等差数列知识点总结材料
等差数列知识点总结材料
第一讲 数列定义及其性质一、基本概念:1、通项公式:n a ;2、前n 项和:n S3、关系:1(2)n n n a S S n -=-≥二、性质:1、单调性:增数列:1n n a a ->;减数列:1n n a a -<;常数列:1n n a a -=2、最值:77878789+++(0)0,00,=0,0,n n a S a a S S S a a a ⎧⎧⎪⎨⎩⎪⎪---⎧⎪⎨⎪><⎪⎪⎨⎪><⎪⎪⎪⎪⎩⎩L 最大值:减数列最小值:增数列最大值:若最大,则若或最大,则最小值:与上面相反3、前n 项积n T 有最大值:三、几种常见数列:1、-1,7,-13,19L2、7,77,777,L3、135248L ,,4、161149L ,,, 5、2468,3153563L ,,★随堂训练:1、已知数列{}n a 通项公式是231n n a n =+,那么这个数列是( ) A.递增数列 B.递减数列 C.摆动数列 D.常数列2、已知数列{}n a 满足10a >,112n n a a +=,那么这个数列是( ) A.递增数列 B.递减数列 C.摆动数列 D.常数列3、已知数列{}n a 通项公式是22n a n kn =++,若对任意*n N ∈,都有1n n a a +>成立,则实数k 的取值范围是( )4、已知数列{}n a 通项公式是10,21n n n a T n +=+是数列{}n a 的前n 项积,即123n n T a a a a =L ,当n T 取到最大值是,n 的值为( )5、设数列{}n a 的前n 项和2n S n =,则8a 的值是( )等差数列专题一、等差数列知识点回顾与技巧点拨1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 2.等差数列的通项公式若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d =(n -m )d =p .3.等差中项如果三个数x ,A ,y 组成等差数列,那么A 叫做x 和y 的等差中项,如果A 是x 和y 的等差中项,则A =x +y 2.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)S 2n -1=(2n -1)a n .(6)若n 为偶数,则S 偶-S 奇=nd 2;若n 为奇数,则S 奇-S 偶=a 中(中间项).5.等差数列的前n 项和公式若已知首项a 1和末项a n ,则S n =n a 1+a n 2,或等差数列{a n }的首项是a 1,公差是d ,则其前n 项和公式为S n =na 1+n n -12d .6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,数列{a n }是等差数列的充要条件是S n =An 2+Bn (A ,B 为常数).7.最值问题在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值,若a 1<0,d >0,则S n 存在最小值. 一个推导利用倒序相加法推导等差数列的前n 项和公式:S n =a 1+a 2+a 3+…+a n ,①S n =a n +a n -1+…+a 1,②①+②得:S n =n a 1+a n 2. 两个技巧已知三个或四个数组成等差数列的一类问题,要善于设元.(1)若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,….(2)若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,…,其余各项再依据等差数列的定义进行对称设元.四种方法等差数列的判断方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数;(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立;(3)通项公式法:验证a n =pn +q ;(4)前n 项和公式法:验证S n =An 2+Bn .注: 后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.基础训练:(公式的运用,定义的把握)1.已知等差数列{a n }中,a 3=9,a 9=3,则公差d 的值为( )A .B . 1C .D . ﹣12.已知数列{a n }的通项公式是a n =2n+5,则此数列是( )A . 以7为首项,公差为2的等差数列B . 以7为首项,公差为5的等差数列C . 以5为首项,公差为2的等差数列D . 不是等差数列3.在等差数列{a n }中,a 1=13,a 3=12,若a n =2,则n 等于( )A . 23B . 24C . 25D .26 4.两个数1与5的等差中项是( )A . 1B . 3C . 2D .5.(2005•黑龙江)如果数列{a n }是等差数列,则( )A . a 1+a 8>a 4+a 5B . a 1+a 8=a 4+a 5C . a 1+a 8<a 4+a 5D . a 1a 8=a 4a 5考点1:等差数列的通项与前n 项和题型1:已知等差数列的某些项,求某项【解题思路】给项求项问题,先考虑利用等差数列的性质,再考虑基本量法【例1】已知{}n a 为等差数列,20,86015==a a ,则对应练习:1、已知{}n a 为等差数列,q a p a n m ==,(k n m ,,互不相等),求.2、已知5个数成等差数列,它们的和为5,平方和为,求这5个数.题型2:已知前n 项和及其某项,求项数.【解题思路】⑴利用等差数列的通项公式d n a a n )1(1-+=求出及,代入可求项数n ; ⑵利用等差数列的前4项和及后4项和求出n a a +1,代入可求项数n .【例2】已知为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n对应练习:3、若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数n .4、已知为等差数列{}n a 的前n 项和,100,7,141===n S a a ,则 . 题型3:求等差数列的前n 项和 【解题思路】(1)利用求出,把绝对值符号去掉转化为等差数列的求和问题.(2)含绝对值符号的数列求和问题,要注意分类讨论.【例3】已知为等差数列{}n a 的前n 项和,212n n S n -=.(1)321a a a ++; ⑵求10321a a a a ++++Λ;⑶求n a a a a ++++Λ321.练习:对应练习:5、已知为等差数列{}n a 的前n 项和,10,10010010==S S ,求.考点2 :证明数列是等差数列【名师指引】判断或证明数列是等差数列的方法有:1、定义法:d a a n n =-+1(+∈N n ,是常数){}n a 是等差数列;2、中项法:212+++=n n n a a a (+∈N n ){}n a 是等差数列;3、通项公式法:b kn a n +=(是常数){}n a 是等差数列;4、项和公式法:Bn An S n +=2(是常数,0≠A ){}n a 是等差数列.【例4】已知为等差数列{}n a 的前n 项和,)(+∈=N n nS b n n .求证:数列是等差数列.对应练习:6、设为数列{}n a 的前n 项和,)(+∈=N n pna S n n ,.21a a =(1) 常数的值; (2) 证:数列是等差数列.考点3 :等差数列的性质【解题思路】利用等差数列的有关性质求解.【例5】1、已知为等差数列{}n a 的前n 项和,1006=a ,则 ;2、知为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .对应练习:7、含12+n 个项的等差数列其奇数项的和与偶数项的和之比为( )n n 12+ n n 1+ n n 1- nn 21+ 8.设、分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S n n ,则=55b a .考点4: 等差数列与其它知识的综合【解题思路】1、利用与的关系式及等差数列的通项公式可求;2、求出后,判断的单调性.【例6】已知为数列{}n a 的前n 项和,n n S n 211212+=;数列满足:113=b , n n n b b b -=++122,其前9项和为⑴ 数列{}n a 、的通项公式;⑵设为数列的前n 项和,)12)(112(6--=n n n b a c ,求使不等式57k T n >对+∈∀N n 都成立的最大正整数k 的值.课后练习:1.(2010广雅中学)设数列是等差数列,且28a =-,155a =,是数列的前n 项和,则A .1011S S =B .1011S S >C .910S S =D .910S S <2.在等差数列{}n a 中,1205=a ,则=+++8642a a a a .3.数列{}n a 中,492-=n a n ,当数列{}n a 的前n 项和取得最小值时, .4.已知等差数列{}n a 共有项,其奇数项之和为,偶数项之和为,则其公差是 .5.设数列中,112,1n n a a a n +==++,则通项 .对应练习:9.已知为数列{}n a 的前n 项和,31=a ,)2(21≥=-n a S S n n n . ⑴ 数列{}n a 的通项公式;⑵ 数列{}n a 中是否存在正整数k ,使得不等式1+>k k a a 对任意不小于k 的正整数都成立若存在,求最小的正整数k,若不存在,说明理由。
等差数列知识点归纳总结公式大全
等差数列知识点归纳总结公式大全等差数列是数学中常见的一种数列,它具有重要的数学性质和应用价值。
本文将对等差数列的概念、性质以及常用的公式进行归纳总结,旨在帮助读者更好地理解和应用等差数列。
一、等差数列的概念与性质等差数列指的是一个数列中,从第二个数起,每个数都与它的前一个数之差相等。
这个等差差值常被称为公差,用字母d来表示。
例如,数列1, 3, 5, 7, 9就是一个等差数列,公差为2。
等差数列的常见性质包括:1. 第n项的通项公式对于等差数列an,它的第n项可以表示为:an = a1 + (n-1)d,其中a1为首项,d为公差。
2. 求和公式等差数列的前n项和Sn可以通过求和公式来计算,公式为:Sn = (n/2)(a1 + an),其中n为项数,a1为首项,an为第n项。
3. 递推公式等差数列的递推公式可以用来计算数列中某一项与它的前一项之间的关系。
递推公式为:an = an-1 + d,其中an为第n项,an-1为第n-1项,d为公差。
二、等差数列的常用公式1. 第n项的公式等差数列的第n项公式为:an = a1 + (n-1)d,其中a1为首项,d为公差。
2. 前n项和的公式等差数列的前n项和公式为:Sn = (n/2)(a1 + an),其中n为项数,a1为首项,an为第n项。
3. 公差与首项和末项的关系等差数列的公差与首项和末项之间的关系为:d = (an - a1) / (n - 1),其中d为公差,a1为首项,an为第n项。
4. 公差与相邻项的关系等差数列的公差与相邻项之间的关系为:d = an - an-1,其中d为公差,an为第n项,an-1为第n-1项。
5. 等差数列的项数已知等差数列的公差、首项和末项,可以根据等差数列的项数公式求得项数:n = (an - a1) / d + 1,其中n为项数,a1为首项,an为第n 项。
6. 等差数列的和数已知等差数列的公差、首项和项数,可以根据等差数列的和数公式求得和数:Sn = (n/2)(a1 + an),其中Sn为和数,n为项数,a1为首项,an为第n项。
高中数学必修等差数列知识点总结和题型归纳
二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6 ,2a -5 , -3a +2 ,则 a A . -1 B . 1 C .-2 D. 2 2.在数列 {a n } 中, a 1=2,2a n+1=2a n +1,则 a 101的值为 ( )A .49B .50C . 51D .52 3.等差数列 1,- 1,- 3,⋯,- 89的项数是( )等差数列一.等差数列知识点:知识点 1、等差数列的定义 : ①如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,那么这个数列 就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示 知识点 2、等差数列的判定方法 : ②定义法:对于数列 a n ,若a n 1 a n d (常数) ,则数列 a n 是等差数列 ③等差中项:对于数列 a n ,若2a n 1 a n a n 2,则数列 a n 是等差数列 知识点 3、等差数列的通项公式 : 的首项是 a 1 ,公差是 d ,则等差数列的通项为 该公式整理后是关于 n 的一次函数 n 项和 : n (n 1) ⑥ S n na 1 d2 ④如果等差数列 a n a n a 1 (n 1)d 知识点 4、等差数列的前 ⑤ Sn n (a 1 a n ) 2对于公式 2整理后是关于 n 的没有常数项的二次函数 知识点 5、等差中项 :⑥如果 a , A , b 成等差数列,那么 A 叫做 a 与b 的等差中项即: A a b 或2A a b 在一个等差数列中,从第 2 项起,每一项(有穷等差数列的末项除外)都是它的前一项 与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点 6、等差数列的性质 : ⑦等差数列任意两项间的关系:如果 且 m n ,公差为 d ,则有 a n a m (n ⑧ 对于等差数列 a n ,若 n m p a n 是等差数列的第 n 项, a m 是等差数列的第 m 项, m )d q ,则 a n a m a p a q 也就是: a 1 a n a 2 a n 1 a 3 a n 2 ⑨若数列 a n 是等差数列, 等差数列如下图所示:S n 是其前 n 项的和, k N ,那么 S k , S 2k S k ,S 3k S 2k 成 S 3ka 1 a2a3S k akak 1S 2ka2kS ka2k 1S 3k S 2ka3k①若项数为 2n n *, 则 S 2n n a n a n 1 , 且S 偶 S 奇 S 奇 nd, 奇 an. ②若项数为 2n 1 nS 偶 an 1S 奇n (其中 S 奇 na n , S 偶n 1 a n ).S偶n 1奇等差数列的前 n 项和的性质: 10、 ,则 S 2n 1 2n 1 a n ,且 S 奇 S 偶 a n,等于( )A.92 B .47 C.46D.44、已知等差数列{a n}中,a7 a9 16,a41,则a12的值是()( )A 15B 30C 31D 645. 首项为-24 的等差数列,从第10项起开始为正数,则公差的取值范围是(8 8 8> <3 C. ≤d<3 D. < d≤33 3 36、.在数列{ a n}中,a1 3,且对任意大于1的正整数n,点( a n , a n1)在直x y 3 则a n = _________________ .7、在等差数列{a n} 中,a5=3,a6=-2,则a4+a5+⋯+a10=.8、等差数列a n 的前n项和为S n,若a2 1,a3 3,则S4=()(A)12(B)10(C)8(D)69、设数列a n 的首项a17,且满足a n 1 a n 2(n N) ,则a1 a2a1710、已知{a n} 为等差数列,a3 + a 8 = 22,a6 = 7 ,则a5 = _________11、已知数列的通项a n= -5n+2, 则其前n 项和为S n=12、设S n为等差数列a n 的前n项和,S4 =14,S10 S7 30,则S9=.题型二、等差数列性质1、已知{ a n}为等差数列,a2+a8=12, 则a5 等于()(A)4 (B)5 (C) 6 (D)72、设S n是等差数列a n 的前n项和,若S7 35,则a4 ()A.8 B .7 C .6 D.53、若等差数列a n 中,a3 a7 a10 8,a11 a4 4,则a7 __________ .4、记等差数列a n 的前n项和为S n,若S2 4,S4 20 ,则该数列的公差d=()A .7 B. 6 C. 3 D. 215、等差数列{a n} 中,已知a1 ,a2 a5 4,a n 33,则n为()3(A)48 (B)49 (C)50 (D)516. 、等差数列{ a n}中,a1=1, a3+a5=14,其前n项和S n=100,则n=()(A)9 (B) 10(C)11 (D)127、设S n 是等差数列a n 的前n 项和,若a55, 则S9()a39 S5A . 1B .-11C .2D .28、已知等差数列{a n}满足α1+α 2+α 3+⋯+α 101=0 则有()A.α 1+α 101>0 B .α 2+α 100<0 C.α3+α 99=0 D .α 51=51 9、如果a1,a2,⋯,a8为各项都大于零的等差数列,公差 d 0,则()(A)a1a8 a4a5 (B)a8 a1 a4a5 (C)a1+a8 a4+a5 (D)a1a8=a4a5 10、若一个等差数列前3项的和为34,最后 3 项的和为146,且所有项的和为390 ,则这个数列有()(A)13 项(B)12项(C)11项(D)10 项题型三、等差数列前n 项和1、等差数列a n 中,已知a1 a2 a3 L a10 S n .2、等差数列2,1,4, 的前n 项和为(p,a n9 a n 8 L a n q ,则其前n 项和)0 上,A. 1n3n4 2B.1n 3n 7 2 C.1n 3n 24 D. 1n 3n 7 23、已知等差数列an 满足 a 1 a 2a 3a990 ,则)A. a 1 a 99 0B. a 1 a 99 0C. a 1 a 99 0D. a 50 50 4、在等差数列 a n 中, a 1 a 2 a 3 15,a n an 1 an 278, S n 155,则n 。
(完整版)等差等比数列知识点总结
等差等比数列知识点总结1. 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d,那么这个数列就叫做等差数列,这个常数d叫做等差数列的公差,即a n a n 1 d (d 为常数)(n 2);2. 等差中项:(1)如果a,A,b成等差数列,那么A叫做a与b的等差中项.即:或2A a b3. 等差数列的通项公式:一般地,如果等差数列a n的首项是a1,公差是d,可以得到等差数列的通项公式为:a n 4 n 1 d推广:a n a m(n m)d.a n a m 从而dn m4. 等差数列的前n项和公式:n(a1 a n) n(n 1) , d 2 , 1 2S n na1 d n 佝d)n An Bn2 2 2 2(其中A、B是常数,所以当d M 0时,S是关于n的二次式且常数项为0) 5. 等差数列的判定方法(1)定义法:若a n a n 1 d或a n 1 a n d (常数n N ) a n是等差数列.(2)等差中项:数列a n是等差数列2a n a n-1 a n 1 (n 2)2a n 1a n a n 2 .(3)数列a n是等差数列a n kn b (其屮k, b是常数)。
(4)数列a n是等差数列S n An2Bn,(其中A、B是常数)。
6.等差数列的证明方法定义法:若a n a n 1d或a n1 a n d(常数n N) a n是等差数列.(2 ) 等差中项数列a n 2a n a n-1 a n i(n 2) 2a n 1 a n a n 27.等差数列的性质:(1)当m n p q 时,则有a m a n a p a q ,特别地,当m n 2p 时,则有⑵ 若{a n }是等差数列,则S n ,S 2n 5,务 S ?n ,…也成等差数列和,S n 是前n 项的和 1.当项数为偶数2n 时,a na n 12、当项数为奇数2n 1时,则(其中a n+1是项数为2n+1的等差数列的中间项) 1、 等比数列的定义:旦q q 0 n 2,且*n N ,q 称为公比a n 12、通项公式:n 1a n aga 〔 n n1q A B a-i q 0,A B0,首项:a 1 ;公比:qq推广:a nn mn ma m qqa nq n ma mV am3、 等比中项:(1)如果a,A,b 成等比数列,那么A 叫做a 与b 的等差中项,即:A 2 ab 或A ab注意:同号的两个数才有等比中项,并且它们的等比中项 有两个(两个等比中项互为相反数)a m a n2a p .(3)设数列a n 是等差数列,d 为公差,S 奇是奇数项的和, S 偶是偶数项项的n a ia 2n 1a2n 1— nana 2nn a 2a 2n2na n 1na n 1 na nn a n 1 a n =ndS 2n 1S 奇S 偶(2n1) a n+1S 奇 S 偶 a n+1S 奇 (n 1応+1S 偶n a n+1a i a 3a 5a 2 a 4 a 6 na n na n 1S奇为等比数列6等比数列的证明方法:7、等比数列的性质:(3)若{a n }为等比数列,则数列S n ,S 2n S n ,务 dn,,成等比数列 (4)在等比数列{a n }中,当项数为2n(n N *)时,§奇-S 禺q(2)数列a n 是等比数列 2 ana n 1 a n 14、等比数列的前n 项和S n 公式:(1)当 q 1 时,S nna i(2)当 q 1 时,S.a, 1a 〔 a 〔A AB n A'B n A' ( A,B,A',B'为常数)5、等比数列的判定方法:(1)用定义:对任意的n,都有amqa n 或 也 q(q 为常数,a n 0){a n }a n(2)等比中项:2 ana n 1a n 1 ( a n 1 a n 1 0) {a n }为等比数列(3)通项公式:a nA B n A B 0{a n }为等比数列依据定义:若-a ^ qa n 1q 0 n 2,且 nN 或a n 1 qa n {a n }为等比数列(1) 若 m n s t(m,n,s,t N ),贝U a n a m a s a t 。
[高考数学]等差数列知识总结
[高考数学]等差数列知识总结
等差数列是高中数学中的重要概念,它可以在高考数学中出现在各种形式的题目中。
以下是对等差数列的知识进行总结:
1. 定义:
等差数列是指一个数列,其中每一项与其前一项的差都相等。
这个差值称为公差,记作 d。
2. 通项公式:
对于等差数列 {an},其通项公式为 an = a1 + (n - 1)d。
其中,an 表示第 n 项,a1 表示第一项,d 表示公差,n 表示
项数。
3. 求和公式:
对于等差数列 {an} 的前 n 项和 Sn,其求和公式为 Sn = n/2 * (a1 + an)。
或者用差值 d 表示,Sn = n/2 * (2a1 + (n - 1)d)。
4. 性质:
a) 第 n 项:an = a1 + (n - 1)d
b) 前 n 项和:Sn = n/2 * (a1 + an)
c) 项与项的和:an + am = 2a1 + (n + m - 2)d
d) 首项与末项的和:a1 + an = 2a1 + (n - 1)d
5. 常见问题:
a) 已知数列的前几项,求通项公式。
b) 已知数列的通项公式,求第 n 项。
c) 求等差数列的和,或者根据已知的和和项数求其他参数。
6. 拓展:
a) 等差数列的和可以利用面积解释的思想进行推导。
b) 等差数列有很多应用,如金融中的年利率、利润增长等问题中常常使用等差数列。
以上是对高考数学中等差数列的知识进行的总结,熟练掌握等差数列的相关内容可以帮助解决各类与数列相关的题目。
等差数列的应用知识点总结
等差数列的应用知识点总结等差数列是数学中常见且重要的概念,它在各个领域中都有广泛的应用。
本文将对等差数列的应用进行知识点总结,包括等差数列的定义及性质、等差数列的求和公式、等差数列在数学问题、物理问题和经济问题中的应用等内容。
一、等差数列的定义及性质等差数列是指数列中的相邻两项之间差值保持不变的数列。
设数列的首项为a₁,公差为d,则数列的通项公式为an = a₁ + (n-1)d,其中n为项数。
等差数列具有以下性质:1. 通项公式:an = a₁ + (n-1)d2. 任意相邻两项之差为公差d:an - an₋₁ = d3. 任意三项之间存在等差关系:an₋₁ - an₋₂ = an - an₋₁ = d4. 等差数列的前n项和:Sn = (n/2)(a₁ + an)二、等差数列的求和公式等差数列的求和公式是等差数列中应用最广泛的公式之一。
对于等差数列a₁, a₂, a₃, ...,设数列的首项为a₁,公差为d,前n项和为Sn,则有以下求和公式:Sn = (n/2)(a₁ + an)即前n项和等于项数n与首末两项之和的乘积的一半。
三、等差数列在数学问题中的应用等差数列在数学问题中的应用非常广泛。
下面以一些具体的例子来说明等差数列在数学问题中的应用:1. 求等差数列的第n项:已知一个等差数列的首项和公差,可以通过通项公式an = a₁ + (n-1)d来计算出第n项的值。
2. 求等差数列的前n项和:通过等差数列的求和公式Sn = (n/2)(a₁+ an),可以计算出等差数列的前n项和。
3. 判断一个数是否属于等差数列:已知一个数列,如果该数列中任意相邻两项之差保持不变,则可判断该数列为等差数列。
4. 求等差数列中的缺失项:已知一个等差数列中除了给定首项和末项外,还有若干项的值未知,可以通过已知项的性质和等差关系来求解缺失项的值。
四、等差数列在物理问题中的应用等差数列在物理问题中也有一些应用。
以下是几个物理问题中等差数列的应用示例:1. 自由落体运动:在自由落体运动中,物体在每个单位时间内所走过的距离是等差数列,其公差等于物体的平均速度。
等差数列知识点整理
等差数列知识点整理有关等差数列知识点整理在平凡的学习生活中,大家最熟悉的就是知识点吧?知识点也可以通俗的理解为重要的内容。
想要一份整理好的知识点吗?下面是店铺整理的有关等差数列知识点整理,欢迎大家分享。
等差数列知识点整理篇1概念等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……2n-1。
通项公式为:an=a1+(n-1)xd。
首项a1=1,公差d=2。
前n项和公式为:Sn=a1xn+[nx(n-1)xd]/2或Sn=[nx(a1+an)]/2。
注意:以上n均属于正整数。
公式通项公式如果一个等差数列的首项为a1,公差为d,那么该等差数列第n 项的表达式为:即an=a1+(n-1)d补充:求和公式若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:S=(a1+an)n2即(首项+末项)项数2前n项和公式注意:n是正整数(相当于n个等差中项之和)等差数列前N项求和,实际就是梯形公式的妙用:上底为:a1首项,下底为a1+(n-1)d,高为n。
即[a1+a1+(n-1)d]x n/2=a1 n+ n (n-1)d /2.推论一.从通项公式可以看出,a(n)是n的一次函数(d0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d0)或一次函数(d=0,a10),且常数项为0。
二. 从等差数列的定义、通项公式,前n项和公式还可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=…=a(k)+a(n-k+1),(类似:p(1)+p(n)=p(2)+p(n-1)=p(3)+p(n-2)=...=p(k)+p(n-k+1)),k{1,2,…,n}三.若m,n,p,qNx,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q),S(2n-1)=(2n-1)xa(n),S(2n+1)= (2n+1)xa(n+1),S(k),S(2k)-S(k),S(3k)-S(2k),…,S(n)xk-S(n-1)xk…成等差数列,等等。
(完整版)等差数列知识点总结及练习(精华版)
等差数列的性质总结1.等差数列的定义:(d 为常数)();d a a n n =--12≥n 2.等差数列通项公式:, 首项:,公差:d ,末项:*11(1)()n a a n d dn a d n N =+-=+-∈1a n a 推广: . 从而;d m n a a m n )(-+=mn a a d mn --=3.等差中项(1)如果,,成等差数列,那么叫做与的等差中项.即:或a A b A a b 2ba A +=b a A +=2(2)等差中项:数列是等差数列{}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项21n +1n a +5.等差数列的判定方法(1) 定义法:若或(常数) 是等差数列. d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a (2) 等差中项:数列是等差数列. {}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a (3) 数列是等差数列(其中是常数)。
{}n a ⇔b kn a n +=b k ,(4) 数列是等差数列,(其中A 、B 是常数)。
{}n a ⇔2n S An Bn =+6.等差数列的证明方法定义法:若或(常数) 是等差数列.d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a 7.提醒:等差数列的通项公式及前n 项和公式中,涉及到5个元素:,其中n a n S n n S a n d a 及、、、1称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2.d a 、18. 等差数列的性质:(1)当公差时,0d ≠等差数列的通项公式是关于的一次函数,且斜率为公差;11(1)n a a n d dn a d =+-=+-n d 前和是关于的二次函数且常数项为0.n 211(1)(222n n n d dS na d n a n -=+=+-n (2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。
等差数列的知识点总结
等差数列的知识点总结一、概念等差数列是由一系列按照相同的公差递增或递减的数字所组成的数列。
如果一个数列 a1, a2, a3, ... , an 满足a2 - a1 = a3 - a2 = ... = an - a(n-1)那么这个数列就是等差数列,其中 a1 为首项,a2 - a1 为公差。
例如,3, 6, 9, 12, 15 就是一个等差数列,其中首项为3,公差为3。
二、性质1. 通项公式等差数列的第 n 项 a_n 可以用通项公式表示为a_n = a1 + (n-1)d其中 a1 为首项,d 为公差。
2. 数列求和等差数列的前 n 项和 Sn 可以用求和公式表示为Sn = n/2 * (a1 + an)或Sn = n/2 * (2a1 + (n-1)d)其中 a1 为首项,d 为公差,an 为第 n 项。
3. 任意三项对于等差数列中的任意三项 a_i, a_j, a_k(i < j < k),有2a_j = a_i + a_k这个性质可以用来解决很多等差数列的问题。
4. 求和公式的推导为了理解等差数列求和公式的推导,我们来考虑一个等差数列的和 S_n = a_1 + a_2 + ... + a_n。
如果我们将这个数列反向写,即 S_n = a_n + a_(n-1) + ... + a_1,那么两个数列相加得到的和是2S_n = (a_1 + a_n) + (a_2 + a_(n-1)) + ... + (a_n + a_1)由于等差数列中任意三项的性质,我们知道其中每一对括号内的和都是相等的,所以有2S_n = (a_1 + a_n) + (a_1 + a_n) + ... + (a_1 + a_n) = n * (a_1 + a_n)从而得到了等差数列求和公式。
三、应用等差数列在数学和实际生活中都有着广泛的应用。
在数学中,等差数列的求和公式可以用来解决许多数学问题,比如计算前 n 项的和。
(完整版)等差数列知识点总结
(完整版)等差数列知识点总结1. 等差数列的定义等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差都相等的数列。
2. 等差数列的通项公式设等差数列的首项为 a1,公差为 d,则第 n 项的通项公式为 an = a1 + (n - 1) * d。
3. 等差数列的前 n 项和公式设等差数列的首项为 a1,末项为 an,项数为 n,公差为 d,则前 n 项的和公式为 Sn = n * (a1 + an) / 2。
4. 判断数列是否为等差数列- 检查数列中连续两项的差是否相等,即是否满足等差数列的定义。
- 可以通过计算数列的前 n 项和是否满足 Sn = n * (a1 + an) / 2 来判断。
5. 求等差数列的公差设等差数列的首项为 a1,第二项为 a2,则公差可以通过计算差值 d = a2 - a1 获得。
6. 求等差数列的项数设等差数列的首项为 a1,末项为 an,公差为 d,则项数可以通过以下公式计算:n = (an - a1 + d) / d。
7. 求等差数列的首项设等差数列的第一项为 a1,公差为 d,已知项数为 n,末项为an,则首项可以通过以下公式计算:a1 = an - (n - 1) * d。
8. 求等差数列的末项设等差数列的首项为 a1,公差为 d,已知项数为 n,末项可以通过以下公式计算:an = a1 + (n - 1) * d。
9. 等差数列的性质- 等差数列的任意三项成等差数列。
- 等差数列中的取任意几项可以组成一个等差数列。
- 等差数列的平均数等于首项与末项的平均数。
10. 应用场景等差数列的应用非常广泛,常见的应用场景包括:- 数学题中的数列问题,如求和、推导等。
- 统计学中的数据分析,如平均数、标准差等。
- 金融学中的投资计算,如等额本息还款、定期存款等。
- 工程学中的时间序列分析,如温度变化、电压波动等。
以上是等差数列的一些重要知识点总结,希望能对你有所帮助!。
等差数列知识点总结与题型归纳讲义
10.1等差数列知识梳理.等差数列1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)①通项公式:a n =a 1+(n -1)d =nd +(a 1-d )⇒当d ≠0时,a n 是关于n 的一次函数.②通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(3)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.①若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *).②当m +n =p +q 时,a m +a n =a p +a q (m ,n ,p ,q ∈N *).(4)前n 项和公式:S n =n (a 1+a n )2――→a n =a 1+(n -1)dS n =na 1+n (n -1)2d =d 2n 2+a 1-d2n ⇒当d ≠0时,S n 是关于n 的二次函数,且没有常数项.2.常用结论:已知{a n }为等差数列,d 为公差,S n 为该数列的前n 项和.(1)S n ,S 2n -S n ,S 3n -S 2n ,…也成等差数列,公差为n 2d .(2)若{a n }是等差数列,则S nn 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12.(3)若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a na n +1.若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=nn -1.题型一.等差数列的基本量1.已知等差数列{a n}满足a3+a4=12,3a2=a5,则a6=11.【解答】解:设等差数列{a n}的公差为d,∵a3+a4=12,3a2=a5,∴2a1+5d=12,3(a1+d)=a1+4d,联立解得a1=1,d=2,∴a6=a1+5d=11故答案为:112.(2018•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴3×(31+3×22p=a1+a1+d+4a1+4×32d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.3.(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴1+3+1+4=2461+6×52=48,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.题型二.等差数列的基本性质1.在等差数列{a n}中,已知a5+a10=12,则3a7+a9等于()A.30B.24C.18D.12【解答】解:∵等差数列{a n}中,a5+a10=12,∴2a1+13d=12,∴3a7+a9=4a1+26d=2(2a1+13d)=24.故选:B.2.在等差数列{a n}中,若a4+a6+a8+a10+a12=120,则a9−1311的值为()A.17B.16C.15D.14【解答】解:由a4+a6+a8+a10+a12=(a4+a12)+(a6+a10)+a8=5a8=120,解得a8=24.a9−1311=a1+8d−1+103=23a1+143d=23(a1+7d)=23a8=16故选:B.3.设等差数列{a n}的前n项和为S n,若a3=10,S4=36,则公差d为2.【解答】解:∵a3=10,S4=36,∴a1+2d=10,4a1+4×32d=36,解得d=2.故答案为:2.题型三.等差数列的函数性质1.下面是关于公差d>0的等差数列{a n}的四个命题:(1)数列{a n}是递增数列;(2)数列{na n}是递增数列;(3)数列{}是递减数列;(4)数列{a n+3nd}是递增数列.其中的真命题的个数为()A.0B.1C.2D.3【解答】解:设等差数列的首项为a1,公差d>0,则a n=a1+(n﹣1)d=dn+a1﹣d,∴数列{a n}是递增数列,故(1)正确;B=B2+(1−p,当n<K12时,数列{na n}不是递增数列,故(2)错误;=+1−,当a1﹣d≤0时,数列{}不是递减数列,故(3)错误;a n+3nd=4nd+a1﹣d,数列{a n+3nd}是递增数列,故(4)正确.∴真命题个数有2个.故选:C.2.已知数列{a n}的前n项和S n=n2(n∈N*),则{a n}的通项公式为()A.a n=2n B.a n=2n﹣1C.a n=3n﹣2D.=1,=12,≥2【解答】解:∵S n=n2,∴当n=1时,a1=S1=1.当n≥2时,a n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1,而当n=1时也满足,∴a n=2n﹣1.故选:B.3.在数列{a n}中,若a n=5n﹣16,则此数列前n项和的最小值为()A.﹣11B.﹣17C.﹣18D.3【解答】解:令a n=5n﹣16≤0,解得n≤3+15.则此数列前n项和的最小值为S3=3×(−11+15−16)2=−18.故选:C.题型四.等差数列的前n项和经典结论1.设等差数列{a n}的前n项和为S n,若S3=9,S9=72,则S6=()A.27B.33C.36D.45【解答】解:∵等差数列{a n}的前n项和为S n,若S3=9,S9=72,∴S3,S6﹣S3,S9﹣S6成等差数列,故2(S6﹣S3)=S3+S9﹣S6,即2(S6﹣9)=9+72﹣S6,求得S6=33,故选:B.2.等差数列{a n}中,S n是其前n项和,1=−11,1010−88=2,则S11=()A.﹣11B.11C.10D.﹣10【解答】解:=B1+oK1)2,得=1+(K1)2,由1010−88=2,得1+10−12−(1+8−12)=2,d=2,1111=1+(11−1)2=−11+5×2=−1,∴S11=﹣11,故选:A.3.若两个等差数列{a n}和{b n}的前n项和分别是S n和T n,已知=2r1,则77等于()A.1321B.214C.1327D.827【解答】解:∵=2r1,∴77=2727=132(1+13)132(1+13)=1313=132×13+1=1327,故选:C.题型五.等差数列的最值问题1.已知等差数列{a n}中,S n是它的前n项和,若S16>0,S17<0,则当S n最大时,n的值为()A.8B.9C.10D.16【解答】解:∵等差数列{a n}中,S16>0且S17<0∴a8+a9>0,a9<0,∴a8>0,∴数列的前8项和最大故选:A.2.在等差数列{a n}中,已知a1=20,前n项和为S n,且S10=S15,求当n为何值时,S n取得最大值,并求出它的最大值.【解答】解:∵等差数列{a n}中S10=S15,∴S15﹣S10=a11+a12+a13+a14+a15=5a13=0,∴a13=0,∴数列的前12项为正数,第13项为0,从第14项开始为负值,∴当n=12或13时,S n取得最大值,又公差d=13−113−1=−53,∴S12=12×20+12×112(−53)=130∴S n的最大值为1303.(2014·江西)在等差数列{a n}中,a1=7,公差为d,前n项和为S n,当且仅当n=8时S n取得最大值,则d的取值范围为(﹣1,−78).【解答】解:∵S n=7n+oK1)2,当且仅当n=8时S n取得最大值,∴7<8 9<8,即49+21<56+2863+36<56+28,解得:>−1<−78,综上:d的取值范围为(﹣1,−78).题型六.证明等差数列1.已知数列{a n}满足1=35,=2−1K1(≥2,∈∗),数列{b n}满足=1−1(∈∗).(1)求证数列{b n}是等差数列;(2)求数列{a n}中的最大项和最小项.【解答】解:(1)由1=35,=2−1K1(≥2,∈∗),得a n+1=2−1(n∈N•)b n+1﹣b n=1r1−1−1−1=12−1−1−1−1=1…(4分)又b1=−52,所以{b n}是以−52为首项,1为公差的等差数列…(6分)(2)因为b n=b1+(n﹣1)=n−72,所以a n=1+1=22K7+1.…(9分)1≤n≤3时数列{a n}单调递减且a n<1,n≥4时数列{a n}单调递减且a n>1所以数列{a n}的最大项为a4=3,最小项为a3=﹣1.…(14分)2.已知数列{a n}中,a2=1,前n项和为S n,且S n=o−1)2.(1)求a1;(2)证明数列{a n}为等差数列,并写出其通项公式;【解答】解:(1)令n=1,则a1=S1=1(1−1)2=0(2)由=o−1)2,即=B2,①得r1=(r1)r12.②②﹣①,得(n﹣1)a n+1=na n.③于是,na n+2=(n+1)a n+1.④③+④,得na n+2+na n=2na n+1,即a n+2+a n=2a n+1又a1=0,a2=1,a2﹣a1=1,所以,数列{a n}是以0为首项,1为公差的等差数列.所以,a n=n﹣1课后作业.等差数列1.设等差数列{a n}的前n项和为S n,若S9=72,则a1+a5+a9=()A.36B.24C.16D.8【解答】解:由等差数列的求和公式可得,S9=92(a1+a9)=72,∴a1+a9=16,由等差数列的性质可知,a1+a9=2a5,∴a5=8,∴a1+a5+a9=24.故选:B.2.设等差数列{a n}的前n项和为S n,S8=4a3,a7=﹣2,则a10=()A.﹣8B.﹣6C.﹣4D.﹣2【解答】解:等差数列{a n}中,前n项和为S n,且S8=4a3,a7=﹣2,则81+28=41+81+6=−2,解得a1=10,d=﹣2,∴a10=a1+9d=﹣8.故选:A.3.已知等差数列{a n}的前n项和为S n,且a1>0,2a5+a11=0,则下列说法错误的为()A.a8<0B.当且仅当n=7时,S n取得最大值C.S4=S9D.满足S n>0的n的最大值为12【解答】解:∵2a5+a11=0,∴2a1+8d+a1+10d=0,∴a1=﹣6d,∵a1>0,∴d<0,∴{a n}为递减数列,∴a n=a1+(n﹣1)d=﹣6d+(n﹣1)d=(n﹣7)d,由a n≥0,(n﹣7)d≥0,解得n≤7,∴数列前6项大于0,第7项等于0,从第8项都小于0,∴a8<0,当n=6或7时,S n取得最大值,故A正确,B错误;∵S4=4a1+6d=﹣24d+6d=﹣18d,S9=9a1+36d=﹣28d+36d=﹣18d,∴S4=S9,故C正确;∴S n=na1+oK1)2=2(n2﹣13n)>0,解得0<n<13,∴满足S n>0的n的最大值为12,故D正确.故选:B.4.若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=8时,{a n}的前n项和最大;当S n>0时n的最大值为15.【解答】解:∵a7+a8+a9=3a8>0,a7+a10=a8+a9<0,∴a8>0,a9<0,∴n=8时,{a n}的前n项和最大;∵S15=15(1+15)2=15a8>0,S16=16(1+16)2=8(a8+a9)<0,∴当S n>0时n的最大值为15.故答案为:8;15.5.在数列{a n}中,a2=8,a5=2,且2a n+1﹣a n+2=a n(n∈N*),则|a1|+|a2|+…+|a10|的值是()A.210B.10C.50D.90【解答】解:∵2a n+1﹣a n+2=a n(n∈N*),即2a n+1=a n+2+a n(n∈N*),∴数列{a n}是等差数列,设公差为d,则a1+d=8,a1+4d=2,联立解得a1=10,d=﹣2,∴a n=10﹣2(n﹣1)=12﹣2n.令a n≥0,解得n≤6.S n=o10+12−2p2=11n﹣n2.∴|a1|+|a2|+…+|a10|=a1+a2+…+a6﹣a7﹣…﹣a10=2S6﹣S10=2(11×6﹣62)﹣(11×10﹣102)=50.故选:C.6.已知在正整数数列{a n}中,前n项和S n满足:S n=18(a n+2)2.(1)求数列{a n}的通项公式;(2)若b n=12a n﹣30,求数列{b n}的前n项和的最小值.【解答】解:(1)∵S n=18(a n+2)2,∴当n=1时,1=18(1+2)2,化为(1−2)2=0,解得a1=2.当n≥2时,a n=S n﹣S n﹣1=18(a n+2)2−18(K1+2)2,化为(a n﹣a n﹣1﹣4)(a n+a n﹣1)=0,∵∀n∈N*,a n>0,∴a n﹣a n﹣1=4.∴数列{a n}是等差数列,首项为2,公差为4,∴a n=2+4(n﹣1)=4n﹣2.(2)b n=12a n﹣30=12(4−2)−30=2n﹣31.由b n≤0,解得≤312,因此前15项的和最小.又数列{b n}是等差数列,∴数列{b n}的前15项和T15=15(−29+2×15−31)2=−225.∴数列{b n}的前n项和的最小值为﹣225.。
等差数列知识点汇总
则
? 100a ? 10b ? 310 ??400a ? 20b ? 1220
?
?a ? 3
? ?
b
?
1
? Sn ? 3n2 ? n
16
从函数的观点来看等差数列:
数列?an?为等差数列 ? an ? pn ? q ?p、q为常数? 数列?an?为等差数列 ? Sn ? an2 ? bn ?a、b为常数? Sn ? an2 ? bn?a、b为常数?? 数列?an?为等差数列?
已知数列{an }的前n项和为Sn ? n2 ? 2n+1, 则{an }是怎样的数列?
一般地,
Sn ? an 2 ? bn ? c ?a、b为常数,c ? 0?
? 数列?an?从第二项开始为等差数列 .
19
若数列?an?的前n项和Sn ? an 2 ? bn ? c ?a、b、c为常数?
则当c ? 0时,数列?an?为等差数列. 当c ? 0时,数列?an?从第二项开始为等差数列 .
倒序 相加
? ?1?? ?2?: 2Sn ? ?a1 ? an ?? ?a2 ? ? an?1 ? ?a3 ? an? 2 ?? ? ? (an ? a1) 共n个括号 ? a1 ? an ? a2 ? an?1 ? a3 ? an?2 ? ? ? an ? a1
? 2Sn ? n(a1 ? an )
?a ? an?1
?
d
?n
?
2?
等差数列的通项公式 an ? a1 ? ?n ? 1?d (n ? 2,n ? N*)
6
根据等差数列的定义式或通项公式 可以证明等差数列的如下性质:
7
性质1 推广的等差数列通项公式
an=aq+ (n-q)d
超全等差数列基础知识总结(求基本量、性质、最值)
等差数列定义:一个数列从第二项起,后一项与前一项的差等于一个常数。
a n−a n−1=d 等差中项:由三个数a A b组成的等差数列,A=a+b,A叫做ab的等差中项通项公式: a n=a1+(n−1)以n为自变量的一次函数前n项和:S n=n(a1+a n)2S n=na1+n(n−1)d2是以n为自变量的二次函数两者关系:a n=S n−S n−1类型一:等差数列基本量的计算在等差数列的五个基本量a1、d、n、a n、S n中,已知其中三个量,可以根据已知条件结合等差数列的通项公式、前n项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换及方程思想的应用。
关键:1.判读题目考的是求基本量:一般问a n、S n(n可为1、2、7、n等)2.列出通项公式、求和公式,把已知量代进去3.把列出的方程组解出来,再向所求靠近1.已知等差数列{}na中,a2=2,a3=4,则a10=.182.在等差数列中,,则.133.已知等差数列的前n项之和记为S n,S10=210 ,S30=820,则S15等于。
4654.等差数列{}na的前n项和为nS,公差d= - 2,若S10=S11,则a1=205.等差数列的前n项和为,且=6,=4,则公差d等于()C A.1 B C.- 2 D 36、等差数列{}na中,若232nS n n=+,则公差d=. 6类型二:等差数列的性质1.=na dmnam)(-+}{na6,7253+==aaa____________6=a{}na{}na nS3S1a532. (最重要!!!!!) 在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+;若2m=p+q ,则2a m =a p +a q ,3. 若{n a }是等差数列,公差为d.则),(,,,2*++∈N m k a a a m k m k k 组成公差为md 的等差数列。
知识点归纳总结等差数列
知识点归纳总结1.等差数列2. 等比数列【例题精讲】【1】在等差数列}{n a 中,已知1684=+a a ,则该列前11项和=11S ( )A.58B.88C.143D.176答案:B【2】已知}{n a 为等差数列,若π=++951a a a ,则)cos(82a a +的值为( )A.21-B.23-C.21 D.23 答案:B【3】已知等差数列}{n a 的前n 项和为n S ,且3184=S S ,则=168S S ( ) A.81B.31 C.91 D.103 答案:C【4】已知等差数列}{n a 的前n 项和为n S ,且2211=S ,则2113a a +等于( )A.2B.4C.8D.16答案:C【5】已知等差数列}{n a 中,8,242==a a ,若13-=n a n b ,则2013b 等于( )A.2011B.2012C.2013D.2014答案:D【6】已知}{n a 为等差数列,99,105642531=++=++a a a a a a ,以n S 表示}{n a 的前n 项和,则使得n S 达到最大值的n 是( )A.21B.20C.19D.18答案:B【7】已知}{n a 为等差数列,若167-<a a ,且它们的前n 项和n S 有最大值,则使0>n S 的n 的最大值为 答案:11【8】设n S 是公差为)0(≠d d 的无穷等差数列}{n a 的前n 项和,则下列命题错误的是( )A.若0<d ,则数列}{n S 有最大项B.若数列}{n S 有最大项,则0<dC.若数列}{n S 是递增数列,则对任意*N n ∈,均有0>n S D.若对任意*N n ∈,均有0>n S ,则有数列}{n S 是递增数列答案:C【10】公比为q 的等比数列}{n a 的各项为正数,且7log ,1610122==a a a q ,则公比=q 答案:2【11】设等比数列}{n a 的前n 项和为n S ,若20103,201032011201220122013+=+=S a S a ,则公比=q ( )A.4B.41或C.2D.21或答案:A【12】在等比数列}{n a 中,已知24,21,64a a 成等比数列且6453=⋅a a ,则}{n a 的前8项和为 . 答案:85255或【13】设等比数列{}n a 的前n 项和为n S ,若633S S =,则96SS =( )A.2B.37 C.38D.3答案:B【14】已知{}n a 是首项为1的等比数列,n S 是{}n a 的前项和,且369S S =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为( )A.1631 B.51631或 C.5815或 D.815 答案:A【15】公比不为1的等比数列}{n a 的前n 项和为n S ,且321,,3a a a --成等差数列,若11=a ,则=4S ( ) A.20- B.0C.7D.40答案:A【16】各项都是正数的等比数列}{n a ,若132,21,a a a 成等差数列,则5443a a a a ++的值是( ) A.215+ B.215-C.251- D.215+或215- 答案:B【17】已知正项等比数列}{n a 满足12011201220134,2a a a a a a n m =⋅+=且,则)11(6nm +的最小值为 . 答案:4递推数列:数列}{n a 的任一项n a 与它前一项1-n a (或它的前几项)间关系用一个公式表示.专题:数列通项公式及求和一. 常规数列的通项与求和方法:定义法(利用等差数列、等比数列的通项与求和公式来求)1. 等差数列:<1>通项公式:*1(1)(),,n m a a n d a n m d n m N =+-=+-∈<2>求和公式:11()(1)22n n n a a n n S na d +-==+ 2. 等比数列:<1>通项公式:11,0n n mn m a a q a q q --=⋅=⋅≠<2>求和公式:11(1)(1)(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩3. 一些常见的数列求和公式222221(1)(21)1236nk n n n k n =++=++++=∑2333331(1)1232nk n n kn =+⎡⎤=++++=⎢⎥⎣⎦∑【例1】已知等差数列{}n a 满足466,10a a ==. (1) 求数列{}n a 的通项公式;(2) 设等比数列{}n b 各项均为正数,其前n 项和n T ,若3232,7,n a b T T =+=求.【例2】已知{}n a 是等比数列,12,a =且134,1,a a a +成等差数列. (1) 求数列{}n a 的通项公式;(2) 若2log n n b a =,求数列{}n b 的前n 项和n S .二. 非常规数列的通项公式常用通项公式的求法有四种:求法1:累加法适用于1()n n a a f n +=+型.特点:递推公式关于相邻两项的关系且系数、幂数都相同.【例3】已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.【例4】已知数列{}n a 满足*11221,2,,2n n n a a a a a n N +++===∈ (1) 令1n n n b a a +=-,证明:{}n b 是等比数列; (2) 求{}n a 通项公式.求法2:累乘法适用于1()n n a a f n +=⋅型特点:递推公式是关于相邻两项商的关系,且商()f n 是可求数列.【例6】已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a .求法3:公式法现象:题目中出现n a 与n S 的关系式. 解决:利用1n n n a S S -=-求解.【例7】已知数列{}n a 满足:*1()n n S a n N =-∈,其中n S 为数列{}n a 的前n 项和.求n a .【同类演练】例15第一问求法4:构造法类型1:构造等比数列凡是出现关于后项和前项的一次递推形式的现象都可以构造等比. 现象1:1,(,)n n a pa q p q +=+为常数【例8】已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式.【同类演练】例18第一问现象2:1(,nn n a pa q p q +=+为常数)【例9】已知数列{}n a 中,111511,()632n n n a a a ++==+,求n a .【同类演练】例17第一问现象3:1(),n n a pa f n p +=+为常数【例10】已知数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.现象4:21,(,)n n n a pa qa p q ++=+为常数【例11】已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈求n a .类型2:构造等差数列题目中出现后项与前项分式递推形式可以构造等差. 解决办法:取倒数【例12】已知在数列{}n a 中*111,()21nn n a a a n N a +==∈+.(1) 求数列{}n a 的通项公式; (2) 若13521211,(1)(1)(1)(1)n n n nP b b b b b a -=+=++++,求证:n P >三. 非常规数列的求和常用的求和方法一般有四种: 方法1:裂项相消法把数列的通项拆成两项之差,在求和时中间项可以相互抵消,从而求得其和. 常见的拆项公式有:(1)111)1(1+-=+n n n n ;(2)1111()()n n k k n n k =-++(3))121121(21)12)(12(1+--=+-n n n n(4(5)!)!1(!n n n n -+=⋅ (6)11log log log n n n na a a a ++=- 、【例13】(2011新课标)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +==(1)求数列{}n a 的通项公式;(2)设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和【例14】等差数列{}n a 中211a =,32624a a a =+-,其前n 项和为n S .(1) 求数列{}n a 的通项公式;(2) 设数列{}n b 满足111n n b S +=-,其前n 项和为n T ,求证:*3()4n T n N <∈.【例15】已知数列{}n a 的前n 项和*1,1,(1)()n n n S a S na n n n N ==--∈. (1) 求数列{}n a 的通项公式;(2) 设12n n n b a a +=,求数列{}n b 的前前n 项和为n T .方法2:错位相减法适用于由一个等差数列和一个等比数列构成对应项之积构成的数列求和.即{}{}1122,,.n n n n n a b a b a b a b S +++等差等比求的和 解题步骤:(1)1122n n n S a b a b a b =+++,将式子两边同时乘以{}n b 的公比q ,得到n qS .(2)用n n qS S -(3)利用等比数列求和公式求解.【例16】(2011辽宁理)已知等差数列{}n a 满足2680,10a a a =+=-.(1) 求数列{}n a 的通项公式;(2) 求数列1{}2nn a -的前n 项和.【例17】已知数列{}n a 满足*1112,2()2n n n a a a n N +==-∈(1) 求证:数列{}2nn a 是等差数列;(2) 求数列{}n a 的前n 项和n S .【例18】已知数列{}n a 的前n 项和2*4()n S n n n N =+∈,数列{}n b 满足111,21n n b b b +==+.(1) 求数列{}n a ,{}n b 的通项公式;(2) 设(3)(1)4n n n a b c -+=,求数列{}n c 的前n 项和n T ..方法3:分组求和法适用于可以将数列适当拆开,分为几个等差,等比或常见的数列,先分别求和,然后在合并,形如:{},{}{}n n n n a b a b +其中为等差数列,为等比数列【例19】已知数列等差数列{}n a 满足:5269,14a a a =+=.(1) 求数列{}n a 的通项公式;(2) 若2n an n b a =+,求数列{}n b 的前n 项和n S ..方法4:倒序相加法如果一个数列{}n a ,与首末位置等“距离”的两项和相等,那么这个数列可以采用倒序来求和.一般使用于组合数列与等差数列求和.【例20】已知a xy =lg ,n n n n n y y x y x x S lg lg lg lg 221++++=-- (0>x 、0>y )求n S已知递增等比数列}{n a ,公比为q ,满足28432=++a a a ,且23+a 是42,a a 的等差中项.(1) 求数列}{n a 的通项公式;(2) 若n n n n n b b b b S a a b ++++== 32121,log ,求使5021>⋅++n n n S 成立的正整数n 的最小值.已知数列{}n a 为等差数列,n a 为正整数,其前n 项和为n S ,数列{}n b 为等比数列,且13a =,11b =,数列{}n a b 是公比为64的等比数列,2264b S =(1)求n a ,n b ;(2)求证:1211134+++<n S S S在数列}{n a 中,n n n n a n a a 21)11(,111+++==+ (1)设na b n n =,求数列}{n b 的通项公式; (2)求数列}{n a 的前n 项和nS已知数列}{n a 的前n 项和 ,3,2,1,4232=+⋅-=n a S n n n .(1) 求数列}{n a 的通项公式;(2) 设n T 为数列}4{-n S 的前n 项和,求⋅n T。
完整版等差数列知识点总结
完整版等差数列知识点总结等差数列是数学中的重要概念,它在各个领域都有广泛的应用。
本文将对等差数列的定义、通项公式、前n项和等差数列的性质等知识点进行全面总结。
一、等差数列的定义等差数列是指一个数列中相邻两项之差都相等的数列。
数列中的每一项我们称之为等差数列的项,其中第一项通常用a1表示,等差用d表示。
例如,数列2,5,8,11,14就是一个等差数列,其中a1=2,d=3。
二、等差数列的通项公式等差数列通项公式是指根据等差数列的首项和公差,求出任意一项的求值公式。
通项公式的推导有多种方法,这里我们介绍其中一种常用的方法。
设等差数列的首项是a1,公差是d,第n项是an,则通项公式可以表示为:an = a1 + (n-1)d根据这个公式,我们可以轻松地求得等差数列中任意一项的值。
三、等差数列前n项和公式在等差数列中,求前n项和也是一个常见的问题。
我们可以通过求和公式来解决这个问题。
设等差数列的首项是a1,公差是d,第n项是an,前n项和用Sn表示,则前n项和公式可以表示为:Sn = (n/2)(a1 + an)利用前n项和公式,我们可以方便地求得等差数列的前n项和。
四、等差数列的性质等差数列具有一些特点和性质,我们在解题过程中可以利用它们来简化计算。
1. 通项差是公差的倍数:an - an-1 = d这个性质意味着等差数列中,相邻两项之差都是公差的倍数。
2. 对称性:an = a1 + (n-1)d,an+k = a1 + (n+k-1)d根据等差数列的通项公式,我们可以发现等差数列具有对称性。
一个等差数列中的第k项和倒数第k项之和等于第一项与最后一项之和。
3. 求和公式与项数有关:Sn = (n/2)(a1 + an)求和公式中的项数n对和值Sn有影响,这个公式可以帮助我们快速计算一个等差数列的前n项和。
五、等差数列的应用领域等差数列在数学中有广泛的应用,它们不仅仅出现在数学题目中,还出现在其他许多领域。
等差数列知识点总结
等差数列知识点总结一、等差数列的定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
这个常数叫做等差数列的公差,通常用字母 d 表示。
例如:数列 2,4,6,8,10就是一个公差为 2 的等差数列。
二、等差数列的通项公式等差数列的通项公式为:an = a1 +(n 1)d ,其中 an 表示第 n 项的值,a1 表示首项,n 表示项数,d 表示公差。
通项公式的推导:第 2 项:a2 = a1 + d第 3 项:a3 = a2 + d =(a1 + d) + d = a1 + 2d第 4 项:a4 = a3 + d =(a1 + 2d) + d = a1 + 3d第 n 项:an = a1 +(n 1)d通过通项公式,我们可以根据首项、公差和项数求出任意一项的值。
三、等差数列的性质1、若 m,n,p,q ∈ N+ ,且 m + n = p + q ,则 am + an = ap + aq 。
例如:在等差数列中,若 a3 + a8 = 10 ,a5 + a6 也等于 10 。
2、若数列{an}是等差数列,公差为 d ,则 ak,ak + m,ak + 2m,(k,m ∈ N+ )仍为等差数列,且公差为 md 。
3、若数列{an}是等差数列,Sn 表示前 n 项和,则 Sk,S2k Sk,S3k S2k ,仍为等差数列。
4、若数列{an},{bn}均为等差数列,公差分别为 d1 ,d2 ,则数列{pan + qbn}(p,q 为常数)仍为等差数列,且公差为 pd1 + qd2 。
四、等差数列的前 n 项和公式等差数列的前 n 项和公式为:Sn = n(a1 + an) / 2 或 Sn = na1 +n(n 1)d / 2 。
前 n 项和公式的推导:Sn = a1 + a2 + a3 ++ an将通项公式 an = a1 +(n 1)d 代入上式:Sn = a1 +(a1 + d) +(a1 + 2d) ++ a1 +(n 1)d将上式倒序相加:Sn = a1 +(n 1)d + a1 +(n 2)d ++(a1 + d) + a12Sn = 2a1 +(n 1)d + 2a1 +(n 1)d ++ 2a1 +(n 1)d(共 n 个)2Sn = n2a1 +(n 1)dSn = n(a1 + an) / 2又因为 an = a1 +(n 1)d ,所以 Sn = na1 + n(n 1)d / 2 。
(完整版)高考等差等比数列知识点总结
高考数列知识点等差数列1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n );2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a推广: d m n a a m n )(-+=. 从而mn a a d mn --=;3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地()()()12121121212n n n n a a S n a +++++==+5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a . (3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函 数,且斜率为公差d ;前n 和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
等差数列知识点总结
等差数列知识清单1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。
根据定义,当我们看到形如:da a n n =--1、da a n n =--212、da a n n =--1d a a n n =--111、211-++=n n n a a a 、d S S n n =--1时,应能从中得到相应的等差数列。
等差数列的判定方法1. 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.2.等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .3.数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
4.数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.例1.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a推广: d m n a a m n )(-+=. 从而mn a a d mn --=;等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。
等差数列知识点归纳总结重点
等差数列知识点归纳总结重点等差数列是数学中的一个重要概念,是指数列中任意两项之间的差等于同一个常数的数列。
在学习数学的过程中,我们会遇到许多关于等差数列的问题和应用。
因此,对于等差数列的重要知识点进行归纳总结,有助于我们更好地掌握和应用这一概念。
本文将从等差数列的定义、通项公式、求和公式以及应用等方面进行论述。
一、等差数列的定义等差数列是指数列中任意两项之间的差等于同一个常数的数列。
设等差数列的首项为a₁,公差为d,则数列的通项公式为:aₙ = a₁ + (n - 1) * d其中,aₙ表示第n项,a₁表示首项,n为正整数,d表示公差。
二、等差数列的性质1. 通项公式等差数列的通项公式是一个重要的公式,通过这个公式我们可以根据首项和公差来求出任意一项的值。
2. 前n项和公式等差数列前n项和的公式是另一个重要的公式,通过这个公式我们可以根据首项、公差和项数来求出前n项的和。
Sn = (n/2)(a₁ + aₙ)其中,Sn表示前n项和,a₁表示首项,aₙ表示第n项,n为正整数。
3. 公差与项数的关系在等差数列中,如果已知首项和第n项,那么公差可以通过下面的公式计算:d = (aₙ - a₁) / (n - 1)其中,d表示公差,a₁表示首项,aₙ表示第n项,n为正整数。
三、等差数列的应用等差数列在数学和实际生活中有很多应用。
以下是一些常见的应用场景:1. 数学题在解决一些数学问题时,等差数列的概念常常被用到。
例如,解决找规律、求和等问题时,可以利用等差数列的特性来简化计算过程。
2. 财务分析在财务分析中,等差数列可以用来描述一些财务指标的变化。
例如,某个公司的年利润按照等差数列递增或递减,可以通过等差数列的性质进行分析和预测。
3. 运动训练在一些运动训练中,等差数列也有应用。
例如,按照等差数列的规律进行训练强度的递增,有助于提高运动员的体能和技术水平。
四、总结通过对等差数列的定义、通项公式、求和公式以及应用的归纳总结,我们可以更好地理解和应用等差数列这一数学概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 数列定义及其性质一、基本概念:1、通项公式:n a ;2、前n 项和:n S3、关系:1(2)n n n a S S n -=-≥ 二、性质:1、单调性:增数列:1n n a a ->;减数列:1n n a a -<;常数列:1n n a a -=2、最值:77878789+++(0)0,00,=0,0,n n a S a a S S S a a a ⎧⎧⎪⎨⎩⎪⎪---⎧⎪⎨⎪><⎪⎪⎨⎪><⎪⎪⎪⎪⎩⎩最大值:减数列最小值:增数列最大值:若最大,则若或最大,则最小值:与上面相反3、前n 项积n T 有最大值: 三、几种常见数列: 1、-1,7,-13,192、7,77,777, 3、135248,,4、161149,,,5、2468,3153563,,★随堂训练:1、已知数列{}n a 通项公式是231n na n =+,那么这个数列是( ) A.递增数列 B.递减数列 C.摆动数列 D.常数列2、已知数列{}n a 满足10a >,112n n a a +=,那么这个数列是( ) A.递增数列 B.递减数列 C.摆动数列 D.常数列3、已知数列{}n a 通项公式是22n a n kn =++,若对任意*n N ∈,都有1n n a a +>成立,则实数k 的取值范围是( ) 4、已知数列{}n a 通项公式是10,21n n n a T n +=+是数列{}n a 的前n 项积,即123n n T a a a a =,当n T 取到最大值是,n 的值为( )5、设数列{}n a 的前n 项和2n S n =,则8a 的值是( )等差数列专题一、等差数列知识点回顾与技巧点拨1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.2.等差数列的通项公式若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d =(n -m )d =p .3.等差中项如果三个数x ,A ,y 组成等差数列,那么A 叫做x 和y 的等差中项,如果A 是x 和y 的等差中项,则A =x +y2.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (5)S 2n -1=(2n -1)a n .(6)若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项).5.等差数列的前n 项和公式 若已知首项a 1和末项a n ,则S n =n a 1+a n2,或等差数列{a n }的首项是a 1,公差是d ,则其前n 项和公式为S n =na 1+n n -12d .6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,数列{a n }是等差数列的充要条件是S n =An 2+Bn (A ,B 为常数).7.最值问题在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值,若a 1<0,d >0,则S n 存在最小值.一个推导利用倒序相加法推导等差数列的前n 项和公式:S n =a 1+a 2+a 3+…+a n ,① S n =a n +a n -1+…+a 1,②①+②得:S n =n a 1+a n2.两个技巧已知三个或四个数组成等差数列的一类问题,要善于设元.(1)若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…. (2)若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,…,其余各项再依据等差数列的定义进行对称设元 . 四种方法等差数列的判断方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn .注: 后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.基础训练:(公式的运用,定义的把握)1.已知等差数列{a n }中,a 3=9,a 9=3,则公差d 的值为( ) A .B . 1C .D . ﹣12.已知数列{a n }的通项公式是a n =2n+5,则此数列是( ) A . 以7为首项,公差为2的等差数列 B . 以7为首项,公差为5的等差数列 C . 以5为首项,公差为2的等差数列D . 不是等差数列3.在等差数列{a n }中,a 1=13,a 3=12,若a n =2,则n 等于( ) A . 23B . 24C . 25D . 264.两个数1与5的等差中项是( ) A . 1B . 3C . 2D .5.(2005•黑龙江)如果数列{a n }是等差数列,则( ) A . a 1+a 8>a 4+a 5B . a 1+a 8=a 4+a 5C . a 1+a 8<a 4+a 5D . a 1a 8=a 4a 5考点1:等差数列的通项与前n 项和 题型1:已知等差数列的某些项,求某项【解题思路】给项求项问题,先考虑利用等差数列的性质,再考虑基本量法 【例1】已知{}n a 为等差数列,20,86015==a a ,则=75a对应练习:1、已知{}n a 为等差数列,q a p a n m ==,(k n m ,,互不相等),求k a .2、已知5个数成等差数列,它们的和为5,平方和为165,求这5个数.题型2:已知前n 项和n S 及其某项,求项数. 【解题思路】⑴利用等差数列的通项公式d n a a n )1(1-+=求出1a 及d ,代入n S 可求项数n ; ⑵利用等差数列的前4项和及后4项和求出n a a +1,代入n S 可求项数n . 【例2】已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n对应练习:3、若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数n .4、已知n S 为等差数列{}n a 的前n 项和,100,7,141===n S a a ,则=n .题型3:求等差数列的前n 项和【解题思路】(1)利用n S 求出n a ,把绝对值符号去掉转化为等差数列的求和问题. (2)含绝对值符号的数列求和问题,要注意分类讨论.【例3】已知n S 为等差数列{}n a 的前n 项和,212n n S n -=.(1) 321a a a ++; ⑵求10321a a a a ++++ ;⑶求n a a a a ++++ 321.练习:对应练习:5、已知n S 为等差数列{}n a 的前n 项和,10,10010010==S S ,求110S .考点2 :证明数列是等差数列【名师指引】判断或证明数列是等差数列的方法有:1、定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;2、中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列;3、通项公式法:b kn a n +=(b k ,是常数)⇔{}n a 是等差数列;4、项和公式法:Bn An S n +=2(B A ,是常数,0≠A )⇔{}n a 是等差数列.【例4】已知n S 为等差数列{}n a 的前n 项和,)(+∈=N n nS b nn .求证:数列{}n b 是等差数列.对应练习:6、设n S 为数列{}n a 的前n 项和,)(+∈=N n pna S n n ,.21a a = (1) 常数p 的值; (2) 证:数列{}n a 是等差数列.考点3 :等差数列的性质【解题思路】利用等差数列的有关性质求解.【例5】1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .对应练习:7、含12+n 个项的等差数列其奇数项的和与偶数项的和之比为( ).A n n 12+ .B n n 1+ .C n n 1- .D nn 21+ 8.设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S n n ,则=55b a .考点4: 等差数列与其它知识的综合【解题思路】1、利用n a 与n S 的关系式及等差数列的通项公式可求;2、求出n T 后,判断n T 的单调性.【例6】已知n S 为数列{}n a 的前n 项和,n n S n 211212+=;数列{}n b 满足:113=b , n n n b b b -=++122,其前9项和为.153⑴ 数列{}n a 、{}n b 的通项公式;⑵设n T 为数列{}n c 的前n 项和,)12)(112(6--=n n n b a c ,求使不等式57kT n >对+∈∀N n 都成立的最大正整数k 的值.课后练习:1.(2010广雅中学)设数列{}n a 是等差数列,且28a =-,155a =,n S 是数列{}n a 的前n 项和,则A .1011S S =B .1011S S >C .910S S =D .910S S <2.在等差数列{}n a 中,1205=a ,则=+++8642a a a a .3.数列{}n a 中,492-=n a n ,当数列{}n a 的前n 项和n S 取得最小值时,=n .4.已知等差数列{}n a 共有10项,其奇数项之和为10,偶数项之和为30,则其公差是 .5.设数列{}n a 中,112,1n n a a a n +==++,则通项n a = .对应练习:9.已知n S 为数列{}n a 的前n 项和,31=a ,)2(21≥=-n a S S n n n .⑴数列{}n a 的通项公式;⑵ 数列{}n a 中是否存在正整数k ,使得不等式1+>k ka a 对任意不小于k 的正整数都成立?若存在,求最小的正整数k,若不存在,说明理由。