(完整版)图吸收光谱曲线

合集下载

光谱曲线讲解

光谱曲线讲解

这是400-700nm0度绿色膜的测试曲线,因为垂直看要反绿色,所以0度 测试时520nm处的透过要比其他波段(420-480nm,550-680nm)低一些。 同一片镜片,不同角度测试,曲线不同。曲线不同,颜色就不会一样。 所以垂直看是绿色的镜片,斜着看怎么还可能是绿色呢?
上图是要求一个面反黄绿色、一个面反紫红色,基片为HB720(黑玻璃)的850nm0度双面AR的光谱测试 曲线。这条曲线只能看出850nm处的透过率是否满足任务单要求,至于反什么颜色,是看不出来的!因 为黑玻璃会吸收可见光,无论你镀什么膜上去,测透过基本都是0,根本就不知道决定了镜片反光颜色 的400-700nm波段的光谱曲线是什么样的,所以需要测试反射光谱。
从此反射曲线可以看出,400-700波段反射最高点在550nm,所 以反黄绿色。如果偏短到532nm,是墨绿色;如果偏长到600nm, 是橙色。
二、分光片光谱曲线讲解
• 分光片是指把一束光分为两束的镜片,按角度可分为0度和45度。有单点和 某一波段的分类。单点就是只考虑一个点的透过和反射,而某一波段就是 要求在这个波段内,每一个波长的光的透过率或者反射率要尽量一致。
上图这种实测的中心波长比要求的中心波长大的情况成为偏长。
短波通(SP)
• 短波通,顾名思义,就是短波要透过,长波要截止, 少数紫外也要截止。紫外不要求截止的短波通用英 文SP或IR表示,紫外要求截止的用UVIR表示。
上图是一个IR700的曲线以及需要注意的地方。
上图这种实测的中心波长比要求的中心波长小的情况成为偏短。一般情况中心波长 也有正负范围的误差,一般是±5nm或者±10nm。满足这个误差范围的都可以算合 格,不符合的就算不合格。
• 光波的波长范围非常大,但我们人眼所能看见的只是400-700nm 这个波段的光,所以我们把400-700nm这个波段的光称为可见光。 而400nm以前的我们称为紫外线,700nm以后的我们称为红外线, 这些人眼是看不见的!

原子吸收光谱法原理示意图

原子吸收光谱法原理示意图

原子吸收光谱法原理1、光的简短历史人们可以追溯到17世纪,当时艾萨克-牛顿爵士发现,当白光通过玻璃棱镜时,会分解成其组成的光谱颜色[1]。

从这项工作中,他提出了光的体质理论(光由粒子组成的事实),而不是只具有波的性质,这为近两个世纪后的一些发现打开了大门。

英国化学家沃拉斯顿是第一个观察到太阳光谱中的暗线的人,这些暗线后来被称为弗劳恩霍夫线。

1832年,布鲁斯特得出结论,大气层中的原子蒸气吸收了来自太阳的一些辐射,从而探测到了这些线。

本生和基尔霍夫很快证明,每种化学元素在加热到炽热时都有一种特有的颜色或光谱(例如,钠(Na)的黄色;钾(K)的紫色)。

他们能够在实验室中重现在太阳光谱中观察到的黑线,从而能够通过发射光谱识别日冕中的吸收原子。

艾伦-沃尔什[2],一位出生于兰开夏郡的物理学家,在20世纪50年代初的某个周日早晨,在他的花园里工作时,一个能解决巨大分析化学难题的想法突然出现在他的脑海中:如何通过光谱学精确测量金属元素的小浓度。

光谱学的正常程序是汽化一个元素并测量其发射光谱,但这种技术有缺陷,产生的结果不准确。

沃尔什决定测量吸收,而不是发射。

到了星期一早上的茶点,他表明这是可以做到的。

他又花了几年时间说服制造商使用原子吸收光谱法(AAS)来检测金属,但他最终成功了。

今天,大多数分析实验室都会拥有至少一台原子吸收分光光度计。

2、什么是原子吸收光谱?AAS是一种分析技术,用于确定样品中金属原子/离子的浓度。

金属占地球化学元素的75%左右。

在某些情况下,材料中的金属含量是可取的,但金属也可能是污染物(毒物)。

因此,测量金属含量在许多不同的应用中是至关重要的,我们将在本文的后面探讨。

现在只需要说,它在质量控制、毒理学和环境测试中找到了用途,仅举几例。

3、原子吸收光谱法的原理是什么?AAS的基本原理可以表述如下。

首先,所有的原子或离子都能吸收特定的、独特波长的光。

例如,当一个含有铜(Cu)和镍(Ni)的样品暴露在铜的特征波长的光下时,那么只有铜原子或离子会吸收这种光。

第五章 紫外-可见吸收光谱法

第五章 紫外-可见吸收光谱法

2.助色团 助色团
助色团是指带有非键电子对的基团,(如-OH、 -OR、 助色团是指带有非键电子对的基团 NHR、-SH、-Cl、-Br、-I等),它们本身不能吸收大于 它们本身不能吸收大于 200nm的光,但是当它们与生色团相连时,会使生色团的吸 的光,但是当它们与生色团相连时, 的光 收峰向长波方向移动,并且增加其吸光度。 收峰向长波方向移动,并且增加其吸光度。
若用一连续辐射的电磁波照射分子, 若用一连续辐射的电磁波照射分子,将照射前后 光强度的变化转变为电信号,并记录下来,然后以波 光强度的变化转变为电信号,并记录下来,然后以波 长为横坐标,以电信号( 长为横坐标,以电信号(吸光度 A)为纵坐标,就可 )为纵坐标, 以得到一张光强度变化对波长的关系曲线图——分子 分子 以得到一张光强度变化对波长的关系曲线图 吸收光谱图。 吸收光谱图。 不同物质结构不同——其分子能级的能量各异, 因此不同物质将选择性地吸收不同波长的外来辐射, 这是 UV-Vis定性分析的基础。 定性分析的基础。 定性分析的基础
π -π*和n-π*两种跃迁的能量小,相 两种跃迁的能量小, π 和 π 两种跃迁的能量小
应波长出现在近紫外区甚至可见光区, 应波长出现在近紫外区甚至可见光区, 且对光的吸收强烈,是我们研究的重点。 且对光的吸收强烈,是我们研究的重点。
(二)常用术语
1. 生色团
从广义来说,所谓生色团,是指分子中可以吸收光子 生色团,是指分子中可以吸收光子 生色团 而产生电子跃迁的原子基团。 而产生电子跃迁的原子基团。 但是,人们通常将能吸收紫外、可见光的产生π→π*, 产生π→π , 产生π→π n→π 跃迁 →π*跃迁 →π 跃迁原子团或结构系统定义为生色团。
分子吸收光谱类型
振动能级与 转动能级跃迁 红外光谱 (λ: 0.75-1000 µm) 紫外、可见吸收光谱 紫外、 (λ: 200-750 nm)

物质的吸收光谱曲线和朗伯比尔定律(2)

物质的吸收光谱曲线和朗伯比尔定律(2)

物质溶液的光‎谱吸收曲线1.高锰酸钾(KMnO4)溶液的光谱吸‎收曲线(吸收峰波长5‎25nm。

)2. 如何获得物质‎的光谱吸收曲‎线?物质的吸收光‎谱曲线是通过‎实验获得的,具体方法是:将不同波长的‎光依次通过某‎一固定浓度和‎厚度的有色溶‎液,分别测出它们‎对各种波长光‎的吸收程度(用吸光度A表‎示),以波长为横坐‎标,以吸光度为纵‎坐标作图,画出曲线,此曲线即称为‎该物质的光吸‎收曲线(又称光谱吸收‎曲线),它描述了物质‎对不同波长光‎的吸收程度。

图6—2所示为三种‎不同浓度的高‎锰酸钾溶液(KMnO4)溶液的三条光‎吸收曲线。

由图中可以看‎出:①高锰酸钾溶液‎对不同波长的‎光的吸收程度‎是不同的,对波长为52‎5n m的绿色‎光吸收最多,在吸收曲线上‎有一高峰(称为吸收峰)。

光吸收程度最‎大处的波长称‎为最大吸收波‎长(常以Amax‎表示)。

在进行光度测‎定时,通常都是选取‎在A max的‎波长处来测量‎,因为这时可得‎到最大的灵敏‎度。

②不同浓度的高‎锰酸钾溶液,其吸收曲线的‎形状相似,最大吸收波长‎也一样。

所不同的是吸‎收峰峰高随浓‎度的增加而增‎高。

③不同物质的吸‎收曲线,其形状和最大‎吸收波长各不‎相同,它和分子结构有严格的对应‎关系。

因此,可利用吸收曲‎线来作为物质‎定性分析的依‎据。

3.再看两个例子‎1)还原型辅酶(NADH )的光谱吸收曲‎线(吸收峰分别在‎260nm 和‎340nm )生化谷丙转氨‎酶检验试剂的‎反应原理如下‎:α-酮戊二酸 + L-丙氨酸 −−→−ALT L-谷氨酸 + 丙酮酸(初反应)丙酮酸 + NADH + H+ −−→−LDH L- 乳酸 + NAD + (主反应)NADH 的氧‎化速率与样本‎中A LT 酶活‎力成正比,NADH 在3‎40nm 处有‎特征吸收峰,在340nm ‎处测其吸光度‎的下降速率即‎可计算出AL ‎T 的活性。

2)维生素B12‎水溶液的光谱‎吸收曲线 (峰值365n ‎m )吸收光谱曲线‎2.光吸收定律比尔定律:当一束平行的‎单色光垂直照‎射到一定浓度‎的均匀透明溶‎液时,入射光被溶液‎吸收的程度与‎溶液浓度成正‎比,这就是比尔定‎律。

仪器分析第六章UVVIS

仪器分析第六章UVVIS

C
O
CH3
—环己烷 …水
异丙叉丙酮的紫外-可见光谱
二、溶剂极性对吸收光谱精细结构的影响 例如:对称四嗪在不同溶剂中的吸收光谱
Ⅰ:在蒸汽态中 Ⅱ:在环己烷中 Ⅲ:在水中

三、正确选择溶剂 溶剂对紫外-可见吸收光谱影响很大,因此选择溶
剂应注意下列要求: 1.对试样有很好的溶解力,且对试样应是惰性的; 2.在溶解度允许的范围内,尽量选择极性较小的
二、配位场跃迁
过渡金属离子及其化合物除了电荷迁移跃 迁外,还有配位场跃迁。
配位场跃迁的产生:过渡金属离子配合物 在配体的配位场作用下,5个能量相等的d 轨道或7个能量相等的f轨道裂分成几组能 量不等的d轨道或f轨道,当物质吸收光能 后,处于低能级的d电子或f电子可分别跃 迁至高能级的d轨道或f轨道,产生吸收光 谱。
最大吸收峰所对应的波长λmax是化合物中电 子能级跃迁时吸收的特征波长,对鉴定化 合物尤为重要,与λmax相应的εmax也是定性 和定量分析的另一重要参数。
整个吸收光谱的形状决定于物质的性质, 反映物质分子内部能级分布状况,是物质 定性的依据。

6.2有机化合物紫外—可见吸收光谱
一、有机化合物电子跃迁类型 紫外-可见吸收光谱是由分子中价电子在电
能复合成白光的两种颜色的光叫互补色光。物 质所显示的颜色是吸收光的互补色。
KMnO4的颜色及吸收光谱

6.1 分子吸收光谱基本原理
一、电子跃迁产生紫外—可见吸收光谱 分子和原子一样,也有它的特征分子能级,
这些能级是由分子内部运动决定的。
①价电子的运动
分子内部运动
②分子内原子在平衡 位置附近的振动
使电子从给予体外层轨道向接受体相应的 轨道跃迁产生吸收光谱,此过程又称内氧 化-还原。

(完整word版)原子吸收光谱分析解读

(完整word版)原子吸收光谱分析解读

原子吸收光谱分析4。

2.1 概述4。

2。

1。

1 基本概念1)原子光谱根据原子外层电子跃迁所产生的光谱进行分析的方法,称为原子光谱法,包括原子发射光谱法、原子吸收光谱法和原子荧光光谱法。

本章重点介绍应用广泛的原子吸收光谱法。

2)原子吸收光谱原子吸收光谱法,又称原子吸收分光光度法或简称原子吸收法,它是基于测量试样所产生的原子蒸气中基态原子对其特征谱线的吸收,从而定量测定化学元素的方法.4。

2.1。

2 仪器结构和过程图4-21 原子吸收示意图如上图,含Pb溶液将经过预处理-喷射成雾状进人燃烧火焰中,Pb化合物雾滴在火焰温度下,挥发并离解成Pb原子蒸气。

用Pb空心阴极灯作光源,产生Pb的特征谱线,通过Pb原子蒸气时,由于蒸气中基态Pb原子的吸收,Pb的特征谱线强度减弱,通过单色器和检测器测得其减弱程度,即可计算出溶液中Pb的含量。

4。

2。

1。

3 方法特点灵敏度高,10—9g/ml-10—12g/ml。

选择性好,准确度高。

单一元素特征谱线测定,多数情况无干扰。

测量范围广.测定70多种元素。

操作简便,分析速度快。

4。

2.2 原子吸收法基本原理 4。

2。

2.1 共振线和吸收线 1) 基本概念➢ 共振线电子从基态跃迁到能量最低的激发态(称为第一激发态),为共振跃迁,所产生的谱线称为共振吸收线(简称共振线).当电子从第一激发态跃回基态时,则发射出同样频率的谱线,称为共振发射线(也简称共振线)。

对大多数元素来说,共振线是指元素所有谱线中最灵敏的线。

➢ 特征谱线各种元素的原子结构和外层电子排布不同.不同元素的原子从基态激发至第一激发态(或由第一激发态跃回基态)时,吸收(或发射)的能量不同,因此各种元素的共振线不同而有其特征性,这种共振线称为元素的特征谱线。

2) 朗伯原理图4-22 原子吸收法的朗伯定律示意图原理公式:b K e I I νν-=0νK :吸收系数;ν:频率。

吸收线图4-23 吸收线轮廓图 图4—24 吸收线半宽度比较上述两个图,注意图的纵坐标参量的不同。

光谱曲线讲解

光谱曲线讲解

这是850nm70:30分光透过光谱曲线,850nmT=74.04%,符合任务单70±5透过 的要求。
这是880nm50:50分光透过光谱曲线,880nmT=53.24%,符合任务单50±5透过 的要求。
这是780—1000nm30:70分光透过光谱曲线,780—1000nmT=27—30%,符合任务单 780—1000nmT=30±5透过的要求。
这是400—700nm80:20分光透过光谱曲线,400—700nmT=78—83%,符合任务单 400—700nmT=80±5透过的要求。
这是400—700nm70:30分光透过光谱曲线,400—700nmT=67—74%,符合任务单400— 700nmT=70±5透过的要求。
这是400—700nm60:40分光透过光谱曲线,400—700nmT=43—62%,不符合任务单 400—700nmT=60±5透过的要求。这种情况我们可以说640-700nm透过偏低。
这是400-1000nm0度单面AR,白板玻璃未镀膜时透过率为92%, 现在400-1000nmT>94%,大于基片未镀膜的透过率,起到了增加透过的作用。
这是400-700nm45度单面AR,45度单面AR的曲线比较特殊,400-550nm波段透 过要比550-700nm波段透过低,这是由于基片的偏振效应造成的。
• 常见的有400-700nm80:20分光、400-700nm70:30分光、 400-700nm50:50分光、400-700nm40:60分光、400-700nm20:80分光、 532±50nm90:10分光、850nm70:30分光、880nm50:50分光。 我们给分光片命名的方式是先说波长,再说透过率,最后说反射率。因为分 光片基本都是45度,所以我们不说角度。但是在任务单上一定要写清楚角度, 生产、测试都要查看任务单上的角度要求。 400-700nm80:20分光就是说波段是400-700nm,透过是80,反射是20。 分光片T(透过)+R(反射)=100%,也就是说不能有吸收。

紫外-可见吸收光谱法精选全文完整版

紫外-可见吸收光谱法精选全文完整版

溶剂极性增大
吸收峰呈规律性蓝移
3、溶剂效应
O
异丙叉丙酮(CH3-C-CH=C
CH3
CH3 )的溶剂效应
吸收带
p → p*
正己烷
230nm
CH3Cl
238nm
CH3OH
237nm
H2 O
243nm
波长
红移
n→ p*
329nm
315nm
309nm

电子跃迁类型主要有四种:σ→σ*、n→σ*、π→π*和
n→π*,各种跃迁所需的能量大小不同,次序为:
σ→σ*> n→σ*≥ π→π* > n →π*,
因此,形成的吸收光谱谱带的位置也不相同。

σ→σ*跃迁:
需要能量最大, λ<200nm ,真空紫外区,εmax > 104
饱和烃(远紫外区);
C-H共价键,如CH4( λmax 125nm)
(I) 顺式二苯乙烯 (II)反式二苯乙烯
2、跨环效应的影响
助色基团虽不共轭,但由于空间排列使电子
云相互影响,使 n→π*吸收峰长移。
O
CH3-C - CH3
O
C
S
lmax156,279 nm
lmax238nm
3、溶剂效应影响
溶剂的极性增大时,n p* 跃迁吸收带蓝移
p p* 跃迁吸收带红移
少,分析速度快。
2 灵敏度高。如在紫外区直接检测抗坏血酸时,其最低检出浓度可
达到10-6g/mL。
3 选择性好。通过适当的选择测量条件,一般可在多种组分共存的
体系中,对某一物质进行测定。
4 精密度和准确度较高。在仪器设备和其他测量条件较好的情况下,

紫外可见吸收光谱

紫外可见吸收光谱

§ 2 光度分析法的基本原理
一、光度分析法的特点 1、适用范围:常用于测定试样中1%~10-3 %的微量 组分,甚至可测定低至10-4 %~10-5 %的痕量组份。目 前,随着仪器和方法的改进,有的已达10-9 %。一般 情况下,相对误差为2~5 %,这在微量分析中已是十 分精确的了。 2、特点:灵敏、快速、准确、简便。
(二)控制适当的吸光度范围
从仪器测量误差的讨论中了解到,为使测量结果得 到较高的准确度,一般应控制标准溶液和被测试液 的吸光度在0.2~0.8范围内。为此,可以从下列两方 面来考虑。
1.控制溶液的浓度,如改变试样的称量和改变 溶液的稀释度等。
但是在实际绘制中却常常出现弯曲情况。如果标 准曲线弯曲,测定数据必带来很大的误差,故应 努力找出原因设法解决之。一般来说引起标准曲 线弯曲的主要原因有如下几种。
(一)比尔定律的局限性
比尔定律为:A=KC即A∝C
这是在溶液很稀的情况下,即各溶质质点互不 干扰时才成立。
当溶液较浓时,溶液中的有色配合物会互相吸 引、排斥,光线在质点之间发生反射,使出射光线 发生改变,从而使比尔定律失效。
▲跃迁:电子受激发,从低能级转移到高
能级的过程
2.分子吸收光谱的分类: 分子内运动涉及三种跃迁能级,所需能量大
小顺序 E电E振E转
E电1~20ev0.06~1.25m紫外 可见吸收 E振0.05~1ev25~1.25m红外吸收光 E转0.00~50.05ev25~025m远红外吸
3.紫外-可见吸收光谱的产生 由于分子吸收中每个电子能级上耦合有许多
一、 仪器测量误差
在吸光光度分析中,除了各种化学条件所引起的 误差外,仪器测量不准确也是误差的主要来源。
任何光度计都有一定的测量误差,这种误差可能 来源于光电池不灵敏、光电流测量不准和光源不 稳等。如果测量误差以光电流表示为Δi,相当于 光强的误差ΔI,由此引起透光率的误差为ΔT 。对 于同一光度仪器,ΔT基本上为一常数,一般为 0.01~0.02 。

物质的吸收光谱曲线和朗伯比尔定律

物质的吸收光谱曲线和朗伯比尔定律

物质溶液的光谱吸收曲线)溶液的光谱吸收曲线(吸收峰波长525nm。

)1.高锰酸钾(KMnO42. 如何获得物质的光谱吸收曲线?物质的吸收光谱曲线是通过实验获得的,具体方法是:将不同波长的光依次通过某一固定浓度和厚度的有色溶液,分别测出它们对各种波长光的吸收程度(用吸光度A表示),以波长为横坐标,以吸光度为纵坐标作图,画出曲线,此曲线即称为该物质的光吸收曲线(又称光谱吸收曲线),它描述了物质对不同波长光的吸收程度。

图6—2所示为三种不同浓度的高锰酸钾溶液(KMnO4)溶液的三条光吸收曲线。

由图中可以看出:①高锰酸钾溶液对不同波长的光的吸收程度是不同的,对波长为525nm的绿色光吸收最多,在吸收曲线上有一高峰(称为吸收峰)。

光吸收程度最大处的波长称为最大吸收波长(常以Amax表示)。

在进行光度测定时,通常都是选取在Amax的波长处来测量,因为这时可得到最大的灵敏度。

②不同浓度的高锰酸钾溶液,其吸收曲线的形状相似,最大吸收波长也一样。

所不同的是吸收峰峰高随浓度的增加而增高。

③不同物质的吸收曲线,其形状和最大吸收波长各不相同,它和分子结构有严格的对应关系。

因此,可利用吸收曲线来作为物质定性分析的依据。

3.再看两个例子1)还原型辅酶(NADH )的光谱吸收曲线(吸收峰分别在260nm 和340nm )生化谷丙转氨酶检验试剂的反应原理如下:α-酮戊二酸 + L-丙氨酸 −−→−ALT L-谷氨酸 + 丙酮酸(初反应) 丙酮酸 + NADH + H + −−→−LDH L- 乳酸 + NAD + (主反应)NADH 的氧化速率与样本中ALT 酶活力成正比,NADH 在340nm 处有特征吸收峰,在340nm 处测其吸光度的下降速率即可计算出ALT 的活性。

2)维生素B12水溶液的光谱吸收曲线 (峰值365nm )吸收光谱曲线2.光吸收定律比尔定律:当一束平行的单色光垂直照射到一定浓度的均匀透明溶液时,入射光被溶液吸收的程度与溶液浓度成正比,这就是比尔定律。

吸收光谱法ppt课件

吸收光谱法ppt课件

15
• ε是吸光物质在一定波长下的特征常数,反映该吸光物
质的灵敏度;
• ε值越大,表示该吸光物质对此波长光的吸收能力越强,
显色反应越灵敏;
• 在最大吸收波长处的摩尔吸光系数常以εmax表示;
完整版ppt课件
16
铁(Ⅱ)浓度为5.0×10-4 g·L-1 的溶液,与邻二氮菲以1:3 的计量比生成橙色络合物。该配合物在波长508nm,比色
作用:将光信号转换为电信号,并放大。 光电管,光电倍增管,光电二极管,光导摄像管
信号输出 表头、记录仪、屏幕、数字显示
完整版ppt课件
26
722型分光光度计
1. 光源:钨卤素灯-12V、30W 2. 波长范围:330~800nm 3. 分光元件:光栅,1200线/mm 4. 检测器: 端窗式G1030光电管
完整版ppt课件
光学光谱区
3
单色光
单一波长的光
复合光
由不同波长的光组合而成的光
光的互补
若两种不同颜色的单色光按一 定的强度比例混合得到白光,
蓝绿 绿蓝
绿 黄绿 黄

就称这两种单色光为互补色光,
这种现象称为光的互补。
蓝 紫 紫红

完整版ppt课件
4
不同颜色的可见光波长及其互补光
/nm
400 ~ 450
ε=Ma =596.48×17.8=1.06×104 L·mol-1·cm-1
完整版ppt课件
17
三、吸光度的加和性
溶液中含有对某一波长的光产生吸收的多种物质,那么
溶液的总吸光度等于溶液中各个吸光物质的吸光度之和,
A1 = 1bc1 A2 = 2bc2 A = 1bc1+ 2bc2

紫外可见吸收光谱

紫外可见吸收光谱

2. 电荷迁移跃迁
——指配合物中配位体与金属离子之间,一个电子
由一方的一个轨道跃迁到另一方相关的轨道上。 ——产生电荷迁移跃迁的必要条件:一组分是电子
给予体,另一组分是电子接收体。
例: [Fe3+ (SCN-)]2+ h [Fe2+(SCN)]2+
电子接受体 电子给予体
——电荷迁移跃迁光谱的很大,一般在104以上,
——当苯环上有羟基、氨基等取代基时,吸收峰红移, 吸收强度增大.像羟基、氨基等一些助色团,至少 有一对非键n电子,这样才能与苯环上的电子相互 作用,产生助色作用.
——取代基不同,变化程度不同,可由此鉴定各种 取代基
例: 苯
λmax B带 254
λmax
E2
204
甲苯
262
208
苯酚
271
213
苯甲酸
(一)紫外可见吸收光谱 由紫外可见分光光度计获得
光源——单色器——吸收池——检测器——显示器
ΔE电 = h 光 (200—800 nm)
激发态 基态
吸收曲线
将不同波长的光透过某一固定浓度和 厚度的待测溶液,测量每一波长下待测溶 液对光的吸收程度(即吸光度),然后以 波长为横坐标,以吸光度为纵坐标作图, 可得一曲线。这曲线描述了物质对不同波 长的吸收能力,称吸收曲线或吸收光谱。
不同波长的光
L
图3-1紫外可见吸收光谱示意图
A
末端吸收
最强峰
肩 峰
次强峰 峰谷
max
min

A
分析吸收曲线 可以看到:
1.同一浓度的 待测溶液对不 同波长的光有 不同的吸光度;
max
min

材料分析测试第十章紫外可见吸收光谱法

材料分析测试第十章紫外可见吸收光谱法

(a)吸光度对波长的关系图
(b)百分透光率对波长的关系图
1.吸收峰 ;2.谷;3.肩峰;4.末端吸收
吸收曲线的吸收高峰(称最大吸收峰)所对应的波长称
为最大吸收波长,常用max表示
整理ppt
34
2. 无机固体光学吸收谱的类型
无机固体(含矿物)的光学吸收光谱(紫外-可见-近红外 吸收光谱),主要分为三种类型,它们分别用三种理论来 解释:晶体场光谱(晶体场理论)、电荷转移光谱(分子 轨道理论)和吸收边(能带理论)。
摩尔吸收系数()比较小,即吸收峰强度
比较小,很少在近紫外区观察到。
整理ppt
5
一些化合物n-*跃迁所产生吸收的数据
化合物 H2O
max/nm max
样品为气态
167 1480
CH3OH CH3Cl
184 150 max最大吸收波长 173 200
CH3I
258
(CH3)2S(乙醇溶液) 229
365 max最大摩尔吸收系数 140
利用吸收光谱的这一性质,可用来判断化合物的跃迁类型及谱带的归属。
整理ppt
12
共扼效应对max的影响
共扼烯烃及其衍生物的-*跃迁均为强吸收带,104,这
类吸收带称为K带。
在分子轨道理论中,电子被认为是通过共扼而进一步离 域化的,这种离域效应降低了*轨道的能级,光谱吸收峰
移向长波方向,即红移。
,-不饱和醛、酮中羰基双键和碳-碳双键-共扼也有类
实线-苯
虚线-甲苯
苯及其衍生物的长波区谱带(B带) 为一组尖锐吸收蜂,这是振动跃 迁叠加在电子跃迁上的结果。
苯和甲苯的紫外光谱图 (在环己烷中)
极性溶剂可以减少或消除这种精 细结构。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(8) B带
➢ 由芳香族化合物的π →π*跃迁而产生的精 细结构吸收带。
例如: 苯的B带: 摩尔吸光系数:200 L ·mol-1 ·cm-1 吸收峰的位置:230~270nm之间
(9) E带
➢ 芳香族化合物的π →π*跃迁所产生的吸收带, 也是芳香族的特征吸收峰。
苯的紫外吸收光谱
4、影响紫外-可见吸收光谱的因素
(2) 助色团
➢ 助色团是指本身不产生吸收峰,但与生色团 相连时,能使生色团的吸收峰向长波方向移动, 并使其吸收强度增强的基团。
例如:
—NH2 、—OH 、—OR 、—SH 、—SR 、—Cl 、—Br等
(3) 红移和蓝移
➢ 在有机化合物中,常常因取代基的变更或溶 剂的改变,使其吸收带的最大吸收波长max发生 移动。
例如:含有杂原子的不饱和基团:
(4) 电荷转移跃迁:
➢ 某些分子同时具有电子给予体和电子接受体, 它们在外来辐射照射下会强烈吸收紫外光或可 见光,使电子从给予体轨道向接受体轨道跃迁, 这种跃迁称为电荷转移跃迁,其相应的吸收光 谱称为电荷转移吸收光谱。
➢ 电荷转移跃迁实质上是一个内氧化还原过程。
例如:某些取代芳烃可产生这种分子内电荷转移 跃迁的吸收带。
➢ n → σ* 跃迁的摩尔吸光系数ε较小
(2) π→ π*跃迁:
➢ 吸收峰处于近紫外光区,在200nm左右,摩
ε 尔吸收系数 max > 104 L ·mol-1 ·cm-1 ,为强吸收带。
例如:含有π电子的基团:
(3) n → π*跃迁:
➢ 近紫外-可见光区,ε<100 L ·mol-1 ·cm-1
3、常用术语 (1) 生色团
➢ 生色团是指分子中能吸收紫外或可见光的 基团,它实际上是一些具有不饱和键和含有 孤对电子的基团。
例如:
➢ 如化合物分子含有数个生色团,但它们之 间无共轭作用,那么吸收光谱将包含这些个 别生色团原有的吸收带。
➢ 如两个生色团彼此相邻形成共轭体系,那 么原来各自生色团的吸收带就会消失,同时 会出现新的吸收带。
三种价电子可能产生六种形式电子跃迁:
σ→ σ*, σ→ π*, π→ σ*对应的吸收光谱处于 远紫外区,研究少。
(1) n → σ* 跃迁:
➢ 吸收光谱出现在远紫外光区和近紫外光区 ➢ 某些含有氧、氮、硫、卤素等杂原子的基 团(如—NH2、—OH、—SH、—X等)的 有机物可产生n → σ* 跃迁。 例如:CH3OH:λmax=183 nm 、CH3NH2:λmax=213 nm
一、紫外-可见吸收光谱
吸收光谱又称吸收曲线,是以入射光的波长λ
为横坐标,以吸光度A为纵坐标所绘制的A-λ曲线。
最大吸收峰
1、有机化合物的紫外-可见吸收光谱
➢ 从化学键的性质看,与紫外-可见吸收光 谱有关的价电子主要有三种: σ电子 , π电子 , n 电子(孤对电子)。
➢ 根据分子轨道理论,这三种电子的能级高 低为: σ<π<n <π*<σ*
分子中价电子的能级跃迁; 分子的内部结构; 外部环境。
(1) 共轭效应
➢ 共轭效应使共轭体系形成大π键,结果使各能 级间的能量差减小,从而跃迁所需能量减小,使 吸收波长产生红移。
m a x向长波方向移动称为红移 m a x向短波方向移动称为蓝移
(4) 增色效应和减色效应
最大吸收带的εmax增加,称为增色效应 最大吸收带的εmax减小,称为减色效应
(5) 强带和弱带
(6) R带
➢ 含杂原子的生色团的n →π* 跃迁所产生的吸收 带。
例如:
特点:
① 强度弱,一般 ε < 100 L ·mol-1 ·cm-1 ;
紫外-可见分子吸收光谱法
Ultraviolet and Visible Absorption Spectrometry
Ultraviolet and Visible Spectrophotometry UV-VIS
概述
➢ 通过测定分子对紫外-可见光的吸收对物质进 行定性和定量分析。
➢ λ :190~750nm
例如: Cl- (H2O)n
hv
电子给予体
电子接受体
Cl (H2O)n -
[Fe3+SCN-]2+ hv
电子接受体
电子给予体
[Fe2+SCN]2+
[FeSCN]2+电荷转移吸收光谱图
➢ 一些具有d10电子结构的过渡元素所形成的卤化 物及硫化物,如AgBr、PbI2、HgS等,也可产生荷 移光谱。
➢ 荷移光谱的波长。
➢ 电荷转移吸收带的特点:
谱带较宽;吸收强度大, ε > 104 L ·mol-1 ·cm-1
2、无机化合物的紫外-可见吸收光谱
(1) 电荷转移跃迁:
许多无机络合物也有电荷转移跃迁 Mn+—Lb- h M(n-1) +—L(b-1) -
M-中心离子:电子接受体 L-配体:电子给予体
➢ 不少过渡金属离子与含生色团的试剂反应 所生成的络合物以及吸收许多水合无机离子, 均可产生电荷转移跃迁。
➢ 但在络合物中,由于配体的影响,过渡元素的 d轨道,及镧系和锕系元素的f轨道分别分裂成几 组能量不等的d轨道及f轨道。如果轨道是未充满 的,当它们的吸收光能后,可产生d-d跃迁和f-f跃 迁。由于这两类跃迁必须在配体的配位场的作用 下才有可能产生,因此又称配位场跃迁。
ε 摩尔吸光系数小, max < 100 L ·mol-1 ·cm-1 ,光谱一般位于可见光区
② 吸收峰通常位于200~400nm之间。
(7) K带
➢ 由共轭体系的π →π*跃迁产生的吸收带。
特点:
ε ① 强度大,一般 > 104 L ·mol-1 ·cm-1 ;
② 吸收峰一般处于217~280nm范围内; ③ K带的波长及强度与共轭体系的数目、位
置、取代基的种类有关。 共轭体系加长,λ增加,强度增加。
中心离子氧化能力越强, 或配体的还原能力越强,则 电荷转移跃迁时所需的能量越小,吸收光谱波长红移。
➢ 电荷转移吸收光谱的摩尔吸光系数较大,
ε 一般 max > 104 L ·mol-1 ·cm-1
(2) 配位场跃迁:
➢ 元素周期表中第4、第5 周期过渡元素分别含有 3d和4d轨道,镧系和锕系分别含有4f和5f轨道。 这些轨道的能量通常是相等的。
相关文档
最新文档