2014-2015学年八年级数学上学期期末考试试题
安徽省阜阳市太和县八年级数学上学期期末试卷(b卷,含解析)-人教版初中八年级全册数学试题
2014-2015学年某某省某某市太和县八年级(上)期末数学试卷(B卷)一、选择题(下列各题所给答案中只有一个答案是正确的,每小题3分,共30分)1.若分式有意义,则x的取值X围是()A. x≠3 B. x=3 C. x<3 D. x>32.化简(﹣a3)2的结果为()A. a9 B.﹣a6 C.﹣a9 D. a63.下列四副图案中,不是轴对称图形的是()A. B. C. D.4.化简的结果是()A. x+1 B. x﹣1 C.﹣x D. x5.已知等腰三角形的两边长是5cm和11cm,则它的周长是()A. 21cm B. 27cm C. 21cm或27cm D. 16cm6.已知点P关于x轴的对称点为(a,﹣2),关于y轴对称点为(1,b),那么点P的坐标为()A.(a,﹣b) B.(b,﹣a) C.(﹣2,1) D.(﹣1,2)7.下列分解因式正确的是()A. x3﹣x=x(x2﹣1) B. x2﹣1=(x+1)(x﹣1)C. x2﹣x+2=x(x﹣1)+2 D. x2+2x﹣1=(x﹣1)28.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSS B. SAS C. AAS D. ASA9.一个多边形的内角和是900°,这个多边形的边数是()A. 10 B. 9 C. 8 D. 710.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC 的大小是()A. 100° B. 110° C. 115° D. 120°二、填空题(每题4分,共16分)11.已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=.12.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.13.当m=时,分式的值为零.14.如图,AD、AE分别是△ABC的高和角平分线,∠B=30°,∠C=70°,则∠EAD=°.三、计算题(每题5分,共10分)15.计算:(8a3b﹣5a2b2)÷4ab.16.化简:.四、解答题(17,18每题6分;19题7分;20,21每题8分;22题9分)17.解方程:.18.画出△ABC关于x轴对称的图形△A1B1C1,并指出△A1B1C1的顶点坐标.19.如图,C是线段AB的中点,CD∥BE,且CD=BE,求证:AD=CE.20.如图,在△ABC中,AD是BC边上的高,BE平分∠BC交AD于点E,∠C=60°,∠BED=70°,求∠ABC和∠BAC的度数.21.某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?22.如图,长为50cm,宽为xcm的大长方形被分割为8小块,除阴影A、B外,其余6块是形状、大小完全相同的小长方形,其较短一边长为acm.(1)从图可知,每个小长方形较长一边长是cm(用含a的代数式表示);(2)求图中两块阴影A、B的周长和(可以用x的代数式表示);(3)分别用含x,a的代数式表示阴影A、B的面积,并求a为何值时两块阴影部分的面积相等.2014-2015学年某某省某某市太和县八年级(上)期末数学试卷(B卷)参考答案与试题解析一、选择题(下列各题所给答案中只有一个答案是正确的,每小题3分,共30分)1.若分式有意义,则x的取值X围是()A. x≠3 B. x=3 C. x<3 D. x>3考点:分式有意义的条件.分析:根据分式有意义的条件是分母不为0;分析原分式可得关系式3﹣x≠0,解可得答案.解答:解:根据题意可得3﹣x≠0;解得x≠3;故选A.点评:判断一个分式是否有意义,应考虑分母上字母的取值,字母的取值不能使分母为零.2.化简(﹣a3)2的结果为()A. a9 B.﹣a6 C.﹣a9 D. a6考点:幂的乘方与积的乘方.分析:根据幂的乘方与积的乘方法则进行解答即可.解答:解:由幂的乘方与积的乘方法则可知,(﹣a3)2=(﹣1)2a2×3=﹣a6.故选:D.点评:本题考查的是幂的乘方与积的乘方法则,即先把每一个因式分别乘方,再把所得的幂相乘.3.下列四副图案中,不是轴对称图形的是()A. B. C. D.考点:轴对称图形.分析:关于某条直线对称的图形叫轴对称图形.解答:解:A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A 符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.点评:轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.4.化简的结果是()A. x+1 B. x﹣1 C.﹣x D. x考点:分式的加减法.专题:计算题.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,故选:D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.5.已知等腰三角形的两边长是5cm和11cm,则它的周长是()A. 21cm B. 27cm C. 21cm或27cm D. 16cm考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为5cm和11cm,而没有明确腰是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:当三边是5,5,11时,5+5<11,不符合三角形的三边关系,应舍去;当三边是5,11,11时,符合三角形的三边关系,此时周长是27.故选B.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.已知点P关于x轴的对称点为(a,﹣2),关于y轴对称点为(1,b),那么点P的坐标为()A.(a,﹣b) B.(b,﹣a) C.(﹣2,1) D.(﹣1,2)考点:关于x轴、y轴对称的点的坐标.分析:根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,分别求出点P的坐标的两种形式,依此列出方程(组),求得a、b的值,从而得到点P的坐标.解答:解:∵点P关于x轴的对称点为(a,﹣2),∴点P的坐标为(a,2),∵关于y轴对称点为(1,b),∴点P的坐标为(﹣1,b),则a=﹣1,b=2.∴点P的坐标为(﹣1,2).故选D.点评:解决本题的关键是掌握好对称点的坐标规律,及根据点P的坐标的两种形式,列出方程(组).7.下列分解因式正确的是()A. x3﹣x=x(x2﹣1) B. x2﹣1=(x+1)(x﹣1)C. x2﹣x+2=x(x﹣1)+2 D. x2+2x﹣1=(x﹣1)2考点:提公因式法与公式法的综合运用.分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),故本选项错误;B、x2﹣1=(x+1)(x﹣1),故本选项正确;C、x2﹣x+2=x(x﹣1)+2右边不是整式积的形式,故本选项错误;D、应为x2﹣2x+1=(x﹣1)2,故本选项错误.故选B.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSS B. SAS C. AAS D. ASA考点:全等三角形的应用.分析:根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.解答:解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.点评:本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.9.一个多边形的内角和是900°,这个多边形的边数是()A. 10 B. 9 C. 8 D. 7考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)•180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:D.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.10.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC 的大小是()A. 100°B. 110° C. 115° D. 120°考点:三角形内角和定理;角平分线的定义.分析:根据三角形内角和定理计算.解答:解:∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,∴∠PBC=25°,∠PCB=40°,∴∠BPC=115°.故选C.点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°.二、填空题(每题4分,共16分)11.已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC= 5 .考点:全等三角形的性质.分析:全等三角形,对应边相等,周长也相等.解答:解:∵△ABC≌△DEF,∴EF=BC=4,在△ABC中,△ABC的周长为12,AB=3,∴AC=12﹣AB﹣BC=12﹣4﹣3=5,故填5点评:本题考查了全等三角形的性质;要熟练掌握全等三角形的性质,本题比较简单.12.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为70 .考点:因式分解的应用.专题:整体思想.分析:应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.解答:解:∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.故答案为:70.点评:本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.13.当m=﹣2 时,分式的值为零.考点:分式的值为零的条件.分析:分式的值为零时,分子等于零,且分母不等于零.解答:解:依题意,得|m|﹣2=0,且m﹣2≠0,解得,m=﹣2.故答案是:﹣2.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.如图,AD、AE分别是△ABC的高和角平分线,∠B=30°,∠C=70°,则∠EAD= 20 °.考点:三角形内角和定理;三角形的外角性质.分析:由∠B=30°,∠C=70°,根据内角和定理得∠BAC=180°﹣∠B﹣∠C=80°,由角平分线的定义得∠BAE=∠BAC=40°,根据AD⊥BC得∠BAD=90°﹣∠B=60°,利用∠EAD=∠BAD﹣∠BAE求解.解答:解:∵∠B=30°,∠C=70°,∴在△ABC中,∠BAC=180°﹣∠B﹣∠C=80°,∵AE是△ABC的角平分线,∴∠BAE=∠BAC=40°,又∵AD⊥BC,∴∠BAD=90°﹣∠B=60°,∴∠EAD=∠BAD﹣∠BAE=60°﹣40°=20°.故答案为:20.点评:本题考查了三角形内角和定理,角平分线的定义.关键是利用内角和定理求∠BAC,根据角平分线的定义求∠BAE,利用高得出互余关系求∠BAD,利用角的和差关系求解.三、计算题(每题5分,共10分)15.计算:(8a3b﹣5a2b2)÷4ab.考点:整式的除法.分析:利用多项式除以单项式的运算法则进行运算即可.解答:解:原式=8a3b÷4ab﹣5a2b2÷4ab=.点评:本题考查了整式的除法,牢记运算法则及运算律是解答此类题目的关键.16.化简:.考点:分式的加减法.分析:分母不变,直接把分子相加减即可.解答:解:原式===2.点评:本题考查的是分式的加减法,熟知同分母的分数相加减,分母不变,分子相加减是解答此题的关键.四、解答题(17,18每题6分;19题7分;20,21每题8分;22题9分)17.解方程:.考点:解分式方程.专题:计算题.分析:观察可得最简公分母是(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程可化为:+3=﹣,方程的两边同乘(x﹣3),得2﹣x+3(x﹣3)=﹣2,解得x=2.5.检验:把x=2.5代入(x﹣3)≠0.∴原方程的解为:x=.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.画出△ABC关于x轴对称的图形△A1B1C1,并指出△A1B1C1的顶点坐标.考点:作图-轴对称变换.分析:分别作A、B、C关于x轴的对应点A1、B1、C1,再顺次连接.顶点坐标根据所在坐标中的位置写出即可.解答:解:如图A1(3,﹣4);B1(1,﹣2);C1(5,﹣1).点评:考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.19.如图,C是线段AB的中点,CD∥BE,且CD=BE,求证:AD=CE.考点:全等三角形的判定与性质.专题:证明题.分析:根据中点定义求出AC=CB,两直线平行,同位角相等,求出∠ACD=∠B,然后证明△ACD和△CBE全等,再利用全等三角形的对应角相等进行解答.解答:解:∵C是AB的中点(已知),∴AC=CB(线段中点的定义),∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等)在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).∴AD=CE.点评:本题主要考查了全等三角形的判定与性质的综合应用,确定用SAS定理进行证明是解题的关键.20.如图,在△ABC中,AD是BC边上的高,BE平分∠BC交AD于点E,∠C=60°,∠BED=70°,求∠ABC和∠BAC的度数.考点:三角形内角和定理.分析:先根据垂直的定义得出∠ADB=90°,再根据直角三角形的性质求出∠DBE的度数,由角平分线的性质求出∠ABC的度数,根据三角形内角和定理求出∠BAC的度数即可.解答:解:∵AD是BC的高,∴∠ADB=90°,∴∠DBE+∠BED=90°.∵∠BED=70°,∴∠DBE=20°.∵BE平分∠ABC,∴∠ABC=2∠DBE=40°.∵∠BAC+∠ABC+∠C=180°,∴∠BAC=180°﹣∠ABC﹣∠C=180°﹣40°﹣60°=80°.点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.21.某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?考点:分式方程的应用.分析:(1)设第一次购进x件文具,则第二次就购进2x件,根据第二次购进时发现每件文具进价比第一次上涨了2.5元,所购进文具的数量是第一次购进数量的2倍,可列方程求解.(2)利润=售价﹣进价,根据(1)算出件数,然后算出总售价减去成本即为所求.解答:解:(1)设第一次购进x件文具,则第二次就购进2x件文具,由题意得:=﹣解之得x=100,经检验,x=100是原方程的解,2x=2×100=200答:第二次购进200件文具.(2)(100+200)×15﹣1000﹣2500=1000(元).答:盈利1000元.点评:本题考查理解题意的能力,关键是设出数量,以价格做为等量关系列方程求解,然后根据利润=售价﹣进价,求出利润即可.22.如图,长为50cm,宽为xcm的大长方形被分割为8小块,除阴影A、B外,其余6块是形状、大小完全相同的小长方形,其较短一边长为acm.(1)从图可知,每个小长方形较长一边长是(50﹣3a)cm(用含a的代数式表示);(2)求图中两块阴影A、B的周长和(可以用x的代数式表示);(3)分别用含x,a的代数式表示阴影A、B的面积,并求a为何值时两块阴影部分的面积相等.考点:一元一次方程的应用.专题:几何图形问题.分析:(1)从图可知,每个小长方形较长一边长是大长方形的长﹣小长方形宽的3倍;(2)从图可知,A的长+B的宽=x,A的宽+B的长=x,依此求出两块阴影A、B的周长和;(3)根据长方形的面积=长×宽即可表示阴影A、B的面积,再令S A=S B,即可求出a的值.解答:解:(1)每个小长方形较长一边长是(50﹣3a)cm.故答案为(50﹣3a);(2)∵A的长+B的宽=x,A的宽+B的长=x,∴A、B的周长和=2(A的长+A的宽)+2(B的长+B的宽)=2(A的长+B的宽)+2(B的长+A的宽)=2x+2x=4x;(3)∵S A=(50﹣3a)×(x﹣3a),S B=3a(x﹣50+3a),∴(50﹣3a)×(x﹣3a)=3a(x﹣50+3a)解得:.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
2014-2015学年第一学期期末八年级数学模拟试卷(A)
2014-2015学年第一学期期末八年级数学模拟试卷(A卷)一、选择题(每小题2分,共28分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.2±=±4 B﹣382227.(2分)某人将一枚质量均匀的硬币连续抛10次,落地后正面朝上6次,反面朝上4次,下9.(2分)如图,已知AD=CB,AB=CD,AC与BD交于点O,则图中全等三角形共有()10.(2分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE 的大小为()11.(2分)如图,在△ABC中,DE垂直平分BC,若AB=8,AC=6,则△ADC的周长等于()12.(2分)如图,OC平分∠AOB,CD⊥OB于D,点P是射线OA上的一个动点,若CD=8,OD=6,则PC的最小值为()13.(2分)如图,在△ABC中,∠ABC=60°,∠C=45°,AD是BC边上的高,∠ABC的角平分线BE交AD于点F,则图中共有等腰三角形()14.(2分)如图,在△ABC中,∠ACB=90°,AC=BC,顶点A、B、C恰好分别落在一组平行线中的三条直线上,若相邻两条平行线间的距离是2个单位长度,则△ABC的面积是()二、填空题(每小题3分,共12分)15.(3分)(2002•汕头)比较大小:_________0.5.16.(3分)若m2+6m=2,则(m+3)2=_________.17.(3分)如图,所有阴影部分的四边形都是正方形,所有三角形都是直角三角形,已知正方形A、B、C的面积依次为2、4、3,则正方形D的面积为_________.18.(3分)如图,在△ABC中,AB=AC=12,BC=8,D为AB的中点,点P在线段BC上以每秒2个单位的速度由B点向C点运动,同时,点Q在线段CA上以每秒x个单位的速度由C点向A点运动.当△BPD与以C、Q、P为顶点的三角形全等时,x的值为_________.三、解答题(共60分)19.(14分)计算(1)(3x﹣1)(3x+2)﹣(﹣3x)2;(2)(2a﹣3b)2﹣2a(2a﹣3b);(3)先化简,再求值:(x﹣2y)(﹣2y﹣x)﹣(x﹣2y)2,其中x=3,.20.(8分)把下列多项式分解因式.(1)4x3﹣xy2;(2)4(x+y)2﹣16xy.21.(6分)如图是我国古代数学家赵爽的“勾股方圆图”,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是12,小正方形的面积是2,直角三角形的两直角边分别是a和b,求(a+b)2的值.22.(9分)某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调查(每人只选一种书籍).图1和图2是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了_________名学生;(2)在图2中,“漫画”所在扇形圆心角为_________度;(3)补全条形统计图.23.(10分)如图,已知△ABC.利用直尺和圆规,根据要求作图,并解决后面的问题.(1)作△ABC的角平分线AD;(2)作∠CBE=∠ADC,BE交CA的延长线于点E;(要求:保留作图痕迹,不需写作法和证明)(3)图中线段AB与线段AE相等吗?证明你的结论.24.(13分)如图,在△ABC中,∠BAC=90°,AB=AC=3,D为BC边的中点,∠MDN=90°,将∠MDN 绕点D顺时针旋转,它的两边分别交AB、AC于点E、F.(1)求证:△ADE≌△CDF;(2)求四边形AEDF的面积;(3)连结EF.①当点F在AC边上时总有BE_________EF(填“>”或“<”或“=”),请说明理由;②若BE=2,求EF的长.2014-2015学年第一学期期末八年级数学模拟试卷(A卷)参考答案与试题解析一、选择题(每小题2分,共28分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.解:∵(﹣3)2=9,∴(﹣3)2的平方根是±3,故选B.2.解:A、=4,故本选项错误;B、﹣32=﹣9,根据负数没有平方根,故本选项错误;C、1的立方根是1,故本选项错误;D、﹣是7的一个立方根,故本选项正确.故选D.3.解:∵a•2•23=28,∴a=28÷24=24=16.故选C.4.解:(﹣2xy)2÷xy2=4x2y2÷xy2=4x.故选B.5.解:x2﹣x﹣12=(x+3)(x﹣4),则(x+3)(x﹣4)=x2﹣x﹣12.故选A6.解:①若AB=AC=2cm,则BC=8﹣2﹣2=4(cm),∵2+2=4,不能组成三角形,舍去;②若AB=BC=2cm,则AC=8﹣2﹣2=4(cm),∵2+2=4,不能组成三角形,舍去;③若AB=2cm,则AC=BC==3(cm),故选B.7.解:∵某人抛硬币抛10次,其中正面朝上6次,反面朝上4次,∴出现正面的频数是6,出现反面的频数是4,出现正面的频率为6÷10=60%;出现反面的频率为4÷10=40%.故选B8.解:A、三个角的比为1:2:3,设最小的角为x,则x+2x+3x=180°,x=30°,3x=90°,故是直角三角形;B、三条边满足关系a2=b2﹣c2,故是直角三角形;C、三条边的比为1:2:3,12+22≠32,故不是直角三角形;D、三边之比为3:4:5,所以设三边长分别为3x,4x,5x,则(3x)2+(4x)2=(5x)2,故是直角三角形;故选:C.9.解:△ADC≌△CBA;△ADB≌△CBD;△AOB≌△COD;△AOD≌△COB共四对.在△ADC和△CBA中,,∴△ADC≌△CBA(SSS),∴∠DCA=∠BAC,在△ABD和△CDB中,,∴△ADB≌△CBD(SSS),∴∠ADB=∠CBD,,∴△AOB≌△COD(ASA),∴DO=CO,BO=DO,在△DOA和△BOC中,,∴△AOD≌△COB(SSS).故选:D.10.解:∵△ABC中,AB=AC,∠BAC=100°∴∠B=∠C=(180°﹣∠BAC)=(180°﹣100°)=40°∵BD=BE∴∠BED=∠BDE=(180°﹣∠B)=(180°﹣40°)=70°∴∠ADE=90°﹣70°=20°.故选B.11.解:∵DE垂直平分BC,∴DB=DC,∵AB=8,AC=6,∴△ADC的周长为:AD+DC+AC=AD+BD+ACAB+AC=14.故选C.12.解:当CP⊥OA时,PC的值最小,∵OC平分∠AOB,CD⊥OB于D,∴PC=CD=8.故选C.13.解:(1)∵∠ABC=60°,∠ACB=45°,AD是高,∴∠DAC=45°,∴CD=AD,∴△ADC为等腰直角三角形,∵∠ABC=60°,BE是∠ABC平分线,∴∠ABE=∠CBE=30°,在△ABD中,∠BAD=180°﹣∠ABD ﹣∠ADB=180°﹣60°﹣90°=30°,∴∠ABF=∠BAD=30°,∴AF=BF即△ABF是等腰三角形,在△ABC中,∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣60°﹣45°=75°,∵∠AEB=∠CBE+∠ACB=30°+45°=75°,∴∠BAE=∠BEA,∴AB=EB即△ABE是等腰三角形,∴等腰三角形有△ACD,△ABF,△ABE;故选B.14.解:过C作EF⊥该组平行线,交A所在直线于点E,交B所在直线于点F,∵∠ACE+∠BCF=90°,∠ACE+∠CAE=90°,∴∠CAE=∠BCF,,∴△ACE≌△CBF(AAS),∴AE=CF=8,∴AC2=AE2+CE2=100,∴S△ABC=AC2=50,故选C.二、填空题(每小题3分,共12分)15.(3分)(2002•汕头)比较大小:>0.5.解:∵0.5=,2<<3,∴>1,∴故填空答案:>.16.(3分)若m2+6m=2,则(m+3)2=11.解:∵m2+6m=2,∴(m+3)2=m2+6m+9=2+9=11.故答案为:11.17.(3分)如图,所有阴影部分的四边形都是正方形,所有三角形都是直角三角形,已知正方形A、B、C的面积依次为2、4、3,则正方形D的面积为9.解:∵正方形A、B的面积依次为2、4,∴正方形E的面积为2+4=6,又∵正方形C的面积为3,∴正方形D的面积3+6=9,故答案为9.18.(3分)如图,在△ABC中,AB=AC=12,BC=8,D为AB的中点,点P在线段BC上以每秒2个单位的速度由B点向C点运动,同时,点Q在线段CA上以每秒x个单位的速度由C点向A点运动.当△BPD与以C、Q、P为顶点的三角形全等时,x的值为2或3.解:设经过t秒后,使△BPD与△CQP全等,∵AB=AC=12,点D为AB的中点,∴BD=6,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即6=8﹣2t或2t=8﹣2t,t1=1,t2=2,t=1时,BP=CQ=2,2÷1=2;t=2时,BD=CQ=6,6÷2=3;即点Q的运动速度是2或3,故答案为:2或3.三、解答题(共60分)19.(14分)计算(1)(3x﹣1)(3x+2)﹣(﹣3x)2;(2)(2a﹣3b)2﹣2a(2a﹣3b);(3)先化简,再求值:(x﹣2y)(﹣2y﹣x)﹣(x﹣2y)2,其中x=3,.解:(1)原式=9x2+6x﹣3x﹣2﹣9x2=3x﹣2;(2)原式=4a2﹣12ab+9b2﹣4a2+6ab=﹣6ab+9b2;(3)(x﹣2y)(﹣2y﹣x)﹣(x﹣2y)2=4y2﹣x2﹣x2+4xy﹣4y2=﹣2x2+4xy,当x=3,时,原式=﹣2×32+4×3×=﹣10.20.(8分)把下列多项式分解因式.(1)4x3﹣xy2;(2)4(x+y)2﹣16xy.解:(1)原式=x(4x2﹣y2)=x(2x+y)(2x﹣y);(2)原式=4(x2+y2+2xy﹣4xy)=4(x﹣y)2.21.(6分)如图是我国古代数学家赵爽的“勾股方圆图”,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是12,小正方形的面积是2,直角三角形的两直角边分别是a和b,求(a+b)2的值.解:∵大正方形的面积是12,小正方形的面积是2,∴四个直角三角形面积和为12﹣2=10,即4×ab=10,∴2ab=10,a2+b2=12,∴(a+b)2=a2+b2+2ab=12+10=22.答:(a+b)2的值为22.22.(9分)某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调查(每人只选一种书籍).图1和图2是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了200名学生;(2)在图2中,“漫画”所在扇形圆心角为72度;(3)补全条形统计图.解:(1)调查的总人数是:80÷40%=200(人),故答案是:200;(2)“漫画”所在扇形圆心角为:360°×=72°,故答案是:72;(3)喜好科普常识的人数是:200×30%=60(人)..23.(10分)如图,已知△ABC.利用直尺和圆规,根据要求作图,并解决后面的问题.(1)作△ABC的角平分线AD;(2)作∠CBE=∠ADC,BE交CA的延长线于点E;(要求:保留作图痕迹,不需写作法和证明)(3)图中线段AB与线段AE相等吗?证明你的结论.解:(1)如图:(2)如图:(3)AB=AE,∵AD是角平分线,∴∠BAD=∠ADC,∴AD∥BE,∴∠E=∠CAD,∠EBA=BAD,∴∠E=∠EBA,∴AB=AE.24.(13分)如图,在△ABC中,∠BAC=90°,AB=AC=3,D为BC边的中点,∠MDN=90°,将∠MDN 绕点D顺时针旋转,它的两边分别交AB、AC于点E、F.(1)求证:△ADE≌△CDF;(2)求四边形AEDF的面积;(3)连结EF.①当点F在AC边上时总有BE<EF(填“>”或“<”或“=”),请说明理由;②若BE=2,求EF的长.(1)证明:∵∠BAC=90°,AB=AC,D为BC中点,∴∠B=∠C=∠BAD=∠CAD=45°,∠ADC=90°,∴AD=DC=BD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA);(2)解:∵△ADE≌△CDF,∴四边形AEDF的面积=S△ADC =S△ABC,∵S△ABC =AB•AC=,∴四边形AEDF的面积=;(3)解:①∵△ADE≌△CDF,∴AE=CF,∵AB=AC,∴BE=AF,∵FA⊥EA,∴AF<EF,即BE<EF;②∵AB=AC=3,BE=2,∴AE=1,AF=BE=2,∴EF==.。
成都龙泉一中八年级级2014-2015学年度上期数学期末考试模拟试题
成都龙泉一中初二摸底考试试卷八年级(上)数学(时间120分钟,满分150分)全卷分为第A 卷(100分)和第B 卷(50分)两部分.答题前,请考生务必在答题卷上密封线外正确填写自己的姓名、考号和考试科目。
考试结束,只将答题卷交回.A 卷(100分)一、选择题(本题共10小题,每题3分共30分,在每题四个选项中,只有一项是符合题目要求的) 1.下列变形正确的是 ( )4=±3=±3=-3=-2. 有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根。
其中正确的有 ( ) A .0个 B .1个 C .2个 D .3个3、点),(y x A 在第二象限内,且||2||3x y ==,,则点A 关于原点对称点的坐标为( ) A .(-2,3) B .(2,-3) C .(-3,2) D .(3,-2) 4、下列命题中的真命题是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .有一组对边和一组对角分别相等的四边形是平行四边形C .两组对角分别相等的四边形是平行四边形D .两条对角线互相垂直且相等的四边形是正方形5、如图,在矩形ABCD 中,A B =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀速运动,那么△APB的面积S 与点P 运动的路程之间的函数图象大致是( )6、如果方程组⎩⎨⎧=-+=525y x y x 的解是方程532=+-a y x 的解, 那么a 的值是( )A .20B .-15C .-10D .57、一次函数y =kx +b 的图像不经过第三象限,也不经过原点,那么k 、b 的取值范围是( ) A 、k >0且b >0 B 、k >0且b <0 C 、 k <0且b >0 D 、 k <0且b <0 8、若点M (a ,b )在第四象限,则点N (– a ,–b + 2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限.9、已知一个两位数,十位上的数字x 比个位上的数字y 大1,若颠倒个位与十位数字的位置,得到新数比原数小9,求这个两位数列出的方程组正确的是( )A .⎩⎨⎧=+++=-9)()(1x y y x y xB .⎩⎨⎧++=++=9101x y y x y xC .⎩⎨⎧++=+=+910101x y y x y x D .⎩⎨⎧++=++=910101x y y x y x10. 如图,P 是矩形ABCD 内一点,PA =3,PD =4,PC =5,则PB 为( ) A .4.5 B...4 二、填空题. (本大题共4小题,每小题4分,共16分)11. 有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是 .12.一组数据1,2,a ,4,5的平均数是3,则这组数据的的方差为 .13. 已知一次函数142y x =-,将此直线向上平移6个单位,则平移后的直线的解析式为__________________.14. 长为10m 的梯子AB 斜靠墙上(墙与地面垂直)。
河北省2014-2015学年八年级数学上学期期末考试试题新人教版
河北省2014-2015学年八年级数学上学期期末考试试题选择题(1-6小题,每题2分,7-16小题,每题3分,共42分) 1.如果代数式1-x x有意义,那么x 的取值范围是( ) A.x ≥0 B.x ≠1 C.x >0 D.x ≥0且x ≠1 2.下列说法中正确的是( )A.36的平方根是6B.4的平方根是±2C.8的立方根是-2D.4的算术平方根是-23.等腰三角形的一个内角是50°,则另外两个角的度数分别是( )A.65°,65°B.50°,80°C.65°,65°或50°,80°D.50°,50° 4.如果把分式yx x+2中的x 和y 都扩大2倍,那么分式的值( ) A.不变 B.扩大2倍 C.扩大4倍 D.缩小2倍5.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形的是( )6.把直线y =-x-1向右平移2个单位后得到的直线的解析式是( )A.y =-x+3B.y =-x+2C.y =-x+1D.y =-x-37.如图所示,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A'处,折痕为CD ,则∠A'DB =( )A.40°B.30°C.20°D.10°8.如图,在四边形ABCD 中,AD ∥BC ,AD=BC ,连接AC ,E 为AC 上一点,连接DE ,过点B 作BF ∥DE ,交AC 于点F ,则图中的全等三角形共有( )A.1对B.1对C.3对D.4对9.如右图,在平面直角坐标系中,点A (-2,4),点B (4, 2),在x 轴上去一点P ,使点P 到点A 和点B 的距离之和最小,则点P 的坐标是( )A.(-2,0)B.(4,0)C.(2,0)D.(0,0)10.如图,已知AE=CF ,∠AFD=∠CFB ,那么添加下列哪个条件后,仍无法判定△ADF ≌△CBE ( )A.∠A=∠CB.AD=CBC.BE=DFD.AD ∥BC11.已知直线y =653+-x 和y =x -2,则它们与y 轴所围成的三角形的面积为( ) A.6 B.10 C.20 D.1212.在一个暗箱里放入除颜色外其它都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到是红球的概率是( ) A.113 B.118 C.1411 D.14313.估计2+15的运算结果应在( ) A.3到4之间 B.4到5之间 C.5到6之间 D.6到7之间14.如图,在△ABC 中,∠BAC=60°,在△ABC 的内部取一点O ,连接OA ,OB ,OC ,恰有OA=OC ,∠OBA=20°,∠OCA=40°。
广东省广州市海珠区2014-2015学年八年级上期末考试数学试题及答案
海珠区2014-2015学年第一学期期末调研测试八年级数学试卷本试卷分第1卷和第2卷两部分,共三大题25小题,共4页,满分100+50分,考试时间为120分钟,不可以使用计算器. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用墙皮擦干净后,再选涂其它答案,答案不能答在问卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须卸写在答卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔(除作图外)、圆珠笔和涂改液.不按以上要求作答的答案无效.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图案属于轴对称图形的是( ).2.点M (1,2)关于Y 轴对称的点的坐标为( ).A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,1) 3.已知三角形两边长分别为7、11,那么第三边的长可以是( ).A .2B .3C .4D .5 4.下列计算正确的是( ). A .()236aa = B . 22a a a =∙ C .326a a a += D .()3339a a =5.一个多边形的每一个外角都等于36°,则这个多边形的边数是( ).A .8B .9C .10D .11 6.如图,已知△ABC 中,75A ∠=︒,则12∠+∠=( ).A .335°B .255°C .155°D .150° 第6题图 7.下列从左到右的运算是因式分解的是( ).A .22212(1)1a a a a -+=-+ B .()()22x y x y x y -+=-C .()2296131x x x -+=-D .()2222x y x y xy +=-+8.若等腰三角形的两边长分别为6和8,则周长为( ).A .20或22B .20C .22D .无法确定 9.如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是( ).A .AB=ACB .BD=CDC .∠B=∠CD .∠BDA=∠CDA 10.如图,已知∠MON=30°,点A 1,A 2,A 3,……在射线ON 上,点B 1,B 2,B 3,……在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,……均为等边三角形,若OA 1=2,则△A 5B 5A 6( ). A .8 B .16 C .24 D .32第10题图 二、填空题(本题共18分,每小题3分,共18分)11.科学家发现一种病毒的直径为0.0043微米,则用科学计数法表示为 微米. 12.若一个三角形三个内角的度数之比为1:2:3,则这个三角形中的最大的角度是 .13.计算()213.143-⎛⎫π-+= ⎪⎝⎭.14.若多项式24x mx ++是完全平方式,则m= .15.如图,∠AOB=30°,OP 平分∠AOB ,PD ⊥OB 于D ,PC//OB 交OA 于C ,若PC=6,则PD= . 16.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b )n (n 为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:()5a b -= .第15题图 第16题图三、解答题(本题共9小题,共102分,解答题要求写出文字说明,证明过程或计算步骤) 17.(本题满分10分,每小题5分)计算:(1)a a 4)(32∙- (2)()()2211x x x ++-18.(本题满分10分,每小题5分)解下列分式方程:(1)1122x x x -=-- (2)223111x x x +=--(1)画出△ABC关于y轴对称的图形△A,B,C,;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)20.(本题满分10分)如图,已知点E、F在线段BC上,BE=CF,AB=CD,∠B=∠C.求证:∠A=∠D.21.(本题满分12分)小鹏的家距离学校1600米,一天小鹏从家去上学,出发10分钟后,爸爸发现他的数学课本忘了拿,立即带上课本去追他,在学校门口追上了他,已知爸爸的速度是小鹏速度的2倍,求小鹏的速度.第二卷(共50分)22.(本题满分12分)如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)AB D CEB C DAED B CE A第24题图①第24题图②第24题图③ 先化简代数式:4312112-⨯--+-x x x x ,然后再从22x -≤≤的范围内选取一个合适的整数代入求值.24.(本题满分12分)已知△ABC 是等边三角形,点D 是直线BC 上一点,以AD 为一边在AD 的右侧作等边△ADE. (1)如图①,点D 在线段BC 上移动时,直接写出∠BAD 和∠CAE 的大小关系;(2)如图②,点D 在线段BC 的延长线上移动时,猜想∠DCE 的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.25.(本题满分14分)已知点D 到△ABC 的两边AB 、AC 所在直线的距离相等,且DB=DC. (1)如图①,若点D 在BC 上,求证AB=AC ;(2)如图②,若点D 在△ABC 的内部,求证:AB=AC ;(3)若点D 在△ABC 的外部,且点D 与点A 分别在线段BC 的两侧,AB=AC 成立吗?请说明理由.。
2014-2015学年度上学期八年级数学试题(卷)
12014~2015学年度上学期八年级数学试题 姓名一、选择题(本大题共10小题,每小题3分,共30分) 1. 下面哪个点不在函数y = -2x+3的图象上( )A .(-5,13) B.(0.5,2) C.(3,0) D.(1,1) 2. 如图,在直角坐标系中,直线l 对应的函数表达式是( )A. 1+-=x yB.1+=x yC. 1--=x yD. 1-=x y3.在-2)5(-、2π71、0 、311 中无理数个数为 ( ) A.1个 B.2个 C.3个 D.4个4. 已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1 与y 2的大小关系是( )A. y 1 >y 2B. y 1 =y 2C. y 1 <y 2D. 不能比较 5. 已知0)5(2=+-++y x y x 那么x 和y 的值分别是( ) A 、25-,25 B 、25,25- C 、25,25 D 、25-, 25-6.下列说法错误的是 ( )A.1)1(2=- B. ()1133-=- C. 2的平方根是2±D.()232)3(-⨯-=-⨯-7.若点)3,(x A 与点),2(y B 关于x 轴对称,则( )A. x = -2, y =-3B.x =2, y =3C. x =2, y =-3D. x =-2, y =3 8. 在等式b kx y +=中,当x=0时,y=1-;当x=1-时,y=0,则这个等式是( ) A .1--=x y B .x y -= C .1+-=x y D .1+=x y9.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2 m ,梯子的顶端B 到地面的距离为7 m ,现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离等于3m ,同时梯子的顶端B 下降至B ′,那么BB ′( ) A .小于1 m B .大于1 m C .等于1 m D .小于或等于1 m10. 在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( ) A.10 B.54 C. 10或54 D.10或172二、填空题(本大题共6小题,每小题3分,共18分) 看谁的命中率高 11. 已知一次函数y=kx+5的图象经过点(-1,2),则k= 12.比较大小:—4;(填“<”或“>”符号) 13. 直线32+-=x y 与坐标轴的交点坐标为 14. 如果一个二元一次方程的一个解是⎩⎨⎧-==11yx ,请你写出一个符合题意的二元一次方程215. 五一节某超市稿促销活动:①一次性购物不超过150元不享受优惠;②一次性购物超过150元但不超过500元一律九折;③一次性购物超过500元一律八折.王宁两次购物分别付款120元、432元,若王宁一次性购买与上两次相同的商品,则应付款 元 16.如果二元一次方程组⎩⎨⎧=+=-a y x ay x 3的解是二元一次方程0753=--y x 的一个解,那么a 的值是三、解答题(共52分,解答应写出过程)看谁最细心 17. 计算(每小题5 分,共10分) (1)13312-- (2) ⎩⎨⎧=-=+423732y x y x18. (本小题满分6分) 有一块边长为12米的正方形绿地,如图所示,在绿地旁边B 处有健身器材(5=BC 米),由于居住在A 处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍?”请问:小明在标牌▇填上的数字是多少?19. (本小题满分6分) 有一种节能型轿车的油箱最多可装天燃气50升,加满燃气后,油箱中的剩余燃气量y (升)与轿车行驶路程x (千米)之间的关系如图所示,根据图象回答下列问题:(1)一箱天燃气可供轿车行驶多少千米? (2)轿车每行驶200千米消耗燃料多少升? (3)求出y 与x 之间的关系式;(0≤x ≤1000)20.(本小题满分6分)作图题:作函数y=-x-2的图象,并写出图象与X ,Y 轴围成的面积。
安阳市2014—2015学年上八年级数学期末试题答案
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2分
B D P E' E C A
∴∠B=∠ECB=∠E’CB=60°. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7分
八年级数学答案 第2页 共3页
在△PBD 和△PCE’中,
B E ' CP, BPD CPE ', DB E ' C.
∴△PBD≌△PCE’.· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9分 ∴PB=PC. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10 分 23. 以下答案及评分意见以方法一为例. 证明:如图,在 AN 上截取 AE=AC,连接 CE. ∵AC 平分∠MAN,∠MAN=120° , ∴∠CAB=∠CAD=60° ,………………………2 分 ∴△ACE 是等边三角形. ∴∠AEC=60° ,AC=EC=AE.……………………3 分 又∠ABC+∠ADC=180° ,∠ABC+∠EBC=180° ∴∠ADC=∠EBC · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4分 在△ADC 和△EBC 中, ∠DAC=∠BEC ∠ADC=∠EBC AC=EC ∴△ADC≌△EBC · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7分 ∴DA=BE · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 8分 ∴AB+AD=AB+BE=AE, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9分 ∴AB+ AD=AC. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10 分 (注:以上均为参考答案,若学生使用其他解法,只要正确均可给分)
阚疃中学2014—2015学年度第一学期期末(含答案)八年级数学竞赛试卷
2014-2015学年度第一学期阚疃中学八年级数学竞赛试卷一、选择题(30分)1.对于任意有理数x ,点p(x,x 2–2x )一定不在第( )象限。
A. 一;B. 二;C. 三;D. 四 2.下列关系式中,不能表示y 是x 的函数的是( )A. y =x1; B. y = | x |; C. | y | = x ; D. y = 3x 3. 某人骑车沿直线旅行,先前进了akm,休息了一段时间,又原路返回bkm (b<a ),再前进ckm ,则此人离起点的距离s 与时间t 的关系示意图应是( )4. k ≠0,当k 取不同的数时,直线y = k x +3-2k 都经过P ,则P 点的坐标是( )A. (2,3);B. (-2,3);C. (-2,-3);D. (2,-3)5. 有5角、1元的硬币各若干个,从中取出一些凑成4元,共有m 种不同的取法,则m 的值是( )A. 5;B. 4;C. 3;D. 2 6.三个互不相等的有理数,既可表示为,1,k+b, k ;又可表示为 0,bk,b 。
那么一次函数y=kx +b 中, 当 x= -3 时,y 的值是( )A. 5;B. 4;C. 3;D. 27. 三角尺的直角顶点放在直尺的边上,如图。
∠1= 30°,∠2= 55°,∠3=()A. 23°;B. 25°;C. 35°;D. 40°8. 如图:AB =AD ,CB =CD 则图中全等三角形共有( )对。
A. 4;B.3;C. 2;D. 19. 下列正确的是( )A.两边与第三边上的高对应相等的两个三角形全等B.两边与第三边上的中线对应相等的两个三角形全等,C.有两边与一个内角对应相等的两个三角形全等D.三个角对应相等的两个三角形全等。
10.直线y =-3x+3 交x 轴于A ,交Y 轴与B 。
如图CB 平分∠yBA ,AC 平分∠BAO ,则∠C 是( ) A.30°; B. 45°; C. 60°; D. 36°二、填空题:(20分) 11. 函数21-+=x x y 的自变量x 的取值范围是 。
河南省三门峡市2014-2015学年八年级上期末考试数学试卷及答案
一、填空题(每小题2分,共20分)1.空气的平均密度为00124.03/cm g ,用科学记数法表示为__________3/cm g . 2.计算:201510072514()[()]145-⨯= . 3.分解因式:2244x xy y -+-= .4.若等腰三角形两边长分别为8,10,则这个三角形的周长为 .5.若三角形三内角度数之比为1∶2∶3,最大边长是86. 一个多边形内角和是一个四边形内角和的4倍,则这个 多边形的边数是 .7.如图,在△ABC 中,∠C =o90,∠A =o30, AB 的垂直平分线MN 交AC 于D ,CD =1cm ,连接BD ,则AC 的长为 cm . 8.若a b +=7,ab =12,则22b a +=_________. 9. 如图,△ABC 中,∠BAC=120°,AD ⊥BC 于D ,且AB+BD=DC ,则∠C=______.10.若15a a +=,则4221a a a++= . 二、选择题:(每小题2分,共20分) 11.下列计算正确的是( )A . 532x x x =+B .632x x x =⋅C .532)(x x = D .235x x x =÷ 12.下面有4个汽车标致图案,其中是轴对称图形的是 ( )① ② ③ ④A .②③④B .①②④C .①②③D .①③④13.已知点P (1,a )与Q (b ,2)关于x 轴成轴对称,则b a -的值为( ) A .-1 B .1 C .-3 D . 3 14.如图,△ABC ≌ΔADE ,∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为( ) A .40° B .35° C .30° D .25°15.下列各式变形中,是因式分解的是( )A .1)(12222--=-+-b a b ab a B.)11(22222xx x x +=+ C .4)2)(2(2-=-+x x x D .)1)(1)(1(124-++=-x x x x16.如果分式2312+--x x x 的值为零,那么x 等于( )A .-1B .1C .-1或1D .1或2 17.等腰三角形的一个角是48°,它的一个底角的度数是( )A .48°B .48°或42°C .42°或66°D .48°或66°18.下列命题中,正确的是( )A .三角形的一个外角大于任何一个内角B .三角形的一条中线将三角形分成两个面积相等的三角形C .两边和其中一边的对角分别相等的两个三角形全等D .三角形的三条高都在三角形内部19.不能用尺规作出唯一三角形的是 ( ) A .已知两角和夹边B .已知两边和夹角C .已知两角和其中一角的对边D .已知两边和其中一边的对角20.如图,ΔABC 中,AB =AC ,AB 的垂直平分线交AC 于P 点, 若AB =5 cm ,BC =3 cm ,则ΔPBC 的周长等于( ) A .4 cm B .6 cm C .8 cm D .10 cm 三.解答题(本题7小题,共60分) 21.计算:(每小题5分,共10分)(1)()2212()3xy xy -÷(2)2(2)(2)(2)4a b a b b a b a b b +-++-÷22.因式分解:(每小题5分,共10分)(1)22(2)(2)x y x y +-+(2)2()4a b ab -+23..(本题7分)先化简代数式22321(1)24a a a a -+-÷+-,再从-2,2,0三个数中选一个适当的数作为a 的值代入求值.24.(本题5分).解方程11121x x x ++=-+ 25..(本题8分)如图,在平面直角坐标系xOy 中,A ()5,1-,B ()0,1-,C ()3,4-.(1)请画出ABC △关于y 轴对称的A B C '''△(其中A B C ''',,分别是A B C ,,不写画法); (2)直接写出A B C ''',,三点的坐标:(_____)(_____)(_____)A B C ''',,;△ABC 的面积= .26.(本题10分)如图(1),Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D .AF 平分∠CAB ,交CD 于点E ,交CB 于点F (1)求证:CE=CF .(2)将图(1)中的△ADE 沿AB 向右平移到△A ′D ′E ′的位置,使点E ′落在BC 边上,其它条件不变,如图(2)所示.试猜想:BE ′与CF 有怎样的数量关系?请证明你的结论.图(1) 图(2)27. (本题10分))水果店第一次用600元购进苹果若干斤,第二次又用600元购进苹果,但这次每斤苹果的进价是第一次进价的54倍,购进数量比第一次少了30斤. (1)求第一次苹果的进价是每斤多少元?(2)若要求这两次购进的苹果按同一价格全部销售完毕后获利不低于420元,问每斤苹果售价至少是多少元?2014—2015学年上期期末考试八年级数学参考答案一、1、31.2410-⨯;2、514-;3、2(2)x y --;4、26或28;5、4;6、10;7、3;8、25; 9、020;10、24二、DCCBD ADBDC三、21、(1)解:()2212()3xy xy -÷2414()3x y xy =÷..................2分21411(4)3x y --=÷.................4分A DCB E FA D BFCE A ′ D ′ E ′312xy =.................5分(2)解:2(2)(2)(2)4a b a b b a b a b b +-++-÷ 2222424a b ab b a =-++-.................3分 2ab =.................5分 22、(1)解:22(2)(2)x y x y +-+[(2)(2)][(2)(2)]x y x y x y x y =++++-+.................2分 (33)()x y x y =+-.................4分3()()x y x y =+-.................5分(2)解:2()4a b ab -+2224a ab b ab =-++.................2分 222a ab b =++.................3分 2()a b =+.................5分23、解:22321(1)24a a a a -+-÷+- 22234()221a a a a a +--=+-+g .................2分21(2)(2)2(1)a a a a a -+-=+-g .................4分 21a a -=-.................5分 把0a =代入 原式02201-==-.................7分 24、解:方程两边同乘以(2)(1)x x -+得:2(1)2(2)(1)x x x x ++-=-+.................2分 解得: 14x =-.................4分检验:当14x =-时,(2)(1)0x x -+≠,所以,原方程的解为14x =-..................5分25、(1)图略,正确3分(2)(1,5)(1,0)(4,3)A B C ''',,......6分 △ABC 的面积=1537.52⨯⨯=.....8分 26、解:(1)∵∠ACB=90°,∴∠CFA=90°-∠CAF ∵CD ⊥AB ,∴∠CEF=∠AED=90°-∠EAD又∵AF 平分∠CAB ,∴∠CAF=∠EAD∴∠CFA=∠CEF 。
广东省东莞市2014-2015学年八年级上学期期末考试数学试题人教版
广东省东莞市2014-2015学年八年级上学期期末考试数学试题人教版东莞市2014-2015学年度第一学期期末八年级数学教学质量自查一、选择题(本大题共10小题,每小题2分,共20分)1.计算-2a×3a的结果是()。
A。
-6a B。
6a C。
5a D。
-5a2.下列“数字”图形中,不是轴对称图形的是()。
A。
B。
C。
D。
3.若分式的值为。
则x的值是()。
A。
x=-2 B。
x C。
x=1或x=-2 D。
x=14.下列长度的三条线段中,能组成三角形的是()。
A。
3,4,8 B。
5,6,11 C。
4,6,7 D。
4,4,105.已知a-b=1,则代数式2b-2a的值是()。
A。
-1 B。
1 C。
-2 D。
26.如果等腰三角形两边长是6cm和3cm,那么它的周长是()。
A。
9cm B。
12cm C。
12cm或15cm D。
15cm7.化简的结果是()。
A。
x+1 B。
x-1 C。
x D。
-x8.如图1,已知△ABM≌△CDN,∠A=50°,则∠NCB等于()。
A。
30° B。
40° C。
50° D。
60°9.如图2,在△ABC中,边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,BD=5cm,则△ABD的周长是()。
A。
8cm B。
11cm C。
13cm D。
16cm10.如图3,在△ABC中,AB=AC,D、E在BC上,BD=CE,AF⊥BC于F,则图中全等三角形对数共有()。
A。
1对 B。
2对 C。
3对 D。
4对二、填空题(本大题共5小题,每小题3分,共15分)11.有一种病毒的直径为0.米,用科学记数法可表示为_______米。
12.分解因式:3y²-3=________。
13.已知点A和点B(2,3)关于x轴对称,则点A的坐标为_______。
14.一个多边形的每个内角都等于120°,则它是________。
2014-2015学年北京市海淀区八年级(上)期末数学试卷
2014-2015学年北京市海淀区八年级(上)期末数学试卷一、选择题:(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x63.(3分)如图,在平面直角坐标系xOy中,点P(﹣3,5)关于点O的对称点的坐标为()A.(﹣3,﹣5)B.(﹣5,3)C.(3,﹣5)D.(5,﹣3)4.(3分)如果在实数范围内有意义,那么x的取值范围是()A.x≠﹣B.x<﹣C.x≥﹣D.x≥﹣5.(3分)下列各式中,从左到右的变形是因式分解的是()A.3x+3y﹣5=3(x+y)﹣5B.(x+1)(x﹣1)=x2﹣1C.x2+2x+1=(x+1)2D.x(x﹣y)=x2﹣xy6.(3分)下列三个长度的线段能组成直角三角形的是()A.1,,B.1,,C.2,4,6D.5,5,6 7.(3分)计算(﹣),结果为()A.B.﹣C.﹣6D.6﹣8.(3分)下列各式中,正确的是()A.=B.=C.=﹣D.=9.(3分)若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2B.2C.0D.110.(3分)如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是()A.△ABC≌△CDE B.CE=AC C.AB⊥CD D.E为BC中点11.(3分)我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49B.25C.13D.112.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014二、填空题:(本题共24分,每小题3分)13.(3分)若+|y+2|=0,则x+y=.14.(3分)计算:(﹣)2=.15.(3分)比较大小:.(填“>、<、或=”)16.(3分)分解因式:3a3﹣12a=.17.(3分)如图,△ABC≌△DEF,点F在BC边上,AB与EF相交于点P.若∠DEF=37°,PB=PF,则∠APF=°.18.(3分)如图,△ABC是等边三角形,点D为AC边上一点,以BD为边作等边△BDE,连接CE.若CD=1,CE=3,则BC=.19.(3分)在平面直角坐标系xOy中,点A、点B的坐标分别为(﹣6,0)、(0,8).若△ABC是以∠BAC为顶角的等腰三角形,点C在x轴上,则点C的坐标为.20.(3分)如图,分别以正方形ABCD的四条边为边,向其内部作等边三角形,得到△ABE、△BCF、△CDG、△DAH,连接EF、FG、GH、HE,若AB=2,则四边形EFGH的面积为.三、解答题:(第21题5分,第22题9分,第23题4分,第24题5分,第25题5分,第26题6分,第27题6分)21.(5分)计算:+()﹣1﹣(π+2)0+|1﹣|.22.(9分)(1)解方程:﹣1=.(2)先化简,再求值:(﹣)÷,其中x=.23.(4分)如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.24.(5分)如图为地铁调价后的计价表.调价后小明、小伟从家到学校乘地铁分别需要4元和3元.由于刷卡坐地铁有优惠,因此,他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校的里程多5km,且小明每千米享受的优惠金额是小伟的2倍,求小明和小伟从家到学校乘地铁的里程分别是多少千米?25.(5分)已知:如图,△ABC,射线AM平分∠BAC.(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG.(2)在(1)的条件下,∠BAC和∠BGC的等量关系为,证明你的结论.26.(6分)阅读:对于两个不等的非零实数a、b,若分式的值为零,则x=a或x=b.又因为==x+﹣(a+b),所以关于x的方程x+=a+b 有两个解,分别为x1=a,x2=b.应用上面的结论解答下列问题:(1)方程x+=6的两个解中较大的一个为;(2)关于x的方程x+=的两个解分别为x1、x2(x1<x2),若x1与x2互为倒数,则x1=,x2=;(3)关于x的方程2x+=2n+3的两个解分别为x1、x2(x1<x2),求的值.27.(6分)阅读:如图1,在△ABC中,3∠A+∠B=180°,BC=4,AC=5,求AB 的长.小明的思路:如图2,作BE⊥AC于点E,在AC的延长线上取点D,使得DE=AE,连接BD,易得∠A=∠D,△ABD为等腰三角形,由3∠A+∠B=180°和∠A+∠ABC+∠BCA=180°,易得∠BCA=2∠A,△BCD为等腰三角形,依据已知条件可得AE 和AB的长.解决下列问题:(1)图2中,AE=,AB=;(2)在△ABC中,∠A,∠B,∠C的对边分别为a、b、c.①如图3,当3∠A+2∠B=180°时,用含a,c式子表示b;(要求写解答过程)②当3∠A+4∠B=180°,b=2,c=3时,可得a=.2014-2015学年北京市海淀区八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x6【分析】根据合并同类项、同底数幂的除法及幂的乘方与积的乘方运算法则,结合选项进行判断即可.【解答】解:A、2x和5y不是同类项,不能合并,故本选项错误;B、x8÷x2=x6,原式计算错误,故本选项错误;C、(x2y)3=x6y3,计算正确,故本选项正确;D、2x3•x2=2x5,原式计算错误,故本选项错误.故选:C.【点评】本题考查了合并同类项、同底数幂的除法及幂的乘方与积的乘方等知识,掌握运算法则是解答本题的关键.3.(3分)如图,在平面直角坐标系xOy中,点P(﹣3,5)关于点O的对称点的坐标为()A.(﹣3,﹣5)B.(﹣5,3)C.(3,﹣5)D.(5,﹣3)【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)可以直接写出答案.【解答】解:点(﹣3,5)关于原点O的对称点为(3,﹣5),故选:C.【点评】此题主要考查了关于原点对称的点坐标,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.4.(3分)如果在实数范围内有意义,那么x的取值范围是()A.x≠﹣B.x<﹣C.x≥﹣D.x≥﹣【分析】二次根式有意义被开方数为非负数,即可得出x的取值范围.【解答】解:∵在实数范围内有意义,∴3x+2≥0,解得:x≥﹣.故选:C.【点评】本题考查了二次根式有意义的条件,注意掌握二次根式有意义被开方数为非负数.5.(3分)下列各式中,从左到右的变形是因式分解的是()A.3x+3y﹣5=3(x+y)﹣5B.(x+1)(x﹣1)=x2﹣1C.x2+2x+1=(x+1)2D.x(x﹣y)=x2﹣xy【分析】直接利用因式分解的意义分别分析得出即可.【解答】解:A、3x+3y﹣5=3(x+y)﹣5,不是分解因式,故此选项错误;B、(x+1)(x﹣1)=x2﹣1,是整式的乘法,不是分解因式,故此选项错误;C、x2+2x+1=(x+1)2,是分解因式,故此选项正确;D、x(x﹣y)=x2﹣xy,是整式的乘法,不是分解因式,故此选项错误;故选:C.【点评】此题主要考查了因式的分解的意义,正确把握定义是解题关键.6.(3分)下列三个长度的线段能组成直角三角形的是()A.1,,B.1,,C.2,4,6D.5,5,6【分析】根据勾股定理的逆定理进行判断.【解答】解:A、∵12+()2=()2,∴A能构成直角三角形,故本选项正确;B、∵12+()2≠()2,∴B不能构成直角三角形,故本选项错误;C、∵22+42≠62,∴C不能构成直角三角形,故本选项错误;D、∵52+52≠62,∴D不能构成直角三角形,故本选项错误;故选:A.【点评】本题考查了勾股定理的逆定理,判断线段能否组成直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.(3分)计算(﹣),结果为()A.B.﹣C.﹣6D.6﹣【分析】根据乘法的分配律进行计算,再把二次根式化为最简二次根式即可.【解答】解:原式=﹣=﹣2=﹣,故选:B.【点评】本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.8.(3分)下列各式中,正确的是()A.=B.=C.=﹣D.=【分析】先想一下分式的基本性质的内容,根据分式的基本性质逐个判断即可.【解答】解:A、根据分式的基本性质应该分子和分母都除以b,故本选项错误;B、根据分式的基本性质,分子和分母都加上2不相等,故本选项错误;C、=﹣,故本选项错误;D、∵a﹣2≠0,∴=,故本选项正确;故选:D.【点评】本题考查了分式的基本性质的应用,主要考查学生对分式的基本性质的理解能力和判断能力,题目比较典型,比较容易出错.9.(3分)若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2B.2C.0D.1【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:根据题意得:(x+m)(2﹣x)=2x﹣x2+2m﹣mx,∵x+m与2﹣x的乘积中不含x的一次项,∴m=2;故选:B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.10.(3分)如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是()A.△ABC≌△CDE B.CE=AC C.AB⊥CD D.E为BC中点【分析】易证RT△ABC≌RT△CDE,可得CE=AC,∠A=∠DCE,即可求得∠DCE+∠B=90°,即可解题.【解答】解:在RT△ABC和RT△CDE中,,∴RT△ABC≌RT△CDE(HL),①正确;∴CE=AC,②正确;∠A=∠DCE,∵∠A+∠B=90°,∴∠DCE+∠B=90°,∴AB⊥CD,③正确;故选:D.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证RT△ABC≌RT△CDE是解题的关键.11.(3分)我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49B.25C.13D.1【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=24.根据完全平方公式即可求解.【解答】解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=25+24=49.故选:A.【点评】本题考查了勾股定理的应用,解题的关键是注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.12.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014【分析】先把x=n和x=代入代数式,并对代数式化简,得到它们的和为0,然后把x=1代入代数式求出代数式的值,再把所得的结果相加求出所有结果的和.【解答】解:因为+=+=0,即当x分别取值,n(n为正整数)时,计算所得的代数式的值之和为0;而当x=0时,==﹣1.因此,当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加和﹣1,故选:A.【点评】本题考查的是代数式的求值,本题的x的取值较多,并且除x=0外,其它的数都是成对的且互为倒数,把互为倒数的两个数代入代数式得到它们的和为0,这样计算起来就很方便.二、填空题:(本题共24分,每小题3分)13.(3分)若+|y+2|=0,则x+y=1.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵+|y+2|=0,∴,解得,∴x+y=3﹣2=1.故答案为1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.(3分)计算:(﹣)2=.【分析】直接利用分式的性质结合积的乘方运算法则求出即可.【解答】解:(﹣)2=.故答案为:.【点评】此题主要考查了分式的乘方运算,正确掌握运算法则是解题关键.15.(3分)比较大小:<.(填“>、<、或=”)【分析】先把两个实数平方,然后根据实数的大小比较方法即可求解.【解答】解:∵()2=12,(3)2=18,而12<18,∴2<3.故答案为:<.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.16.(3分)分解因式:3a3﹣12a=3a(a+2)(a﹣2).【分析】先提取公因式3a,再对余下的多项式利用平方差公式继续分解.【解答】解:3a3﹣12a=3a(a2﹣4),=3a(a+2)(a﹣2).故答案为:3a(a+2)(a﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.(3分)如图,△ABC≌△DEF,点F在BC边上,AB与EF相交于点P.若∠DEF=37°,PB=PF,则∠APF=74°.【分析】根据全等三角形的性质可得∠E=∠B=37°,再根据等边对等角可得∠PFB=∠B=37°,再由三角形外角的性质可得∠APF的度数.【解答】解:∵△ABC≌△DEF,∴∠E=∠B=37°,∵PB=PF,∴∠PFB=∠B=37°,∴∠APF=37°+37°=74°,故答案为:74.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.18.(3分)如图,△ABC是等边三角形,点D为AC边上一点,以BD为边作等边△BDE,连接CE.若CD=1,CE=3,则BC=4.【分析】在CB上取一点G使得CG=CD,即可判定△CDG是等边三角形,可得CD=DG=CG,易证∠BDG=∠EDC,即可证明△BDG≌△EDC,可得BG=CE,即可解题.【解答】解:在CB上取一点G使得CG=CD,∵△ABC是等边三角形,∴∠ACB=60°,∴△CDG是等边三角形,∴CD=DG=CG,∵∠BDG+∠EDG=60°,∠EDC+∠EDG=60°,∴∠BDG=∠EDC,在△BDG和△EDC中,,∴△BDG≌△EDC(SAS),∴BG=CE,∴BC=BG+CG=CE+CD=4,故答案为:4.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了等边三角形的判定和性质,本题中求证△BDG≌△EDC是解题的关键.19.(3分)在平面直角坐标系xOy中,点A、点B的坐标分别为(﹣6,0)、(0,8).若△ABC是以∠BAC为顶角的等腰三角形,点C在x轴上,则点C的坐标为(4,0)或(﹣16,0).【分析】根据题意画出图形,根据勾股定理求出AB的长,再根据AB=AC即可得出结论.【解答】解:∵点A、点B的坐标分别为(﹣6,0)、(0,8),∴AB==10.∵A(﹣6,0),∴C(4,0)或(﹣16,0).故答案为:(4,0)或(﹣16,0).【点评】本题考查的是等腰三角形的判定,熟知等腰三角形的判定定理是解答此题的关键.20.(3分)如图,分别以正方形ABCD的四条边为边,向其内部作等边三角形,得到△ABE、△BCF、△CDG、△DAH,连接EF、FG、GH、HE,若AB=2,则四边形EFGH的面积为8﹣4.【分析】先根据题意得出△ABE≌△BCF≌△CDG≌△DAH,连接EG并延长交CD 于点M,交AB于点N,连接FH并延长交AD于点k,角BC于点l,【解答】解:∵△ABE、△BCF、△CDG、△DAH均是以2为边长的等边三角形,∴△ABE≌△BCF≌△CDG≌△DAH.∵四边形ABCD是正方形,DG=CG,AE=BE,∴点E线段AB的垂直平分线上,点G在CD的垂直平分线上,AB∥CD,∴直线MN是线段CD与AB的垂直平分线.∵AB=CD=2,∴EN=,∴ME=2﹣,同理可得GN=2﹣,∴EG=2﹣(2﹣﹣2﹣)=2﹣2.同理可得,FH=2﹣2.∵M、L、N、K分别是四边的中点,∴EG⊥FH,且OG=OH,∴四边形EFGH是正方形,∴OG=OH=EG=﹣1,=GH2=OG2+OH2=(﹣1)2+(﹣1)2=8﹣4.∴S四边形EFGH故答案为:8﹣4.【点评】本题考查的是全等三角形的判定与性质,熟知边长相等的等边三角形全等是解答此题的关键.三、解答题:(第21题5分,第22题9分,第23题4分,第24题5分,第25题5分,第26题6分,第27题6分)21.(5分)计算:+()﹣1﹣(π+2)0+|1﹣|.【分析】首先利用绝对值以及负指数的性质以及零指数幂的性质化简求出即可.【解答】解:+()﹣1﹣(π+2)0+|1﹣|=2+2﹣1+﹣1=3.【点评】此题主要考查了绝对值以及负指数的性质以及零指数幂的性质等知识,正确把握运算性质是解题关键.22.(9分)(1)解方程:﹣1=.(2)先化简,再求值:(﹣)÷,其中x=.【分析】(1)先把分式方程化为整式方程,求出x的值,再代入最简公分母进行检验即可;(2)先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)去分母得,x2﹣x(x﹣1)=2(x﹣1),解得x=2,经检验,x=2是原分式方程的解;(2)原式=[﹣]÷=(﹣)÷=•=,当x=时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.(4分)如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【分析】易证BC=EF,即可证明△ABC≌△DEF,可得∠A=∠D.即可解题.【解答】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABC≌△DEF是解题的关键.24.(5分)如图为地铁调价后的计价表.调价后小明、小伟从家到学校乘地铁分别需要4元和3元.由于刷卡坐地铁有优惠,因此,他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校的里程多5km,且小明每千米享受的优惠金额是小伟的2倍,求小明和小伟从家到学校乘地铁的里程分别是多少千米?【分析】设小明和小伟从家到学校乘地铁的里程分别是x千米、y千米,题中有两个等量关系:小明从家到学校乘地铁的里程﹣小伟从家到学校的里程=5,小明每千米享受的优惠金额=小伟每千米享受的优惠金额×2,依此列出方程组,解方程组即可.【解答】解:设小明和小伟从家到学校乘地铁的里程分别是x千米、y千米,根据题意得,解得.答:小明和小伟从家到学校乘地铁的里程分别是10千米、5千米.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.25.(5分)已知:如图,△ABC,射线AM平分∠BAC.(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG.(2)在(1)的条件下,∠BAC和∠BGC的等量关系为互补,证明你的结论.【分析】(1)以C、B为圆心,大于BC为半径作弧,两弧交于F、E,作直线FE即为BC的垂直平分线.(2)作MD⊥AB,MK⊥AC,利用角平分线的性质和垂直平分线的性质证全等即可.【解答】解:(1)如图1:(2)互补.证明:作MD⊥AB,MK⊥AC,∵AM为∠BAC的平分线,∴MD=MK,∵EF为BC的垂直平分线,∴MB=MC,在△MBD与△MCK中,,∴△MBD≌△MCK(HL),∴∠BMC=∠DMK,∵∠DMK+∠BAC=180°,∴∠BMC+∠BAC=180°,∴∠BAC和∠BGC互补.故答案为:互补.【点评】本题考查了作图﹣﹣基本作图,要熟悉垂直平分线的性质和角平分线的性质.26.(6分)阅读:对于两个不等的非零实数a、b,若分式的值为零,则x=a或x=b.又因为==x+﹣(a+b),所以关于x的方程x+=a+b 有两个解,分别为x1=a,x2=b.应用上面的结论解答下列问题:(1)方程x+=6的两个解中较大的一个为4;(2)关于x的方程x+=的两个解分别为x1、x2(x1<x2),若x1与x2互为倒数,则x1=,x2=2;(3)关于x的方程2x+=2n+3的两个解分别为x1、x2(x1<x2),求的值.【分析】(1)方程变形后,利用题中的结论确定出较大的解即可;(2)方程变形后,根据利用题中的结论,以及x1与x2互为倒数,确定出x1与x2的值即可;(3)方程变形后,根据利用题中的结论表示出为x1、x2,代入原式计算即可得到结果.【解答】解:(1)方程x+=6变形得:x+=2+4,根据题意得:x1=2,x2=4,则方程较大的一个解为4;(2)方程变形得:x+=+2,由题中的结论得:方程有一根为2,另一根为,则x1=,x2=2;故答案为:(1)4;(2);2(3)方程整理得:2x﹣1+=n﹣1+n+3,得2x﹣1=n﹣1或2x﹣1=n+3,可得x1=,x2=,则原式==.【点评】此题考查了分式方程的解,弄清题中的规律是解本题的关键.27.(6分)阅读:如图1,在△ABC中,3∠A+∠B=180°,BC=4,AC=5,求AB 的长.小明的思路:如图2,作BE⊥AC于点E,在AC的延长线上取点D,使得DE=AE,连接BD,易得∠A=∠D,△ABD为等腰三角形,由3∠A+∠B=180°和∠A+∠ABC+∠BCA=180°,易得∠BCA=2∠A,△BCD为等腰三角形,依据已知条件可得AE 和AB的长.解决下列问题:(1)图2中,AE= 4.5,AB=6;(2)在△ABC中,∠A,∠B,∠C的对边分别为a、b、c.①如图3,当3∠A+2∠B=180°时,用含a,c式子表示b;(要求写解答过程)②当3∠A+4∠B=180°,b=2,c=3时,可得a=.【分析】(1)作BE⊥AC于点E,在AC的延长线上取点D,使得DE=AE,连接BD,易得∠A=∠D,△ABD为等腰三角形,由3∠A+∠B=180°和∠A+∠ABC+∠BCA=180°,易得∠BCA=2∠A,△BCD为等腰三角形,依据已知条件可得AE 和AB的长.(2)①解题思路同(1),②如图3,作BE⊥AC于点E,在AC的延长线上取点D,使得AB=AD,连接BD,故AB=AD=3,∠ABD=∠D.由于3∠A+4∠ABC=180°,∠A+∠ABC+∠BCA=180°,于是得到2∠A+3∠ABC=∠ACB=∠D+∠CBD=∠ABC+∠CBD+∠CBD,推出∠A+∠ABC=∠CBD=∠BCD,得到BD=CD=AD﹣AC=1,在直角△BDE和直角△AEB中,利用勾股定理得到:BD2﹣DE2=AB2﹣AE2,即12﹣(1﹣CE)2=32﹣(2+CE)2,求得CE=,BE=,进而求得a==,【解答】解:(1)如图2,作BE⊥AC于点E,在AC的延长线上取点D,使得DE=AE,连接BD,则BE是中垂线,故AB=BD,∠A=∠D.∵3∠A+∠ABC=180°和∠A+∠ABC+∠BCA=180°,∴∠BCA=2∠A,又∵∠BCA=∠D+∠CBD,∴∠BCA=∠A+∠CBD=2∠A,则∠CBD=∠A,∴DC=BC=4,∴AD=DC+AC=4+5=9,∴AE=AD=4.5,∴EC=AD﹣CD=4.5﹣4=0.5.∴在直角△BCE和直角△AEB中,利用勾股定理得到:BC2﹣CE2=AB2﹣AE2,即42﹣0.52=AB2﹣4.52,解得AB=6.故答案是:4.5;6;(2)作BE⊥AC于点E,在AC的延长线上取点D,使得DE=AE,连接BD,则BE 是边AD的中垂线,故AB=BD,∠A=∠D.①∵3∠A+2∠B=180°,∠A+∠ABC+∠BCA=180°,∴2∠A+∠ABC=∠ACB,∵∠ACB=∠D+∠DBC,∴2∠A+∠ABC=∠D+∠DBC,∵∠A=∠D,∴∠A+∠ABC=∠DBC,BD=AB=c,即∠DCB=∠DBC,∴DB=DC=c,设EC=x,∴DE=AE=∴EC=AE﹣AC=﹣b=,∵BE2=BC2﹣EC2,BE2=AB2﹣AE2,∴a2﹣()2=c2﹣()2,解得,b=.②如图3,作BE⊥AC于点E,在AC的延长线上取点D,使得AB=AD,连接BD,故AB=AD=3,∠ABD=∠D.∵3∠A+4∠ABC=180°,∠A+∠ABC+∠BCA=180°,∴2∠A+3∠ABC=∠ACB=∠D+∠CBD=∠ABC+∠CBD+∠CBD,∴2∠A+2∠ABC=2∠CBD,∴∠A+∠ABC=∠CBD=∠BCD,∴BD=CD=AD﹣AC=1,∴在直角△BDE和直角△AEB中,利用勾股定理得到:BD2﹣DE2=AB2﹣AE2,即12﹣(1﹣CE)2=32﹣(2+CE)2,解得CE=,∴BE=,∴a==,故答案是:.【点评】本题考查了等腰三角形的判定与性质,解题过程中注意等腰三角形“三线合一”性质的利用.解题的难点是通过作辅助线“作BE⊥AC于点E,在AC 的延长线上取点D,使得DE=AE,连接BD”构建等腰三角形和直角三角形,便于利用勾股定理求相关线段的长度.。
安徽省阜阳地区2014-2015学年八年级上期末模拟数学试卷及答案
安徽省阜阳地区2014-2015学年上学期期末模拟八年级数学试卷满分120分,答题时间120分钟一.选择题:选一选,看看谁认真,(每题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的. 1 、下列运算不正确...的是 ( ) A 、 x 2·x 3= x 5B 、 (x 2)3= x 6C 、 x 3+x 3=2x 6D 、 (-2x)3=-8x 32 .等腰三角形一腰上的高与腰之比1:2,则等腰三角形顶角的度数为 ( )(A ) 30° (B ) 60° (C ) 150° (D )30°或150°3 .已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为( )A 、14B 、18C 、24D 、18或244 . . a 3m+1可写成 ( )( )A. (a 3)m+1B. (a m )3+1C. a ·a 3mD. (a m )2m+15. 下列关于分式的判断,正确的是( )A .当x =2时,21-+x x 的值为零 B .无论x 为何值,132+x 的值总为正数 C .无论x 为何值,13+x 不可能得整数值 D .当x ≠3时,xx 3-有意义6. 把分式)0,0(22≠≠+y x yx x中的分子分母的x 、y 都同时扩大为原来的2倍,那么分式的值将是原分式值的( )A .2倍B .4倍C .一半D .不变7 .如图,羊字象征吉祥和美好,下图的图案与羊有关,其中是轴对称图形的有 ( )A .1个B .4个C .3个D .2个8 、下列式子中,从左到右的变形是因式分解的是 ( ).A .(x -1)(x -1)=x 2-2x +1 B .4x 2-9y 2=(2x-3y)(2x+3y) .C .x 2+4x +4=x(x 一4)+4 D .x 2+y 2=(x +y)(x —y)9 、某人将一块正五边形玻璃打碎成四块,现要到玻璃店配 一块完全一样的玻璃,那么最省事的方法是( )A .带①去B .带①②去C .带①②③去D .都带去10 下列各式,正确的是( )A .1()(22=--a b b aB .ba b a b a +=++122 C .b a b a +=+111 D .x x ÷2=2二、你能填得又对又快吗?(每小题3分,共30分)11 .计算:=÷57x x .12.已知点M 的坐标为(3,-2),点M 关于y 轴的对称点为点P ,则点P 的坐标是 .13.分解因式:=-x x 93.14.计算:=⋅-)43()8(2b a ab 15.( 23)2002×(1.5)2003÷(-1)2004=________.16.用科学记数法表示0.000043为 。
2014-2015学年湖北省武汉市江汉区八年级(上)期末数学试卷-(附解析答案)
2014-2015学年湖北省武汉市江汉区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每题3分,共24分)1.(3分)下列图案中是轴对称图形的是()A.B.C.D.【解答】解:A、C、D都不是轴对称图形,只有B是轴对称图形,故选:B.2.(3分)如图,点D在BC的延长线上,∠A=35°,∠B=40°,则∠1的度数为()A.65°B.70°C.75°D.80°【解答】解:∵∠A=35°,∠B=40°,∴∠1=35°+40°=75°,故选:C.3.(3分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.4.(3分)如图,在△ABC中,∠B=90°,∠A=60°,AB=4,则AC的长度为()A.4 B.6 C.8 D.10【解答】解:∵∠B=90°,∠A=60°,∴∠C=30°,∴AC=2AB,∵AB=4,∴AC=8,故选:C.5.(3分)如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC交AB于点E,则有()A.DE=DB B.DE=AE C.AE=BE D.AE=BD【解答】解:连接CE,∵DE⊥BC,∠A=90°,∴∠A=∠CDE=90°,在Rt△CAE和Rt△CDE中,{CE=CEAC=CD,∴Rt△CAE≌Rt△CDE(HL),∴AE=DE,故B选项正确;在R△BED中,BE>DE,即BE>AE,故C选项错误;根据已知不能得出BD=DE,故A选项错误;根据已知不能得出BD=DE,由DE=AE,即不能推出BD=AE,故D选项错误.故选:B.6.(3分)下列计算正确的是( ) A .a 3•a 2=a 5B .a 6÷a 3=a 2C .3a+5b=8abD .4a 2﹣2a 2=2【解答】解:A 、a 3•a 2=a 5,正确; B 、a 6÷a 3=a 3,故错误;C 、3a 与5b 不是同类项,故错误;D 、4a 2﹣2a 2=2a 2,故错误. 故选:A .7.(3分)下列各式从左到右的变形一定正确的是( )A .0.2a+b a+0.2b =2a+b a+2bB .a2b=ac 2bcC .−x+1x−y=x−1x−yD .x−12y 12x+y=2x−yx+2y【解答】解:A 、分子、分母乘以不同的数,故A 错误; B 、c=0时,无意义,故B 错误;C 、分子、分母、分式改变其中任何两项的符号,结果不变,故C 错误;D 、分子、分母都乘以2,故D 正确. 故选:D .8.(3分)某市在道路改造过程中,需要铺设一条管道,计划由甲、乙两个工程队来完成.已知甲工程队比乙工程队每天能多铺设10米,且甲工程队铺设250米管道所用的天数比乙工程队铺设200米管道所用的天数少1天.设甲工程队每天铺设x 米,根据题意,下列方程正确的是( )A .250x=200x−10+1 B .250x=200x−10﹣1C .250x=200x+10+1D .250x=200x+10﹣1【解答】解:设甲工程队每天铺设x 米,则乙工程队每天铺设(x ﹣10)米,由题意得:200x−10﹣250x=1,则250x=200x+10﹣1,故选:D .二、填空题(共8题,每题3分,共24分)9.(3分)(﹣2)﹣2= 14 . 【解答】解:(﹣2)﹣2=14. 故答案为:14.10.(3分)计算:(25)2014×(−52)2015= ﹣52 . 【解答】解:原式=[25×(﹣52)]2014×(﹣52) =1×(﹣52) =﹣52.故答案为:﹣52.11.(3分)当x= 4 时,分式2x−4无意义.【解答】解:由题意得:x﹣4=0,解得:x=4,故答案为:4.12.(3分)若x2+6x+a2是完全平方式,则常数a=±3.【解答】解:∵x2+6x+a2是完全平方式,∴a2=9,即a=±3.故答案为:±3.13.(3分)若等腰三角形的两边长分别是4和10,则三角形的周长是24.【解答】解:∵等腰三角形的两边分别是4和10,∴应分为两种情况:①4为底,10为腰,则4+10+10=24;②10为底,4为腰,而4+4<10,应舍去,∴三角形的周长是24.故填24.14.(3分)如图,△ABC的两条外角平分线CD、BD交于点D,若∠D=68°,则∠A=44°.【解答】解:根据三角形的内角和定理、角平分线定义以及三角形的外角的性质,得∠D=180°﹣(∠1+∠2)(∠CBE+∠BCF)=180°﹣12(180°﹣∠ABC+180°﹣∠BCA)=180°﹣12=180°﹣1(180°+∠A)2∠A=90°﹣12∵∠D=68°,∴∠A=44°,故答案为:44°15.(3分)n边形的每个外角都相等,且它的一个内角与一个外角的度数比为5:1,则n= 12.【解答】解:设内角度数为5x°,外角度数为x°,由题意得:5x+x=180,解得:x=30,多边形的边数:360°÷30°=12,故答案为:12.16.(3分)已知点A关于x轴的对称点为B(m,3),关于y轴的对称点为C(2,n),那么m+n=﹣5.【解答】解:∵点A关于x轴的对称点为B(m,3),∴A点坐标为:(m,﹣3),∵点A关于y轴的对称点为C(2,n),∴A点坐标为:(﹣2,n),∴m=﹣2,n=﹣3,故m+n=﹣5.故答案为:﹣5.三、解答题(共5题,共52分)17.(10分)计算:(1)(x﹣6)(x﹣3)﹣x(x﹣9)(2)(x2y )2⋅yx−12y÷2x.【解答】解:(1)原式=x2﹣9x+18﹣x2+9x=18;(2)原式=x 24y2•yx﹣12y•x2=x4y﹣x4y=0.18.(10分)因式分解:(1)2am2﹣2an2(2)(m+n)2+4m(m+n)+4m2.【解答】解:(1)原式=2a(m2﹣n2)=2a(m+n)(m﹣n);(2)原式=(m+n+2m)2=(3m+n)2.19.(10分)解答题:(1)已知a+b=5,ab=3,求a﹣b的值(2)解方程:xx−1−1=3(x−1)(x+2).【解答】解:(1)∵a+b=5,ab=3,∴(a+b)2=25,即a2+b2+2ab=25,∴a2+b2=25﹣6=19,∴(a﹣b)2=a2+b2﹣2ab,=19﹣2×3,=13,即a﹣b=±√13;(2)原式可化为x(x+2)﹣(x﹣1)(x+2)=3,整理得,x+2=3,解得x=1,当x=1时,(x﹣1)(x+2)=0,故x=0是原分式方程的增根,即原分式方程无解.20.(10分)证明题:如图,AB=DC,AC=DB,AC和DB相交于O (1)求证:∠A=∠D;(2)求证:OA=OD.【解答】证明:(1)∵在△ABC和△DCB中{AC=BD AB=DC BC=BC∴△ABC≌△DCB(SSS),∴∠A=∠D;(2)∵在△ABO和△DCO中{∠AOB=∠DOC ∠A=∠DAB=DC∴△ABO≌△DCO(AAS),∴OA=OD.21.(12分)如图,平面直角坐标系,已知A(1,4),B(3,1),C(4,5).△ABC关于y轴的对称图形为△A1B1C1(1)请画出△ABC关于y轴对称的△A1B1C1;(2)在坐标轴上取点D,使得△ABD为等腰三角形,这样的点D共有8个;(3)若点P从点A处出发,向左平移m个单位.当点P落在△A1B1C1(包括边)时,求m的取值范围.【解答】解:(1)如图所示:(2)以A 为圆心AB 为半径画弧与y 轴有2个交点,以B 为圆心AB 长为半径画弧与x 轴有2个交点,与y 轴2交点,作AB 的垂直平分线与y 轴有1个交点与x 轴1个交点,因此这样的点D 共有2+2+2+1+1=8个, 故答案为:8;(3)设B 1C 1的直线解析式为y=kx+b , ∵C 1(﹣4,5),B 1(﹣3,1), ∴{5=−4k +b 1=−3k +b , 解得:{k =−4b =−11,∴B 1C 1的直线解析式为y=﹣4x ﹣11,当y=4时,x=﹣154, ∴N (﹣154,4),∵点P 从点A 处出发,向左平移m 个单位,∴2≤m ≤194.四、选择题(共2题,每题4分,共8分)22.(4分)如果x2﹣px+q=(x+1)(x﹣3),那么p等于()A.﹣2 B.2 C.﹣3 D.3【解答】解:已知等式整理得:x2﹣px+q=(x+1)(x﹣3)=x2﹣2x﹣3,可得﹣p=﹣2,q=3,解得:p=2,故选:B.23.(4分)如图,AF是△ABC的高,角平分线BD、CE交于点H,点G在BC上,CG=CD,下列结论:①∠BHC=90°+∠BAC;②HG平分∠BHC;③若HG∥AF,则△ABC为等腰三角形,其中正确的结论有()个.A.0 B.1 C.2 D.3【解答】解:∵BD,CE分别平分∠ABC,∠ACB,∴∠HBC=12∠ABC,∠HCG=12∠ACB,∵∠BHC=180°﹣∠HBC ﹣∠HCB ,∴∠BHC=180°﹣12∠ABC ﹣12∠ACB=180°﹣12(180°﹣∠BAC ), ∴∠BHC=90°+∠BAC ;故①正确; 在△CHG 和△CHD 中, {CH =CH∠HCD =∠HCG CD =CG, ∴△CHD ≌△CHG , ∴∠CHD=∠CHG ,若HG 平分∠BHC ,则∠BHG=∠CHG=∠CHD=60°,∠BHC=120°, 由①可知∠BAC=60°,显然题目没有这个条件,故②错误. ∵HG ∥AF ,AF ⊥BC , ∴∠HGC=∠AFC=90°, ∵△HCD ≌△HCG , ∴∠HDC=∠HGC=90°, ∴BD ⊥AC ,在△BDA 和△BDC 中, {∠ABD =∠CBD BD =BD ∠BDA =∠BDC , ∴△BDA ≌△BDC , ∴BA=BC ,∴△ABC是等腰三角形,故③正确.故选:C.五、填空题(共2题,每题4分,共8分)24.(4分)如图,△ABC中,BF是高,延长CB至点D,使BD=BA,连接AD,过点D 作DE⊥AB交AB的延长线于点E,当AF=BE,∠CAD=96°时,∠C=56°.【解答】解:∵BF是高,DE⊥AB,∴∠E=∠AFB=90°,在Rt△BED与△RtABF中,{BD=ABBE=AF,∴Rt△BED≌△RtABF,∴∠DBE=∠BAF,∵∠DBE=∠ABC,∴∠CBA=∠CAB,∵AB=BD,∴∠BDA=∠BAD,∵∠CBA=∠BDA+∠BAD,∴∠CBA=2∠BAD,∴∠CAB=2∠BAD,∠CAD,∴∠CAB=23∵∠CAD=96°,∴∠CAB=64°,∴∠C=180°﹣2∠CAB=52°.故答案为:52°.25.(4分)已知关于x的方程2x+m=3的解是正数,求m的取值范围.x−2【解答】解:原方程整理得:2x+m=3x﹣6,解得:x=m+6.因为x >0,所以m+6>0,即m >﹣6.①又因为原式是分式方程,所以x ≠2,即m+6≠2,所以m ≠﹣4.② 由①②可得,m 的取值范围为m >﹣6且m ≠﹣4.六、解答题(共3题,共34分)26.(10分)某公司计划从商店购买A 、B 两种签字笔,已知A 种签字笔比B 种签字笔每支单价多20元,若用400元购买A 种签字笔,用160元购买B 种签字笔,则购买A 种签字笔的支数是购买B 种签字笔支数的一半. (1)求A 、B 两种签字笔的每支单价各是多少元?(2)经商谈,商店给予该公司“购买一支A 种签字笔,赠送一支B 种签字笔”的优惠,且该公司需要的B 种签字笔的支数是A 种签字笔的2倍还多8支,且该公司购买这两种笔的总费用不超过670元,那么该公司最多可购买多少支A 种签字笔?【解答】解:(1)设购买B 种签字笔的每支单价是x 元,则购买A 种签字笔的每支单价是(x+20)元.根据题意 得400x+20=160x×12,解得x=5,经检验,x=5是原方程的解. 所以 x+20=25.答:买A 种签字笔的每支单价是25元,购买B 种签字笔的每支单价是5元;(2)设公司购买a 支A 种签字笔,则需要购买(2a+8)支B 种签字笔, 由题意得25a+5(2a+8﹣a )≤670,故该公司最多可购买21支A种签字笔.27.(12分)等腰△ABC中,AB=AC,△ABD、△ACE都是等边三角形,直线BD、CE交于点O,直线AO、BC交于点F.(1)如图1,当点D在AB左侧,点E在AC右侧时,∠AFC=90°(不用证明)(2)如图2,当点D在AB右侧,点E在AC左侧时,求证:∠AFC=90°(3)如图3,当点D在AB左侧,点E在AC左侧时,求∠AFC的度数.【解答】解:(1)观察图形,可得出:∠AFC=90°.故答案为:90°(2)证明:∵△ABD、△ACE都是等边三角形,∴∠ABO=∠ACO=60°.∵AB=AC,∴∠ABC=∠ACB,点A在线段BC的垂直平分线上,∵∠ABC=∠ABD+∠OBC,∠ACB=∠ACO+∠OCB,∴∠OBC=∠OCB,∴点O在线段BC的垂直平分线上,∴∠AFC=90°.证毕.(3)在图3中连接BE,则AO⊥BE(证明过程同(2)).设∠AEAO=α,则∠BAO=α,∠BAC=60°﹣2α.∵∠ABC=∠ACB,∠ABC+∠ACB+∠BAC=180°,=60°+α,∴∠ABC=180°−(60°−2∠)2∴∠AFB=∠ABC﹣∠BAO=60°.28.(12分)在直角坐标系中,点A坐标为(﹣3,0),点B的坐标为(0,b),以AB为边作等腰直角△ABC,其中点A、B、C成顺时针顺序排列,AB=BC.(1)如图1,求点C的坐标(含字母b)(2)如图2,若b=3,点D为边BC边上一动点,点T为线段BD的中点,TE⊥BC于T,交AC于点E,DF⊥AC于点F,求EF的长(3)点G与点A关于y轴对称,连接CG,记∠OAB=α,∠BCG=β,若α、β均为锐角,当b的取值发生变化时,α与β之间可能满足什么等量关系?请直接写出你的结论.【解答】解:(1)如图1,作CM⊥OB垂足为M,∵∠ABC=∠BMC=90°,∴∠ABO+∠,MBC=90°,∠MBC+∠MCB=90°,∴∠ABO=∠MCB,在△ABO和△BCM中,{∠∠∠∠=∠∠∠∠=90°∠∠∠∠=∠∠∠∠∠∠=∠∠,∴△ABO≌△BCM,∴AO=BM=3,BO=MC=b,MO=b﹣3,∴点C坐标(b,b﹣3).(2)如图2,作EM⊥AB垂足为M,∵OA=OB=3,∴∠BAO=∠ABO=45°,∵∠ABC=90°,∴∠OBC=∠BC﹣∠ABO=45°,∵BA=BC,∠ABO=∠OBC,∴AO=OC,BO⊥AC,∴点C在x轴上,设BT=TD=a,∵∠EMB=∠MBT=∠BTE=90°,∴四边形BMET是矩形,∴ME=BT=a,在RT△AME中,∵∠A=45°,ME=a,∴AE=√2ME=√2a,在RT△DCF中,∵∠C=45°CD=3√2﹣2a,CD=3﹣√2a,∴FG=√22∴EF=AC﹣AE﹣FG=6﹣√2a﹣(3﹣√2a)=3.(3)结论:α+β=135°,理由如下:证明:如图3中,作CM⊥OB,GN⊥CM垂足分别为M、N.由(1)可知△ABO≌△BCM,∴AO=BM,BO=CM,∵∠MOG=∠GNM=∠NMO=90°,∴四边形MNGC是矩形,∴MN=OG=AO=BM,∴NC=OM=NG,∴∠NGC=∠NCG=45°,∵CM∥OG,∴∠NGO=∠GNC=90°,∴∠OGC=135°,在四边形ABCG中,∵∠BAO+∠ABC+∠BCG+∠AGC=360°,∴α+β+90°+135°=360°,∴α+β=135°.。
2014-2015学年八年级上期末数学试卷及答案
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1. 如果二次根式2x -有意义,那么x 的取值范围是A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥ 2. 剪纸是中华传统文化中的一块瑰宝,下列剪纸图案中不是..轴对称图形的是3. 9的平方根是A .3B .±3C .3±D .81 4. 下列事件中,属于不确定事件的是 A .晴天的早晨,太阳从东方升起 B .一般情况下,水烧到50°C 沸腾C .用长度分别是2cm ,3cm ,6cm 的细木条首尾相连组成一个三角形D .科学实验中,前100次实验都失败,第101次实验会成功 5. 如果将分式2xx y+中的字母x 与y 的值分别扩大为原来的10倍,那么这个分式的值 A .不改变 B .扩大为原来的20倍 C .扩大为原来的10倍 D .缩小为原来的1106. 如果将一副三角板按如图方式叠放,那么∠1等于A .120°B .105°C .60°D .45°7. 计算32a b(-)的结果是 A. 332a b - B. 336a b - C. 338a b- D. 338a b8. 如图,在△ABC 中,∠ACB =90°, CD ⊥AB 于点D ,如果∠DCB =30°,160°45°CCB =2,那么AB 的长为A. 23B. 25C. 3D. 4 9.下列计算正确的是 A.325+= B. 1233-= C.326⨯= D.842= 10. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是 A.102B. 104C.105D. 5二、填空题(本题共18分,每小题3分) 11. 如果分式14x x --的值为0,那么x 的值是_________. 12. 计算:2(3)-=_________. 13. 在-1,0,2,π,13这五个数中任取一个数,取到无理数的可能性是_________. 14. 如图,ABC △中,90C ∠=,BD 平分ABC ∠交AC 于点D ,如果CD =6cm ,那么点D 到AB 的距离为_________cm. 15. 如图,△ABC 是边长为2的等边三角形,BD 是AC 边上的中线,延长BC 至点E ,使CE =CD ,联结DE ,则DE 的长是 .16. 下面是一个按某种规律排列的数表:第1行 1第2行 2 3 2 第3行567 22 3ABCD AC BEABCD第4行1011231314154……那么第5行中的第2个数是,第n(1n>,且n是整数)行的第2个数是 .(用含n的代数式表示)三、解答题(本题共20分,每题5分)17. 计算:381232-+-.18. 计算:2121.224a a aa a--+÷--19. 解方程:11322x x x-+=--.20. 已知:如图,点B,E,C,F在同一条直线上,AB∥DE,AB=DE,BE=CF.求证:AC=DF.A D四、解答题(本题共11分,第21题5分,第22题6分) 21. 已知30x y -=,求22(+)+2x yx y x xy y -+的值.22. 列方程解应用题:学校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要22.4万元,购买B 型计算机需要24万元.那么一台A 型计算机的售价和一台B 型计算机的售价分别是多少元?五、解答题(本题共21分,每小题7分)23. 已知:如图,△AOB 的顶点O 在直线l 上,且AO =AB .(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ;(2)在(1)的条件下, AC 与BD 的位置关系是 ;(3)在(1)、(2)的条件下,联结AD ,如果∠ABD =2∠ADB ,求∠AOC 的度数.24. 我们知道,假分数可以化为整数与真分数的和的形式.例如:32=112+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像11x x +-,22x x -,…这样的分式是假分式;像42x - ,221x x +,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:112122111111x x x x x x x x +-==+=+-----(-)+;22442(2)4422222x x x )x x x x x x -++-+===++----(. (1)将分式12x x -+化为整式与真分式的和的形式; (2)如果分式2211x x --的值为整数,求x 的整数值.25. 请阅读下列材料:问题:如图1,△ABC 中,∠ACB =90°,AC =BC ,MN 是过点A 的直线,DB ⊥MN 于点D ,联结CD .求证:BD + AD =2CD .BAOl小明的思考过程如下:要证BD+ AD =2CD,需要将BD,AD转化到同一条直线上,可以在MN上截取AE=BD,并联结EC,可证△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.小聪的思考过程如下:要证BD+ AD =2CD,需要构造以CD为腰的等腰直角三角形,可以过点C作CE⊥CD交MN于点E,可证△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.请你参考小明或小聪的思考过程解决下面的问题:(1) 将图1中的直线MN绕点A旋转到图2和图3的两种位置时,其它条件不变,猜想BD,AD,CD之间的数量关系,并选择其中一个图形加以证明;(2) 在直线MN绕点A旋转的过程中,当∠BCD=30°,BD =2时,CD=__________.MDNBCA图2BCNMDA图3AC BNDM E图1初二数学评分标准及参考答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案DCBDABCDBA二、填空题(本题共18分,每小题3分)题号 11 12 1314 1516答案13256332()212n -+三、解答题(本题共20分,每小题5分) 17.解:原式=22323-+- …… 3分 =433-. …… 5分 18.解:原式=21(1)22(2)a a a a --÷-- …… 2分=212(2)2(1)a a a a --⨯-- ……3分=21a -. ……5分19.解:11322x x x -+=-- ……1分13(2)1x x +-=- ……2分1361x x +-=- ……3分24x =2x =. ……4分经检验,2x = 是原方程的增根,所以,原方程无解. ……5分 20.证明:∵AB ∥DE ,∴∠B =∠DEC . ……1分∵BE = CF ,∴BE +EC = CF +EC ,即BC = EF . ……2分在△ABC 和△DEF 中,,AB DE B DEC BC EF ===⎧⎪⎨⎪⎩∠∠ ……3分 ∴△ABC ≌△DEF (SAS ). ……4分 ∴AC = DF .(全等三角形对应边相等)…5分 四、解答题(本题共11分,第21题5分,第22题6分)21.解:原式=()()2x yx y x y -⋅++ ……1分=x yx y-+. ……2分 ∵30x y -=,∴=3x y . ……3分∴原式=33y yy y-+. ……4分=12. ……5分22.解:设一台A 型计算机的售价是x 元,则一台B 型计算机的售价是(x +400)元.根据题意列方程,得 ……1分224000240000400x x =+ ……3分 解这个方程,得5600x = ……4分经检验,5600x =是所列方程的解,并且符合实际问题的意义. ……5分当5600x =时,+4006000x =.答:一台A 型计算机的售价是5600元,一台B 型计算机的售价是6000元. ……6分五、解答题(本题共21分,每小题7分) 23.(1)如图1.……1分 (2)平行. ……2分 (3)解:如图2,由(1)可知,△AOB 与△COD 关于直线l 对称, ∴△AOB ≌△COD .……3分∴AO =CO ,AB = CD ,OB = OD ,∠ABO =∠CDO . 图1 图2 ∴∠OBD =∠ODB . ……4分∴∠ABO+∠OBD =∠CDO+∠ODB ,即∠ABD =∠CDB . ∵∠ABD =2∠ADB ,∴∠CDB =2∠ADB .∴∠CDA =∠ADB .……5分由(2)可知,AC ∥BD ,∴∠CAD =∠ADB .∴∠CAD =∠CDA ,∴CA = CD .……6分 ∵AO = AB ,∴AO = OC = AC ,即△AOC 为等边三角形. ∴∠AOC = 60°. ……7分 24.解:(1)12x x -+()232x x +-=+ ……1分2232x x x +=+-+ ……2分312x+=-. ……3分(2)2211x x --22211x x -+=- ()()21111x x x +-+=-()1211x x =++-. ……5分 ∵分式的值为整数,且x 为整数, ∴11x -=±,∴x =2或0.……7分25.解:(1)如图2,BD -AD =2CD . ……1分ABCDOllO DCB A如图3,AD -BD =2CD . ……2分证明图2:( 法一)在直线MN 上截取AE =BD ,联结CE .设AC 与BD 相交于点F ,∵BD ⊥MN ,∴∠ADB =90°,∴∠CAE+∠AFD =90°.∵∠ACB =90°,∴∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠ACE =∠BCD .∴∠ACE -∠ACD =∠BCD -∠ACD ,即∠2=∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠2=90°. ∵∠ACB =90°,∴∠2+∠ACD =∠ACB+∠ACD , 即∠ACE =∠BCD .设AC 与BD 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠CAE+∠AFD =90°,∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (ASA ). ……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 证明图3:( 法一)在直线MN 上截取AE =BD ,联结CE . 设AD 与BC 相交于点F ,∵∠ACB =90°,∴∠2+∠AFC =90°. ∵BD ⊥MN ,∴∠ADB =90°,∠3+∠BFD =90°. ∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠1=∠4.∴∠1+∠BCE =∠4+∠BCE ,即∠ECD =∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分F12图2A C BND ME FE M DNBC A 图221E BCN M DA 图3123F 411 ∵DE = AD -AE = AD -BD ,∴AD -BD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠DCE =90°.∵∠ACB =90°,∴∠ACB -∠ECB = ∠DCE -∠ECB ,即∠1=∠4. 设AD 与BC 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠2+∠AFC =90°,∠3+∠BFD =90°.∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (ASA ).……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分∵DE = AD -AE = AD -BD ,∴AD -BD =2CD .……5分 (2)31± .……7分4F 321 图3A D M N C B E。
2014-2015学年北京市门头沟区八年级上期末考试数学试题及答案
门头沟区2014—2015学年度第一学期期末调研试卷八年级数学.试题答案一律在试卷上作答。
题 号一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的,请将答案填写在下面表格内.1.25的算术平方根是( ).A .5B .5±C .5± D.5 2.下列实数中,是无理数的是( ).A .3π B .3.0- C .227 D 3.下列计算中正确的是( ).A =B . =C . =D . 24=-4.下列图形中,是轴对称图形的是( ).5.方程2460x x --= 的根的情况是( ) .A .有两个相等实数根B .有两个不相等实数根C .没有实数根D .无法判断 6.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .2,2,3B .2,3,4C .3,4,5D .5,8,13 7.下列根式中,最简二次根式是( ). A .21BC .8 D8.下列各式中,正确的是( ).A .326x xx = B .n m n x m x =++ C . a b a b c c -++=- D .221132236d cd cd cd ++= 9.如图,在△ABC 中,AB =AC =4,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 分别交AB 、AC 于M 、N ,则△AMN 的周长为( ). A .12 B .4 C .8 D .不确定10.已知△ABC 的三条边分别为3,4,6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条.A .6B .7C .8D .9 二、填空题(本题共20分,每小题2分) 11.如果分式2132x x -+的值为0,那么x = . 12x 的取值范围是 .13.如图,点D 、E 分别在线段AB 、AC 上,AB=AC ,不添加新的线段和字母,要使 △ABE ≌△ACD ,需添加的一个条件是 (只写一个条件即可). 14.将一元二次方程x 2-6x -5=0化成(x -3)2=b 的形式,则b =_______. 15.一个三角形的两条边长为3,8,且第三边长为奇数,则第三边长为_______.16.当12x <<= .17.已知x =1是关于x 的一元二次方程22+10x kx -=的一个解,则k 的值是_______. 18.如图,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .若∠BAE =40°,则∠C =_______°.19.12111R R R =+是物理学中的一个公式,其中各个字母都不为零且120R R +≠.用12R R ,表示R ,则R =_______.20.如图,已知点P 在锐角∠AOB 内部,∠AOB =α,在OB边上存在一CBAENMEDCBA点D ,在OA 边上存在一点C ,能使PD+DC 最小,此时∠PDC =_______. 三、计算(本题共10分,每小题5分) 21.计算:26193a a +-+. 22.计算:(四、解方程(本题共15分,每小题5分)23.23620x x --=. 24.3(2)24x x x +=+. 25.6122x x x +=-+.五、解答题(本题共17分,其中26-27每小题5分,28题7分)26.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB=FD . 求证:AE=FC .27.如图,△ABC 中,AD ⊥BC 于点D ,AD=BD ,∠C =65°,求∠BAC 的度数.EB C DA28.已知:在Rt△ABC中,∠C=90°.(1)请在线段BC上作一点D,使点D到边AC、AB的距离相等(要求:尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,若AC=6,BC=8,请求出CD的长度.六、解答题(本题共18分,每小题6分)29.关于x的一元二次方程2410x x m-+-=有两个相等的实数根,求m的值及方程的根.30.先化简,再求值:22521132x x x xx x x x⎛⎫-+++-÷⎪-+-⎝⎭,其中2340x x--=.BCA31.列方程解应用题为了迎接春运高峰,铁路部门日前开始调整列车运行图,2015年春运将迎来“高铁时代”.甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11小时,大大方便了人们出行.已知高铁行使速度是原来火车速度的3.2倍,求高铁的行使速度.七、解答题(本题10分)32.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C 是线段AB 所在平面内任意一点,分别以AC 、BC 为边,在AB 同侧作等边 三角形ACE 和BCD ,联结AD 、BE 交于点P .(1)如图1,当点C 在线段AB 上移动时,线段AD 与BE 的数量关系是: . (2)如图2,当点C 在直线AB 外,且∠ACB <120°,上面的结论是否还成立?若成立请证明,不成立说明理由.此时∠APE 是否随着∠ACB 的大小发生变化,若变化写出变化规律,若不变,请求出∠APE 的度数.(3)如图3,在(2)的条件下,以AB 为边在AB 另一侧作等边三角形△A BF ,联结AD 、BE 和CF 交于点P ,求证:PB+PC+P A=BE .PEDC BA图2图1PEDBCA草稿纸图3FPEDCBA门头沟区2014—2015学年度第一学期期末调研八年级数学参考答案及评分参考一、选择题(本题共30分,每小题3分)21.计算:26193a a +-+. 解:=61(3)(3)3a a a++-+………………………… ………………………………1分=63(3)(3)(3)(3)a a a a a -++-+- ………… …………………………………2分=6(3)(3)(3)a a a +-+-……………………… …………………………………………3分=3(3)(3)a a a ++-… ………………………………………………………………4分=13a -.……………………………………………………………………………5分 22.计算: ( 解:=(2分 =……………………………………………………………………3分 =43-.……………………………………………………………………………5分 四、解方程(本题共15分,每小题5分)23.23620x x --= . 解:∵a=3,b=-6,c=-2∴224(6)43(2)=b ac -=--⨯⨯-60>0 ………………………………………2分∴x ===……………………………………4分所以方程的解是123333x x +==.……………………………………5分 24.3(2)24x x x +=+.解:3(2)2(2)x x x +=+…………………………………………………………………1分3(2)2(2)0x x x +-+=……………………………………………………………2分 (32)(2)0x x -+=…………………………………………………………………3分 320,20x x -=+= ………………………………………………………………4分∴122,23x x ==-.…………………………………………………………………5分 25.6122x x x +=-+. 解:(2)6(2)(2)(2)x x x x x ++-=+-………………………………………………2分2226124x x x x ++-=-88x =1x =.………………………………………………………… 4分经检验,1x =是原方程的根.所以原方程的根是1x =.……………………………………………………………5分五、解答题(本题共17分,其中26-27每小题5分,28题7分) 26.证明:∵BE ∥DF∴∠ABE =∠FDC ……………………………………………………………1分 在△ABE 和△FDC 中,A F AB FDABE FDC ∠=∠=∠=∠⎧⎪⎨⎪⎩EB C DA∴△ABE ≌△FDC (ASA )……………………4分∴AE=FC (全等三角形对应边相等).………5分 27.解:∵AD ⊥BC∴∠B +∠BAD =90°(直角三角形两锐角互余)……1分 ∵AD=BD∴∠B =∠BAD=45°(等边对等角) ………………3分 ∵∠C =65°∴∠BAC=180°-∠B-∠C =180°-45°-65°=70°(三角形内角和等于180°).…5分28.(1)作图正确,保留痕迹,有结论:所以点D 为所求.……………………………2分 (2)解:过点D 做DE ⊥AB 于E ,设DC =x ,则BD =8-x∵R t △ABC 中,∠C =90°,AC =6,BC =8 ∴由勾股定理得AB=………………………………………3分∵点D 到边AC 、AB 的距离相等∴AD 是∠BAC 的平分线 又∵∠C =90°,DE ⊥AB∴DE =DC =x ……………………………………4分 在Rt △ACD 和Rt △AED 中,AD ADDC DE=⎧⎨=⎩ ∴Rt △ACD ≌Rt △AED (HL )∴AE =AC =6…………………………………………5分 ∴BE =4Rt △DEB 中,∠DEB =90° ∴由勾股定理得222DE BE BD +=即2224(8)x x +=-………………………………………………………………6分 解得x =3答:CD 的长度为3.………………………………………………………………7分六、解答题(本题共18分,每小题6分)29. 解:△=224(4)41(1)=-4+20b ac m m -=--⨯⨯-∵方程有两个相等的实数根∴△=0………………………………………………………………………………2分 即4200m -+=∴m =5………………………………………………………………………………3分当m=5时,方程为2440x x -+=………………………………………………4分2(2)0x -=………………………………………………………………………5分∴122x x == ……………………………………………………………………6分答:m 的值是5,方程的根是2.30.22521132x x x x x x x x ⎛⎫-+++-÷ ⎪-+-⎝⎭,其中2340x x --=. 解:=25(1)23(1)1x x x x x x x ⎡⎤-+--⨯⎢⎥-++⎣⎦.…………………………………………………………2分 =523x x x x----. ………………………………………………………………………3分 =6(3)x x --. ………………………………………………………………………4分∵2340x x --= ∴234x x -= ∴原式=6(3)x x --=263x x --=32-.………………………………………………6分31.解:设原来火车的速度是x 千米/时,根据题意得12801280113.2x x-= ……………………………………………………………3分 解得x =80 ………………………………………………………………4分经检验,是原方程的根且符合题意. ………………………………………5分 3.2x =256答:高铁的行使速度是256千米/时.………………………………………………6分 七、解答题(本题10分)32.(1)AD =BE .…………………………………………………………………………1分 (2)AD =BE 成立,∠APE 不随着∠ACB 的大小发生变化,始终是60°. 证明:∵△ACE 和△BCD 是等边三角形∴EC = AC ,BC =DC ∠ACE =∠BCD =60°∴∠ACE +∠ACB =∠BCD +∠ACB ,即∠ECB =∠ACD在△ECB 和△ACD 中,EC AC ECB ACD BC DC =∠=∠=⎧⎪⎨⎪⎩∴△ECB ≌△ACD (SAS )∴AD =BE ……………………………………4分 ∠CEB =∠CAD 设BE 与AC 交于Q又∵∠AQP =∠EQC ,∠AQP+∠QAP +∠APQ =∠EQC+∠CEQ +∠ECQ=180° ∴∠APQ =∠ECQ =60°,即∠APE =60°. …………………………………………6分 (3)由(2)同理可得∠CPE =∠EAC =60° …………………………………………7分在PE 上截取PH=PC ,连接HC , ∴△PCH 为等边三角形 ∴HC=PC ,∠CHP =60° ∴∠CHE =120°又∵∠APE =∠CPE =60° ∴∠CP A =120° ∴∠CP A =∠CHE 在△CP A 和△CHE 中,CPA CHE CAP CEH PC HC ∠=∠∠=∠=⎧⎪⎨⎪⎩∴△CP A ≌△CHE (AAS )∴AP =EH …………………………………………………………………………9分 ∴PB+PC+P A= PB+PH+ EH =BE .………………………………………………10分 说明:1.各题若只有结果无过程只给1分;结果不正确按步骤给分。
2014-2015学年八年级数学上学期期末试卷
2014-2015八年级数学上册期末试题注意事项:本试卷分第I 卷和第II 卷两部分。
第I 卷为选择题,共36分,答案请填在题后答题栏内;第II 卷为非选择题,共84分。
I 、II 卷合计120分,考试时间为90分钟。
第I 卷(选择题 共36分)一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的) 1. 下列实数中是无理数的是( ) A.4 B.π C. ⋅⋅83.0 D.722-2. 下列四组数据中,不能..作为直角三角形的三边长的是( ) A . 7,24,25 B .6,8,10 C .9,12,15 D .3,4,63. 点(3,5)P -关于y 轴对称的点的坐标为( )A . (3,5)--B .(5,3)C .(3,5)-D .(3,5) 4. 下列各式中,正确的是( ) A .416±= B .416=± C .3273-=- D .4)4(2-=-5.下列计算正确的是( )A 、3312=-B 、32=6⨯C 、3+2=5D 、428=÷ 6.已知直线y=2x 与直线y=-x+b 的交点为(1,a ),则a 与b 的值为( ).A. 3,2==b aB. 3,2-==b aC. 3,2=-=b aD. 3,2-=-=b a7.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入A 袋中,那么击打白球时,必须 证∠1的度数为( )A .75°B .60°C .45°D .30°8. 点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A . ()3,4- B .()4,3-- C .()4,3- D .()4,3- 9.下列四个命题中,真命题有( )① 两条直线被第三条直线所截,内错角相等.第7题图AO ac1008b/t 秒y /米② 如果∠1和∠2是对顶角,那么∠1=∠2. ③ 三角形的一个外角大于任何一个内角.④ 如果02>x ,那么0>x .A .1个B .2个C .3个D .4个10.已知一次函数y=kx+b,y 随着x 的增大而增大,且kb<0,则在直角坐标系内它的大致图象是( )11.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:① BD=CE ;②∠ACE+∠DBC=45°;③ BD ⊥CE ;④∠BAE+∠DAC =180°其中结论正确的个数是( ) A.1 B.2 C.3D.4第12题图12.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人之间的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:① a =8; ② b =92; ③ c =123. 其中正确的是( )A. ② ③B .① ② ③C .① ②D .① ③第II 卷(非选择题 共84分)EDCAB第11题图题号 一二 三总分得分22 23242526二、填空题(每小题3分,共18分) 13. 144的算术平方根是 _________ ,的平方根是 _________ .14. 如果正比例函数y kx =的图象经过点(-2,1),那么k 的值等于 .15.若532+y xb a 与x yb a2425-是同类项则=x .=y .16. 如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,则 ∠1+∠2的度数为 .17.如图,一次函数11y k x b =+的图象1l 与22y k x b =+的图象2l 相交于点P ,则方程组1122y k x b y k x b =+⎧⎨=+⎩的解是 .18、如图AB=AC,则数轴上点C 所表示的数为_____________三、解答题(本大题共8个小题,满分66分。
2014-2015学年西城区初二数学期末试题及答案(包括附加题)
北京市西城区2014— 2015学年度第一学期期末试卷八年级数学 2015.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.下列图形中,是轴对称图形的是( ).A B C D2.用科学记数法表示0.000 053为( ).A .0.53×10-4B .53×10-6C .5.3×10-4D .5.3×10-53.函数y 中自变量x 的取值范围是( ).A .x ≥3B .x ≤3C .x >3D .x ≠34.如图,△ABC 沿AB 向下翻折得到△ABD ,若∠ABC =30°,∠ADB =100°,则∠BAC 的度数是( ).A .30°B .100°C .50°D .80°5.下列二次根式中,最简二次根式是( ).A .21 B .17 C .75 D .35a 6.若将分式2x x y +中的字母x 与y 的值分别扩大为原来的10倍,则这个分式的值( ). A .扩大为原来的10倍 B .扩大为原来的20倍C .不改变D .缩小为原来的1107.已知一次函数1y kx =+,y 随x 的增大而增大,则该函数的图象一定经过( ).A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.下列判断中错误..的是( ). A .有两角和其中一个角的对边对应相等的两个三角形全等B .有一边相等的两个等边三角形全等C .有两边和一角对应相等的两个三角形全等D .有两边和其中一边上的中线对应相等的两个三角形全等9.某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x 米,则根据题意所列方程正确的是( ).A .150015002(120%)x x-=- B .150015002(120%)x x =+- C .150015002(120%)x x -=+ D .150015002(120%)x x =++10.七个边长为1的正方形按如图所示的方式放置在平面直角坐标系xOy 中,直线l 经过点A (4,4)且将这七个正方形的面积分成相等的两部分,则直线l 与x 轴的交点B 的横坐标为( ).A .23 B .34 C .45 D .79二、填空题(本题共25分,第18题4分,其余每小题3分)11.若分式14x +在实数范围内有意义,则x 的取值范围是 . 12.分解因式:22363x xy y -+= .13.已知一次函数23y x =--的图象经过点A (-1,y 1)、点B (-2,y 2),则y 1 y 2. (填“>”、“<”或“=”)14.如图,在△ABC 中,边AB 的垂直平分线分别交BC 于点D ,交AB 于点E .若AE =3,△ADC 的周长为8,则△ABC 的周长为 .15.计算:22224a b ab c c÷= . 16.若点M (a ,3)和点N (2,a +b )关于x 轴对称,则b 的值为 .17.如图,∠AOB =30°,OP 平分∠AOB ,PD ⊥OB 于点D ,PC ∥ 交OA 于点C .若PC =10,则OC = ,PD = .18.甲、乙两车从A 地出发前往B 地.在整个行程中,汽车离开A 地的距离 y (km )与时间t (h )的对应关系如图所示,则乙车的平均速度为 km/h ;图中a 的值为 km ;在乙车行驶的过程中,当t = h 时,两车相距20km .三、解答题(本题共15分,第19题4分,第20题5分,第21题6分)19 解:20.已知:如图,点A ,B ,C ,D 在一条直线上,AB =CD ,AE ∥FD ,且∠E =∠F . 求证:EC=FB .证明:21.先化简,再求值:m m m m --⋅--+342)252(,其中34m =. 解:四、解答题(本题共16分,第23题6分,其余每小题5分)22.解分式方程:12422=-+-x x x . 解:23.如图,在平面直角坐标系xOy 中,一次函数=+y kx b 的图象经过点A (2-,4),且与正比例函数23=-y x 的图象交于点B (a ,2).(1)求a 的值及一次函数=+y kx b 的解析式;(2)若一次函数=+y kx b 的图象与x 轴交于点C ,且正比例函数23=-y x 的图象向下平移m (m >0)个单位长度后经过点C ,求m 的值;(3)直接写出关于x 的不等式23->+x kx b 的解集.解:(1)(2)(3)关于x 的不等式23->+x kx b 的解集为 .24.已知:如图,线段AB 和射线BM 交于点B .(1)利用尺规..完成以下作图,并保留作图痕迹.(不要求写作法)①在射线BM上求作一点C,使AC=AB;②在线段AB上求作一点D,使点D到BC,AC的距离相等;(2)在(1)所作的图形中,若∠ABM=72°,则图中与BC相等的线段是.五、解答题(本题共14分,每小题7分)25.如图,在平面直角坐标系xOy中,直线l与x轴交于点A(4 ,0),与y轴的正半轴交于点B .点C 在直线1=-+y x 上,且CA ⊥x 轴于点A .(1)求点C 的坐标;(2)若点D 是OA 的中点,点E 是y 轴上一个动点,当EC +ED 最小时,求此时点E 的坐标;(3)若点A 恰好在BC 的垂直平分线上,点F 在x 轴上,且△ABF 是以AB 为腰的等腰三角形,请直接写出所有满足条件的点F 的坐标.解:(1)(2)(3)点F 的坐标为 .26.已知:在△ABC 中,∠ABC <60°,CD 平分∠ACB 交AB 于点D ,点E 在线段CD 上(点E不与点C ,D 重合),且∠EAC =2∠EBC .(1)如图1,若∠EBC=27°,且EB=EC,则∠DEB=°,∠AEC=°;(2)如图2.①求证:AE+AC=BC;②若∠ECB=30°,且AC=BE,求∠EBC的度数.图1 图2(2)①证明:②解:北京市西城区2014— 2015学年度第一学期期末试卷八年级数学附加题 2015.1试卷满分:20分一、填空题(本题6分)1.已知2(1)=8+,反之,8+=22121+⨯=2(1+.又如,12-=122-=222-=2.参考以上方法解决下列问题:(1)将6+写成完全平方的形式为 ;(2)若一个正方形的面积为8-,则它的边长为 ;(3)4的算术平方根为 .二、解答题(本题共14分,每小题7分)2.我们知道,数轴上表示1x ,2x 的两个点之间的距离可以记为d =12-x x .类似地,在平面直角坐标系xOy 中,我们规定:任意两点M (1x ,1y ),N (2x ,2y )之间的“折线距离”为d (M ,N )=1212-+-x x y y .例如,点P (3,9)与Q (5,2-)之间的折线距离为d (P ,Q )=359(2)-+--=211+=13. 回答下列问题:(1)已知点A 的坐标为(2,0).①若点B 的坐标为(3-,6),则d (A ,B )= ;②若点C 的坐标为(1,t ),且d (A ,C )=5,则t = ;③若点D 是直线=y x 上的一个动点,则d (A ,D )的最小值为 ;(2)已知O 点为坐标原点,若点E (x ,y )满足d (E ,O )=1,请在图1中画出所有满足条件的点E 组成的图形.备用图 图13.已知:在等腰三角形ABC 中,AB =AC ,AD ⊥BC 于点D .以AC 为边作等边三角形ACE ,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:∠FEA=∠FCA;②猜想线段FE,F A,FD之间的数量关系,并证明你的结论;(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的同侧..时,利用图2探究线段FE,F A,FD之间的数量关系,并直接写出你的结论.图1 图2解:(1)①证明:②线段FE,F A,FD之间的数量关系为:_____________________________;证明:(2)线段FE,F A,FD之间的数量关系为:_____________________________.北京市西城区2014— 2015学年度第一学期期末试卷八年级数学参考答案及评分标准 2015.1一、选择题(本题共30分,每小题3分)三、解答题(本题共15分,第19题4分,第20题5分,第21题6分)19.解:原式= …………………………………………………………3分=. ………………………………………………………………………4分20.证明:∵点A ,B ,C ,D 在一条直线上,AB =CD , ∴AB +BC=CD +BC .即AC=DB . ………………………………………………………………………1分 ∵AE ∥FD ,∴∠A=∠D . ……………………………………………………………………2分 在△AEC 和△DFB 中 ,,,E F A D AC DB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△DFB . ……………………………………………………………4分 ∴EC =FB . ………………………………………………………………………5分21.解:mm m m --⋅--+342)252( (2)(2)52423m m m m m+---=⋅-- ………………………………………………………1分mm m m --⋅--=3)2(2292 …………………………………………………………………2分 mm m m m --⋅--+=3)2(22)3)(3( …………………………………………………………3分 )3(2+-=m ………………………………………………………………………4分 62--=m . ………………………………………………………………………5分 当34m =时,原式=3264-⨯-=152-. …………………………………………… 6分四、解答题(本题共16分,第23题6分,其余每小题5分)22.解:去分母得 4)2(22-=++x x x . …………………………………………………2分 整理得 42222-=++x x x . ……………………………………………………3分 解得 3-=x . ……………………………………………………………………4分 经检验3-=x 是原分式方程的解. ………………………………………………5分 ∴原分式方程的解为3-=x .23.解:(1)∵直线23=-y x 经过点B (a ,2),∴223a =-.解得 3a =-. ……………………………………………………………… 1分∵直线=+y kx b 经过点A (2-,4)和点B (3-,2),∴42,23.=-+⎧⎨=-+⎩k b k b …………………………………………………………… 2分解得2,8.=⎧⎨=⎩k b∴直线=+y kx b 的解析式为28=+y x . ………………………………… 3分(2)当0=y 时,280+=x ,解得4=-x .∴点C 的坐标为(4-,0). ……………………………………………… 4分 设平移后的直线的解析式为23y x m =--. ∵平移后的直线经过点C (4-,0),∴ 20(4)3m =-⨯--.解得83m =. ………………………………………………………………… 5分(3) 3<-x .…………………………………………………………………… 6分24.解:(1)①如图1,点C 即为所求; ……………… 1分 ②如图1,点D 即为所求; ……………… 3分(2)AD ,CD . ………………………………… 5分(阅卷说明:两个答案各1分)五、解答题(本题共14分,每小题7分) 25.解:(1)∵CA ⊥x 轴于点A ,且点A 的坐标为(4-,0),∴点C 的横坐标为4-.∵点C 在直线1=-+y x 上,∴点C 的坐标为(4-,5). ……………………………………………… 1分 (2)∵点D 是OA 的中点, ∴点D 的坐标为(2-,0).作点D 关于y 轴的对称点'D ,则'D 的坐标为(2,0). …………… 2分 连接'CD 交y 轴于点E ,此时EC +ED 的值取到最小.设直线'CD 的解析式为=+y kx b ,则 54,02.=-+⎧⎨=+⎩k b k b解得5,65.3⎧=-⎪⎪⎨⎪=⎪⎩k b∴直线'CD 的解析式为5563=-+y x . …………………………………… 3分 当0=x 时,53=y . ∴点E 的坐标为(0,53). ………………………………………………… 4分 (3)(4,0)或(1,0)或(9-,0). …………………………………… 7分(阅卷说明:每个答案1分)26.解:(1)54,99; …………………………………………………………………… 2分(2)①证明:在CB 上截取CF ,使CF =CA∵CD 平分∠ACB , ∴∠1=∠2.在△ACE 和△FCE 中, AC =FC , ∠1=∠2,EC =EC ,∴△ACE ≌△FCE . ……………………………………………… 3分 ∴∠3=∠4, AE =FE . ∵∠4=∠5+∠6, ∴∠3=∠5+∠6. ∵∠3=2∠6, ∴∠5=∠6. ……………………………………………………… 4分 ∴FB =FE . ∴AE =FB .图2 图1∴AE +AC = FB +FC = BC . ……………………………………… 5分②解:连接AF .(如图3)∵∠1=∠2=30°, ∴∠ACF =∠1+∠2=60°. ∵AC =FC ,∴△ACF 是等边三角形. ∴AF =AC ,∠FAC =60°. ∵AC =BE , ∴BE =AF .在△BFE 和△AEF 中, BF =AE , FE =EF , BE =AF ,∴△BFE ≌△AEF . ………………………………………………… 6分 ∴∠6=∠7. ∵∠7+∠3=60°, ∴∠6+∠3=60°. ∵∠3=2∠6, ∴∠6+2∠6=60°. ∴∠6=20°. 即∠EBC =20°. ……………………………………………………… 7分(阅卷说明:其他正确方法相应给分)北京市西城区2014— 2015学年度第一学期期末试卷八年级数学附加题参考答案及评分标准 2015.1一、填空题(本题6分)1.(1)2(1; ………………………………………………………………………… 2分 (2………………………………………………………………………… 4分 (3. ………………………………………………………………………… 6分二、解答题(本题共14分,每小题7分)2.解:(1)① 11; …………………………………………………………………………1分 ② 4或4-; ………………………………………………………………… 3分 (阅卷说明:两个答案各1分)③ 2; ………………………………………………………………………… 5分 (2)如图1所示. ………………………………………………………………… 7分图3图13.(1)①证明:如图2.∵AB=AC,∴∠1=∠2.∵AD⊥BC于点D,∴直线AD垂直平分BC.∴FB=FC.∴∠FBC=∠FCB.图2∴∠FBC-∠1=∠FCB-∠2,即∠3=∠4.………………………………………………………………………1分∵等边三角形ACE中,AC=AE,∴AB=AE.∴∠3=∠5.∴∠4=∠5.即∠FEA=∠FCA.………………………………………………………………2分②FE+F A=2FD.…………………………………………………………………3分证明:在FC上截取FN,使FN=FE,连接EN.(如图3)∵∠FME =∠AMC,∠5=∠4,∴180°-∠5-∠FME=180°-∠4-∠AMC,即∠EFM =∠CAM.∵等边三角形ACE中,∠CAE =60°,∴∠EFM =60°.∵FN=FE,∴△EFN为等边三角形.∴∠FEN =60°,EN=EF.∵△ACE为等边三角形,∴∠AEC=60°,EA=EC.∴∠FEN =∠AEC.∴∠FEN-∠MEN =∠AEC-∠MEN,图3即∠5=∠6.在△EF A和△ENC中,EF=EN,∠5=∠6,EA=EC,∴△EF A≌△ENC.………………………………………………………4分∴F A=NC.∴FE+F A=FN+NC =FC.∵∠EFC=∠FBC+∠FCB =60°,∠FBC=∠FCB,∴∠FCB=1260°=30°.∵AD⊥BC,∴∠FDC=90°,∴FC=2FD.∴FE+F A=2FD.…………………………………………………………5分(2)FE+2FD=F A.………………………………………………………………………7分(阅卷说明:其他正确方法相应给分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年
八年级数学上学期期末考试试题
(考试时间:120分钟;满分:120分)
第I 卷
一、选择题(本题满分24分,共有8道小题,每小题3分)
下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1. 在﹣3.14159…,∙
1.2,2
π
,6.1,511,3001.0-中,无理数有( )个
A. 2
B. 3
C. 4
D. 5
2.下列计算错误的是( ) A .32333=- B .()
9
1
32
=
-- C .-2+2-=0 D .283±= 3. 在平面直角坐标系中,点P (-3,2)关于x 轴的对称点的坐标为( ). A .(2,-3)
B .(-2,3)
C .(-3,2)
D .(-3,-2)
4. 如图,△ABC 中,∠C =450,点D 在AB 上,点E 在BC 上, 若AD =DB =DE ,AE =1,则AC 的长为( ) A.5 B.2 C.3 D.2
5. 下列语句是命题的是 ( )
A .量线段A
B 的长度 B .同位角相等,两直线平行吗?
C .直角三角形两个锐角互余
D .画线段AB =CD 6. 如图,下列哪种说法是错误的( ) A. ∠B >∠ACD B. ∠B +∠ACB =180°-∠A
C.
∠B +∠ACB < 180°
D. ∠HEC >∠B
7.下列一次函数中,y 的值随着x 值的增大而增大的是( ).
A .y =﹣x -1 B. y =0.3x C.y =-x +1 D.y =-x
8. 为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文,已知加密规则为:明文a ,b ,对应密文a -2b ,2a +b .例如,明文1,2,对应密文-3,4.当接收方收到密文是1,7时,则解密得到的明文为( ) A. -1,1 B. 1,3 C. 3,1 D. 1,1
2014-2015学年度第一学期学业水平阶段性检测
八年级数学试题
第II 卷
二、填空题(本题满分18分,共有6道小题,每小题3分)
9. 方程组⎩⎨⎧=+=-1202y x x y 的解为⎩
⎨⎧==84
y x ,则一次函数y =2x 和y=12﹣x 图像的交点坐标
为 .
10. 把命题“直角三角形两锐角互余”改写成:如果________,那么__________. 11. 一个三角形的三边之比为13:12:5,且周长为60cm ,则它的面积是 2cm
12. 某工厂去年的利润(总收入—总支出)为200万元.今年总收入比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元.设去年的总收入为x 万元、总支出为y 万元,根据题意可列方程组 .
13. 甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:
根据表中数据,可以认为三台包装机中, 包装机包装的茶叶质量最稳定。
14. 勾股定理是几何中一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,
则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形
内得到的,∠BAC =90°,AB =3,AC =4,
点D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,则长方形
KLMJ 的面积为
三、作图题(4分)
15. 如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点画一个三角形,使三角形三边长为3,5,8.
四 、解答题(本大题满分74分)
16. 化简计算(本题满分8分,每小题4分) (1)5
1
202453+
- (2)3642
20
10-⨯
17. 解方程组(本题满分6分)
⎩
⎨⎧-=--=+29544
2y x y x 18. (本题满分6分)
如图,△
ABC
中,∠A =65º,点D 在边AC 上,连接BD ,作∠DCE =∠ABD =30º,求∠BEC 的度数.
19. 列方程组解决实际问题(本题满分8分)
我市某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2间甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比不打折前少花多少钱?
20.(本题满分8分).
某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300学生零花钱零花钱的最主要用途情况、九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.
① ②
九年级同学完成家庭作业时间情况统计表:
根据以上信息,请回答下列问题:
(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少?
(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;
(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)
21.(本题满分8分)
如图,A l 与 B l 分别表示A 步行与B 骑车同一路上行驶的路程S 与时间t 的关系.B 自行车遇到故障中途停下修理1小时。
若B 的自行车不发生故障,保持出发时的速度前进,那么经过多少时间与A 相遇?
22.(本题满分8分)
如图,直线AB ∥CD ,并且被直线MN 所截,MN 分别交AB 、
CD 于点E 、F ,点Q 在PM
上,且∠EPM =∠FQM 。
求证:∠AEP =∠CFQ .
23. (本小题满分10分) 【提出问题】
已知P 是∠ABC 、∠ACB 的角平分线的交点,你能找到∠P 、∠A 的关系吗? 【分析问题】
在解决这个问题时,小明是这样做的:先找一个例子,如∠A =800
度,计算出∠P =1300
,随后他又举了几个例子,并对结
论进行了证明,从而找到∠P 与∠A 的关系:∠P =90°
N
+
2
1
∠A 在解决问题的过程中,小明运用了“由特例得到猜想,证明得出一般
结论”的方法,你能用这种方法解决下面的两个问题。
【解决问题】
(1)若点P 是∠ABC 、∠ACB 的三等分线的交点,即∠PBC = 3
1
∠ABC ,∠PCB =
3
1
∠ACB ,则∠P 与∠A 的关系为_____________,请证明你的结论。
(2)若P 是∠ABC 、∠ACB 的四等分线交点,∠PBC =41∠ABC , ∠PCB =4
1∠ACB ,则∠P 与∠A 的关系为__________。
(直接写出答案,不需证明) (3) 若P 是∠ABC 、∠ACB 的n 等分线交点,∠PBC =
n 1∠ABC , ∠PCB =n
1
∠ACB , 则∠P 与∠A 的关系为__________。
(直接写出答案,不需证明) 24.(本小题满分12分)
在平面直角坐标系中,点A 从原点O 出发,每次向上移动2个单位长度或向右移动1个单位长度.
(1)实验操作:
在平面直角坐标系中描出点A 从点O 出发,移动1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:
(2)观察发现:
任一次移动,点A 可能到达的点在我们学过的一种函数的图象上, ①求移动1次后点A 可能到达的点所在图像的函数表达式;
②移动2次后在函数 的图象上,……由此我们知道,移动n 次后在函数 的图象上.(请填写相应的函数表达式) (3)探索运用:
点A 从点O 出发经过n 次移动后,到达直线y =x 上的点B ,且平移的总路径长为20,求点B 的
坐标.。