-右=x 2 +〔y -3) x +y 2 -3y +3∵Δ=〔y -3)2-4〔y 2 -3y +3〕=-3 y 2+6 y -3 ≤ 0 ∴左-右≥0 得证。
(完整word版)2018年高考南通市数学学科基地密卷(9)
2018年高考模拟试卷(9)南通市数学学科基地命题第I卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分.1 .设集合A = {1 , x }, B = {2 , 3, 4},若A A B ={4},则x 的值为▲.2. 若复数Z1= 2+i, z1 -z2() z2 = 5,则z2= ▲ .3. 对一批产品的长度(单位:毫米)进行抽样检测,样本容量为200,右图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25, 30)的为一等品,在区间[20 , 25)和[30, 35)的为二等品,其余均为三等品,则样本中三等品的件数为▲4. 执行如图所示的流程图,会输出一列数,则这列数中的第3个数为▲.5. 为活跃气氛,某同学微信群进行了抢红包活动•某同学发了一个“长长久久”随机分配红包,总金额为9.9元,随机分配成5份,金额分别为2.53元,1.19元,3.21元,0.73元,2.33元,则身处海外的两名同学抢得的金额之和不低于5元的概率为▲.26. 函数y log2(3 2x x )的值域为▲.7. 已知P ABC是正三棱锥,其外接球O的表面积为16 n且/ APO = / BPO = / CPO=30°则三棱锥的体积为▲.28. 已知双曲线x2— 1的左、右顶点为A、B,焦点在y轴上的椭圆以A、B为顶点,4且离心率为—,过A 作斜率为k 的直线I 交双曲线于另一点 M ,交椭圆于另一点 N ,2若ANUJUJTNM ,贝U k 的值为值为 ▲19.已知函数 f(x) = cosx(sin x + cosx)—,若 f()22—,则cos(—2 )的值为 ▲6410 •已知a n 是首项为1,公比为2的等比数列, 数列b n 满足b 印,且b na i a 2 L a n 1 a n a n 1 L a 2 a 1( n》2, n,若 a m (b m 28)2018,则m 的11.定义在 1,1上的函数f (x)sin x axb(a 1)的值恒非负,贝U ab 的最大值12.在厶ABC 中,若35 UUJ UUU 21 uur uuur AB BC15 uur uuu ,贝H cosC 的值为 BC CA13.在平面直xOy 中,2y 1,直线l : x ay 3 0 ,过直线l 上一点Q 作圆O 的切线,切点为 uun P,N ,且 QP UJIT 2QN ,则正实数a 的取值范围是▲3—14.已知偶函数y f(x)满足f(x 2)f(2 2x),且在 x 2,0 时,f (x) x 1 ,若存在 x-i , X 2,L , x n 满足 0W x-ix 2X n,x-i f x 2f x ?f X 3f X n 12017,则X n 最小值二、解答题:本大题共 6小题,共计90分.15. (本小题满分14分)已知函数f (x) As in xA 0,0的最小值是一2,其图象经过点 M (— ,1) •3(1) 求 f (x)的解析式; (2)已知(o,牙),且f ()8, 2 524f () ,求f ()的值.1316. (本小题满分14分)如图,在四棱锥P ABCD 中,BAD 90 , AD // BC ,AD 2BC , AB PA.(1) 求证:平面PAD 平面ABCD ;(2) 若E为PD的中点,求证:CE //平面PAB .A17. (本小题满分14分)有一块以点0为圆心,半径为2百米的圆形草坪,草坪内距离0点2百米的D点有一用于灌溉的水笼头,现准备过点D修一条笔直小路交草坪圆周于A, B两点,为了方便居民散步,同时修建小路OA, 0B,其中小路的宽度忽略不计.这块圆形广场的最大面积. (结果保留根号和)(1) 若要使修建的小路的费用最省,试求小路的最短长度;(2) 若要在△ ABO区域内(含边界)规划出一块圆形的场地用于老年人跳广场舞,试求18. (本小题满分16分)如图,点a n 1 2a n 8 , {g} , &分别为椭圆b: b; 14S n+25的左、右顶点和右焦点,过点n N的直线{务}(异于{0}轴)交椭圆C于点{g}, c. a. b n .(1)若AF 3,点4r, s, t与椭圆C左准线的距离为5,求椭圆C的方程;(2)已知直线(r s t)的斜率是直线r,s, t斜率的f(m x) f (x)倍.②若椭圆C的焦距为f(m x)①求椭圆C的离心率;19. (本小题满分16分)已知函数f (x) xlnx ax2.(1) 若曲线y f (x)在x 1处的切线过点A(2, 2).①求实数a的值;f (x) 1②设函数g(x) ,当s 0时,试比较g(s)与g(-)的大小;x s1(2) 若函数f (x)有两个极值点X1 , X2 ( X1 X2),求证:f(xj -.220. (本小题满分16分)设数列{a n}的各项均为不等的正整数,其前n项和为S n,我们称满足条件“对任意的m , n N*,均有(n m)S n m (n m)(S n S m) ” 的数列{a n}为“好”数列.(1 )试分别判断数列{a n } , {b n }是否为好”数列,其中a n 2n 1, b 2n 1 ,n N * ,并给出证明;(2)已知数列{C n }为好”数列.① 若C 20172018,求数列{C n }的通项公式;② 若G p ,且对任意给定正整数p ,s ( s 1),有G ,C s ,C t 成等比数列,求证:t > s 2 •2018年高考模拟试卷(9)数学U (附加题)21 •【选做题】本题包括 A 、B 、C 、D 四小题,请选定两题,并在相应的答题区域内作答 A •[选修4 — 1:几何证明选讲](本小题满分10分)如图,AB 为O O 的直径,BD 是O O 的切线,连接 AD 交O O 于E ,若BD // CE ,2AB 交 CE 于 M ,求证:AB AE ADxxx 2v已知点A 在变换T :y作用后,再绕原点逆时针旋转 90 ,v v v得到点B •若点B 的坐标为(3,4),求点A 的坐标.B •[选修4 — 2:矩阵与变换](本小题满分10分) (第21-A )C .[选修4 — 4:坐标系与参数方程](本小题满分10分)在极坐标系中,圆 C 的方程为 2acos (a 0),以极点为坐标原点,极轴为x 轴x 3t 1 I 的参数方程为(t 为参数),若直线Iy 4t 3与圆C 恒有公共点,求实数 a 的取值范围.D .[选修4 — 5:不等式选讲](本小题满分10分)3 21已知正数a,b,c 满足2a 3b 6c 2,求的最小值.a b c【必做题】第22题、第23题,每题10分,共计20分•请在答卷纸指定区域内 作答.连接 AM, AC,CM ,若 MAQ 90 .(1) 求直线C 1M 与平面CA 1M 所成角的正弦值;(2) 求平面CAM 与平面AAC 1C 所成的锐二面角.23.(本小题满分 10分)正半轴建立平面直角坐标系,设直线22.已知直三棱柱ABC A 1BQ 1 中, ABC 为等边三角形,延长BB 1至M ,使BB 1B 1M ,B1B(第 22 题)M(1)求证:kC:k (n k)C:;1 ;(2)求证:1008( 1 )n C n 1n 0 2017 n 2017 n 20172018年高考模拟试卷(9)参考答案数学I一、填空题:1 .【答案】4【解析】因为AQB ={4},所以4 € A,故x= 4.2 .【答案】2+i5【解析由z i Z2 = 5,得玄=化=2-i,所以Z1= 2+i.' 2+i3 .【答案】50【解析】三等品总数n [1 (0,05 0.0375 0.0625) 5] 200 50 .4 .【答案】30【解析】A 3, N 1,输出3;A 6, N 2,输出6;A 30, N 3,输出30;则这列数中的第3个数是30.15 .【答案】丄5【解析】两名同学抢红包的事件如下:(2.53, 1.19) (2.53, 3.21 ) (2.53, 0.73) (2.53,2.33)(1.19, 3.21) (1.19, 0.73) (1.19 , 2.33) (3.21 , 0.73) (3.21 , 2.33) (0.73 , 2.33),共10 种可能,其中金额不低于5元的事件有(2.53 , 3.21) (3.21, 2.33),共2种可能,所以不低于5元的概率P —1.10 56 .【答案】,2【解析】因为3 2x x2(x 1)2 4 0,4 ,所以log2(3 2x x2) ,2 ,即值域为,2 .7 •【答案】9、34【解析】设球的半径为R, △ ABC的外接圆圆心为0',则由球的表面积为16n,可知4n1 2= 16n,所以R= 2•设△ ABC的边长为2a,因为/ APO=Z BPO=Z CPO = 30° OB= OP = 2,所以BO'= ~^R= 3, 00 ' = , OB2- BO ' 2= 1 ,PO ' = 00 ' + 0P= 3•在△ ABC 中,O ' B= |2a= 3,所以a= 3,所以三棱锥PABC的体积为V = * * 32X sin60° 3=2 3 2 48 .【答案】3c 3 2【解析】对于椭圆,显然 b 1,- -,所以椭圆方程为今y2 1,设N(x o,y。
江苏省南通基地高考数学密卷7理
江苏省南通基地2018年高考数学密卷(7)理第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分.1.复数(是虚数单位),若是实数,则实数的值为▲.2.在平面直角坐标系xOy中,角的始边为射线Ox,点在其终边上,则的值为▲.3.设全集U是实数集R,,,则图中阴影部分所表示的集合为▲.4.从某校高三年级随机抽取一个班,对该班统计,其结果的频率分布直方图如右上图.若某高校A专业对视力要求不低于0.9,则该班学生中最多有▲ 人能报考A专业.5.袋中共有大小相同的4只小球,编号为1,2,3,4.现从中任取2只小球,则取出的2只球的编号之和是奇数的概率为▲ .6.执行如图所示的算法,则输出的结果是▲ .7.在平面直角坐标系中,已知双曲线的一个焦点为,则该双曲线的离心率为▲ .8.现用一半径为10 cm,面积为80 cm2的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为▲ cm3.9.平行四边形ABCD中,已知AB=4,AD=3,∠BAD=60°,点E,F分别满足AE→=2ED→,DF→=FC→,则的值为▲ .10.设S n是等比数列{a n}的前n项和,若满足a4 + 3a11= 0,则= ▲.11.在平面直角坐标系xOy中,已知直线被圆截得的弦长是定值(与实数m无关),则实数k的值为▲.12.在△ABC中,,,则的值为▲.13.设F是椭圆+=1(a>0,且a≠2)的一焦点,长为3的线段AB的两个端点在椭圆上移动.则当AF·BF取得最大值时,a的值是▲ .14.设函数,其中.若存在唯一的整数,使得,则实数的取值范围是▲.二、解答题:本大题共6小题,共计90分.15.(本小题满分14分)在△中,为锐角,且.(1)若,,求的长;(2)若,求的值.16.(本小题满分14分)如图,在三棱锥中,,点D在AB上,点E为AC的中点,且BC平面PDE.(1)求证:平面PBC;(2)若平面PCD⊥平面ABC,求证:平面PAB⊥平面PCD.17.(本小题满分14分设,,是同一平面内的三条平行直线,与间的距离是1 m,与间的距离是2 m,△ABC的三个顶点分别在,,.(1)如图1,△ABC为等边三角形,求△ABC的边长;(2)如图2,△ABC为直角三角形,且为直角顶点,求的最小值.BC Al3l2l1图1 BCl3l2l1图2A18.(本小题满分16分)如图,在平面直角坐标系xOy中,设P为圆:上的动点,过P作x轴的垂线,垂足为Q,点M满足.Array(1)求证:当点P运动时,点M(2)过点T作圆的两条切线,切点分别为A,B.①求证:直线AB过定点(与无关);②设直线AB与(1)中的椭圆交于C,D(第18题)19.(本小题满分16分)设等差数列是无穷数列,且各项均为互不相同的正整数,.(1)设数列其前项和为,,.①若,,求的值;②若数列为等差数列,求;(2)求证:数列中存在三项(按原来的顺序)成等比数列.20.(本小题满分16分)已知函数,.(1)若直线与的图象相切,求实数的值;(2)设函数,试讨论函数在上的零点个数;(3)设,且,求证:.2018年高考模拟试卷(7)数学Ⅱ(附加题)21.【选做题】本题包括A、B、C、D四小题,请选定两题,并在相应的答题区域内作答..................A.[选修4—1:几何证明选讲](本小题满分10分)如图,四边形是圆的内接四边形,,、的延长线交于点.求证:平分.B. [选修4-2:矩阵与变换](本小题满分10分)已知矩阵所对应的变换把直线:变换为自身,求实数的值.C.[选修4-4:坐标系与参数方程](本小题满分10分)已知直线:(t为参数)恒经过椭圆C:(为参数)的右焦点,求实数的值.D.[选修4-5:不等式选讲](本小题满分10分)设均为正数,且,求证:.【必做题】第22题、第23题,每题10分,共计20分.请在答卷纸指定区域内........作答.22.(本小题满分10分)设随机变量ξ的分布列为,其中,c为常数.(1)求c的值;(2)求ξ的数学期望E(ξ).23.(本小题满分10分)已知数列满足….(1)求,,的值;(2)猜想数列的通项公式,并证明.2018年高考模拟试卷(7)参考答案一、填空题:本大题共14小题,每小题5分,共70分.1.【答案】0【解析】是实数,则.2.【答案】【解析】根据三角函数定义,.3.【答案】【解析】图中阴影部分所表示的集合为,即为.4.【答案】18【解析】校A专业对视力要求不低于0.9的学生数为45.5.【答案】【解析】从4只小球中任取2只小球共有6种取法,其中2只球的编号之和是奇数的有4种,则所求概率为.6. 【答案】2【解析】根据循环,依次得到的值分别为; ,…,,因为,所以最后的输出结果为2. 7. 【答案】【解析】由题意,,即,所以双曲线为,所以离心率为. 8. 【答案】【解析】设圆锥底面半径为,高为,由题意,,得. 所以,容积为. 9. 【答案】因为,;,那么 . 10. 【答案】【解析】由a 4 + 3a 11= 0,知,所以. 11. 【答案】【解析】由得,,则圆心到直线的距离为,设截得的半弦长为, 则(与实数m 无关), 所以,.12. 【答案】1【解析】由得,, 即,所以, 所以.13.【答案】 83或 3.【分析】当a >2时,设椭圆的另外一个焦点为F ′,联结AF ′,BF ′. 则AF ′+BF ′≥|AB |=3.故AF +BF =4a -(AF ′+BF ′)≤4 a -3. 所以AF ·BF ≤(AF ·BF2)2≤(4 a -32)2.当且仅当线段AB 过点F ′,且AF =BF =4 a -32时,上式等号成立,此时,AB ⊥x 轴,且AB 过点F ′.于是 4c 2=|FF ′|2=(4 a -32)2-(32)2=4a 2-6a ,即c 2=a 2-32a .则a 2=4+(a 2-32a ),得a =83.类似地,当0<a <2时,可得a = 3.14. 【答案】【分析】当时,的图象相切;时,的图象均过点 , ,故唯一的正整数,同时,从而.二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤 15.(本小题满分14分)解:(1)因为,,所以. ……3分 在△中,由余弦定理得,,解得,所以的长为. ……6分 (2)由(1)知,, ……8分 所以. ……11分 在△中,,所以. ……14分 16.(本小题满分14分)证明:(1)因为BC 平面PDE , BC 平面ABC ,平面PDE 平面ABC =DE ,所以BC ∥DE . ……3分 因为DE 平面PBC ,BC 平面PBC ,所以平面PBC . ……6分 (2)由(1)知,BC ∥DE .在△ABC 中,因为点E 为AC 的中点,所以D 是AB 的中点. 因为,所以, ……9分因为平面PCD ⊥平面ABC ,平面PCD 平面ABC CD ,平面ABC ,则AB 平面PCD . ……12分 因为AB 平面PAB ,所以平面PAB ⊥平面PCD . ……14分 17.(本小题满分14分 解:(1)如图1,过点B 作的垂线,分别交,,于点D ,E ,设,则.则,. ……2分因为,所以, 化简得,所以,则,所以边长. ……6分 (2)如图2,过点B 作的垂线,分别交,于点D ,E . 设,则,则,.于是.……8分 记,.求导,得.……10分 令,得.记, 列表:当时,取最小值,此时,,.……12分 答:(1)边长为m ;(2)长度的最小值为m .……14分 18.(本小题满分16分) 解:(1)设点,由,得.因为P 为圆:上的动点, 所以,即,所以当点P 运动时,点M 始终在定椭圆上. ……4分 (2)①设,,当时,直线AT 的方程为:,即, 因为,所以,当时,直线AT 的方程为:, 综上,直线AT 的方程为:.BCAl 3 l 2l 1图2DE同理,直线BT的方程为:.又点T在直线AT,BT上,则,①,②由①②知,直线AB的方程为:.所以直线AB过定点.……9分②设,,则O到AB的距离,.……11分由,得,于是,,所以,……13分于是,0(显然)所以.……16分19.(本小题满分16分)解:设等差数列的公差为.因为无穷数列的各项均为互不相同的正整数,所以,.(1)①由,得,,,……2分解得,.所以.……4分②因为数列为等差数列,所以,即.所以,解得(已舍).……6分此时,.……8分(2)因为是数列的第项,是的第项,且,,所以.又,所以数列中存在三项,,按原来的顺序)成等比数列.……16分20.(本小题满分16分)解:(1)设直线与的图象的切点为.因为,所以,……2分所以.令,.令得.所以,所以,所以.……4分(2).令得.令,.当时,有最小值.因为在上的图象是连续不断的,当时,在上恒成立,所以在无零点;当时,所以在有且仅有一个零点;当时,此时,因为,所以在上有且仅有一个零点.又因为,令,,则,,所以.所以在上单调递增,所以,所以在单调递增,所以,所以在单调递增,所以,所以在恒成立,所以,即,所以在上有且仅有一个零点.所以在上有两个零点.综上所述,时,在无零点;时,在有且仅有一个零点;时,在有两个零点.……10分(3)因为在上单调增,且,所以,,所以.令,.因为,所以,所以在上单调递增,所以,所以式成立,所以.……16分数学Ⅱ(附加题)21.【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.C.[选修4—1:几何证明选讲](本小题满分10分)证明:因为四边形是圆的内接四边形,所以.…… 2分因为,所以.…… 4分又,…… 6分,…… 8分所以,即平分.…… 10分D. [选修4-2:矩阵与变换](本小题满分10分)解:设是:上任意一点,在矩阵对应的变换得到点为,由,得…… 5分代入直线:,得,…… 7分所以解得.…… 10分C.[选修4-4:坐标系与参数方程](本小题满分10分)解:将直线化为普通方程,得…… 3分将椭圆C化为普通方程,得.…… 6分因为,则右焦点的坐标为. …… 8分而直线经过点,所以. …… 10分D.[选修4-5:不等式选讲](本小题满分10分)证明:因为均为正数,且,所以,(当且仅当时等号成立)…… 8分所以. …… 10分【必做题】第22题、第23题,每题10分,共计20分.22.(本小题满分10分)解:(1)因为,又由概率分布的性质可知,即,所以c . (3)分(2)由(1)知,,于是.…… 8分所以ξ的数学期望E(ξ).……10分23.(本小题满分10分)解:(1),,.…… 3分(2)猜想:.证明:①当,2,3时,由上知结论成立;…… 5分②假设时结论成立,则有.则时,.由得,.又,于是.所以,故时结论也成立.由①②得,.…… 10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高考南通市数学学科基地密卷(7)高三数学试卷 第 1 页 共 32 页2018年高考模拟试卷(7)南通市数学学科基地命题 第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分.1. 复数i z a =+(a ∈R ,i 是虚数单位),若2z 是实数,则实数a 的值为 ▲ .2. 在平面直角坐标系xOy 中,角α的始边为射线Ox ,点()12P -,在其终边上,则sin α 的值为 ▲ .3. 设全集U 是实数集R ,{}3M x x =>,{}2N x x =>,则图中阴影部分所表示的集合为 ▲ .4. 从某校高三年级随机抽取一个班,对该班45名学生的高校招生体检表中视力情况进行 统计,若某高校0.3 0.5 0.7 0.9 1.1 1.3 频率组距 视力0.250.50 0.75 1.001.75(第4题)(第3题)U高三数学试卷第 1 页共 32 页高三数学试卷 第 1 页 共 32 页AE →=2ED →,DF →=FC →,则AF BE ⋅的值为 ▲ . 10.设S n 是等比数列{a n }的前n 项和,若满足a 4 + 3a 11= 0,则2114S S= ▲ . 11.在平面直角坐标系xOy 中,已知直线y kx =被圆2222310xy mx m +--+-=截得的弦长是定值(与实数m 无关),则实数k 的值为 ▲ .12.在△ABC 中,cos 2sin sin A B C =,tan tan 2B C +=-,则tan A 的值为 ▲ .13.设F 是椭圆22x a +24y =1(a >0,且a ≠2)的一焦点,长为3的线段AB 的两个端点在椭圆上移动.则当AF ·BF 取得最大值时,a 的值是 ▲ . 14.设函数2172 2 044()()3 0k x x f x g x k x x x ⎧+⎛⎫-+⎪⎛⎫ ⎪==-⎝⎭⎨ ⎪⎝⎭⎪>⎩≤,,,,,其中0k >.若存在唯一的整数x ,使得()()f x g x <,则实数k 的取值范围是 ▲ .高三数学试卷 第 2 页 共 32 页(第16题)B 二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)在△ABC 中,A 为锐角,且3sin 5A =.(1)若2AC =,65BC =,求AB 的长; (2)若()1tan 3A B -=-,求tan C 的值.16.(本小题满分14分)如图,在三棱锥P ABC -中,AC BC =,点D 在AB 上,点E 为AC BC //平面PDE . (1)求证://DE 平面PBC ;(2)若平面PCD ⊥平面ABC ,求证:平面PAB ⊥平面PCD .高三数学试卷 第 3 页 共 32 页17.(本小题满分14分设1l ,2l ,3l 是同一平面内的三条平行直线,1l与2l 间的距离是1 m ,2l 与3l 间的距离是2 m ,△ABC 的三个顶点分别在1l ,2l ,3l .(1)如图1,△ABC 为等边三角形,求△ABC 的边长;(2)如图2,△ABC 为直角三角形,且B 为直角顶点,求4AB BC +的最小值.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,设P 为圆O :222x y +=上的动点,过P 作x 轴的BC A ll l图1B C lll图2A高三数学试卷 第 4 页 共 32 页垂线,垂足为Q ,点M 满足2PQ MQ=.(1)求证:当点P 运动时,点M 始终在一个确定的椭圆上;(2)过点T ()2()t t -∈R ,作圆O 的两条切线,切点分别为A ,B .① 求证:直线AB 过定点(与t 无关); ② 设直线AB 与(1)中的椭圆交于C ,D两点,求证:ABCD19.(本小题满分16分)设等差数列{}na 是无穷数列,且各项均为互不相同的正整数,.(1)设数列{}na 其前n 项和为nS ,1nnnS ba =-,*n ∈N .① 若25a=,540S=,求2b 的值;高三数学试卷 第 5 页 共 32 页② 若数列{}nb 为等差数列,求nb ;(2)求证:数列{}na 中存在三项(按原来的顺序)成等比数列.20.(本小题满分16分)已知函数()e xf x =,2()g x mx =.(1)若直线1y kx =+与()f x 的图象相切,求实数k的值;(2)设函数()()()h x f x g x =-,试讨论函数()h x 在(0)+∞,上的零点个数;(3)设12x x ∈R,,且12x x <,求证:122121()()()()2f x f x f x f x x x +->-.2018年高考模拟试卷(7)数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,高三数学试卷 第 6 页 共 32 页请选定..两题,并在相应的答题区域内作答................ A . [选修4—1:几何证明选讲](本小题满分10分)如图,四边形ABCD 是圆的内接四边形,BC BD=,BA 、CD求证:AE 平分DAF ∠.B . [选修4-2:矩阵与变换](本小题满分10分)已知矩阵13a b-⎡⎤=⎢⎥⎣⎦M 所对应的变换T M把直线l :23x y -=变换为自身,求实数a b ,的值.C .[选修4-4:坐标系与参数方程](本小题满分10分)(第21—A 题)高三数学试卷 第 7 页 共 32 页已知直线l :cos sin x t my t αα=+⎧⎨=⎩(t 为参数)恒经过椭圆C :5cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数) 的右焦点,求实数m 的值.D .[选修4-5:不等式选讲](本小题满分10分) 设123a aa ,,均为正数,且1231111aa a++=,求证:1239a a a ++≥.【必做题】第22题、第23题,每题10分,共计20分.请在答卷纸指定区域内........作答.22.(本小题满分10分)设随机变量ξ的分布列为!()k k P k c ξ⋅==,其中*6k k ∈<N ,,c 为常数.(1)求c 的值;(2)求ξ的数学期望E (ξ ).23.(本小题满分10分) 已知数列{}na 满足12312323C C C C 222n n n n na +++=++++…*C 2n n n n n ++∈N ,.(1)求1a ,2a ,3a 的值;(2)猜想数列{}na 的通项公式,并证明.2018年高考模拟试卷(7)参考答案一、填空题:本大题共14小题,每小题5分,共70分.1. 【答案】0【解析】()222i 12iz a a a =+=-+是实数,则0a =.2.【解析】根据三角函数定义,sin α==.3. 【答案】(]2,3【解析】图中阴影部分所表示的集合为()U C M N,即为(]2,3.4. 【答案】18【解析】校A 专业对视力要求不低于0.9的学生数为45()10.750.250.218⨯++⨯=.5. 【答案】23【解析】从4只小球中任取2只小球共有6种取法,其中2只球的编号之和是奇数的有4种,则所求概率为23. 6. 【答案】2【解析】根据循环,依次得到,,n M S 的值分别为2443,,log 33; 225454,,log log 434+,…,22212451211,,log log log 113411+++,因为2224512loglog log 223411S =+++=≥,所以最后的输出结果为2.7.【解析】由题意,235k -=,即4k =,所以双曲线为2214x y -=8. 【答案】128π【解析】设圆锥底面半径为r ,高为h ,由题意,π1080πr ⨯=,得8r =.所以6h =,容积为2211ππ8633128πr h =⨯⨯=. 9. 【答案】6-因为23AE AD =,12AF AD DF AD AB =+=+;23BE BA AE AD AB =+=-,那么AF BE ⋅=()()1223AD AB AD AB +⋅-22212323AD AB AB AD =--⋅6846=--=-.10. 【答案】76【解析】由a 4 + 3a 11= 0,知713q=-,所以212114147116S q S q -==-.11.【解析】由2222310x y mx m +--+-=得,()()2221x m y m -+=+,则圆心()m 到直线y kx =的距离为2km ,设截得的半弦长为p ,则()221p m =+-(2221k m k =+)2222111m k k -+++(与实数m无关),10-=,k =.12. 【答案】1【解析】由cos 2sin sin A B C =得,()cos 2sin sin B C B C -+=, 即cos cos sin sin 2sin sin B C B C B C -+=,所以tan tan 1B C =-,所以()tan tan 2tan tan 1tantan 111B C A B C B C +-=-+===---. 13.【答案】 83或3.【分析】当a >2时,设椭圆的另外一个焦点为F ′,联结AF ′,BF ′.则AF ′+BF ′≥|AB |=3.故AF +BF =4a -(AF ′+BF ′)≤4 a -3.所以AF ·BF ≤(AF ·BF 2)2≤(4 a -32)2.当且仅当线段AB 过点F ′,且AF =BF =4 a -32时,上式等号成立,此时,AB ⊥x 轴,且AB 过点F ′.于是4c 2=|FF ′|2=(4 a -32)2-(32)2=4a 2-6a ,即c 2=a 2-32a .则a 2=4+(a 2-32a ),得a =83.类似地,当0<a <2时,可得a =3.14. 【答案】1763⎡⎤⎢⎥⎣⎦, 【分析】当163k =时,()()f x g x ,的图象相切;6k =时,()()f xg x ,的图象均过点()24,, ()416,,故唯一的正整数3x =,同时174k k +≤,从而1763k ≤≤. 二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤 15.(本小题满分14分)解:(1)因为3sin 5A =,()π02A ∈,, 所以4cos5A==.……3分在△ABC中,由余弦定理222cos2b c aAbc+-=得,()2226254522cc+-=⨯⨯,解得85c=,所以AB的长为85.……6分(2)由(1)知,3sin35tancos445AAA===,……8分所以()()()31tan tan1343tan tan3191tan tan143A A BB A A BA A B+--=--===⎡⎤⎣⎦+--⨯.……11分在△ABC中,πA B C++=,所以()313tan tan7949tan tantan tan13133149A BC A BA B++=-+===-⨯-.……14分16.(本小题满分14分)证明:(1)因为BC//平面PDE,BC⊂平面ABC,平面PDE平面ABC=DE,所以BC∥DE.……3分因为DE⊄平面PBC,BC⊂平面PBC,所以//DE平面PBC.……6分(2)由(1)知,BC∥DE.在△ABC中,因为点E为AC 的中点,所以D是AB的中点.因为AC BC=,所以⊥,……9分AB CD因为平面PCD⊥平面ABC,平面PCD平面ABC=CD,AB⊂平面ABC,则AB⊥平面PCD.……12分因为AB ⊂平面PAB , 所以平面PAB ⊥平面PCD . (14)分17.(本小题满分14分 解:(1)如图1,过点B 作2l 的垂线,分别交1l ,3l ,于点D ,E ,设DBA θ∠=,则23EBC θπ∠=-. 则1cos AB θ=,()22πcos 3BC θ=-. ……2分因为AB BC =,所以()12cos 2πcos 3θθ=-,化简得5cos θθ=,所以tan θ,则cos θ=,所以边长1cos AB θ==.……6分B C A l l l 图1 D E(2)如图2,过点B 作2l 的垂线,分别交1l ,3l 于点D ,E .设DBA θ∠=,则π2EBC θ∠=-, 则1cos AB θ=,2sin BC θ=. 于是184cos sin AB BC θθ+=+.……8分记18()cos sin f θθθ=+,()π02θ∈,. 求导,得333222221sin 8cos sin 8cos tan 8()cos sin sin cos sin cos f θθθθθθθθθθθθ---'=-==.……10分 令()0f θ'=,得tan 2θ=.记0tan 2θ=,列表:当0θθ=时,()f θ取最小值,此时sin θ=,cos θ=,0()f θ=. BCA l ll图D E……12分 答:(1)边长AB为;(2)4AB BC +长度的最小值为.……14分 18.(本小题满分16分) 解:(1)设点()M x y ,PQ=,得()P x .因为P 为圆O :222x y +=上的动点,所以)222x +=,即2212x y +=,所以当点P 运动时,点M 始终在定椭圆2212x y +=上. ……4分(2)①设11()A x y ,,22()B x y ,,当10y ≠时,直线AT 的方程为:()1111x y y x x y -=--,即221111x x y y xy +=+,因为22112xy +=,所以112x x y y +=,当10y =时,直线AT的方程为:x = 综上,直线AT 的方程为:112x x y y +=.同理,直线BT 的方程为:222x x y y +=.又点T ()2()t t -∈R ,在直线AT ,BT 上, 则1122x ty -+=,①2222x ty -+=,②由①②知,直线AB 的方程为:22x ty -+=.所以直线AB过定点()10-,. (9)分②设33()C x y ,,44()D x y ,,则O 到AB 的距离d =,AB = ……11分由222212x ty x y -+=⎧⎪⎨+=⎪⎩,得22(8)440ty ty +--=,于是34248ty y t +=+,34248y yt -=+,所以34CD y y -=, ……13分于是AB CD =,AB CD ⇔⇔()222(8)2t t ++2≤()222(4)4t t ++⇔42(6)t t +≥0(显然)所以AB CD.……16分19.(本小题满分16分) 解:设等差数列{}na 的公差为d .因为无穷数列{}na 的各项均为互不相同的正整数,所以*1a ∈N ,*d ∈N .(1)①由25a=,540S =得,15a d +=,1545402a d ⨯+=, ……2分 解得12a =,3d =.所以21222215S ab a a =-==. ……4分②因为数列{}nb 为等差数列,所以2132b b b =+,即()3212132111S SS aa a -=-+-.所以()()111122312a d a d a d a d++=+++,解得1a d =(0d =已舍). ……6分此时,()11112112n n n n n a S n b a na +-=-=-=. (8)分(2)因为()111111a a a a d+=++-⎡⎤⎣⎦是数列{}na的第()11a +项,()1(2)111(2)11a d a a a d d++=+++-⎡⎤⎣⎦是{}na 的第()1(2)1a d ++项,且()()1222111a a a d +=+,[]11(2)1111(2)a d a a a a a d d ++⋅=⋅++,所以()121a a +11(2)1a d a a ++=⋅.又1111(2)1a a a d <+<++,所以数列{}na 中存在三项1a ,11a a +,1(2)1a d a ++按原来的顺序)成等比数列.……16分 20.(本小题满分16分)解:(1)设直线1y kx =+与()f x 的图象的切点为0(e )x x ,.因为()e xf x '=,所以000e e 1xx k kx ⎧=⎪⎨=+⎪⎩, ……2分 所以00e(1)10x x -+=.令()e (1)1xx x ϕ=-+,()e xx x ϕ'=⋅.令()0x ϕ'=得0x =.所以min ()(0)0x ϕϕ==,所以00x =,所以1k =. ……4分(2)2()e xh x mx =- (0)x >.令()0h x =得2e x m x=. 令2e ()x t x m=-(0)x >,3e (2)()x x t x -'=.当2x =时,()t x 有最小值2e (2)4t m =-.因为()t x 在(0)+∞,上的图象是连续不断的, 当2e 4m <时,()0t x >在(0)+∞,上恒成立,所以()h x 在(0)+∞,无零点; 当2e 4m =时,min()0tx = 所以()h x 在(0)+∞,有且仅有一个零点;当2e 4m >时,此时min ()(2)0t x t =<,因为()112211e e 0m m t m m m m m ⎛⎫=-=-> ⎪⎝⎭,所以()t x 在(02),上有且仅有一个零点.又因为33322e 1(3)(e 9)99mmt m m m m m=-=-, 令31()e 3xu x x =-,(2,)x ∈+∞,则2()exu x x '=-,()e 2xu x x''=-,所以()e20xu x '''=->.所以()u x ''在(2)+∞,上单调递增,所以2()(2)e 40u x u ''''>=->,所以()u x '在(2)+∞,单调递增,所以2()(2)e 40u x u ''>=->, 所以()u x 在(2)+∞,单调递增,所以28()(2)e 03u x u >=->, 所以31e3xx >在(2)+∞,恒成立,所以33e9mm >,即(3)0t m >,所以()t x 在(2)+∞,上有且仅有一个零点.所以()h x 在(0)+∞,上有两个零点.综上所述,2e 4m <时,()h x 在(0)+∞,无零点;2e 4m =时,()h x 在(0)+∞,有且仅有一个零点;2e4m >时,()h x 在(0)+∞,有两个零点. ……10分(3)因为()e xf x =在()-∞+∞,上单调增,且21x x >, 所以21()()f x f x >,210xx ->,所以122121()()()()2f x f x f x f x x x+->-122121e e e e 2x x x x x x +-⇔>-212121e e 2e e x x x x x x --⇔>+2121211e 1()2e 1x x x x x x ---⇔->+212112()1()2e 1x x x x -⇔->-*+.令2()12e 1x x x ϕ=+-+(0)x >,222(e 1)12e ()2(e 1)2(e 1)x x x x x ϕ-'=-=++.因为0x >,所以()0x ϕ'>,所以()x ϕ在(0)+∞,上单调递增,所以()(0)0x ϕϕ>=, 所以()*式成立,所以122121()()()()2f x f x f x f x x x +->-. ……16分数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答.............题区域内作答.......若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.C . [选修4—1:几何证明选讲](分) 证明:因为四边形ABCD 所以EAD BCD∠=∠. …… 2分因为BC BD =,所以BCD BDC ∠=∠. …… 4分又BAC EAF∠=∠, …… 6分BAC BDC∠=∠, …… 8分所以EAD EAF∠=∠,即AE平分DAF∠. …… 10分D . [选修4-2:矩阵与变换](本小题满分10分)解:设()P x y ,是l :23x y -=上任意一点,在矩阵13a b-⎡⎤=⎢⎥⎣⎦M 对应的变换得到点为()x y '',,(第21—A 题)由13a x x b y y '-⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,得3x x ay y bx y '=-+⎧⎨'=+⎩,, (5)分代入直线l:23x y -=,得(2)(23)3b x a y --+-=, …… 7分所以22231b a --=⎧⎨-=-⎩,,解得14a b ==-,. (10)分C .[选修4-4:坐标系与参数方程](本小题满分10分)解:将直线l化为普通方程,得tan ()y x m α=- …… 3分将椭圆C 化为普通方程,得221259x y +=. …… 6分 因为5,3,4a b c ===,则右焦点的坐标为(4,0). …… 8分而直线l 经过点(,0)m ,所以4m =. ……10分D .[选修4-5:不等式选讲](本小题满分10分)证明:因为123a a a ,,均为正数,且1231111a a a++=, 所以123a a a ++()123123111()a a a a a a =++++()()1133123123111339a a a a a a ⋅=≥,(当且仅当1233a a a ===时等号成立) …… 8分所以1239a a a ++≥.…… 10分【必做题】第22题、第23题,每题10分,共计20分.22.(本小题满分10分)解:(1)因为[]!(1)1!(1)!!(1)!!k k k k k k k k k ⋅=+-⋅=+⋅-=+-, 又由概率分布的性质可知51()1k P k ξ===∑,即()[]()555111!111719!(1)!!6!1!1k k k k k k k k k c c c c c ===⋅=⋅=+-=-==∑∑∑,所以c= 719.…… 3分(2)由(1)知!()719k k P k ξ⋅==,*6k k ∈<N ,, 于是22!4(2)719719P ξ⨯===,1(1)719P ξ==,33!18(3)719719P ξ⨯===,44!96(4)719719P ξ⨯===,55!600(5)719719P ξ⨯===. (8)分所以ξ的数学期望E (ξ )14189660012345719719719719719=⨯+⨯+⨯+⨯+⨯3447719=.……10分 23.(本小题满分10分) 解:(1)12a =,24a =,38a =.…… 3分(2)猜想:2n na =.证明:①当1n =,2,3时,由上知结论成立; …… 5分 ②假设n k =时结论成立, 则有123012323C C C CC 22222k kk k k k k kkka ++++=+++++=. 则1n k =+时,123101112131111231C C C CC 2222k+k k k+k+k+k k k+a ++++++++=+++++. 由111C C C k k k n n n+++=+得102132112233123C C C C C C C 222k k k k k k k ka ++++++++++=++++11111C C C 22k k -k+k+k k+k k+k+k k+++++0121112311231C C C C C222222k k+kk k k k k k+k+kk+-+++++=++++++,12110231111121C C C C 12(C )22222k k+kk k k k k+k+k k k ka -++++++-=++++++121102311111121C C C C C 12(C )22222k k k+kk k k k -k+k k+k k k k+-+++++++-=++++++.又111111(21)!(22)(21)!(21)!(1)12C C !(1)!(1)!(1)!(1)!(1)!2k+k+k+k k+k k k k k k =k k k k k k k ++++++++===+++++12110231111111211C C C C C 12(C )222222k k k+kk k k k -k+k k+k k k k k -++++++++-+=+++++++,于是11122k k k aa ++=+.所以112k k a++=, 故1n k =+时结论也成立.由①②得,2n n a =*n ∈N ,. (10)分。