离散数学-期末复习题及答案

合集下载

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。

B. 如果今天是周一,则明天不是周二。

答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。

答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。

这种性质称为函数的______。

答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。

如果一个图的直径为1,则该图被称为______。

答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。

布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。

答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。

答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。

例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。

2. 请解释什么是二元关系,并给出一个二元关系的例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题3分,共30分)1. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A∩B是()A. {1, 2, 3, 4, 5}B. {2, 4}C. {1, 3, 5}D. {2, 4, 6, 8}2. 下列关系中,哪个是等价关系?()A. 小于关系B. 大于等于关系C. 模2同余关系D. 整除关系3. 设P(x)是谓词逻辑公式,下列哪个命题与∀xP(x)等价?()A. ∃x¬P(x)B. ¬∀xP(x)C. ¬∃xP(x)D. ∃x¬P(x)4. 一个图的欧拉回路是指()A. 经过每一条边的路径B. 经过每一个顶点的路径C. 经过每一条边的环D. 经过每一个顶点的环5. 设G是一个无向图,下列哪个说法是正确的?()A. G的每个顶点的度数都相等B. G的每个顶点的度数都不相等C. G的任意两个顶点之间都有一条边D. G的任意两个顶点之间都不一定有边6. 下列哪个图是哈密顿图?()A. K3,3B. K5C. K4,4D. K67. 设G是一个具有n个顶点的连通图,则G的最小生成树至少包含()A. n个顶点B. n-1条边C. n+1条边D. 2n条边8. 下列哪个算法可以用来求解最短路径问题?()A. Dijkstra算法B. Kruskal算法C. Prim算法D. Floyd算法9. 设P和Q是两个命题,下列哪个命题与(P→Q)∧(Q→P)等价?()A. P∧QB. P∨QC. P↔QD. ¬P∨¬Q10. 设A是一个有限集合,A的幂集是指()A. A的所有子集B. A的所有真子集C. A的所有非空子集D. A的所有非空真子集二、填空题(每题3分,共30分)11. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A-B=______。

12. 设P(x)是谓词逻辑公式,∃xP(x)表示“存在一个x使得P(x)成立”,那么∀x¬P(x)表示“______”。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案1.选择题(每题3分,共30分)1. 下列命题中,属于复合命题的是:A. 3是一个奇数,且2是一个偶数B. 如果2是一个素数,那么4也是一个素数C. 不是所有奇数都是素数D. 存在一个整数x,使得x>5且x是一个偶数答案:D2. 已知命题p:草地是绿的,命题q:天空是蓝的。

下列表述可以表示p ∧ ¬q 的是:A. 草地是绿的,天空是蓝的B. 草地不是绿的,天空是蓝的C. 草地是绿的,天空不是蓝的D. 草地不是绿的,天空不是蓝的答案:B3. 设命题p表示“这个数是偶数”,q表示“这个数大于10”。

那么“这个数既是偶数又大于10”可以表示为:A. p ∧ qB. p ∨ qC. ¬p ∧ qD. ¬p ∨ q答案:A4. 下列以下列集合的方式描述,其中哪个是空集∅:A. {x | 0 ≤ x ≤ 1}B. {x | x是一个自然数,x > 10}C. {x | x是一个正偶数,x < 2}D. {x | x是一个负整数,x < -1}答案:C5. 设A = {a, b, c},B = {c, d, e},C = {a, c, e}。

则(A ∪ B) ∩ C等于:A. {a, b, c, d, e}B. {a, c, e}C. {c}D. 空集∅答案:B6. 假设U是全集,A、B、C是U的子集。

则(A ∪ B) ∩ C 的补集是:A. A ∩ B ∩ C的补集B. (A ∪ B) ∩ C的补集C. A ∪ (B ∩ C)的补集D. (A ∩ C) ∩ (B ∩ C)的补集答案:D7. 若关系R为集合A到集合B的一种映射,且|A| = 7,|B| = 4,则R包含的有序对数目为:A. 4B. 7C. 11D. 28答案:D8. 设A={1,2,3},B={4,5,6},则从A到B的映射总数为:A. 3B. 9C. 6D. 18答案:C9. 设A={a,b,c,d,e},则集合A的幂集的元素个数是:A. 2B. 5C. 10D. 32答案:D10. 若f:A→B为满射且g:B→C为单射,则(g ∘ f):A→C为:A. 双射B. 满射C. 单射D. 非单射且非满射答案:A2.简答题(每题10分,共20分)1. 请简要解释什么是关系R的自反性、对称性和传递性。

离散数学期末考试复习题及参考答案

离散数学期末考试复习题及参考答案
A. B. C. D.
参考答案: B
6、 设 A. 代数系统 B. 半群 C. 群
,*为普通乘法,则<S,*>是( )
D. 都不是
参考答案: A
7、 设S={0,1},*为普通乘法,则< S , * >是( ) A. 半群,但不是独异点 B. 只是独异点,但不是群 C. 群 D. 环,但不是群
参考答案: B
A. B. C. D.
参考答案: B
3、 命题“有的人喜欢所有的花”的逻辑符号化为( ) 设D:全总个体域,F(x):x是花,M(x) :x是人,H(x,y):x喜欢y
A. B. C. D.
参考答案: D
4、 下列等价式成立的有( )
A. B. C. D.
参考答案: D
5、 下列公式是重言式的有( )
5、 ( )设S={1,2},则S在普通加法和乘法运算下都不封闭。 参考答案: 正确
8、 谓词公式
中的x是( )
A. 自由变元
B. 约束变元
C. 既是自由变元又是约束变元
D. 既不是自由变元又不是约束变元
参考答案: C
9、 设
是一个有界格,如果它也是有补格,只要满足( )
A. 每个元素都至少有一个补元
B. 每个元素都有多个补元
C. 每个元素都无补元
D. 每个元素都有一个补元
参考答案: A
10、 一棵无向树T有4度、3度、2度的分枝点各1个,其余顶点均为树叶,则T中有( )片树叶
A. 3 B. 4 C. 5 D. 6
参考答案: C
11、 设
A. {{1,2}} B. {1,2 } C. {1} D. {2}
参考答案: A
,则有( )

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,空集表示为:A. {0}B. {1}C. {}D. Ø答案:D2. 命题逻辑中,下列哪个是合取命题的真值表?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P ∧ Q | P ∨ QD. P ∧ Q | ¬(P ∨ Q)答案:A3. 函数f: A → B是单射的,那么f的逆函数:A. 一定存在B. 一定不存在C. 可能存在D. 以上都不对答案:C4. 关系R是自反的,那么对于所有a∈A,以下哪个命题一定为真?A. (a, a) ∈ RB. (a, a) ∉ RC. (a, a) ∈ R或(a, a) ∉ RD. (a, a) ∈ R且(a, a) ∉ R答案:A5. 在图论中,下列哪个不是图的基本术语?A. 顶点B. 边C. 子集D. 路径答案:C6. 命题p: “如果x是偶数,则x能被4整除”的否定是:A. 如果x是偶数,则x不能被4整除B. 如果x不是偶数,则x不能被4整除C. 如果x不是偶数,则x能被4整除D. 如果x是偶数,则x不能被4整除或x不是偶数答案:A7. 有向图G中,如果存在从顶点u到顶点v的有向路径,则称v是u 的:A. 祖先B. 后代C. 邻居D. 连接点答案:B8. 在命题逻辑中,下列哪个命题是永真命题?A. (P ∧ ¬P) ∨ (P ∨ ¬P)B. (P ∧ ¬P) ∧ (P ∨ ¬P)C. (P ∨ ¬P) ∧ (¬P ∨ P)D. (P ∧ ¬P) ∧ (¬P ∧ P)答案:C9. 以下哪个选项是等价命题?A. P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)B. P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)C. P ∨ ¬P ≡ ¬P ∧ PD. P ∧ ¬P ≡ ¬P ∨ P答案:A10. 树是无环连通图,以下哪个是树的属性?A. 至少有一个环B. 至少有两个顶点C. 至少有一个顶点D. 至少有一个边答案:B二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集含有__个元素。

离散数学期末试卷(4套附答案)

离散数学期末试卷(4套附答案)

一、单项选择题(每小题3分,共30分)1.下列为两个命题变元p,q的最小项的是( ) A .p∧q∧⎤ pB .⎤ p∨qC .⎤ p∧qD .⎤ p∨p∨q 2.下列句子不是命题的是( ) A .中华人民共和国的首都是北京 B .张三是学生 C .雪是黑色的D .太好了!3.对于公式(∀x ) (∃y )(P (x )∧Q (y ))→(∃x )R (x ,y ),下列说法正确的是( ) A .y 是自由变元 B .y 是约束变元C .(∃x )的辖域是R(x , y )D .(∀x )的辖域是(∃y )(P (x )∧Q (y ))→(∃x )R (x ,y )4.7.集合A={1,2,…,10}上的关系R={(x ,y )|x +y =10,x ∈A ,y ∈A},则R 的性质是( )A .自反的B .对称的C .传递的、对称的D .反自反的、传递的 5.设论域为{l ,2},与公式)(x xA ∃等价的是( ) A.A (1)∨A (2)B. A (1)→A (2)C.A (1)D. A (2)→A (1)6. 下列关系矩阵所对应的关系具有反自反性的是( ) A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001110101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101100001 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100100D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0010101017. 下列运算不满足...交换律的是( ) A .a *b =a+2bB .a *b =min(a ,b )C .a *b =|a -b |D .a *b =2ab8..设A 是奇数集合,下列构成独异点的是( ) A.<A ,+> B.<A ,-> C.<A ,×> D.<A ,÷> 9. 右图的最大入度是( ) A .0 B .1 C .2D .3第9题图拟题学院(系): 高密校区 适用专业: 学年 2学期 离散数学 (B卷) 试题标准答案10. 设有向图D 的节点数大于1,D=(V ,E )是强连通图,当且仅当( ) A. D 中至少有一条通路 B. D 中至少有一条回路C. D 中有通过每个结点至少一次的通路D. D 中有通过每个结点至少一次的回路 二、填空题(每空3分,共30分)1.设A ={1,2,3,4},B ={2,4,6},则A -B =________,A ⊕B =________。

离散数学期末考试题(附答案和含解析)

离散数学期末考试题(附答案和含解析)

一、填空2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 (B ⊕C)-A4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 )()(R S P R S P ∨⌝∨⌝∧∨∨⌝ 。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 1 。

6.设A={1,2,3,4},A 上关系图如下,则 R^2= {(1,1),(1,3),(2,2),(2,4)} 。

//备注:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000000101001012R7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图如下,则R= {(a,b),(a,c), (a,d), (b,d), (c,d)} U {(a,a),(b,b)(c,c)(d,d)} 。

//备注:偏序满足自反性,反对称性,传递性8.图的补图为 。

//补图:给定一个图G ,又G 中所有结点和所有能使G 成为完全图的添加边组成的图,成为补图. 自补图:一个图如果同构于它的补图,则是自补图 9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*>的幺元是 a ,有逆元的元素为 a,b,c,d ,它们的逆元分别为 a,b,c,d 。

//备注:二元运算为x*y=max{x,y},x,y ∈A 。

10.下图所示的偏序集中,是格的为 c 。

//(注:什么是格?即任意两个元素有最小上界 和最大下界的偏序)二、选择题1、下列是真命题的有( C 、D )A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C .}},{{ΦΦ∈Φ; D .}}{{}{Φ∈Φ。

2、下列集合中相等的有( B 、C )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。

离散期末考试题及答案

离散期末考试题及答案

离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是图的边数与顶点数的关系?A. 边数小于顶点数B. 边数等于顶点数C. 边数大于顶点数D. 边数与顶点数无固定关系答案:D2. 有限自动机的英文缩写是什么?A. FAB. PDAC. TMAD. NFA答案:A3. 布尔代数中,德摩根定律是指什么?A. ¬(A ∧ B) 等于¬ A ∨ ¬ BB. ¬(A ∨ B) 等于¬ A ∧ ¬ BC. A ∧ B 等于¬(A ∨ B)D. A ∨ B 等于¬(¬ A ∧ ¬B)答案:B4. 在命题逻辑中,以下哪个符号表示蕴含?A. ∧B. ∨C. →D. ↔答案:C5. 集合A = {1, 2, 3},B = {2, 3, 4},则A ∪ B等于:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3, 4}D. {1, 3, 4}答案:A6. 以下哪个选项是正确的递归定义?A. 一个数是偶数当且仅当它是2的倍数B. 一个数是偶数当且仅当它不是2的倍数C. 一个数是偶数当且仅当它是另一个偶数加1D. 以上都是正确的递归定义答案:A7. 有向图和无向图的主要区别是什么?A. 有向图的边有方向,无向图的边没有方向B. 有向图的顶点有方向,无向图的顶点没有方向C. 有向图的边可以相交,无向图的边不可以相交D. 有向图可以有环,无向图不可以有环答案:A8. 在命题逻辑中,以下哪个公式是矛盾的?A. A ∧ ¬ AB. A ∨ ¬ AC. A → BD. A ∧ B ∧ ¬ A答案:A9. 以下哪个是图的同义术语?A. 网络B. 矩阵C. 树D. 以上全部答案:A10. 以下哪个命题逻辑公式是有效的?A. (A → B) ∧ (B → A)B. (A ∧ B) → AC. (A ∨ B) → AD. (A ∧ B) → B答案:B二、填空题(每题2分,共20分)11. 在命题逻辑中,_________ 表示一个命题是真的,而 _________ 表示一个命题是假的。

成人教育《离散数学》期末考试复习题及参考答案

成人教育《离散数学》期末考试复习题及参考答案

离散数学复习题二一、简要回答下列问题:1.请给出⌝P,P∧Q,P∨Q的真值表。

2.请给出公式蕴涵的定义。

举一个例子。

3.请给出命题∀xG(x)的真值规定。

4.什么是谓词逻辑公式的解释?5.叙述谓词逻辑公式G与它的Skolem范式之间的区别与联系。

6.什么是图的关联矩阵?7.什么是简单路?举一例。

8.什么是有向树?举一例9.设G为整数加群,H为5的所有倍数组成的加法群,给出H的所有陪集。

二、判断下列公式是恒真?恒假?可满足?a) (P→(Q∧R))∧(⌝P→(⌝Q∧⌝R));b) P→(P∧(Q→P));c) (Q→P)∧(⌝P∧Q);d) (⌝P∨⌝Q)→(P↔⌝Q)。

三、指出下列公式哪些是恒真的哪些是恒假的:(1)P∧(P→ Q)→Q(2)(P→ Q)→(⌝P∨Q)(3)(P→ Q)∧(Q→R)→(P→ R )(4)(P↔ Q)↔(P∧ Q∨⌝P∧⌝ Q)四、给P和Q指派真值1,给R和S指派真值0,求出下面命题的真值:a) (P∧(Q∧R))∨⌝((P∨Q)∧(R∨S))b) (⌝(P∧Q)∨⌝R)∨(((⌝P∧Q)∨⌝R)∧S)c) (⌝(P∧Q)∨⌝R)∨((Q↔⌝P)→(R∨⌝S))d) (P∨(Q→(R∧⌝P)))↔(Q∨⌝S)五、证明:连通图中任意两条最长的简单路必有公共点。

离散数学复习题二答案一、简要回答下列问题:1.请给出⌝P,P∧Q,P∨Q的真值表。

P Q ⌝P P∧Q P∨Q0 1 1 0 11 0 0 0 11 1 0 1 10 0 1 0 02.请给出公式蕴涵的定义。

举一个例子。

答:设G,H是两个公式,如果解释I满足G,I也满足S,称G蕴涵H。

例如:P∧Q蕴涵P。

3.请给出命题∀xG(x)的真值规定。

答:∀xG(x)取1值⇔对任意x∈D,G(x)都取1值;∀xG(x)取0值⇔有一个x0∈D,使G(x0)取0值。

4.什么是谓词逻辑公式的解释?答:词逻辑中公式G的一个解释I,是由非空区域D和对G中常量符号,函数符号,谓词符号以下列规则进行的一组指定组成:1. 对每个常量符号,指定D中一个元素;2. 对每个n元函数符号,指定一个函数,即指定D n到D的一个映射;3. 对每个n元谓词符号,指定一个谓词,即指定D n到{0,1}的一个映射。

大学离散数学期末考试题库和答案

大学离散数学期末考试题库和答案

大学离散数学期末考试题库和答案一、单项选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示“属于”?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 如果A和B是两个集合,那么A∪B表示什么?A. A和B的交集B. A和B的并集C. A和B的差集D. A和B的补集答案:B3. 以下哪个命题是真命题?A. ∀x∈N, x^2 > xB. ∃x∈N, x^2 = x + 1C. ∀x∈N, x^2 ≥ xD. ∃x∈N, x^2 < x答案:C4. 在图论中,一个无向图的边数为E,顶点数为V,那么这个图的生成树的边数是多少?A. EB. V-1C. VD. E-1答案:B5. 以下哪个算法是用于解决旅行商问题(TSP)的?A. 动态规划B. 贪心算法C. 分支限界法D. 回溯法答案:D6. 在逻辑中,以下哪个符号表示“蕴含”?A. ∧B. ∨C. →D. ↔答案:C7. 以下哪个是二进制数?A. 1010B. 2A3C. 12BD. ZYX答案:A8. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D9. 以下哪个是布尔代数的基本运算?A. 并集B. 交集C. 差集D. 所有以上答案:D10. 在离散数学中,以下哪个概念用于描述两个集合之间的关系?A. 函数B. 映射C. 序列D. 所有以上答案:D二、多项选择题(每题3分,共15分)11. 以下哪些是集合的基本运算?A. 并集B. 交集C. 差集D. 补集答案:ABCD12. 在图论中,以下哪些是图的基本类型?A. 无向图B. 有向图C. 完全图D. 二分图答案:ABCD13. 在逻辑中,以下哪些是命题逻辑的基本连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 蕴含(→)答案:ABCD14. 在关系数据库中,以下哪些是SQL的基本操作?A. SELECTB. INSERTC. UPDATED. DELETE答案:ABCD15. 在离散数学中,以下哪些是组合数学的基本概念?A. 排列B. 组合C. 二项式系数D. 图论答案:ABC三、填空题(每题3分,共30分)16. 如果集合A={1, 2, 3},集合B={2, 3, 4},那么A∩B=______。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项不是集合的基本运算?A. 并集B. 交集C. 差集D. 乘法答案:D2. 命题逻辑中,以下哪个命题不是基本的逻辑连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 等于(=)答案:D3. 在图论中,一个图的度数之和等于边数的几倍?A. 1B. 2C. 3D. 4答案:B4. 以下哪个是布尔代数的基本定理?A. 德摩根定律B. 布尔代数的分配律C. 布尔代数的结合律D. 所有选项都是答案:D5. 以下哪个不是组合数学中的计数原理?A. 加法原理B. 乘法原理C. 排列D. 组合答案:C6. 在关系数据库中,以下哪个操作不是基本的数据库操作?A. 选择B. 投影C. 连接D. 排序答案:D7. 以下哪个是有限自动机的组成部分?A. 状态B. 转移C. 输入符号D. 所有选项都是答案:D8. 以下哪个命题逻辑表达式是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p → q) ∧ (q → p)D. (p → q) ∧ (¬p → ¬q)答案:D9. 以下哪个是归纳法证明的基本步骤?A. 基础步骤B. 归纳步骤C. 反证法D. 所有选项都是答案:B10. 以下哪个是图的遍历算法?A. 深度优先搜索(DFS)B. 广度优先搜索(BFS)C. Dijkstra算法D. 所有选项都是答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的德摩根定律。

答案:德摩根定律是命题逻辑中描述否定命题的两个重要定律。

它们分别是:- ¬(p ∧ q) ≡ ¬p ∨ ¬q- ¬(p ∨ q) ≡ ¬p ∧ ¬q2. 解释什么是图的连通分量,并给出一个例子。

答案:图的连通分量是指图中最大的连通子图。

离散数学期末考试试题(有几套带答案)

离散数学期末考试试题(有几套带答案)

离散数学试题(A 卷及答案)一、证明题(10分)1)(⌝P ∧(⌝Q ∧R))∨(Q ∧R)∨(P ∧R)⇔R证明: 左端⇔(⌝P ∧⌝Q ∧R)∨((Q ∨P)∧R)⇔((⌝P ∧⌝Q)∧R))∨((Q ∨P)∧R)⇔(⌝(P ∨Q)∧R)∨((Q ∨P)∧R)⇔(⌝(P ∨Q)∨(Q ∨P))∧R ⇔(⌝(P ∨Q)∨(P ∨Q))∧R ⇔T ∧R(置换)⇔R2)∃x(A(x)→B(x))⇔ ∀xA(x)→∃xB(x)证明 :∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x ⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x) 二、求命题公式(P ∨(Q ∧R))→(P ∧Q ∧R)的主析取范式和主合取范式(10分)证明:(P ∨(Q ∧R))→(P ∧Q ∧R)⇔⌝(P ∨(Q ∧R))∨(P ∧Q ∧R))⇔(⌝P ∧(⌝Q ∨⌝R))∨(P ∧Q ∧R) ⇔(⌝P ∧⌝Q)∨(⌝P ∧⌝R))∨(P ∧Q ∧R)⇔(⌝P ∧⌝Q ∧R)∨(⌝P ∧⌝Q ∧⌝R)∨(⌝P ∧Q ∧⌝R))∨(⌝P ∧⌝Q ∧⌝R))∨(P ∧Q ∧R) ⇔m0∨m1∨m2∨m7 ⇔M3∨M4∨M5∨M6三、推理证明题(10分)1) C ∨D, (C ∨D)→ ⌝E, ⌝E →(A ∧⌝B), (A ∧⌝B)→(R ∨S)⇒R ∨S证明:(1) (C ∨D)→⌝E(2) ⌝E →(A ∧⌝B)(3) (C ∨D)→(A ∧⌝B) (4) (A ∧⌝B)→(R ∨S) (5) (C ∨D)→(R ∨S)(6) C ∨D(7) R ∨S2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) (2)P(a)(3)∀x(P(x)→Q(y)∧R(x)) (4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)∃x(P(x)∧R(x)) (11)Q(y)∧∃x(P(x)∧R(x))四、设m 是一个取定的正整数,证明:在任取m +1个整数中,至少有两个整数,它们的差是m 的整数倍证明 设1a ,2a ,…,1+m a 为任取的m +1个整数,用m 去除它们所得余数只能是0,1,…,m -1,由抽屉原理可知,1a ,2a ,…,1+m a 这m +1个整数中至少存在两个数s a 和t a ,它们被m 除所得余数相同,因此s a 和t a 的差是m 的整数倍。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合{1, 2, 3}的子集个数是:A. 3B. 4C. 8D. 2^3答案:C2. 命题逻辑中,命题p∧(q∨¬p)的真值表中,真值个数为:A. 1B. 2C. 3D. 4答案:B3. 函数f: A→B中,若A={1, 2},B={a, b},则f是单射的必要条件是:A. |A| ≤ |B|B. |A| < |B|C. |A| = |B|D. |A| > |B|答案:B4. 以下哪个图是无向图?A. 有向图B. 无向图C. 完全图D. 树答案:B5. 在图论中,一个图的生成树是:A. 包含图中所有顶点的最小连通子图B. 包含图中所有边的最小连通子图C. 包含图中所有顶点和边的连通子图D. 包含图中所有顶点和边的无环子图答案:A6. 以下哪个命题是真命题?A. 所有偶数都是整数B. 所有整数都是偶数C. 所有奇数都是整数D. 所有整数都是奇数答案:A7. 在布尔代数中,以下哪个运算符表示逻辑与?A. ∨B. ∧C. ¬D. →答案:B8. 有限状态机中,状态的转移是由以下哪个决定的?A. 当前状态B. 输入符号C. 当前状态和输入符号D. 输出符号答案:C9. 以下哪个是图的遍历算法?A. 深度优先搜索B. 广度优先搜索C. 动态规划D. 分治算法答案:A10. 在集合论中,以下哪个符号表示集合的交集?A. ∪B. ∩C. ×D. ÷答案:B二、填空题(每题2分,共20分)1. 集合{1, 2, 3}的幂集是{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},其中包含元素个数最多的子集是_。

答案:{1, 2, 3}2. 在命题逻辑中,如果p和q都为真,则p∨q的真值为_。

答案:真3. 函数f: A→B中,若A={1, 2},B={a, b, c},则f是满射的必要条件是_。

(完整word版)离散数学-期末复习题及答案

(完整word版)离散数学-期末复习题及答案

课程名称:《离散数学》一、单项选择题1、 (D)。

下列句子是命题的为 。

A 、这朵花多好看呀!B 、明天下午有会吗?C 、5y x >+D 、地球外的星球上也有人。

2、 (A)。

李平不是不聪明,而是不用功。

p:李平聪明q:李平用功。

符号化为 。

A 、 q )p (⌝⌝⌝∧ B 、 q p ⌝⌝∧ C 、 q )p (∧⌝⌝ D 、q )p (⌝⌝⌝∨ 3、 (A)。

与)q p (∨⌝命题公式等值的是 。

A 、q p ⌝⌝∧ B 、q p ⌝⌝∨ C 、q p ∧ D 、q)(p ∧⌝4、 (D)。

含有3个命题变项的简单和取式中一定可形成 种不同的极小项。

A 、2 B 、4 C 、6 D 、85、 (C)。

q )q p (∧→⌝此公式的类型为 。

A 、重言式B 、永真式C 、矛盾式D 、可满足式 6、 (C)。

q )q )q p ((→∧→此公式的类型为 。

A 、矛盾式B 、可满足式C 、重言式D 、永假式7、 (A)。

设A 是含有3个命题变项的公式,若它的主析取范式中含有8个极小项,则它是 。

A 、重言式B 、矛盾式C 、可满足式D 、永假式8、 (B)。

只有天下大雨,他才乘公共汽车上班.p:天下大雨q:他乘车上班,符号化为 。

A 、q p → B 、p q → C 、q p →⌝D 、p q →⌝9、 (B)。

不经一事,不长一智p:经一事q:长一智,符号化为 。

A 、p q →B 、q p ⌝⌝→C 、p q ⌝⌝→ D 、q p → 10、 (B)。

R Q P →∧⌝)(成真赋值为 。

A 、 000,001,110B 、 001,011,101,110,111C 、全体赋值D 、无11、 (B)。

公式Q P →的主析取范式为)3,1,0(∑,则公式的主合取范式为 。

A 、)2(TB 、)2(∏C 、)3,1,0(∏D 、)3,2,1,0(∏12、 (A)。

R Q P →∧⌝成假赋值为 。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∩B=()。

A. {1,2,3}B. {2,3}C. {2,4}D. {1,4}答案:B2. 命题“若x>0,则x>1”的逆否命题是()。

A. 若x≤0,则x≤1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤1,则x≤0答案:B3. 函数f: A→B的定义域是集合A,值域是集合B,则()。

A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A4. 集合{1,2,3}与集合{3,2,1}是否相等?()。

A. 是B. 否C. 无法确定D. 以上都不对答案:A5. 命题p:“x>0”,则¬p为()。

A. x≤0B. x<0C. x=0D. x<0或x=0答案:A6. 命题“若x>0,则x>1”的逆命题是()。

A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C7. 函数f: A→B的定义域是集合A,值域是集合B,则()。

A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A8. 集合{1,2,3}与集合{3,2,1}是否相等?()。

A. 是B. 否C. 无法确定D. 以上都不对答案:A9. 命题p:“x>0”,则¬p为()。

A. x≤0B. x<0C. x=0D. x<0或x=0答案:A10. 命题“若x>0,则x>1”的逆命题是()。

A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C二、填空题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∪B=______。

答案:{1,2,3,4}2. 命题“若x>0,则x>1”的逆否命题是:若x≤1,则x≤0。

(完整word版)离散数学期末考试试题及答案

(完整word版)离散数学期末考试试题及答案

离散数学试题(B卷答案1)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明: 左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R)⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2) ∃x (A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。

证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E,⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S 证明:(1) (C∨D)→⌝E P(2) ⌝E→(A∧⌝B) P(3) (C∨D)→(A∧⌝B) T(1)(2),I(4) (A∧⌝B)→(R∨S) P(5) (C∨D)→(R∨S) T(3)(4), I(6) C∨D P(7) R∨S T(5),I2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) P(2)P(a) T(1),ES(3)∀x(P(x)→Q(y)∧R(x)) P(4)P(a)→Q(y)∧R(a) T(3),US(5)Q(y)∧R(a) T(2)(4),I(6)Q(y) T(5),I(7)R(a) T(5),I(8)P(a)∧R(a) T(2)(7),I(9)∃x(P(x)∧R(x)) T(8),EG(10)Q(y)∧∃x(P(x)∧R(x)) T(6)(9),I四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。

离散数学期末考试复习资料

离散数学期末考试复习资料

《离散数学》课程综合复习资料一、判断题1.R1,R2是集合A上的二元关系,若R1和R2都是反自反的,则R1R2也是反自反的。

答案:√2.对任意集合A,A。

答案:×3.设<G,*>是一个群,B是G的非空子集,如果B是一个有限集,则<B,*>必定是<G,*>的子群。

答案:×4.A、B、C为任意集合,已知A⋂B=A⋂C,必须有B=C。

答案:×5.对于任意一个集合A,空集。

答案:√6.设E为全集,对任意集合A,A。

答案:×7.设A、B为任意两个集合,A答案:×8.R是集合A上的二元关系,若R是自反的,则R c也是自反的。

答案:√9.对于任意一个集合A,空集。

答案:×图是平面图。

10.K3,3答案:×11.“你去图书馆吗?”是一个命题。

答案:×12.如果有限集合A有n个元素,则其幂集p(A)有2n个元素。

答案:×13.群中可以有零元。

14.集合A的一个划分确定A的元素间的一个等价关系。

答案:√15.含有幺元的半群为独异点。

答案:√二、基本题1.将下列命题符号化:(1)只要不下雨,他就骑自行车上班。

(2)他或者骑自行车上班,或者乘公共汽车上班。

(3)有些大学生运动员是国家选手。

答案:(1)(⌝P→ Q)(2)(Q ∇ R 或 (Q∧⌝R)∨(⌝Q∧R))(3)((∃x)(P(x)∧Q(x)))2.求命题公式P∧(P→Q)的主析取范式。

答案:原式⇔P∧(⌝P∨Q)⇔(P∧⌝P) ∨ (P∧Q)⇔T∨ (P∧Q)⇔P∧Q3.求⌝(P→Q)的主合取范式。

答案:原式⇔⌝(⌝P∨Q)⇔⌝(⌝P∨Q)⇔P∧⌝Q⇔(P∨(⌝Q ∧Q))∧(⌝Q∨(⌝P∧P))⇔(P∨⌝Q)∧(P∨Q)∧(⌝P∨⌝Q)∧(P∨⌝Q)⇔(P∨⌝Q)∧(P∨Q)∧(⌝P∨⌝Q)4.设A={3,4},试构成集合P(A)⨯A。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题4分,共40分)1.下列哪一个不是集合操作? A. 并 B. 交 C. 补 D. 叉积正确答案:D2.下列哪一个不是真命题? A. 1 + 1 = 2 B. 所有的猫都会飞 C. 所有的数都是整数 D. 狗是哺乳动物正确答案:B3.设A = {1, 2, 3},B = {3, 4, 5},则A ∩ B的结果是:A. {1, 2}B. {3}C. {1, 3}D. {4, 5}正确答案:B4.设A = {1, 2, 3},B = {3, 4, 5},则A × B的结果是:A. {(1, 3), (2, 4), (3, 5)}B. {(1, 1), (2, 2), (3, 3)}C. {(3, 3), (3,4), (3, 5)} D. {(3, 1), (3, 2), (3, 3)}正确答案:A5.若n为正整数,则n是偶数的充要条件是: A. n可以被2整除 B. n除以2的余数为1 C. n大于2 D. n的绝对值是偶数正确答案:A6.若A = {1, 2, 3, 4},B = {3, 4, 5},则A - B的结果是:A. {1, 2}B. {3}C. {1, 3, 4}D. {4, 5}正确答案:A7.已知命题P和命题Q,下列哪个是它们的逻辑等价式?A. P ∧ (P ∨ Q) = P B. P ∧ (P ∨ Q) = Q C. P ∨ (P ∨ Q) = P D. P ∨ (P ∨ Q) = Q正确答案:A8.设n为奇数,则n + n的结果是: A. 2n B. n^2 C.n(n+1) D. n(n-1)正确答案:C9.已知集合A = {1, 2, 3, 4},B = {4, 5, 6},C = {6, 7, 8},则(A ∩ B)∩ C的结果是: A. {1, 2, 3} B. {4} C. {6} D. 空集正确答案:D10.若命题P为真,则下列哪个推理是正确的? A. 如果P为真,则Q为真(反证法) B. P与Q都为真(析取引理)C. P蕴含Q(推理法则) D. P等价于Q(假设法)正确答案:A二、解答题(每题10分,共60分)1.证明:任取集合A和B,有(A ∪ B) - B = A - B解答:运用集合的基本运算性质:对任意元素x,x∈ (A ∪ B) - B,即x ∈ (A ∪ B)且x ∉ B。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题5分,共25分)1. 设A={1,2,3,4,5},B={2,3,5,7,11},则A∩B等于()A. {1,2,3,4,5}B. {2,3,5}C. {1,4}D. {2,3,5,7,11}2. 下面哪一个图是连通图?()A. 无向图B. 有向图C. 平面图D. 连通图3. 若一个图G有n个顶点,e条边,则以下哪个条件是图G 为连通图的必要条件?()A. n ≥ eB. n ≤ eC. n = eD. n + e = 24. 在一个简单图中,若每个顶点的度数都等于n-1,则该图是()A. 无向图B. 有向图C. 完全图D. 平面图5. 以下哪一个命题是正确的?()A. 每个图都有欧拉回路B. 每个连通图都有哈密顿回路C. 每个图都有哈密顿路径D. 每个连通图都有欧拉路径二、填空题(每题5分,共25分)6. 设A={a,b,c},B={1,2,3},则A×B的结果是______。

7. 一个连通图的生成树包含______条边。

8. 在一个n阶完全图中,任意两个不同顶点之间的距离是______。

9. 一个图G的顶点集为V,边集为E,则图G的邻接矩阵表示为______。

10. 在一个简单图中,若每个顶点的度数都等于n-1,则该图的边数是______。

三、判断题(每题5分,共25分)11. 一个图的子图包含原图的所有顶点和边。

()12. 一个连通图的所有顶点都连通。

()13. 在一个简单图中,每个顶点的度数都小于等于n-1。

()14. 每个图都有哈密顿路径。

()15. 一个图G的生成树是原图G的子图。

()四、解答题(共50分)16. (10分)设A={1,2,3,4,5},B={2,3,5,7,11},求A∪B 和A-B。

17. (10分)证明:一个连通图的每个顶点的度数都大于等于2。

18. (10分)给定一个图G,顶点集V={a,b,c,d,e},边集E={ab,bc,cd,de,ac,ad},求图G的所有连通分支。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:《离散数学》一、单项选择题1、 (D)。

下列句子是命题的为 。

A 、这朵花多好看呀!B 、明天下午有会吗?C 、5y x >+D 、地球外的星球上也有人。

2、 (A)。

李平不是不聪明,而是不用功。

p:李平聪明q:李平用功。

符号化为 。

A 、 q )p (⌝⌝⌝∧ B 、 q p ⌝⌝∧ C 、 q )p (∧⌝⌝ D 、q )p (⌝⌝⌝∨ 3、 (A)。

与)q p (∨⌝命题公式等值的是 。

A 、q p ⌝⌝∧ B 、q p ⌝⌝∨ C 、q p ∧ D 、q)(p ∧⌝4、 (D)。

含有3个命题变项的简单和取式中一定可形成 种不同的极小项。

A 、2 B 、4 C 、6 D 、85、 (C)。

q )q p (∧→⌝此公式的类型为 。

A 、重言式B 、永真式C 、矛盾式D 、可满足式 6、 (C)。

q )q )q p ((→∧→此公式的类型为 。

A 、矛盾式B 、可满足式C 、重言式D 、永假式7、 (A)。

设A 是含有3个命题变项的公式,若它的主析取范式中含有8个极小项,则它是 。

A 、重言式B 、矛盾式C 、可满足式D 、永假式8、 (B)。

只有天下大雨,他才乘公共汽车上班.p:天下大雨q:他乘车上班,符号化为 。

A 、q p → B 、p q → C 、q p →⌝D 、p q →⌝9、 (B)。

不经一事,不长一智p:经一事q:长一智,符号化为 。

A 、p q →B 、q p ⌝⌝→C 、p q ⌝⌝→ D 、q p → 10、 (B)。

R Q P →∧⌝)(成真赋值为 。

A 、 000,001,110B 、 001,011,101,110,111C 、全体赋值D 、无11、 (B)。

公式Q P→的主析取范式为)3,1,0(∑,则公式的主合取范式为 。

A 、)2(TB 、)2(∏C 、)3,1,0(∏D 、)3,2,1,0(∏12、 (A)。

R Q P →∧⌝成假赋值为 。

A 、 100,B 、 001,011,101,110,111C 、全体赋值D 、 无13、 (B)。

公式Q P →⌝的主析取范式为)3,2,1(∑,则公式的主合取范式为 。

A 、)0(TB 、)0(∏C 、)3,1,2(∏D 、)3,2,1,0(∏14、 (A)。

p r q p →→∨))((的主析取范式为)7,6,5,4,2(∑则主和取范式为 。

A 、),3,1,0(∏B 、),3,1,0(∑C 、)7,6,5,4,2(∑D 、)7,6,5,4,2(∏15、 (B)。

q q p ∧→)(成假赋值为 。

A 、 01,11B 、 00,10C 、全体赋值D 、 无16、 (B)。

在{}0-R ,非零实数集合中真值为1的是 。

A 、 )1(=∀∃xy y xB 、 )(x xy y x =∃∀C 、 )(x xy y x =∀∃D 、 )(z y x z y x =-∃∀∀17、 (B)。

R Q P →∧⌝成真赋值为 。

A 、 100,B 、 000,001,011,100,101,110,111 ,C 、全体赋值D 、 无18、 (B)。

公式Q P →的主析取范式为)2,1,0(∑,则公式的主合取范式为 。

A 、)3(TB 、)3(∏C 、)3,1,2(∏D 、)3,2,1,0(∏19、 (D)。

()P Q ⌝∧此公式等价于()A 、()P Q ⌝∨B 、P Q ⌝∨C 、P Q ∨⌝D 、P Q ⌝∨⌝20、 (C)。

P Q →此公式等价于()A 、P Q ⌝→B 、P Q ⌝∧C 、P Q ⌝∨D 、Q P ⌝→21、 (D)。

下列命题中不正确的是()A 、P Q P ∧⇒B 、P Q Q ∧⇒C 、P P Q ⌝⇒→D 、P P Q ⇒→22、 (A)。

在一阶逻辑中符号化“凡是有理数可表示成分数”个体域:有理数.F(x): x:可表示成分数。

R(x) x:是有理数 。

A 、))x (F )x (R (x →∀B 、)x (F )x (xR →∀C 、))x (F )x (R (x ∧∀D 、))x (F )x (R (x ∨∀23、 (C)。

在一阶逻辑中符号化“有的有理数是整数”个体域:有理数.F(x): x:是整数。

R(x) x:是有理数 。

A 、))x (F )x (R (x →∃B 、)x (F )x (xR →∃C 、))x (F )x (R (x ∧∃D 、))x (F )x (R (x ∨∃24、 (C)。

)0y x (y x =⋅∃∀在个体域分别为实数集、整数集、正整数集、非零实数集的真值为 。

A 、1111B 、0000C 、1100D 、000125、 (B)。

)1y x (y x =⋅∀∃在个体域分别为实数集、整数集、正整数集、非零实数集的真值为 。

A 、1111B 、0000C 、1100D 、000126、 (A)。

)x (xF )x (xF ∃→∀公式的类型为 。

A 、逻辑有效式B 、矛盾式C 、可满足式D 、永假式27、 (C)。

量词否定等价式⇔∃⌝)(x xA 。

A 、)x (xA ∀⌝B 、)x (xA ∃C 、)x (A x ⌝∀ D 、)x (A x ∀28、 (C)。

谓词公式)x (Q )x (xP →∀,x ∀的辖域为 。

A 、)x (Q )x (P →B 、)x (Q )x (xP →∀C 、)x (PD 、)x (Q29、n(A)。

个体域为{}c b a ,,,消去公式)(x xF ∀的量词 。

A 、)c (F )b (F )a (F ∧∧B 、)c (F )b (F )a (F ∧∨C 、)c (F )b (F )a (F ∨∨D 、)(x xF ∀30、 (A)。

谓词公式))x (Q )x (P (x →∀,x ∀的辖域为 。

A 、)x (Q )x (P →B 、)x (Q )x (xP →∀C 、)x (PD 、)x (Q31、 (D)。

)x (xG )x (xF ∃∧∀⌝下列正确的为 .。

A 、此公式无前束范式B 、存在唯一的前束范式C 、有前束范式D 、有前束范式但不唯一32、 (B)。

“尽管有人聪明,但未必一切人都聪明”。

若P (x ):x 聪明,M (x ):x 是人,则命题可表示为()。

A 、(()())((()()))x M x P x x M x P x ∃∧∧⌝∀→B 、(()())((()()))x M x P x x M x P x ∀∧∧⌝∀→C 、(()())((()()))x M x P x x M x P x ∃∨∧⌝∀→ D 、(()())((()()))x M x P x x M x P x ∀∨∧⌝∀→33、 (D)。

公式()()((,)(,))()(,)x y P x y Q y z x P x y ∀∀∧∧∃中,()x ∀的作用域为()。

A 、(,)P x yB 、(,)Q y zC 、()(,)x P x y ∃D 、((,)(,))P x y Q y z ∧34、 (A)。

对公式()(()(,))x P y R x y ∃∧进行代入,下列选项中正确的是()。

A 、()(()(,))x P z R x z ∃∧B 、()(()(,))x P x R x x ∃∧C 、()(()(,))x P z R x y ∃∧D 、()(()(,))x P x R x z ∃∧35、 (B)。

如果能够证明对论域中每一个客体c ,断言P (c )都成立,则可得到所有客体x ,有P (x )成立,则这个规则称为( )A 、全称指定规则B 、全称推广规则C 、存在指定规则D 、存在推广规则36、 (C)。

如果对于论域中某些客体P (x )成立,则必有某个特定客体c ,P (c )成立,则这个规则称为( )。

A 、全称指定规则B 、全称推广规则C 、存在指定规则D 、存在推广规则 1、 (B)。

主析取范式不唯一。

( )2、 (B)。

可满足式一定是永真式。

( )3、 (A)。

如果今天是1号,则明天是5号。

今天是1号,所以明天是5号。

此推理是正确的。

( )4、 (A)。

如果今天是1号,则明天是5号。

明天不是5号,所以今天不是1号。

此推理是正确的。

( )5、 (B)。

如果今天是1号,则明天是5号。

明天不是5号,所以今天是1号。

此推理是正确的。

( )6、 (B)。

如果今天是1号,则明天是5号。

明天不是5号,所以今天是1号。

此推理是正确的。

( )7、 (A)。

如果他是理科生,他必学好数学。

如果他不是文科生,他必是理科生。

他没学好数学。

所以他是文科生。

此推理是正确的。

( )8、 (B)。

q )p )q p ((⌝⌝→∧→的主析取范式为∑)2,1,0(的主析取范式为∑)2,1,0(。

( )9、 (B)。

r )q p (⌝⌝→∨的主和取范式中含有4个极大项。

( )10、(A)。

r )q p (∨∧⌝的主析取范式中含有5个极小项。

( )11、 (A)。

“别的星球上有生物”是命题()12、 (B)。

任何两个重言式的析取,不是一个重言式()13、 (B)。

设P 、Q 是合式公式,则()P Q P ∨⌝∧⌝是一个析取范式()14、 (B)。

在真值表中,一个公式的主析取范式为真值为F 的指派对应的小项的析取。

( )15、 (B)。

在真值表中,一个公式的主合取范式为真值为T 的指派对应的大项的和取。

( )16、 (A)。

取个体域为整数集,)x xy (y x =∀∃是真命题。

( )17、 (A)。

)x (xF )x (xF ∃→∀是永真式。

( )18、 (A)。

)x (A x )x (xA ⌝⌝∃⇔∀。

( )19、 (B)。

学会的成员都有高级职称并且是专家。

有的成员是年轻人,所以有的成员是青年专家。

此推理错误。

( )20、 (A)。

R (x ):“x 是大学生”,x 的论域:某大学班级中学生,则R (x )是永真式()。

21、 (A)。

P (x ):“x 是大学生”,x 的论域:某中学班级中学生,则P (x )是永假式()。

22、 (A)。

公式()(,,)x P x y z ∀是二元谓词。

()23、 (A)。

公式()()(,,)y x P x y z ∃∀是一元谓词。

()24、 (B)。

公式()()x P x ∀与公式()()y P y ∀的意义不同。

()25、 (B)。

一个谓词公式wff A ,如果在所有赋值下为真,则称该wff A 为可满足的。

()26、 (A)。

公式()()x P x ⌝∀等价于公式()()x P x ∃⌝。

()27、 (B)。

对于谓词公式()()(,)x y A x y ∀∃和()()(,)y x A x y ∃∀是等价的()。

28、 (A)。

任意一个谓词公式,必有一个前束范式与其等价()。

相关文档
最新文档