2020年12月08日四川省达州市达州市一诊文科数学试题参考答案

合集下载

2020高三第一次模拟数(文)答案

2020高三第一次模拟数(文)答案

x

2e e 1

g(x)

0

g(x)
递增.
∴ g(x)≥ g(e) e 2 0 ,

(1
1 )x

2
ln
x

1

0
,即
(1

1 )x

1

2
ln
x
………………………………………8

e
e
∵0a 2,x≥e,
∴ 2ln x a ln x ,………………………………………………………………………10 分

e
e
所以,当 0 a 2 时, a ln x

(1
1 )x
1
对一切
x
[e,
)
恒成立.
……………12

e
(方法二)设
g(x)

(1
1 )x

2
ln
x

1
,则
x

0

e

g(x)

e
1 e
(x

e2e1)
.………………………………………………………………6

x

x

e
时,

y2

1 2
(x1

x2 )

2b

4b 3
,………………………………………………………8


OD

OE

(x1

x2
,
y1

y2

四川省达州市2019-2020学年高考第一次大联考数学试卷含解析

四川省达州市2019-2020学年高考第一次大联考数学试卷含解析

四川省达州市2019-2020学年高考第一次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知正项等比数列{}n a 的前n 项和为2317,,927n S S S ==,则12n a a a L 的最小值为( ) A .24()27B .34()27C .44()27D .54()27【答案】D 【解析】 【分析】由2317,927S S ==,可求出等比数列{}n a 的通项公式1227n n a -=,进而可知当15n ≤≤时,1n a <;当6n ≥时,1n a >,从而可知12n a a a L 的最小值为12345a a a a a ,求解即可.【详解】设等比数列{}n a 的公比为q ,则0q >,由题意得,332427a S S =-=,得2111427190a q a a q q ⎧=⎪⎪⎪+=⎨⎪>⎪⎪⎩,解得11272a q ⎧=⎪⎨⎪=⎩,得1227n n a -=. 当15n ≤≤时,1n a <;当6n ≥时,1n a >,则12n a a a L 的最小值为551234534()()27a a a a a a ==. 故选:D. 【点睛】本题考查等比数列的通项公式的求法,考查等比数列的性质,考查学生的计算求解能力,属于中档题.2.已知双曲线22221x y a b-=(0a >,0b >)的左、右顶点分别为1A ,2A ,虚轴的两个端点分别为1B ,2B ,若四边形1122A B A B 的内切圆面积为18π,则双曲线焦距的最小值为( )A .8B .16C.D.【答案】D 【解析】【分析】根据题意画出几何关系,由四边形1122A B A B 的内切圆面积求得半径,结合四边形1122A B A B 面积关系求得c 与ab 等量关系,再根据基本不等式求得c 的取值范围,即可确定双曲线焦距的最小值.【详解】根据题意,画出几何关系如下图所示:设四边形1122A B A B 的内切圆半径为r ,双曲线半焦距为c , 则21,,OA a OB b == 所以2221A B a b c =+=,四边形1122A B A B 的内切圆面积为18π, 则218r ππ=,解得32OC r ==则112212122111422A B A B S A A B B A B OC =⋅⋅=⨯⋅⋅四边形, 即112243222a b c ⋅⋅=⨯⋅⋅故由基本不等式可得2222323262a b c +=≤=,即62c ≥, 当且仅当a b =时等号成立. 故焦距的最小值为122故选:D 【点睛】本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题. 3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )为( )A .163B .6C .203D .223【答案】D 【解析】 【分析】根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解. 【详解】如图,该几何体为正方体去掉三棱锥111B A C E -,所以该几何体的体积为:11111111122222221323B AC E ABCD A B C D V V V --=-=⨯⨯-⨯⨯⨯⨯=, 故选:D 【点睛】本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题.4.已知抛物线2:4C x y =,过抛物线C 上两点,A B 分别作抛物线的两条切线,,PA PB P 为两切线的交点O 为坐标原点若.0PA PB =u u u v u u u v,则直线OA 与OB 的斜率之积为( )A .14-B .3-C .18-D .4-【答案】A 【解析】 【分析】设出A ,B 的坐标,利用导数求出过A ,B 的切线的斜率,结合0PA PB ⋅=u u u r u u u r,可得x 1x 2=﹣1.再写出OA ,OB 所在直线的斜率,作积得答案. 【详解】解:设A (2114x x ,),B (2224x x ,),由抛物线C :x 2=1y ,得214y x =,则y′12x =. ∴112AP k x =,212PB k x =, 由0PA PB ⋅=u u u r u u u r ,可得12114x x =-,即x 1x 2=﹣1.又14OA x k =,24OB xk =,∴124116164OA OB x x k k -⋅===-. 故选:A .点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A 2(2,)a a ,B 2(2,)b b ,a b ¹,再求切线PA,PB 方程,求点P 坐标,再根据.0PA PB =u u u v u u u v得到1,ab =-最后求直线OA 与OB 的斜率之积.如果先设点P 的坐标,计算量就大一些.5.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( ) A .18种 B .36种 C .54种 D .72种【答案】B 【解析】 【分析】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得. 【详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有234336C A =种.故选:B . 【点睛】本题考查排列组合,属于基础题.6.若各项均为正数的等比数列{}n a 满足31232a a a =+,则公比q =( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】由正项等比数列满足31232a a a =+,即211132a q a a q =+,又10a ≠,即2230q q --=,运算即可得解.【详解】解:因为31232a a a =+,所以211132a q a a q =+,又10a ≠,所以2230q q --=,又0q >,解得3q =. 故选:C. 【点睛】本题考查了等比数列基本量的求法,属基础题. 7.函数()()()22214f x xxx =--的图象可能是( )A .B .C .D .【答案】A 【解析】 【分析】先判断函数()y f x =的奇偶性,以及该函数在区间()0,1上的函数值符号,结合排除法可得出正确选项. 【详解】函数()y f x =的定义域为R ,()()()()()()()2222221414f x x x x xxx f x ⎡⎤⎡⎤-=-⋅--⋅--=--=⎣⎦⎣⎦,该函数为偶函数,排除B 、D 选项; 当01x <<时,()()()222140f x x xx =-->,排除C 选项.故选:A. 【点睛】本题考查根据函数的解析式辨别函数的图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,结合排除法得出结果,考查分析问题和解决问题的能力,属于中等题.8.已知函数2,()5,x x x af x x x a⎧-≤=⎨->⎩(0a >),若函数()()4g x f x x =-有三个零点,则a 的取值范围是( )A .(0,1)[5,)+∞UB .6(0,)[5,)5+∞U C .(1,5]D .6(,5]5【答案】A 【解析】 【分析】分段求解函数零点,数形结合,分类讨论即可求得结果. 【详解】作出2y x x =-和5y x =-,4y x =的图像如下所示:函数()()4g x f x x =-有三个零点, 等价于()y f x =与4y x =有三个交点, 又因为0a >,且由图可知,当0x ≤时()y f x =与4y x =有两个交点,A O , 故只需当0x >时,()y f x =与4y x =有一个交点即可. 若当0x >时,()0,1a ∈时,显然y =y (y )与y =4|y |有一个交点y ,故满足题意; 1a =时,显然y =y (y )与y =4|y |没有交点,故不满足题意;()1,5a ∈时,显然y =y (y )与y =4|y |也没有交点,故不满足题意; [)5,a ∈+∞时,显然()y f x =与4y x =有一个交点C ,故满足题意.综上所述,要满足题意,只需a ∈(0,1)[5,)+∞U . 故选:A. 【点睛】本题考查由函数零点的个数求参数范围,属中档题.9.已知菱形ABCD 的边长为2,60ABC ∠=︒,则BD CD ⋅=u u u v u u u v()A .4B .6C .23D .43【答案】B 【解析】 【分析】根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果. 【详解】 如图所示,菱形形ABCD 的边长为2,60ABC ∠=︒,∴120C ∠=︒,∴22222222cos12012BD =+-⨯⨯⨯︒=, ∴23BD =30BDC ∠=︒,∴|||3302|3262BD CD BD CD cos =⨯⨯︒=⨯=⋅u u u r u u u r u u u r u u u r, 故选B . 【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题.. 10.下列函数中,既是奇函数,又是R 上的单调函数的是( ) A .()()ln 1f x x =+B .()1f x x -=C .()()()222,02,0x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩D .()()()()2,00,01,02x xx f x x x ⎧<⎪⎪⎪==⎨⎪⎛⎫⎪-> ⎪⎪⎝⎭⎩【答案】C 【解析】 【分析】对选项逐个验证即得答案. 【详解】对于A ,()()()()ln 1ln 1f x x x f x -=-+=+=,()f x ∴是偶函数,故选项A 错误;对于B ,()11x xf x-==,定义域为{}0x x ≠,在R 上不是单调函数,故选项B 错误; 对于C ,当0x >时,()()()()()2220,222x f x x x x x x x f x -<∴-=--+-=--=-+=-;当0x <时,()()()()()2220,222x f x x x x x x x f x ->∴-=-+-=-=--+=-;又0x =时,()()000f f -=-=.综上,对x ∈R ,都有()()f x f x -=-,()f x ∴是奇函数.又0x ≥时,()()22211f x x x x =+=+-是开口向上的抛物线,对称轴1x =-,()f x ∴在[)0,+∞上单调递增,()f x Q 是奇函数,()f x ∴在R 上是单调递增函数,故选项C 正确; 对于D ,()f x 在(),0-∞上单调递增,在()0,∞+上单调递增,但()()111122f f -=>=-,()f x ∴在R 上不是单调函数,故选项D 错误.故选:C . 【点睛】本题考查函数的基本性质,属于基础题.11.设等差数列{}n a 的前n 项和为n S ,若495,81a S ==,则10a =( ) A .23 B .25C .28D .29【答案】D 【解析】 【分析】由981S =可求59a =,再求公差,再求解即可. 【详解】解:{}n a Q 是等差数列95981S a ∴==59a ∴=,又45a =Q , ∴公差为4d =,410629a a d ∴=+=,故选:D 【点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题. 12.已知函数()f x 是奇函数,且22()'()ln(1)ln(1)1f x f x x x x -=+----,若对11[,]62x ∀∈,(1)(1)f ax f x +<-恒成立,则a 的取值范围是( )A .(3,1)--B .(4,1)--C .(3,0)-D .(4,0)-【答案】A 【解析】 【分析】先根据函数奇偶性求得()(),f x f x ',利用导数判断函数单调性,利用函数单调性求解不等式即可. 【详解】因为函数()f x 是奇函数, 所以函数'()f x 是偶函数.22()'()ln(1)ln(1)1f x f x x x x ---=--+--, 即22()'()ln(1)ln(1)1f x f x x x x --=--+--,又22()'()ln(1)ln(1)1f x f x x x x-=+----, 所以()ln(1)ln(1)f x x x =+--,22'()1f x x =-. 函数()f x 的定义域为(1,1)-,所以22'()01f x x =>-, 则函数()f x 在(1,1)-上为单调递增函数.又在(0,1)上,()(0)0f x f >=,所以()f x 为偶函数,且在(0,1)上单调递增.由(1)(1)f ax f x +<-,可得11111ax x ax ⎧+<-⎨-<+<⎩,对11[,]62x ∈恒成立,则1120ax x a x ⎧+<-⎪⎨-<<⎪⎩,21120a x a x⎧-<<-⎪⎪⎨⎪-<<⎪⎩对11[,]62x ∈恒成立,,得3140a a -<<-⎧⎨-<<⎩,所以a 的取值范围是(3,1)--. 故选:A. 【点睛】本题考查利用函数单调性求解不等式,根据方程组法求函数解析式,利用导数判断函数单调性,属压轴题. 二、填空题:本题共4小题,每小题5分,共20分。

四川省达州市普通高中2020届高三第一次诊断性测试数学(文)试题(含解析)

四川省达州市普通高中2020届高三第一次诊断性测试数学(文)试题(含解析)

注:台体体积公式是

A. 5700������������3
B. 8100������������3
C. 10000������������3
D. 9000������������3
������ ≥ 0,
9. 若实数 x,y 满足{������ ≥ −1,
,则2������ − ������的最大值为( )
A. √2
B. 2
C. √3
D. 1
12. 过抛物线 C:������2 = 4������焦点的直线交该抛物线 C 于点 A,B,与抛物线 C 的准线交于
点������.若点 P 到 x 轴距离为 2,则���⃗⃗���⃗⃗���⃗⃗��� ⋅ ���⃗⃗���⃗⃗���⃗⃗��� = ( )
A. 16
6. 若������ = 0.30.2,������ = log0.12,������ = 0.3−0.1,则 a,b,c 的大小关系为( )
A. ������ > ������ > ������
B. ������ > ������ > ������
C. ������ > ������ > ������
B. 12
C. −3
D. 3
4. 在 30 名运动员和 6 名教练员中用分层抽样的方法共抽取 n 人参加新闻发布会,若
抽取的 n 人中教练员只有 1 人,则������ = ( )ALeabharlann 5B. 6C. 7
D. 8
5. 己知直线 a,b,l,平面������,������,下列结论中正确的是( )
A. 若������ ⊂ ������,������ ⊂ ������,������ ⊥ ������,������ ⊥ ������,则������ ⊥ ������

2020年四川省第一次高考模拟考试文科数学试题与答案

2020年四川省第一次高考模拟考试文科数学试题与答案

2020年四川省第一次高考模拟考试文科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

|﹣1<x<5},集合A={1,3},则集合∁U A的子集的个数是()1. 设全集U={x NA. 16B. 8C. 7D. 42. 下列各式的运算结果为纯虚数的是()A. i(1+i)2B. i2(1﹣i)C. (1+i)2D. i(1+i)3. 为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定。

其中所有正确结论的编号为()A. ①③B. ①④C. ②③D. ②④4. 已知直线,直线为,若则( )A.或 B.C .D .或5. 已知,条件甲:;条件乙:,则甲是乙的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 轴截面为正方形的圆柱的外接球的体积与该圆柱的体积的比值为( ) A . B .C .D .7. 在中,a ,b ,c 分别是角A ,B ,C 的对边,,则角B=( )A.B. C.D.8. 执行如图所示的程序框图,输出的S=( )A. 25B. 9C. 17D. 209. 设直线1:210l x y -+=与直线A 的交点为A ;,P Q 分别为12,l l 上任意两点,点M 为,P Q 的中点,若12AM PQ =,则m 的值为( ) A. 2B. 2-C. 3D. 3-10.在V ABC 中,sin B A =,BC =4C π=,则=AB ( )B. 5C. D.11. 已知函数,若,且函数存在最小值,则实数的取值范围为( ) A.B.C. D. 12.已知三棱锥的底面的顶点都在球的表面上,且,,,且三棱锥的体积为,则球的体积为( ) A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

四川省达州市2019-2020学年高考数学一模考试卷含解析

四川省达州市2019-2020学年高考数学一模考试卷含解析

四川省达州市2019-2020学年高考数学一模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合{2,1,1},{4,6,8},{|,,}A B M x x a b b B x B =--===+∈∈,则集合M 的真子集的个数是 A .1个 B .3个C .4个D .7个【答案】B 【解析】 【分析】由题意,结合集合,A B ,求得集合M ,得到集合M 中元素的个数,即可求解,得到答案. 【详解】由题意,集合{2,1,1},{4,6,8}A B =--=,,x A ∈ 则{}{|,,,}4,6M x x a b x A b B x B ==+∈∈∈=, 所以集合M 的真子集的个数为2213-=个,故选B . 【点睛】本题主要考查了集合的运算和集合中真子集的个数个数的求解,其中作出集合的运算,得到集合M ,再由真子集个数的公式21n -作出计算是解答的关键,着重考查了推理与运算能力.2.已知点(3,0),(0,3)A B -,若点P 在曲线y =PAB △面积的最小值为( )A .6B .3C .92D .92+【答案】B 【解析】 【分析】求得直线AB 的方程,画出曲线表示的下半圆,结合图象可得P 位于(1,0)-,结合点到直线的距离公式和两点的距离公式,以及三角形的面积公式,可得所求最小值. 【详解】解:曲线y =O 为圆心,1为半径的下半圆(包括两个端点),如图, 直线AB 的方程为30x y -+=,可得||AB =,由圆与直线的位置关系知P 在(1,0)-时,P 到直线AB 距离最短,即为=,则PAB △的面积的最小值为132232⨯⨯=. 故选:B.【点睛】本题考查三角形面积最值,解题关键是掌握直线与圆的位置关系,确定半圆上的点到直线距离的最小值,这由数形结合思想易得.3.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( ) A .(,1)(3,)-∞-+∞U B .(1,3)-C .(1,3)D .(,1)(3,)-∞+∞U【答案】A 【解析】 【分析】由0ax b ->的解集,可知0a >及1ba=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集.【详解】由0ax b ->的解集为()1,+?,可知0a >且1ba =,令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U , 故选:A. 【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题. 4.若复数z 满足1(120)z i -=,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】【分析】化简复数,求得24z i =+,得到复数在复平面对应点的坐标,即可求解. 【详解】由题意,复数z 满足1(120)z i -=,可得()()()10121024121212i z i i i i +===+--+, 所以复数z 在复平面内对应点的坐标为(2,4)位于第一象限 故选:A. 【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.5.在ABC ∆中,D 在边AC 上满足13AD DC =u u u r u u u r ,E 为BD 的中点,则CE =u u u r( ).A .7388BA BC -u u u r u u u rB .3788BA BC -u u u r u u u r C .3788BA BC +u u u r u u u rD .7388BA BC +u uu r u u u r【答案】B 【解析】 【分析】由13AD DC =u u u r u u u r ,可得34CD CA =u u u r u u u r ,1()2CE CB CD =+u u u r u u u r u u u r 13()24CB CA =+u u ur u u u r ,再将CA BA BC =-u u u r u u u r u u u r 代入即可. 【详解】因为13AD DC =u u u r u u u r ,所以34CD CA =u u u r u u u r ,故1()2CE CB CD =+=u u u r u u u r u u u r 13()24CB CA +=u u ur u u u r133()244BC BA BC -+-=u u ur u u u r u u u r 3788BA BC -u u u r u u u r . 故选:B. 【点睛】本题考查平面向量的线性运算性质以及平面向量基本定理的应用,是一道基础题. 6.已知数列 {}n a 是公比为 q 的等比数列,且 1a , 3a , 2a 成等差数列,则公比 q 的值为( )A .12-B .2-C .1- 或12D .1 或 12-【答案】D 【解析】 【分析】由132a a a ,,成等差数列得3122a =a +a ,利用等比数列的通项公式展开即可得到公比q 的方程. 【详解】由题意3122a =a +a ,∴2a 1q 2=a 1q+a 1,∴2q 2=q+1,∴q=1或q=1-2故选:D . 【点睛】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q 是解题的关键,对于等比数列的通项公式也要熟练.7.已知a >b >0,c >1,则下列各式成立的是( ) A .sina >sinb B .c a >c b C .a c <b c D .11c c b a--< 【答案】B 【解析】 【分析】根据函数单调性逐项判断即可 【详解】对A,由正弦函数的单调性知sina 与sinb 大小不确定,故错误; 对B,因为y =c x 为增函数,且a >b ,所以c a >c b ,正确 对C,因为y =x c 为增函数,故c c a b > ,错误; 对D, 因为1c y x -=在()0,∞+为减函数,故11c c b a--> ,错误 故选B . 【点睛】本题考查了不等式的基本性质以及指数函数的单调性,属基础题.8.已知圆22670x y x +--=与抛物线()220y px p =>的准线相切,则p 的值为()A .1B .2C .12D .4【答案】B 【解析】 【分析】因为圆22670x y x +--=与抛物线()220y px p =>的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于 半径,可知p 的值为2,选B. 【详解】 请在此输入详解!9.记()[]f x x x =-其中[]x 表示不大于x 的最大整数,0()1,0kx x g x x x≥⎧⎪=⎨-<⎪⎩,若方程在()()f x g x =在[5,5]-有7个不同的实数根,则实数k 的取值范围( ) A .11,65⎡⎤⎢⎥⎣⎦B .11,65⎛⎤⎥⎝⎦C .11,54⎛⎫⎪⎝⎭D .11,54⎡⎫⎪⎢⎣⎭【答案】D 【解析】 【分析】做出函数(),()f x g x 的图象,问题转化为函数(),()f x g x 的图象在[5,5]-有7个交点,而函数(),()f x g x 在[5,0]-上有3个交点,则在[0,5]上有4个不同的交点,数形结合即可求解. 【详解】作出函数(),f x ()g x 的图象如图所示,由图可知方程()()f x g x =在[5,0]-上有3个不同的实数根, 则在[0,5]上有4个不同的实数根, 当直线y kx =经过(4,1)时,14k =; 当直线y kx =经过(5,1)时,15k =, 可知当1154k ≤<时,直线y kx =与()f x 的图象在[0,5]上有4个交点, 即方程()()f x g x =,在[0,5]上有4个不同的实数根. 故选:D. 【点睛】本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.10.已知双曲线()222210,0x y a b a b-=>>的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )A .3y =±B .3y x =C .12y x =±D .2y x =±【答案】A【分析】根据双曲线的焦距是虚轴长的2倍,可得出2c b =,结合22224c b a b ==+,得出223a b =,即可求出双曲线的渐近线方程. 【详解】解:由双曲线()222210,0x y a b a b-=>>可知,焦点在x 轴上,则双曲线的渐近线方程为:by x a=±, 由于焦距是虚轴长的2倍,可得:2c b =, ∴22224c b a b ==+,即:223a b =,3b a =,所以双曲线的渐近线方程为:y x =. 故选:A. 【点睛】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.11.已知集合A ={x ∈N|x 2<8x},B ={2,3,6},C ={2,3,7},则()A B C ⋃ð=( ) A .{2,3,4,5} B .{2,3,4,5,6} C .{1,2,3,4,5,6} D .{1,3,4,5,6,7}【答案】C 【解析】 【分析】根据集合的并集、补集的概念,可得结果. 【详解】集合A ={x ∈N|x 2<8x}={x ∈N|0<x <8}, 所以集合A ={1,2,3,4,5,6,7} B ={2,3,6},C ={2,3,7}, 故A C ð={1,4,5,6},所以()A B C ⋃ð={1,2,3,4,5,6}. 故选:C.本题考查的是集合并集,补集的概念,属基础题.12.记递增数列{}n a 的前n 项和为n S .若11a =,99a =,且对{}n a 中的任意两项i a 与j a (19i j ≤<≤),其和i j a a +,或其积i j a a ,或其商j ia a 仍是该数列中的项,则( )A .593,36a S ><B .593,36a S >>C .693,36a S >>D .693,36a S ><【答案】D 【解析】 【分析】 由题意可得955a a a =,从而得到53a =,再由53a =就可以得出其它各项的值,进而判断出9S 的范围. 【详解】解:i j a a +Q ,或其积i j a a ,或其商j ia a 仍是该数列中的项,29a a ∴+或者29a a 或者92a a 是该数列中的项, 又Q 数列{}n a 是递增数列, 1239a a a a ∴<<<⋯<, 299a a a ∴+>,299a a a >,只有92a a 是该数列中的项, 同理可以得到93a a ,94a a ,..,98a a 也是该数列中的项,且有99919872a a a a a a a a <<<⋯<<, ∴955a a a =,53a ∴=或53a =-(舍),63a ∴>, 根据11a =,53a =,99a =,同理易得1423a =,1233a =,3443a =,5463a =,3273a =,7483a =,94912914133613S a a a -∴=++⋯+=<-,故选:D . 【点睛】本题考查数列的新定义的理解和运用,以及运算能力和推理能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。

2020年达州市数学高考一模试卷及答案

2020年达州市数学高考一模试卷及答案
6.B
解析:B
【解析】
【分析】
【详解】
当a=0时,如果b=0,此时 是实数,不是纯虚数,因此不是充分条件;而如果 已经是纯虚数,由定义实部为零,虚部不为零可以得到a=0,因此是必要条件,故选B
【考点定位】
本小题主要考查的是充分必要条件,但问题中又涉及到了复数问题,复数部分本题所考查的是纯虚数的定义
7.D
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【详解】
由题意可得: ,且: ,
据此有: .
本题选择D选项.
2.A
解析:A
【解析】
试题分析:由 ,得 或 ,所以 ,故选A.
【考点】同角三角函数间的基本关系,倍角公式.
【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.
16.已知圆锥的侧面展开图是一个半径为 ,圆心角为 的扇形,则此圆锥的高为________ .
17.若函数 在 上存在单调增区间,则实数 的取值范围是_______.
18.已知 , ,则 __________.
19.设复数 虚数单位), 的共轭复数为 ,则 ________.
20.函数y= 的定义域是.
12.已知P为双曲线 上一点, 为双曲线C的左、右焦点,若 ,且直线 与以C的实轴为直径的圆相切,则C的渐近线方程为( )
A. B. C. D.
二、填空题
13.设 是等差数列 的前 项和,且 ,则
14.若三点 共线,则 的值为.
15.在 中,角 的对边分别为 , , ,且 为锐角,则 面积的最大值为________.

四川省达州市2023届高三第一次诊断性测试文数试题(带答案)

四川省达州市2023届高三第一次诊断性测试文数试题(带答案)

一诊数学(文)试卷第1页(共4页)达州市普通高中2023届第一次诊断性测试数学试题(文科)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|}A x =≤1,{|1}B x x =<,则A B =A .[0 1),B .(0 1),C .( 1)-∞,D .( 1]-∞,2.复数z 满足1=2i z,则z =A .12-B .12C .1i2-D .1i23.已知向量a ,b ,满足⊥a b ,(12),a = ,则()-⋅=a b a A .0B .2CD .54.四川省将从2022年秋季入学的高一年级学生开始实行高考综合改革,高考采用“3+1+2”模式,其中“1”为首选科目,即物理与历史二选一.某校为了解学生的首选意愿,对部分高一学生进行了抽样调查,制作出如下两个等高条形图,根据条形图信息,下列结论正确的是A .样本中选择物理意愿的男生人数少于选择历史意愿的女生人数B .样本中女生选择历史意愿的人数多于男生选择历史意愿的人数C .样本中选择物理学科的人数较多D .样本中男生人数少于女生人数5.“0a b >>”是“e 1a b->”的A .充分不必要条件B .必要不充分条件C .充分必要条件D.既不充分也不必要条件一诊数学(文)试卷第2页(共4页)6.《将夜》中宁缺参加书院的数科考试,碰到了这样一道题目:那年春,夫子游桃山,一路摘花饮酒而行,始切一斤桃花,饮一壶酒,复切一斤桃花,又饮一壶酒,后夫子惜酒,故再切一斤桃花,只饮半壶酒,再切一斤桃花,饮半半壶酒,如是而行,终夫子切六斤桃花而醉卧桃山.问:夫子切了五斤桃花一共饮了几壶酒?A .18B .4716C .238D .31167.三棱锥P ABC -的底面ABC 为直角三角形,ABC △的外接圆为圆O ,PQ ⊥底面ABC ,Q 在圆O 上或内部,现将三棱锥的底面ABC 放置在水平面上,则三棱锥P ABC -的俯视图不可能是A.B .C .D .8.将函数1π()sin()23f x x ω=+(0)ω>图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到函数()g x 的图象,直线l 与曲线()y g x =仅交于11()A x y ,,22()B x y ,,ππ(())66P g ,三点,π6为1x ,2x 的等差中项,则ω的最小值为A .8B .6C .4D .29.曲线()()e xf x x m =+()m ∈R 在点(0(0))f ,处的切线平分圆22(2)(2)5x y -+-=,则函数()y f x =的增区间为A .(,1)-∞-B .(0 )+∞,C .(1 )-+∞,D .(0e),10.点F 为双曲线22221x y a b-=(0 0)a b >>,的一个焦点,过F 作双曲线的一条渐近线的平行线交双曲线于点A ,O 为原点,||OA b =,则双曲线的离心率为A B .C .D 11.在棱长为2的正方体1111ABCD C D 中,E ,分别为AB ,BC 的中点,则A .平面1D EF ∥平面11BA C B .点P 为正方形1111A B C D 内一点,当DP ∥平面1B EF 时,DP 的最小值为2C .过点1D ,E ,F 的平面截正方体1111ABCD A B C D -所得的截面周长为+D .当三棱锥1B BEF -的所有顶点都在球O 的表面上时,球O 的表面积为12π12.已知!(1)(2)321n n n n =⨯-⨯-⨯⨯⨯⨯ ,规定0!1=,如3!3216=⨯⨯=.定义在R上的函数()y f x =图象关于原点对称,对任意的0x <,都有(()1xf xf x x =-.若12()10099!f =,则(1)f =A .0B .1C .2D .199!一诊数学(文)试卷第3页(共4页)二、填空题:本题共4小题,每小题5分,共20分.13.抛物线22(0)y px p =>上的点(4)M a ,到焦点的距离为5,则焦点坐标为.14.从集合{1 2 3 4 5},,,,中随机取两个不同的数a ,b ,则满足||2a b -=的概率为.15.已知正项数列{}n a 前n 项和n S 满足(1)2n n n a a S m +=+,m ∈R ,且3510a a +=,则m =.16.已知正方形ABCD 边长为2,M ,N 两点分别为边BC ,CD 上动点,45=∠MAN ,则CMN △的周长为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)党的十九大提出实施乡村振兴战略以来,农民收入大幅提升,2022年9月23日某市举办中国农民丰收节庆祝活动,粮食总产量有望连续十年全省第一.据统计该市2017年至2021年农村居民人均可支配收入的数据如下表:年份20172018201920202021年份代码x12345人均可支配收入y (单位:万元)1.301.401.621.681.80(1)根据上表统计数据,计算y 与x 的相关系数r ,并判断y 与x 是否具有较高的线性相关程度(若0.30||0.75r <≤,则线性相关程度一般,若||0.75r ≥则线性相关程度较高,r 精确到0.01);(2)市五届人大二次会议政府工作报告提出,2022年农村居民人均可支配收入力争不低于1.98万元,求该市2022年农村居民人均可支配收入相对2021年增长率最小值(用百分比表示).参考公式和数据:相关系数()()niix x y y r --=∑,51()() 1.28iii x x y y =--=∑,521()0.17ii y y =-≈∑ 1.3≈.18.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,ABC △的面积tan S A =,BC (1)求a ;(2)求ABC △外接圆面积的最小值.一诊数学(文)试卷第4页(共4页)19.(12分)如图,四棱锥P ABCD -的底面ABCD 是梯形,AD BC ∥,AB BC ⊥.E 为AD 延长线上一点,PE ⊥平面ABCD ,2PE AD =,tan 2PDA ∠=-.F 是PB 中点.(1)证明:EF PA ⊥;(2)若22BC AD ==,三棱锥E PDC -的体积为13,求点C 到平面DEF 的距离.20.(12分)已知F 是椭圆C :22221(0)x y a b a b+=>>的一个焦点,过点( )P t b ,的直线l 交C 于不同两点A ,B .当t a =,且l经过原点时,||AB =,||||AF BF +=.(1)求C 的方程;(2)D 为C 的上顶点,当4t =,且直线AD ,BD 的斜率分别为1k ,2k 时,求1211k k +的值.21.(12分)已知函数()ln ()f x x x a a =+∈R .(1)若()f x 最小值为0,求a 的值;(2)231()1(0)8x g x x x x =--+>,若7ea ≥,()0gb <,证明()f x b >.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为22cos 2sin 20ρρθρθ---=,直线l 的参数方程为2cos ()2sin x t t y t θθ=+⎧⎨=+⎩,为参数.(1)写出曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,定点(2 2)P ,,求PA PB +的最小值.23.[选修4-5:不等式选讲](10分)设函数12)(-=x x f .(1)若()()f x f x m >+的解集为{|0}x x <,求实数m 的值;(2)若0a b <<,且()()f a f b =,求411a b +-的最小值.A BC DEFP达州市普通高中2023届第一次诊断性测试文科数学参考答案一、选择题:1.A 2.C3.D4.C5.A6.C7.D 8.C9.C10.D11.B12.C二、填空题:本题共4小题,每小题5分,共20分.13.(1,0)14.31015.1-16.4三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.解:(1)由表知x 的平均数为1234535x ++++==.522221((13)(23)(53)10i i x x =∴-=-+-++-=∑.5()()0.98iix x y y r --=∑.75.098.0> ,∴y 与x 具有较高的线性相关程度.(2)设增长率为p ,则1.8(1)p +≥1.98,解得p ≥0.1.∴min 0.110%p ==.该市2022年农村居民人均可支配收入相对2021年增长率最小值为10%.18.解:(1)由A S tan =得AAA bc cos sin sin 21=,∵0πA <<,0sin >A ,∴2cos =A bc .取BC 中点D ,连接AD ,则1()2AD AB AC =+ ,∴22242AD AB AB AC AC =+⋅+ ,即A bc c b cos 21222++=,∴822=+c b .∵448cos 2222=-=-+=A bc c b a ,∴2=a .(2)设ABC △外接圆半径为R ,由正弦定理R A a 2sin =,得AR sin 1=.由(1)知bc A 2cos =22412b c =+≥,当且仅当2==c b 时取“=”.∵0πA <<,∴A <0≤π3,∴0sin 2A <≤,∴A R sin 1=23332=,当sin 2A =,即π3A =时取“=”.∴ABC △外接圆面积最小值为2234π(π33⨯=.19又E AD PE = ,∴AB ⊥平面PAD .∵PA ⊂平面PAD ,∴PA AB ⊥.取P A 的中点M ,连接EM ,FM ,∵F 为PB的中点,∴FM PA ⊥.∵tan 2PDA ∠=-,∴tan 2PDE ∠=,∴2=DEPE ,∴AD DE PE 22==,∴D 为AE 的中点,∴PE AE =,∴EM PA ⊥.又M FM EM = ,∴PA ⊥平面EFM .∵EF ⊂平面EFM ,∴EF PA ⊥.(2)解:∵222BC AD DE ===,∴2PE =.∴ BC AE ∥,且 BC AE =,∵AB BC ⊥,∴四边形ABCE 为矩形,∴CE ⊥平面PAE .1111123323E PDC P DEC DEC V V S PE CE --==⋅=⨯⨯⨯⨯=△,∴1=CE .连接M D ,Rt BCE △中51222=+=BE ,Rt PEB △中35222=+=PB .∵F 为PB 中点,∴点F 到平面ABCD 的距离1211==PE h ,Rt PEB △中,2321==PB EF ,111122ECD S =⨯⨯=△.由(1)知FM PAE ⊥面,11=22FM AB =,在Rt FME △中,52DF ==,∴DEF △中,22235()1)222cos 33212DEF +-∠==⨯⨯,3sin DEF ∠=,124DEF S DE EF sin DEF =⨯⨯⨯∠=△.设点C 到平面DEF 的距离为2h ,则121133F EDC C DFE DEC DFE V V S h S h --==⋅=⋅△△,解得5522=h .所以点C 到平面DEF 的距离为552.20.解:(1)由题意,当t a =,且l 经过原点时,l 的方程为by x a=,且点A ,B 关于原点对称.设00( )A x y ,,将b y x a=代入22221x y a b +=,并化简得222a x =,即2202a x =,∴2202b y =.∵||AB =2222004()2()6x y a b +=+=.设C 的另一个焦点为0F ,根据对称性,0||||||||AF BF AF AF +=+=,根据椭圆定义得2a =,∴22a =.∴21b =.所以C 的方程为2212x y +=.(2)由(1)知,点D 坐标为(0 1),.A B C M E F PD由题意可设l :(1)4x k y =-+,即4x ky k =+-,将该式代入2212x y +=,并化简得222(2)2(4)8140k y k k y k k ++-+-+=,∴16(47)0k ∆=->.设11()A x y ,,22()B x y ,,则1222(4)2k k y y k -+=-+,21228142k k y y k -+=+.∴12122164()822kx x k y y k k -+=++-=+.∴1212211212121212()1111()1x x x y x y x x k k y y y y y y +-++=+==---++2222212121221212222(814)2(4)1642(4)()()2228142(4)()1122k k k k k kky y k y y x x k k k k k k k y y y y k k -+----+-+-++++=-+--++++++1=-.即12111k k +=-.21.解:(1)由()ln f x x x a =+得0x >,且()ln 1f x x '=+当10e x <<时,()0f x '<,()f x 单调递减,当1ex >时,()0f x '>,()f x 单调递增.所以min 11()()()0e e f x f x f a ===-+=极小,∴1ea =.(2)证明:由231()18x g x x x =--+得322231344()144x x g x x x x -+'=-+=(0>x ).设32()344h x x x =-+,则28()989()9h x x x x x '=-=-,当809x <<时,()0h x '<,()h x 单调递减,当89x >时,()0h x '>,()h x 单调递增.∴当0x >时,()min 8()()09h x h x h =>≥,即()0g x '>,()g x 在区间(0 )+∞,单调递增.∵(2)0g =,∴若0x >,则当且仅当02x <<时,()0g x <,∵()0g b <,∴2b <.由(1)知,min 11()()e e f x f a ==-.∵7e a ≥,∴min 16()()e ef x f x a =-≥≥.∴6()2ef x b >>≥,即()f x b >.22.解:(1)将222x y ρ=+,cos x ρθ=,sin y ρθ=代入C 的极坐标方程22cos ρρθ-2sin 20ρθ--=得曲线C 为222220x y x y +---=,即4)1()1(22=-+-y x .(2)易知点P 在直线l 上,将直线l 的参数方程2cos ()2sin x t t y t θθ=+⎧⎨=+⎩,为参数代入曲线C 方程得4)sin 1()cos 1(22=+++θθt t ,整理得02)cos (sin 22=-++t t θθ.设点A ,B 对应该的参数分别为1t ,2t ,则)cos (sin 221θθ+-=+t t ,0221<-=t t ,由参数t 的几何意义不妨令||||1P A t =,||||2PB t =.∴||||||||||2121t t t t PB P A -=+=+122sin 44)(21221+=-+=θt t t t .当12sin -=θ,即ππ()4k k θ=-∈Z 时,22|)||(|=+PB P A .23.(1)解:不等式可化为|1|||22-+>m x x ,∴|1||1|-+>-m x x ,两边同时平方可得222m m mx -<.原不等式解集为{|0}x x <,∴0>m ,即21mx -<.∴021=-m,2=m .(2)解: )()(b f a f =,∴|1||1|22--=b a ,|1||1|-=-b a .)1(2)1(||x f x f x -==+,∴)(x f y =关于直线1=x 对称,∴b a <<<10,∴11-=-b a ,即2=+b a .所以1)1(45)1114(-+-+=-+-+b a a b b a b a ≥9425=+,当且仅当1)1(4-=-b a a b ,即34,32==b a 时取“=”,∴114-+b a 的最小值为9.。

2019-2020学年四川省达州市高考数学一诊试卷(文科)

2019-2020学年四川省达州市高考数学一诊试卷(文科)

A.{x|﹣3<x≤1} B.{x|﹣1<x≤3}
C.{x|﹣1≤x≤3} D.{x|1≤x≤3}
功 3.(5 分)某 8 人一次比赛得分茎叶图如图所示,这组数据的中位数和众数分别
是( )

A.85 和 92
B.87 和 92
C.84 和 92
到D.85 和 90
马 4.(5 分)在等比数列{an}中,a3=2,a6=16,则数列{an}的公比是(
! 功
故选:A.

到 2.(5 分)已知集合 A={x|1≤x≤3},B={x|﹣5<x≤3},则 A∩B=( )
A.{x|﹣3<x≤1} B.{x|﹣1<x≤3}
C.{x|﹣1≤x≤3} D.{x|1≤x≤3}
马 【解答】解:∵集合 A={x|1≤x≤3},B={x|﹣5<x≤3},
∴A∩B={x|1≤x≤3}.
点为( ,0), 即椭圆的焦点为(±2,0),椭圆的顶点为( ,0), 则椭圆中 c=2,a= , 则椭圆的离心率 e= = = ;
故选:C.

8.(5 分)方程 x2﹣2x+a+1=0 有一正一负两实根的充要条件是( A.a<0 B.a<﹣1 C.﹣1<a<0 D.a>﹣1
功)
【解答】解:∵方程 x2﹣2x+a+1=0 有一正一负两实根,

16.(5 分)若任意 a,b 满足 0<a<b<t,都有 blna<alnb,则 t 的最大值为

! 三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21
功 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求
作答.(一)必考题:共 60 分.

四川省达州市2019-2020学年高考一诊数学试题含解析

四川省达州市2019-2020学年高考一诊数学试题含解析

四川省达州市2019-2020学年高考一诊数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数(1)(3)(z i i i =+-为虚数单位) ,则z 的虚部为( )A .2B .2iC .4D .4i 【答案】A【解析】【分析】对复数z 进行乘法运算,并计算得到42z i =+,从而得到虚部为2.【详解】因为(1)(3)42z i i i =+-=+,所以z 的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意21i =-.2.已知A ,B ,C ,D 是球O 的球面上四个不同的点,若2AB AC DB DC BC =====,且平面DBC ⊥平面ABC ,则球O 的表面积为( )A .203πB .152πC .6πD .5π【答案】A【解析】【分析】由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案.【详解】如图,取BC 中点G ,连接AG ,DG ,则AG BC ⊥,DG BC ⊥,分别取ABC V 与DBC V 的外心E ,F ,分别过E ,F 作平面ABC 与平面DBC 的垂线,相交于O , 则O 为四面体A BCD -的球心,∴四面体A BCD -的外接球的半径R ===∴球O 的表面积为220π4π3⨯=. 故选A .【点睛】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题.3.设m r ,n r 均为非零的平面向量,则“存在负数λ,使得m n λ=r r ”是“0m n ⋅<r r ”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】B【解析】【分析】根据充分条件、必要条件的定义进行分析、判断后可得结论.【详解】因为m r ,n r 均为非零的平面向量,存在负数λ,使得m n λ=r r ,所以向量m r ,n r 共线且方向相反,所以0m n ⋅<r r ,即充分性成立;反之,当向量m r ,n r 的夹角为钝角时,满足0m n ⋅<r r ,但此时m r ,n r 不共线且反向,所以必要性不成立.所以“存在负数λ,使得m n λ=r r ”是“0m n ⋅<r r”的充分不必要条件.故选B .【点睛】判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p ,定义法是判断充分条件、必要条件的基本的方法,解题时注意选择恰当的方法判断命题是否正确. 4.下列选项中,说法正确的是( )A .“20000x R x x ∃∈-≤,”的否定是“2000x R x x ∃∈->,”B .若向量a b r r ,满足0a b ⋅<r r ,则a r 与b r的夹角为钝角C .若22am bm ≤,则a b ≤D .“()x A B ∈U ”是“()x A B ∈I ”的必要条件【答案】D对于A 根据命题的否定可得:“∃x 0∈R ,x 02-x 0≤0”的否定是“∀x ∈R ,x 2-x >0”,即可判断出;对于B 若向量a b r r ,满足0a b ⋅<r r ,则a r 与b r 的夹角为钝角或平角;对于C 当m=0时,满足am 2≤bm 2,但是a≤b 不一定成立;对于D 根据元素与集合的关系即可做出判断.【详解】选项A 根据命题的否定可得:“∃x 0∈R ,x 02-x 0≤0”的否定是“∀x ∈R ,x 2-x >0”,因此A 不正确; 选项B 若向量a b r r ,满足0a b ⋅<r r ,则a r 与b r的夹角为钝角或平角,因此不正确.选项C 当m=0时,满足am 2≤bm 2,但是a≤b 不一定成立,因此不正确;选项D 若“()x A B ∈I ”,则x A ∈且x B ∈,所以一定可以推出“()x A B ∈U ”,因此“()x A B ∈U ”是“()x A B ∈I ”的必要条件,故正确.故选:D.【点睛】本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题. 5.已知函数()2ln 2,03,02x x x x f x x x x ->⎧⎪=⎨+≤⎪⎩的图像上有且仅有四个不同的关于直线1y =-对称的点在()1g x kx =-的图像上,则k 的取值范围是( )A .13(,)34B .13(,)24C .1(,1)3D .1(,1)2 【答案】D【解析】【分析】根据对称关系可将问题转化为()f x 与1y kx =--有且仅有四个不同的交点;利用导数研究()f x 的单调性从而得到()f x 的图象;由直线1y kx =--恒过定点()0,1A -,通过数形结合的方式可确定(),AC AB k k k -∈;利用过某一点曲线切线斜率的求解方法可求得AC k 和AB k ,进而得到结果.【详解】()1g x kx =-关于直线1y =-对称的直线方程为:1y kx =--∴原题等价于()f x 与1y kx =--有且仅有四个不同的交点由1y kx =--可知,直线恒过点()0,1A -()f x ∴在()0,e 上单调递减;在(),e +∞上单调递增由此可得()f x 图象如下图所示:其中AB 、AC 为过A 点的曲线的两条切线,切点分别为,B C由图象可知,当(),AC AB k k k -∈时,()f x 与1y kx =--有且仅有四个不同的交点设(),ln 2C m m m m -,0m >,则ln 21ln 10AC m m m k m m -+=-=-,解得:1m = 1AC k ∴=- 设23,2B n n n ⎛⎫+ ⎪⎝⎭,0n ≤,则23132220AB n n k n n ++=+=-,解得:1n =- 31222AB k ∴=-+=- 11,2k ⎛⎫∴-∈-- ⎪⎝⎭,则1,12k ⎛⎫∈ ⎪⎝⎭ 本题正确选项:D【点睛】本题考查根据直线与曲线交点个数确定参数范围的问题;涉及到过某一点的曲线切线斜率的求解问题;解题关键是能够通过对称性将问题转化为直线与曲线交点个数的问题,通过确定直线恒过的定点,采用数形结合的方式来进行求解.6.已知集合{}2(,)|A x y y x==,{}22(,)|1B x y x y =+=,则A B I 的真子集个数为( ) A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】求出A B I 的元素,再确定其真子集个数.由2221y x x y ⎧=⎨+=⎩,解得x y ⎧⎪=⎪⎨⎪=⎪⎩或x y ⎧⎪=⎪⎨⎪=⎪⎩,∴A B I 中有两个元素,因此它的真子集有3个.故选:C.【点睛】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合,A B 都是曲线上的点集.7.以下关于()sin 2cos 2f x x x =-的命题,正确的是A .函数()f x 在区间20,3π⎛⎫ ⎪⎝⎭上单调递增 B .直线8x π=需是函数()y f x =图象的一条对称轴C .点,04π⎛⎫ ⎪⎝⎭是函数()y f x =图象的一个对称中心 D .将函数()y f x =图象向左平移需8π个单位,可得到2y x =的图象 【答案】D【解析】【分析】利用辅助角公式化简函数得到())4f x x π=-,再逐项判断正误得到答案. 【详解】()sin 2cos 2)4f x x x x π=-=- A 选项,132(,)4413220,x x ππππ⎛⎫∈⇒ ⎪⎝⎭-∈-函数先增后减,错误 B 选项,2084x x ππ=⇒-=不是函数对称轴,错误 C 选项,2444x x πππ=⇒-=,不是对称中心,错误D 选项,图象向左平移需8π个单位得到))284y x x ππ=+-=,正确 故答案选D其中化简三角函数是解题的关键.8.已知集合2{|log (1)2},,A x x B N =-<=则A B =I ( )A .{}2345,,, B .{}234,, C .{}1234,,, D .{}01234,,,, 【答案】B【解析】【分析】 解对数不等式可得集合A ,由交集运算即可求解.【详解】集合2{|log (1)2},A x x =-<解得{}15,A x x =<< ,B N = 由集合交集运算可得{}{}152,3,4A B x x N ⋂=<<⋂=,故选:B.【点睛】本题考查了集合交集的简单运算,对数不等式解法,属于基础题.9.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计π的值:先用计算机产生2000个数对(),x y ,其中x ,y 都是区间()0,1上的均匀随机数,再统计x ,y 能与1构成锐角三角形三边长的数对(),x y 的个数m ﹔最后根据统计数m 来估计π的值.若435m =,则π的估计值为( )A .3.12B .3.13C .3.14D .3.15 【答案】B【解析】【分析】先利用几何概型的概率计算公式算出x ,y 能与1构成锐角三角形三边长的概率,然后再利用随机模拟方法得到x ,y 能与1构成锐角三角形三边长的概率,二者概率相等即可估计出π.【详解】因为x ,y 都是区间()0,1上的均匀随机数,所以有01x <<,01y <<,若x ,y 能与1构成锐角三角形三边长, 则2211x y x y +>⎧⎨+>⎩,由几何概型的概率计算公式知11435411142000m P n ππ⨯-==-==⨯,【点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.10.使得()3nx n N+⎛∈ ⎝的展开式中含有常数项的最小的n 为( ) A .4B .5C .6D .7 【答案】B【解析】 二项式展开式的通项公式为r -n 3x n r r C (),若展开式中有常数项,则3--=02n r r ,解得5=2n r ,当r 取2时,n 的最小值为5,故选B 【考点定位】本题考查二项式定理的应用.11.设集合U =R (R 为实数集),{}|0A x x =>,{}|1B x x =≥,则U A C B =I ( ) A .{}1|0x x <<B .{}|01x x <≤C .{}|1x x ≥D .{}|0x x > 【答案】A【解析】【分析】根据集合交集与补集运算,即可求得U A C B ⋂.【详解】集合U =R ,{}|0A x x =>,{}|1B x x =≥ 所以{}1U C B x x =< 所以{}{}{}0101U A C B x x x x x x ⋂=⋂<=<<故选:A【点睛】本题考查了集合交集与补集的混合运算,属于基础题.12.已知复数1z i =-,z 为z 的共轭复数,则1z z +=( ) A .32i + B .12i + C .132i - D .132i +求出z ,直接由复数的代数形式的乘除运算化简复数.【详解】121312z i i z i +--==+. 故选:C【点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

四川省达州市2019-2020学年高考数学第一次调研试卷含解析

四川省达州市2019-2020学年高考数学第一次调研试卷含解析

四川省达州市2019-2020学年高考数学第一次调研试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若a R ∈,则“3a =”是“()51x ax +的展开式中3x 项的系数为90”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】求得()51x ax +的二项展开式的通项为15C kkk a x+⨯⋅,令2k =时,可得3x 项的系数为90,即25290C =a ⨯,求得a ,即可得出结果. 【详解】若3a =则()()55=113x ax x x ++二项展开式的通项为+15C 3k k k x ⨯⋅,令13k +=,即2k =,则3x 项的系数为252C 3=90⨯,充分性成立;当()51x ax +的展开式中3x 项的系数为90,则有25290C =a ⨯,从而3a =±,必要性不成立. 故选:B. 【点睛】本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问题的能力和计算能力,难度较易.2.已知()A ,)B,P 为圆221x y +=上的动点,AP PQ =u u u r u u u r,过点P 作与AP 垂直的直线l 交直线QB 于点M ,若点M 的横坐标为x ,则x 的取值范围是( )A .1x ≥B .1x >C .2x ≥D .x ≥【答案】A 【解析】 【分析】由题意得2MB MA BQ OP -==,即可得点M 的轨迹为以A ,B 为左、右焦点,1a =的双曲线,根据双曲线的性质即可得解. 【详解】如图,连接OP ,AM ,由题意得22MB MA BQ OP -===,∴点M 的轨迹为以A ,B 为左、右焦点,1a =的双曲线,∴1x ≥.故选:A.【点睛】本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题. 3.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB的最大值是( )A .34B .33 C .32D 3【答案】B 【解析】 【分析】 【详解】试题分析:设,A B 在直线l 上的投影分别是11,A B ,则1AF AA =,1BF BB =,又M 是AB 中点,所以111()2MN AA BB =+,则1112MN AA BB AB AB +=⋅2AF BF AB +=,在ABF ∆中222AB AF BF =+22cos3AF BF π-22AF BF AF BF =++2()AF BF AF BF =+-2()AF BF ≥+2()2AF BF+-23()4AF BF =+,所以22()43AF BF AB+≤,即23AF BF AB +≤,所以33MN AB≤,故选B . 考点:抛物线的性质. 【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦AB 的中点M 到准线的距离首先等于,A B 两点到准线距离之和的一半,然后转化为,A B 两点到焦点F 的距离,从而与弦长AB 之间可通过余弦定理建立关系. 4.已知:cos sin 2p x y π⎛⎫=+ ⎪⎝⎭,:q x y =则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据诱导公式化简sin cos 2y y π⎛⎫+= ⎪⎝⎭再分析即可. 【详解】 因为cos sin cos 2x y y π⎛⎫=+= ⎪⎝⎭,所以q 成立可以推出p 成立,但p 成立得不到q 成立,例如5cos cos 33ππ=,而533ππ≠,所以p 是q 的必要而不充分条件. 故选:B 【点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.5.已知函数()()0xe f x x a a=->,若函数()y f x =的图象恒在x 轴的上方,则实数a 的取值范围为( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .()0,eC .(),e +∞D .1,1e ⎛⎫⎪⎝⎭【答案】B 【解析】 【分析】函数()y f x =的图象恒在x 轴的上方,0x e x a ->在()0,∞+上恒成立.即x e x a >,即函数x ey a =的图象在直线y x =上方,先求出两者相切时a 的值,然后根据a 变化时,函数xey a=的变化趋势,从而得a 的范围.【详解】由题0x e x a->在()0,∞+上恒成立.即xe x a>,xe y a=的图象永远在y x =的上方,设x e y a =与y x =的切点()00,x y ,则01x x e ae xa⎧=⎪⎪⎨⎪=⎪⎩,解得a e =,易知a 越小,xey a=图象越靠上,所以0a e <<.故选:B . 【点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围.6.为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是( )A .乙的数据分析素养优于甲B .乙的数学建模素养优于数学抽象素养C .甲的六大素养整体水平优于乙D .甲的六大素养中数据分析最差 【答案】C 【解析】 【分析】根据题目所给图像,填写好表格,由表格数据选出正确选项. 【详解】根据雷达图得到如下数据:由数据可知选C. 【点睛】本题考查统计问题,考查数据处理能力和应用意识.7.设n S 为等差数列{}n a 的前n 项和,若3578122()3()66a a a a a ++++=,则14S = A .56 B .66 C .77 D .78【答案】C 【解析】 【分析】 【详解】根据等差数列的性质可得3578125102()3()6666a a a a a a a ++++=+=,即5a +1011a =, 所以1141451014()7()772a a S a a +==+=,故选C . 8.已知定点1(4,0)F -,2(4,0)F ,N 是圆22:4O x y +=上的任意一点,点1F 关于点N 的对称点为M ,线段1F M 的垂直平分线与直线2F M 相交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线C .抛物线D .圆【答案】B 【解析】 【分析】根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判断即可. 【详解】因为线段1F M 的垂直平分线与直线2F M 相交于点P ,如下图所示:所以有122PF PM PF MF ==-,而,O N 是中点,连接ON ,故224MF ON ==, 因此21214(4)PF PF F F -=<当N 在如下图所示位置时有,所以有122PF PM PF MF ==+,而,O N 是中点,连接ON ,故224MF ON ==,因此12214(4)PF PF F F -=<,综上所述:有12214(4)PF PF F F -=<,所以点P 的轨迹是双曲线. 故选:B 【点睛】本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想.9.已知直线l :320x y ++=与圆O :224x y +=交于A ,B 两点,与l 平行的直线1l 与圆O 交于M ,N 两点,且OAB V 与OMN V 的面积相等,给出下列直线1l 330x y +-=320x y +-=,③320x y -+=3230x y ++=.其中满足条件的所有直线1l 的编号有( )A .①②B .①④C .②③D .①②④【答案】D 【解析】 【分析】求出圆心O 到直线l 的距离为:112d r ==,得出120AOB ∠=︒,根据条件得出O 到直线1l 的距离1d '=或.【详解】解:由已知可得:圆O :224x y +=的圆心为(0,0),半径为2,则圆心O 到直线l 的距离为:112d r ==, ∴120AOB ∠=︒,而1//l l ,OAB V 与OMN V 的面积相等, ∴120MON ∠=︒或60︒,即O 到直线1l 的距离1d '=或 根据点到直线距离可知,①②④满足条件. 故选:D. 【点睛】本题考查直线与圆的位置关系的应用,涉及点到直线的距离公式.10.设集合{}2A x x a =-<<,{}0,2,4B =,若集合A B I 中有且仅有2个元素,则实数a 的取值范围为 A .()0,2 B .(]2,4 C .[)4,+∞ D .(),0-∞【答案】B 【解析】 【分析】由题意知{}02A ⊆,且4A ∉,结合数轴即可求得a 的取值范围. 【详解】由题意知,{}=02A B I ,,则{}02A ⊆,,故2a >, 又4A ∉,则4a ≤,所以24a <≤,所以本题答案为B. 【点睛】本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定A B I 中的元素是解题的关键,属于基础题.11.已知a ,b ,c 分别是ABC V 三个内角A ,B ,C 的对边,cos sin a C A b c +=+,则A =( )A .6πB .4π C .3π D .23π 【答案】C 【解析】 【分析】sin cos sin sin C A A C C =+,由于sin 0C ≠,0A π<<可求A 的值. 【详解】解:由cos sin a C A b c +=+及正弦定理得sin cos sin sin sin A C C A B C +=+. 因为B A C π=--,所以sin sin cos cos sin B A C A C =+代入上式化简得sin cos sin sin C A A C C =+.由于sin 0C ≠,所以1sin 62A π⎛⎫-= ⎪⎝⎭.又0A π<<,故3A π=.故选:C. 【点睛】本题主要考查正弦定理解三角形,三角函数恒等变换等基础知识;考查运算求解能力,推理论证能力,属于中档题.12.设等差数列{}n a 的前n 项和为n S ,若31425a a a =+=,,则6S =( ) A .10 B .9C .8D .7【答案】B 【解析】 【分析】 根据题意3141152223a a a a d a d =+=+=+=,,解得14a =,1d =-,得到答案.【详解】3141152223a a a a d a d =+=+=+=,,解得14a =,1d =-,故616159S a d =+=.故选:B .本题考查了等差数列的求和,意在考查学生的计算能力. 二、填空题:本题共4小题,每小题5分,共20分。

2020年12月08日四川省达州市达州市一诊语文试题参考答案

2020年12月08日四川省达州市达州市一诊语文试题参考答案

达州市普通高中2021届第一次诊断性测试语文参考答案1.C。

(A项扩大了范围,只是失去了强势话语权;B项理解有误,是凭借3000多年创造了核心概念、范畴;D项绝对化,“只要……就”换成“只有……才”)2.C。

(结构应是“层进式”)3.选B(张冠李戴,发出“哲学火花”的是“中外哲学”,不是“中西哲学”)4.D。

D项,是疾病的诊疗通过数字化,不是数字化通过疾病的诊疗方式。

5.B。

B项,无中生有,没有具体的操作流程。

6.答题要点:①进博会提供了开放合作的平台;②展出磁共振造影高压注射器MRXP产品;③促进医疗保险支付端和支付形式的改革;④抗疫过程中有成功的合作经历;⑤共同推进数字化进程;⑥中国是拜耳影像诊断最大的市场和重要的合作伙伴。

(每点1分)7.B。

过分解读文本,行文中并看不出来作者对传统文化艺术的追求。

8.①稻子的成长再现了劳动场景,让读者有身临其境之感,有更好的阅读体验;②稻子的成长让作者魂牵梦萦,表现了对故土的留恋和热爱;③稻子的成长浸透着乡邻们的辛劳,让他们倍感幸福和甜蜜,流露出对客家乡邻们的赞美之情。

(每点2分)9.①站立的是稻子,在站立中才能把希望的种子孕育成丰收的稻米,才能承受生命之重;②站立的是客家乡邻,在站立中才能与各种灾害作抗争,用勤劳坚守换得丰收和希望;③站立的是年青一辈,在站立中才能脚踏四方,用实干和奋斗开创属于自己的人生。

(对象3分,意义3分)10.A。

11.A。

“最初”应为“最高”。

12.D。

汤鼐并没判死罪。

13(1)(应该)选择像刘健这样端方正直、谨慎敦厚的大臣,每天跟他们讲学论道,并把这作为治理国家的根本。

(给分点:“择”“端方”“日”以为各1分,大意1分)(2)皇上发怒,将吉人关进皇家监狱,责令吉人供出同党名字。

吉人回答有汤鼐、曹璘等人。

(给分点:“下”“令”“引”“对”大意1分)参考译文:汤鼐,字用之,是寿州人。

成化十一年(1475),考中进士。

授予行人一职,又提升为御史。

四川省达州市达标名校2020年高考一月质量检测数学试题含解析

四川省达州市达标名校2020年高考一月质量检测数学试题含解析

四川省达州市达标名校2020年高考一月质量检测数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()ln f x x =,()()23g x m x n =++,若()0,x ∀∈+∞总有()()f x g x ≤恒成立.记()23m n +的最小值为(),F m n ,则(),F m n 的最大值为( )A .1B .1eC .21eD .31e2.已知函数()()sin f x A x =+ωϕ(π0,0,2A >><ωϕ)的部分图象如图所示,且()()0f a x f a x ++-=,则a 的最小值为( )A .π12B .π6 C .π3D .5π123.设a ,b ,c 分别是ABC ∆中A ∠,B ,C ∠所对边的边长,则直线sin 0A x ay c ⋅--=与sin sin 0bx B y C +⋅+=的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直4.己知集合{|13}M y y =-<<,{|(27)0}N x x x =-,则M N ⋃=( ) A .[0,3)B .70,2⎛⎤ ⎥⎝⎦C .71,2⎛⎤- ⎥⎝⎦D .∅5.已知点(m,8)在幂函数()(1)n f x m x =-的图象上,设,(ln ),()m a f b f c f n n π⎛⎫=== ⎪⎝⎭,则( ) A .b <a <cB .a <b <cC .b <c <aD .a <c <b6.已知向量a ,b ,b =(13),且a 在b 方向上的投影为12,则a b ⋅等于( ) A .2B .1C .12D .07.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为( ) A .15B .25C .35D .1108.如图,将两个全等等腰直角三角形拼成一个平行四边形ABCD ,将平行四边形ABCD 沿对角线BD 折起,使平面ABD ⊥平面BCD ,则直线AC 与BD 所成角余弦值为( )A .223B .63C .33D .139.已知数列满足:.若正整数使得成立,则( ) A .16 B .17C .18D .1910.2(1ii +=- ) A .132i + B .32i + C .32i -D .132i-+ 11.设i 是虚数单位,复数1ii+=( ) A .1i -+B .-1i -C .1i +D .1i -12.设抛物线2:2(0)C y px p =>的焦点为F,抛物线C 与圆22:(3)3C x y +='交于M,N 两点,若||6MN =,则MNF 的面积为( )A .28B .38C .328D .324二、填空题:本题共4小题,每小题5分,共20分。

2020届四川省达州市普通高中高三第一次诊断性测试数学(文)试题(解析版)

2020届四川省达州市普通高中高三第一次诊断性测试数学(文)试题(解析版)
由图可知最优解为 ,联立 ,得 ,
所以 ,
将 代入 ,得 .
故选:D
【点睛】
本题考查了利用线性规划求最值,根据斜率找到最优解是解题关键,属于基础题.
10.已知函数 在 上为增函数,则实数 的取值范围是
A. B. C. D.
【答案】C
【解析】由题意可得, 恒成立,结合二次函数的性质即可求解.
【详解】
解:由题意可得, 恒成立,
【详解】
解:根据题意,向量 , ,
若 ,则有 ,
解得 ;
故选: .
【点睛】
本题考查向量平行的坐标表示公式,关键是掌握向量平行的坐标表示方法,属于基础题.
4.在 名运动员和 名教练员中用分层抽样的方法共抽取 人参加新闻发布会,若抽取的 人中教练员只有 人,则 ()
A. B. C. D.
【答案】B
【解析】先求得抽样比,再用总体中教练员人数乘以抽样比得样本中教练员人数列方程可解得.
6.若 , , ,则 , , 的大小关系为()
A. B. C. D.
【答案】A
【解析】根据对数的性质可得 ,根据指数函数 的单调性可得 ,由此可得答案.
【详解】
因为 ,2>1,所以 ,
因为 ,所以指数函数 为递减函数,
又-0.1<0.2,所以 ,即 ,
综上所述, .
故选:A
【点睛】
本题考查了利用对数的性质,指数函数的单调性比较大小,属于基础题.
【答案】A
【解析】根据全称命题的否定为特称命题解答.
【详解】
解:命题为全称命题,点睛】
本题主要考查含有量词的命题的否定,属于基础题.
3.若向量 , ,若 ,则
A. B.12C. D.3

四川省达州市2019-2020学年中考第一次质量检测数学试题含解析

四川省达州市2019-2020学年中考第一次质量检测数学试题含解析

四川省达州市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于( )A .35°B .45°C .55°D .25°2.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )A .a b 0+>B .ab<0C .a>bD .b a 0->3.实数a ,b ,c 在数轴上对应点的位置如图所示,则下列结论中正确的是( )A .a+c >0B .b+c >0C .ac >bcD .a ﹣c >b ﹣c4.正方形ABCD 和正方形BPQR 的面积分别为16、25,它们重叠的情形如图所示,其中R 点在AD 上,CD 与QR 相交于S 点,则四边形RBCS 的面积为( )A .8B .172C .283D .7785.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB ∥EF ∥DC ,BC ∥GH ∥AD ,那么下列说法错误的是( )A .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等6.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗7.16=()A.±4 B.4 C.±2 D.28.如图所示的几何体,上下部分均为圆柱体,其左视图是()A.B.C.D.9.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )A.72072054848x-=+B.72072054848x+=+C.720720548x-=D.72072054848x-=+10.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q11.计算(—2)2-3的值是()A、1B、2C、—1D、—212.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有()个.A .3B .4C .2D .1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,P ,Q 分别为AB ,AC 的中点.若S △APQ =1,则S 四边形PBCQ =__.14.正五边形的内角和等于______度. 15.如图,点A ,B 在反比例函数ky x(k >0)的图象上,AC ⊥x 轴,BD ⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD=k ,已知AB=2AC ,E 是AB 的中点,且△BCE 的面积是△ADE 的面积的2倍,则k 的值是______.16.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.17.分式213a b 与21a b的最简公分母是_____. 18.如图,正方形ABCD 的边长为3,点E ,F 分别在边BCCD 上,BE=CF=1,小球P 从点E 出发沿直线向点F 运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反弹时反射角等于入射角,则小球P 与正方形的边第2次碰撞到__边上,小球P 与正方形的边完成第5次碰撞所经过的路程为__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,平面直角坐标系中,直线AB :13y x b =-+交y 轴于点A(0,1),交x 轴于点B .直线x=1交AB 于点D ,交x 轴于点E ,P 是直线x=1上一动点,且在点D 的上方,设P(1,n).求直线AB 的解析式和点B 的坐标;求△ABP 的面积(用含n 的代数式表示);当S △ABP =2时,以PB 为边在第一象限作等腰直角三角形BPC ,求出点C 的坐标.20.(6分)在“双十二”期间,,A B 两个超市开展促销活动,活动方式如下:A 超市:购物金额打9折后,若超过2000元再优惠300元;B 超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B 两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在B 商场购买的数量比在A 商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案) 21.(6分)已知如图①Rt △ABC 和Rt △EDC 中,∠ACB=∠ECD=90°,A,C,D 在同一条直线上,点M,N,F 分别为AB ,ED ,AD 的中点,∠B=∠EDC=45°, (1)求证MF=NF(2)当∠B=∠EDC=30°,A,C,D 在同一条直线上或不在同一条直线上,如图②,图③这两种情况时,请猜想线段MF ,NF 之间的数量关系.(不必证明)22.(8分)如图,在ABC V 中,A 90∠=o ,AB AC =,点D 是BC 上任意一点,将线段AD 绕点A 逆时针方向旋转90o ,得到线段AE ,连结EC .()1依题意补全图形; ()2求ECD ∠的度数;()3若CAE 7.5∠=o ,AD 1=,将射线DA 绕点D 顺时针旋转60o 交EC 的延长线于点F ,请写出求AF长的思路.23.(8分)在平面直角坐标系xOy 中有不重合的两个点()11,Q x y 与()22,P x y .若Q 、P 为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x 轴或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q 与点P 之间的“直距”记做PQ D ,特别地,当PQ 与某条坐标轴平行(或重合)时,线段PQ 的长即为点Q 与点P 之间的“直距”.例如下图中,点()1,1P ,点()3,2Q ,此时点Q 与点P 之间的“直距”3PQ D =. (1)①已知O 为坐标原点,点()2,1A -,()2,0B-,则AOD=_________,BO D =_________;②点C 在直线3y x =-+上,求出CO D 的最小值;(2)点E 是以原点O 为圆心,1为半径的圆上的一个动点,点F 是直线24y x =+上一动点.直接写出点E 与点F 之间“直距”EF D 的最小值.24.(10分)解分式方程:12x -=3x25.(10分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A 品牌的足球和3个B 品牌的足球共需380元;购买4个A 品牌的足球和2个B 品牌的足球共需360元.求A,B两种品牌的足球的单价.求该校购买20个A品牌的足球和2个B品牌的足球的总费用.26.(12分)爸爸和小芳驾车去郊外登山,欣赏美丽的达子香(兴安杜鹃),到了山下,爸爸让小芳先出发6min,然后他再追赶,待爸爸出发24min时,妈妈来电话,有急事,要求立即回去.于是爸爸和小芳马上按原路下山返回(中间接电话所用时间不计),二人返回山下的时间相差4min,假设小芳和爸爸各自上、下山的速度是均匀的,登山过程中小芳和爸爸之间的距离s(单位:m)关于小芳出发时间t(单位:min)的函数图象如图,请结合图象信息解答下列问题:(1)小芳和爸爸上山时的速度各是多少?(2)求出爸爸下山时CD段的函数解析式;(3)因山势特点所致,二人相距超过120m就互相看不见,求二人互相看不见的时间有多少分钟?27.(12分)如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0).(1)求抛物线的解析式及其顶点D的坐标;(2)如果点P(p,0)是x轴上的一个动点,则当|PC﹣PD|取得最大值时,求p的值;(3)能否在抛物线第一象限的图象上找到一点Q,使△QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.【详解】解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故选:A.【点睛】本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.2.C【解析】【分析】根据各点在数轴上位置即可得出结论.【详解】由图可知,b<a<0,A. ∵b<a<0,∴a+b<0,故本选项错误;B. ∵b<a<0,∴ab>0,故本选项错误;C. ∵b<a<0,∴a>b,故本选项正确;D. ∵b<a<0,∴b−a<0,故本选项错误.故选C.3.D【解析】>>,据此逐项判定即可.分析:根据图示,可得:c<b<0<a,c a b详解:∵c<0<a,|c|>|a|,∴a+c<0,∴选项A不符合题意;∵c<b<0,∴b+c<0,∴选项B不符合题意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴选项C不符合题意;∵a>b,∴a﹣c>b﹣c,∴选项D符合题意.故选D.点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.4.D【解析】【分析】根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.【详解】∵正方形ABCD的面积为16,正方形BPQR面积为25,∴正方形ABCD的边长为4,正方形BPQR的边长为5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四边形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴AB AR DR DS=,∴431DS =,∴DS=34,∴∴阴影部分的面积S=S正方形ABCD-S△ABR-S△RDS=4×4-12×4×3-12×34×1=778,故选:D.【点睛】本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS的面积是解此题的关键.5.C【解析】【分析】图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.6.B【解析】试题解析:由题意得25134xx yxx y⎧⎪+⎪⎨⎪⎪++⎩==,解得:23 xy⎧⎨⎩==.故选B.7.B【解析】【分析】16的算术平方根,为正数,再根据二次根式的性质化简.【详解】4=,故选B.【点睛】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.8.C【解析】试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.考点:简单组合体的三视图.9.D【解析】【详解】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048x+,根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048x+,可以列出方程:7207205 4848x-=+.故选D.10.D【解析】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最大的数对应的点是点Q.故选D.11.A【解析】本题考查的是有理数的混合运算根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。

四川省达州市2019-2020学年高考数学一模试卷含解析

四川省达州市2019-2020学年高考数学一模试卷含解析

四川省达州市2019-2020学年高考数学一模试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知命题p :,x R ∃∈使1sin 2x x <成立. 则p ⌝为( ) A .,x R ∀∈1sin 2x x ≥均成立 B .,x R ∀∈1sin 2x x <均成立 C .,x R ∃∈使1sin 2x x ≥成立D .,x R ∃∈使1sin 2x x =成立【答案】A 【解析】试题分析:原命题为特称命题,故其否定为全称命题,即:p ⌝,sin 2x x x ∀∈≥R . 考点:全称命题.2.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾六步,股八步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为6步和8步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( ) A .12πB .3π C .6π D .9π 【答案】C 【解析】 【分析】利用直角三角形三边与内切圆半径的关系求出半径,再分别求出三角形和内切圆的面积,根据几何概型的概率计算公式,即可求解. 【详解】10=, 利用等面积法,可得其内切圆的半径为6826810⨯==++r ,所以向次三角形内投掷豆子,则落在其内切圆内的概率为2216682ππ⋅=⨯⨯.故选:C. 【点睛】本题主要考查了面积比的几何概型的概率的计算问题,其中解答中熟练应用直角三角形的性质,求得其内切圆的半径是解答的关键,着重考查了推理与运算能力. 3.已知数列{}n a 的前n 项和为n S ,且14121n n S a n +-=-,11a =,*n N ∈,则{}n a 的通项公式n a =( )A .nB .1n +C .21n -D .21n +【答案】C 【解析】 【分析】利用()12n n n a S S n -=-≥证得数列21n a n ⎧⎫⎨⎬-⎩⎭为常数列,并由此求得{}n a 的通项公式.【详解】由14121n n S a n +-=-,得1(21)41n n n a S +-=-,可得1(23)41n n n a S --=-(2n ≥).相减得1(21)(21)n n n a n a ++=-,则12121n n a an n +=-+(2n ≥),又 由14121n n S a n +-=-,11a =,得23a =,所以12211211a a =⨯-⨯+,所以21n a n ⎧⎫⎨⎬-⎩⎭为常数列,所以1121211n a a n ==-⨯-,故21n a n =-. 故选:C 【点睛】本小题考查数列的通项与前n 项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识. 4.已知x 与y 之间的一组数据:若y 关于x 的线性回归方程为$ 2.10.25y x =-,则m 的值为( ) A .1.5 B .2.5C .3.5D .4.5【答案】D 【解析】 【分析】利用表格中的数据,可求解得到 2.5,x =代入回归方程,可得5y =,再结合表格数据,即得解. 【详解】利用表格中数据,可得 2.5,x = 又 2.10.25,5y x y =-∴=,3.24.87.520m ∴+++=.解得 4.5m = 故选:D 【点睛】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题. 5.231+=-ii ( ) A .15i 22-+ B .1522i -- C .5522i + D .5122i - 【答案】A 【解析】 【分析】分子分母同乘1i +,即根据复数的除法法则求解即可. 【详解】 解:23(23)(1)151(1)(1)22i i i i i i i +++==-+--+, 故选:A 【点睛】本题考查复数的除法运算,属于基础题. 6.已知()22log 217y xx =-+的值域为[),m +∞,当正数a ,b 满足2132m a b a b+=++时,则74a b +的最小值为( )A .94B .5C .54+ D .9【答案】A 【解析】 【分析】 利用()22log 217y xx =-+的值域为[),m +∞,求出m,再变形,利用1的代换,即可求出74a b +的最小值.【详解】解:∵()()2222log 217log 116y x x x ⎡⎤=-+=-+⎣⎦的值域为[),m +∞, ∴4m =, ∴414622a b a b+=++,∴()()141746224622a b a b a b a b a b ⎛⎫+=++++⎡⎤ ⎪⎣⎦++⎝⎭()()4216219554426244a b a b a b a b +⎡⎤+=++≥⨯+=⎢⎥++⎣⎦,当且仅当()4262262a b a b a b a b++=++时取等号, ∴74a b +的最小值为94. 故选:A. 【点睛】本题主要考查了对数复合函数的值域运用,同时也考查了基本不等式中“1的运用”,属于中档题.7.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了 B .乙被录用了C .甲被录用了D .无法确定谁被录用了【答案】C 【解析】 【分析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可. 【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意, 若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意, 若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意, 综上可得甲被录用了, 故选:C. 【点睛】本题考查了逻辑推理能力,属基础题.8.在ABC ∆中,D 在边AC 上满足13AD DC =u u u r u u u r ,E 为BD 的中点,则CE =u u u r( ).A .7388BA BC -u u u r u u u rB .3788BA BC -u u u r u u u r C .3788BA BC +u u u r u u u rD .7388BA BC +u uu r u u u r【答案】B 【解析】 【分析】由13AD DC =u u u r u u u r ,可得34CD CA =u u u r u u u r ,1()2CE CB CD =+u u u r u u u r u u u r 13()24CB CA =+u u ur u u u r ,再将CA BA BC =-u u u r u u u r u u u r 代入即可. 【详解】因为13AD DC =u u u r u u u r ,所以34CD CA =u u u r u u u r ,故1()2CE CB CD =+=u u u r u u u r u u u r 13()24CB CA +=u u ur u u u r133()244BC BA BC -+-=u u ur u u u r u u u r 3788BA BC -u u u r u u u r .【点睛】本题考查平面向量的线性运算性质以及平面向量基本定理的应用,是一道基础题.9.函数1()1xxe f x e+=-(其中e 是自然对数的底数)的大致图像为( ) A . B . C .D .【答案】D 【解析】由题意得,函数点定义域为x ∈R 且0x ≠,所以定义域关于原点对称, 且()1111()1111xx x xx x e e e f x f x e e e ----+++-===-=----,所以函数为奇函数,图象关于原点对称, 故选D.10.“”αβ≠是”cos cos αβ≠的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】分别判断充分性和必要性得到答案. 【详解】cos cos αβαβ=⇒=所以cos cos αβαβ≠⇒≠ (逆否命题)必要性成立当cos cos αβαβ=-⇒=,不充分 故是必要不充分条件,答案选B本题考查了充分必要条件,属于简单题.11.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有( ) A .12种 B .24种 C .36种 D .48种【答案】C 【解析】 【分析】先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项. 【详解】把甲、乙两名交警看作一个整体,5个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有24C 种方法,再把这3部分分到3个不同的路口,有33A 种方法,由分步计数原理,共有234336C A ⋅=种方案。

四川省达州市2020年(春秋版)高一上学期数学12月月考试卷(I)卷

四川省达州市2020年(春秋版)高一上学期数学12月月考试卷(I)卷

四川省达州市2020年(春秋版)高一上学期数学12月月考试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2019·大庆模拟) 已知集合,,则()A .B .C .D .2. (2分) (2018高一上·遵义月考) 已知函数,则的定义域为()A .B .C .D .3. (2分) (2016高二下·大庆期末) 设f(x)=|3x﹣1|,c<b<a且f(c)>f(a)>f(b),则下列关系式中一定成立的是()A . 3c>3bB . 3b>3aC . 3c+3a>2D . 3c+3a<24. (2分)若sin(π+θ)= ,sin()= ,则θ角的终边在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分)已知,,则的值等()A .B .C . 7D . -76. (2分)能够把圆O:x2+y2=4的周长和面积同时分为相等的两部分的函数f(x)称为圆O的“亲和函数”,下列函数不是圆O的“亲和函数”的是()A . f(x)=x3+sinxB . f(x)=C . f(x)=D . f(x)=tan3x7. (2分) (2019高一下·吉林月考) 若点是角终边上异于原点的任意一点,则的值是()A .B .C .8. (2分)若函数是幂函数,则m的值为()A . -1B . 0C . 1D . 29. (2分) (2019高一上·纳雍期中) 用二分法计算在内的根的过程中得:,,,则方程的根落在区间()A .B .C .D .10. (2分)下列函数中,既是偶函数又在单调递增的函数是()A .B .C .D .11. (2分) (2018高一下·濮阳期末) 已知角的终边经过点,则()A .B .C .12. (2分)(2017·肇庆模拟) 下列函数中,既是偶函数,又在(1,+∞)上单调递增的为()A . y=ln(x2+1)B . y=cosxC . y=x﹣lnxD . y=()|x|二、填空题 (共4题;共4分)13. (1分) (2016高一上·西安期中) 函数f(x)=loga(2x﹣3)+1(a>0,且a≠1)的图象恒过定点P,则点P的坐标是________.14. (1分)如果f[f(x)]=4x+6,且f(x)是递增函数,则一次函数f(x)=________.15. (1分)函数的值域是________.16. (1分) (2015高一下·金华期中) 已知函数f(x)=x2+(m+2)x+(2m+5)(m≠0)的两个零点分别在区间(﹣1,0)和区间(1,2)内,则实数m的取值范围是________.三、解答题 (共6题;共65分)17. (10分) (2016高一上·揭阳期中) 已知集合A={x|1≤x<7},B={x|2<x<10},C={x|x<a},R为实数集.(1)求A∪B,∁RB.(2)如果A∩C≠∅,求a的取值范围.18. (15分) (2019高一上·兰州期中) 已知函数为奇函数.(1)求的值;(2)用定义证明:函数在区间上是减函数.19. (15分)(2020·随县模拟) 中,角,,的对边分别为,,,的外接圆半径为,面积为,已知为锐角,且 .(1)求;(2)若,求的最大值.20. (5分) (2018高一下·枣庄期末) 已知函数 .(1)化简;(2)若,且,求的值.21. (10分) (2017高一上·南昌期末) 已知函数f(x)=2cosx•sin(x+ )﹣ sin2x+sinxcosx(1)求函数f(x)的单调递减区间;(2)将函数f(x)的图象向右平移m个单位,使所得函数为偶函数,求m的最小正值.22. (10分)讨论函数的单调性.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共65分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

达州市普通高中2021届第一次诊断性测试
文科数学参考答案
说明:
本解答给出了一种或几种解法供参考,考生的解答可能与本解答不同。

一、选择题:
1. B
2. D
3.A
4.C
5.C
6.A
7.A
8. D
9. A 10. A 11.D 12.C
二、填空题:本题共4小题,每小题5分,共20分.
13.12 14.2524- 15.2
9 16
. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.
17.解:(1) ∵12n n a a +-=,∴{}n a 是公差为2的等差数列.
∵1a ,4a ,13a 成等比数列,∴24113a a a =,2111(6)(24)a a a +=+, ∴221111123624a a a a ++=+,∴13a =,
∴21n a n =+.
(2)∵11n n n b a a +=,∴1111()(21)(23)22123
n b n n n n ==-++++, ∴1111111111()()2355721232323
n T n n n =-+-++-=-+++, ∴69
n n T n =+. 18.解:(1)由题意:1:2:3120:240:360=,
∵一共抽取6人参与文明劝导活动,
∴高一、高二、高三年级中各抽取3人,2人, 1人 .
(2)①.由题意,将高一抽取的人设为1A ,2A ,3A ,将高二抽取的人设为1B ,2B ,高三抽取的人设为C .
抽取情况列举为:12A A ,13A A ,11A B ,12A B ,1AC ,23A A ,21A B ,22A B ,2A C ,31A B ,32A B ,3A C ,12B B ,1B C ,2B C ,共15种.
②记“抽取担任路口甲文明劝导工的2人来自不同年级”为事件M . 则包含情况有11种,
∴11()15
P M =. 所以,抽取的二人来自不同年级的概率为
1115
. 19.解:(1)证明:证明:由BC AB =,DA DC =知,
BD 为AC 的中垂线,∴BD AC ⊥,
又MD ⊥平面ABCD ,∴MD AC ⊥,又DM
DB D =,
∴AC ⊥平面MBD . ∵P 为MB 上任意一点,∴DP ⊂平面MBD ,
∴DP AC ⊥.
(2)由题意得,︒=∠60CBO ,∵4CB =,
CO BO ⊥,∴2OB =,32=OC
∵CD =
,∴4OD ==
∵MD ⊥平面ABCD ,
∴直线MB 与平面ABCD 所成角为MBD ∠,
∵cos MBD ∠=,∴1tan 2MBD ∠=,∵6BD =,∴3MD =, ∵MD ⊥平面ABCD ,∵PO ⊥平面ABCD ,∴//MD PO ,∵24BO DO ==,, ∴13PO BO BO MD BD BO OD ===+,∴1PO =.
∴11161332P ABCD ABCD V S PO -=⋅=⨯⨯⨯=
20.解:(1)∵曲线C 上的点满足到点)0,3(-,)0,3(的距离之和为4
,4>∴曲线C 为椭圆,设为22
221(0)x y a b a b
+=>>,
∴2a c ==,1b =,∴曲线C 的方程为:14
22
=+y x . (2)由题意知,),(00y x N ,∵0=⋅,∴0)(2000=+-y m x x ,
又∵12020=+y x ,∴m
x 10=. (3)由题意知,线段AB 与线段MN 的中点重合, ∵||1m >,∴直线的斜率存在,
∴设其方程为)(m x k y -=,且0≠k . ∵0=⋅,∴直线l 与圆O 相切,则圆心O 到l 的距离为:11
2=+=k km d , 即2221k m k =+……①
联立得⎩⎨⎧-==+)
(4422m x k y y x ,化简得22222(14)84(1)0k x mk x m k +-+-=, 设1122(,)(,)A x y B x y ,,则2
2
21418k mk x x +=+, 由线段AB 与线段MN 的中点重合,∴120x x m x +=+, ∴228114mk m k m
=++……②
由①②得:212=k ,
将其代入①得:3±=m .
21. (1)证明:∵2()e 1(0)x f x x x =-+>,∴()2e x f x x '=-.
设()2e (0)x g x x x =->,∴()2e x g x '=-.令()0g x '=,即2e 0x -=,∴ln 2x = ∵()2e (0)x g x x '=->是减函数,
∴(0,ln 2)x ∈时,()0g x '>,()g x 是增函数;(ln 2,)x ∈+∞时,()0g x '<,()g x 是减函数.
∴()g(ln 2)2ln 220g x =-<≤,即()0f x '<,∴()f x 在(0,)+∞时为减函数, ∴()(0)0f x f <=.
∴0x >时,()0f x <.
(2)解:函数ln ()1x g x k x =--的定义域为(0,1)(1,)+∞.∴ln x 与1x -同号,即ln 01x x >-, ∴当0k ≤时,函数()f x 没有零点. 由条件得21ln ()(1)
x x x g x x x --'=-,令()1ln G x x x x =--,则()ln G x x '=-,∴max ()G x =(1)0G =.∴()0g x '<,即函数()g x 在区间(0,1)和(1,)+∞上都是减函数. ∴方程ln 1x x =-只有唯一根1x =.所以,1k =时,函数()f x 没有零点. 当0k >且1k ≠时,构造函数()ln (1)t x x k x =--,则1()t x k x
'=-, ∴max 1()()1ln 0t x t k k k
==-->. 由(1)得,111211(e )(e 1)[(e 1)]0k k k t k k k k
=--=--<. ∴当01k <<时,在区间1
1(,e )k k
上存在0x ,使得0()0t x =,即0()0g x =,不合题意,舍.
当1k >时,(e )0e k k k t -=-<,所以在区间1(e ,)k k
-上存在存在0x ,使得0()0t x =,即0()0g x =,不合题意,舍.
综上所述,实数k 的取值范围是(,0]{1}-∞.
当1k =时,221121819
k k k -=-+.
当0k ≤时,令12k t -=,则12t k +=,22212236218(1)(1)361k t k k t t t t -===-++-++++
223611
()1t t =---++-, ∵0k ≤∴21k -≤-1,即t ≤-1,当6t =-时,即52k =-时,2236111t t
=-++. ∴221218k k k --+最小值为211
-. 22. 解:(1)由题意得,曲线C 的普通方程为:422=+y x ,
l 的直角坐标方程为:015=--+y x .
(2)曲线C 经过伸缩变换12x x y y
⎧'=⎪⎨⎪'=⎩得到曲线为:2214y x ''+=. 即曲线M 为:2
214
y x +=,设点(cos 2sin )P θθ,,则点P 到 l
:10x y +=的距离为
d ==, 2
221
55min =--=
d . 23. 解:(1)1a =时,3|24|)(-+-=x x x f , 当12
x ≥时,()0f x ≤可化为()4230f x x x =-+-≤, 解得112
x ≤≤; 当2
1<x 时,()0f x ≤可化为()2430f x x x =-+-≤, 解得1132
x -<≤, 综上可得,原不等式的解集为1{|1}3
x x -≤≤. (2)1(4)5()2()1(4)1().2
a x x f x a x x ⎧+-⎪⎪=⎨⎪--<⎪⎩≥, 若函数)(x f 有最小值, 则当21<x 时,函数)(x f 递减,当12
x ≥时,函数)(x f 递增,
或者一边为常函数,一边为单调函数且存在最小值,
a=-或4
a=,
a+>或4
a-<且40
40
即实数a的取值范围是[4,4]
-.。

相关文档
最新文档