平面直角坐标系内几何图形的面积及答案
【期末复习】浙教版八年级上册提分专题:一次函数与几何图形面积探究(解析版)
【期末复习】浙教版八年级上册提分专题:一次函数与几何图形面积探究考点一 一次函数图象与坐标轴围成图形的面积 【知识点睛】❖ 求三角形面积时,三角形有边在水平或者竖直边上,常以这条边为底,再由底所对顶点的坐标确定高; 类型一 一条直线与坐标轴围成的三角形面积 解题步骤:①求出直线与x 轴、y 轴的交点坐标,从而得出直线与坐标轴围成的直角三角形的两条直角边长; ②利用三角形面积公式求出三角形的面积 【类题训练】1.已知一次函数图象经过A (﹣4,﹣10)和B (3,4)两点,与x 轴的交于点C ,与y 轴的交于点D . (1)求该一次函数解析式;(2)点C 坐标为 ,点D 坐标为 ;(3)画出该一次函数图象,并求该直线和坐标轴围成的图形面积.【分析】(1)用待定系数法求直线AB 的解析式; (2)令y =0求得点C 的坐标,令x =0求得点D 的坐标;(3)利用已知的点A 和点B 画出一次函数的图象,然后利用求得的点C 和点D 求出OC 和OD 的长度,最后求得直线和坐标轴围成的图形面积.【解答】解:(1)设一次函数的解析式为y =kx +b (k ≠0),则,解得:,∴一次函数的解析式为y =2x ﹣2.(2)当x =0时,y =﹣2,当y =0时,x =1, ∴C (1,0),D (0,﹣2). 故答案为:(1,0),(0,﹣2).(3)由点A和点B,可以画出一次函数的图象,如下如所示,∵C(1,0),D(0,﹣2),∴OC=1,OD=2,∴S△OCD==1,∴一次函数与坐标轴围成的图形的面积为1.2.在平面直角坐标系中,一条直线经过A(﹣1,5),与B(3,﹣3)两点.(1)求这条直线与坐标轴围成的图形的面积.(2)若这条直线与y=﹣x+1交于点C,求点C的坐标.【分析】(1)根据待定系数法求得直线的解析式,进一步求出直线与x轴和y轴的交点坐标,然后根据三角形面积公式求解;(2)联立方程,解方程即可.【解答】(1)解:设直线解析式为y=kx+b(k≠0),将A(﹣1,5),与B(3,﹣3)两点代入得,解得,∴直线解析式为y=﹣2x+3,将x=0代入得y=3,∴与y轴交于点(0,3),将y=0代入得x=,∴与x轴交于点(,0),∴S=×3×=.(2)解得,∴点C的坐标是(2,﹣1).变式.已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是.【分析】先根据一次函数y=kx+b(k≠0)图象过点(2,0)可知b=﹣2k,用k表示出函数图象与y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.【解答】解:∵一次函数y=kx+b(k≠0)图象过点(2,0),∴2k+b=0,b=﹣2k,∴y=kx﹣2k,令x=0,则y=﹣2k,∵函数图象与两坐标轴围成的三角形面积为1,∴×2×|﹣2k|=1,即|2k|=1,解得:k=±,则函数的解析式是y=x﹣1或y=﹣x+1.故答案为y=x﹣1或y=﹣x+1.类型二两条直线与坐标轴围成的三角形面积解题标准:在平面直角坐标系内求三角形的面积,通常以坐标轴上的边为底,高就是底所对的顶点到这条边的距离【类题训练】1.如图,若直线y=﹣2x+1与直线y=kx+4交于点B(﹣1,m),且两条直线与y轴分别交于点C、点A;那么△ABC 的面积为.【分析】根据B点在直线y=﹣2x+1上,且横坐标为﹣1,求出B点的坐标,再根据直线y=kx+4过B点,将(﹣1,3)代入直线y=kx+4解析式,即可求出答案,根据已知得出B点的坐标,再根据直线y=﹣2x+1和直线y=x+4求得与y轴交点A和C点的坐标,再根据三角形的面积公式得出S△ABC.【解答】解:∵B点在直线y=﹣2x+1上,且横坐标为﹣1,∴y=﹣2×(﹣1)+1=3,即B点的坐标为(﹣1,3)又直线y=kx+4过B点,将(﹣1,3)代入直线y=kx+4得:3=﹣k+4,解得k=1;∴直线AB的解析式为y=x+4,∴直线AB与y轴交点A的坐标为(0,4),∵直线y=﹣2x+1与y轴交点C的坐标为(0,1),∴AC=4﹣1=3,∴S△ABC=AC•|x B|=×3×1=.故答案为.2.如图,直线l1:y=﹣2x+b与直线l2:y=kx﹣2相交于点P(1,﹣1),直线l1交y轴于点A,直线交y轴于点B,则△PAB的面积为.【分析】利用一次函数y=kx+b(k,b为常数,k≠0)可得直线l1与直线l2:与y轴交点,然后可求出△PAB 的面积.【解答】解:∵直线l1:y=﹣2x+b与直线l2:y=kx﹣2相交于点P(1,﹣1),∴﹣1=﹣2×1+b,解得:b=1,∴A点坐标为(0,1),∵直线l2:y=kx﹣2交y轴于B,∴B(0,﹣2),∴AB=3,∴△PAB的面积为:3×1=,故答案为:.变式.已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为()A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣4【分析】首先求出直线y=kx﹣4(k<0)与两坐标轴的交点坐标,然后根据三角形面积等于4,得到一个关于k 的方程,求出此方程的解,即可得到直线的解析式.【解答】解:直线y=kx﹣4(k<0)与两坐标轴的交点坐标为(0,﹣4)(,0),∵直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,∴4×(﹣)×0.5=4,解得k=﹣2,则直线的解析式为y=﹣2x﹣4.故选:B.类型三三条直线围成的三角形面积解题标准:在平面直角坐标系内求三角形的面积,通常以坐标轴上的边为底,高就是底所对的顶点到这条边的距离【类题训练】1.如图,已知点A(2,4),B(﹣2,2),C(4,0),求△ABC的面积.【分析】先利用待定系数法求直线AB的解析式,再确定直线AB与x轴的交点D的坐标,然后根据三角形面积公式和以S△ABC=S△ACD﹣S△BDC进行计算.【解答】解:设直线AB的解析式为y=kx+b,把A(2,4)、B(﹣2,2)代入得,解得.所以直线AB的解析式为y=x+3,当y=0时,y=x+3=0,解得x=﹣6,则D点坐标为(﹣6,0),所以S△ABC=S△ACD﹣S△BDC=×(4+6)×4﹣×(4+6)×2=10.2.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D(0,﹣6)在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线CD交AB于点E.(1)求点A、B、C的坐标;(2)求△ADE的面积;(3)y轴上是否存在一点P,使得S△PAD=S△ADE,若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,在Rt △AOB 中,利用勾股定理可求出AB 的长度,由折叠的性质可得出AC =AB ,结合OC =OA +AC 可得出OC 的长度,进而可得出点C 的坐标;(2)根据点E 为直线AB 与直线CD 的交点,联立两直线解析式可求出点E 坐标,再由△ADE 和△ADB 组成△BDE ,得△ADE 的面积=△BDE 的面积-△ABD 的面积,即可求出△ADE 的面积;(3)假设存在,设点P 的坐标为(0,m ),则DP =|m +6|,利用三角形的面积公式可得出关于m 的含绝对值符号的一元一次方程,解之即可得出结论. 【解答】解:(1)当x =0时,y =﹣x +4=4, ∴点B 的坐标为(0,4); 当y =0时,﹣x +4=0, 解得:x =3,∴点A 的坐标为(3,0). 在Rt △AOB 中,OA =3,OB =4, ∴AB ==5.由折叠的性质,可知:∠BDA =∠CDA ,∠D =∠C ,AC =AB =5, ∴OC =OA +AC =8, ∴点C 的坐标为(8,0). (2)∵C (8,0),D (0,﹣6), ∴直线CD 的解析式为:y=43x-6, ∵点E 为直线AB 与直线CD 的交点.由⎪⎩⎪⎨⎧-=+-=643434x y x y 求得点E 坐标为⎪⎭⎫ ⎝⎛512-524,, ∴S △ADE =S △BDE ﹣S △ABD =BD •|x E |﹣BD •|x A |=9(3)假设存在,设点P 的坐标为(0,m ),则DP =|m +6|. ∵S △PAD =S △ADE ,即DP •OA =×OD •OA ,∴|m+6|=3,解得:m=﹣3或m=﹣9,∴假设成立,即y轴上存在一点P(0,﹣3)或(0,﹣9),使得S△PAD=S△ADE.3.如图,已知:直线AB:分别与x轴、y轴交于点A、B,直线CD:y=x+b分别与x轴、y轴交于点C、D,直线AB与CD相交于点P,S△ABD=2.求:(1)b的值和点P的坐标;(2)求△ADP的面积.【分析】(1)首先根据分别与x轴、y轴交于点A、B可求得A、B坐标,然后根据S△ABD=2可求得D点坐标,代入直线CD:y=x+b可求得b,直线AB与CD相交于点P,联立两方程可求得P点坐标.(2)可把S△ADP的面积分解为S△ABD+S△BDP,而S△BDP=|x P|,即可求得.【解答】解:(1)∵直线AB:分别与x轴、y轴交于点A、B,令y=0则x=﹣2,A(﹣2,0),令x=0则y=1∴B(0,1),又∵S△ABD=2∴|BD|•|OA|=2而|OA|=2∴|BD|=2,又B(0,1),∴D(0,﹣1)∴b=﹣1;∵直线AB与CD相交于点P,联立两方程得:,解得x=4,y=3,∴P(4,3);(2)由图象坐标可知:S△ADP=S△ABD+S△BDP=2+|x P|=6或S△ADP=S△PAC+S△DAC=|y P|)=×3×(1+3)=6.4.已知直线m经过两点(1,6)、(﹣3,﹣2),它和x轴、y轴的交点式B、A,直线n过点(2,﹣2),且与y轴交点的纵坐标是﹣3,它和x轴、y轴的交点是D、C;(1)分别写出两条直线解析式,并画草图;(2)计算四边形ABCD的面积;(3)若直线AB与DC交于点E,求△BCE的面积.【分析】(1)利用待定系数法可分别求出直线AB的解析式为y=2x+4;直线CD的解析式为y=x﹣3;然后利用两点确定一直线画函数图象;(2)利用坐标轴上点的坐标特征确定A点坐标为(0,4)=B点坐标为(﹣2,0)、D点坐标为(6,0),然后根据三角形面积公式和四边形ABCD的面积=S△ABD+S△CBD进行计算;(3)根据一次函数的交点问题通过解方程组得到E点坐标,然后利用△BCE的面积=S△EBD﹣S△CBD进行计算.【解答】解:(1)设直线AB的解析式为y=kx+b,把(1,6)、(﹣3,﹣2)代入得,解得.所以直线AB的解析式为y=2x+4;设直线CD的解析式为y=mx+n,把(2,﹣2)、(0,﹣3)代入得,解得,所以直线CD的解析式为y=x﹣3;如图所示;(2)把x=0代入y=2x+4得y=4,则A点坐标为(0,4);把y=0代入y=2x+4得2x+4=0,解得x=﹣2,则B点坐标为(﹣2,0);把y=0代入y=x﹣3得x﹣3=0,解得x=6,则D点坐标为(6,0),所以四边形ABCD的面积=S△ABD+S△CBD=×(6+2)×4+×(6+2)×3=28;(3)解方程组得,所以E点坐标为(﹣,﹣),所以△BCE的面积=S△EBD﹣S△CBD=×(6+2)×﹣×(6+2)×3=.变式.已知点A(2,4),B(﹣2,2),C(x,2),若△ABC的面积为10,求x的值.【分析】审题知B、C纵坐标相等,所以BC是一条平行于x轴的直线,所以A到BC的距离为2,而且B、C两点之间的距离可用两点的横坐标之差的绝对值表示,即x+2的绝对值.已知三角形的面积为10,依此列出方程求解即可.【解答】解:由B、C纵坐标相等,所以BC是一条平行于x轴的直线,所以A到BC的距离为4﹣2=2,BC=|x ﹣(﹣2)|=|x+2|,因为△ABC的面积为10,所以×2×|x+2|=10,|x+2|=10,x+2=10,或x+2=﹣10,解得:x=8,或x=﹣12.考点二一次函数图象与几何图形动点面积【知识点睛】❖此类问题需要将动点所在几何图形与一次函数图象同时分析,对照一次函数图象得出动点所在几何图形的边长信息❖对函数图象的分析重点抓住以下两点:①分清坐标系的x轴、y轴的具体意义②特别分析图象的拐点——拐点一般表示动点运动到几何图形的一个顶点❖动点所在几何图形如果是特殊图形,如等腰三角形、等腰直角三角形、含30°的直角三角形,注意对应图形性质与辅助线的应用。
人教版八年级数学下册期末复习专题在直角坐标系中求几何图形的面积(含答案)
人教版八年级数学下册期末复习专题训练——在直角坐标系中求几何图形的面积1.如图,四边形是矩形,点,在坐标轴上,是由绕点顺时针旋转得到的,点在轴上,直线交轴于点,交于点,线段=2,=4(1)求直线的解析式.(2)求的面积.2.直线a:y=x+2和直线b:y=﹣x+4相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E.(1)在同一坐标系中画出函数图象;(2)求△ABC的面积;(3)求四边形ADOC的面积;(4)观察图象直接写出不等式x+2≤﹣x+4的解集和不等式﹣x+4≤0的解集.3.如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b 与y=﹣2x+4是“平行一次函数”(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的面积是△AOB面积的,求y=kx+b的解析式.4.如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,求该直线l的解析式5.如图1,直线3=xy分别与y轴、x轴交于点A、点B,点C的坐标为(-3,0),D -3+3为直线AB上一动点,连接CD交y轴于点E(1) 点B的坐标为__________,不等式+-x的解集为___________3>33(2) 若S△COE=S△ADE,求点D的坐标(3) 如图2,以CD为边作菱形CDFG,且∠CDF=60°.当点D运动时,点G在一条定直线上运动,请求出这条定直线的解析式.6.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.7.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,求线段BC扫过的面积8.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;9. 如图,已知直线343+=x y 与坐标轴交于B,C 两点,点A 是x 轴正半轴上一点,并且15=∆ABC S .点F 是线段AB 上一动点(不与端点重合),过点F 作FE ∥x 轴,交BC 于E.(1) 求AB 所在直线的解析式;(2) 若FD ⊥x 轴于D,且点D 的坐标为)0,(m ,请用含m 的代数式,表示DF 与EF 的长;(3) 在x 轴上是否存在一点P,使得△PEF 为等腰直角三角形,若存在,请直接写出点P 的坐标,若不存在,请说明理由.10.如图,在平面直角坐标系xOy 中,直线y=﹣2x +a 与y 轴交于点C (0,6),与x 轴交于点B .(1)求这条直线的解析式;(2)直线AD 与(1)中所求的直线相交于点D (﹣1,n ),点A 的坐标为(﹣3,0).①求n 的值及直线AD 的解析式; ②求△ABD 的面积;③点M 是直线y=﹣2x+a 上的一点(不与点B 重合),且点M 的横坐标为m ,求△ABM 的面积S 与m 之间的关系式.11.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x 轴、y 轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.12.如图,边长为5的正方形OABC的顶点0在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是0A边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)求证:CE=EP;(2)若点E的坐标为(3,O),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标:若不存在,说明理由.13.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x轴、y轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.14.直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上一点C在第一象限且点C的坐标为(2,2),求△BOC的面积.15.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积等于____________;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x0<-1,求k的取值范围.16.如图,己知直线l:y=x+1(k≠0)的图象与x轴、y轴交于A、B两点.(1)直接写出A、B两点的坐标;(2)若P是x轴上的一个动点,求出当△PAB是等腰三角形时P的坐标;(3)在y轴上有点C(0,3),点D在直线l上.若△ACD面积等于4.请直接写出D的坐标.17.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B →C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数解析式;(3)当t为何值时,三角形APD的面积为10 cm2?18.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF ⊥y轴于点F,连接EF,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;答案:1. (1)OC=4,BC=2,B(-2,4),.设解析式为,.(2),.直线,.当,,,.2.(1)依照题意画出图形,如图所示.(2)令y=x+2中y=0,则x+2=0,解得:x=﹣2,∴点B(﹣2,0);令y=﹣x+4中y=0,则﹣x+4=0,解得:x=4,∴点C(4,0);联立两直线解析式得:,解得:,∴点A (1,3).S △ABC =BC•y A =×[4﹣(﹣2)]×3=9.(3)令y=x +2中x=0,则y=2,∴点D (0,2).S 四边形ADOC =S △ABC ﹣S △DBO =9﹣×2×2=7.(4)观察函数图形,发现:当x <1时,直线a 在直线b 的下方,∴不等式x +2≤﹣x +4的解集为x ≤1;当x >4时,直线b 在x 轴的下方,∴不等式﹣x +4≤0的解集为x ≥4.3.(1)∵一次函数y=kx +b 与y=﹣2x +4是“平行一次函数”,∴k=﹣2,即y=﹣2x +b . ∵函数y=kx +b 的图象过点(3,1),∴1=﹣2×3+b ,∴b=7.(2)在y=﹣2x +4中,令x=0,得y=4,令y=0,得x=2,∴A (2,0),B (0,4),∴S △AOB =OA•OB=4.由(1)知k=﹣2,则直线y=﹣2x +b 与两坐标轴交点的坐标为(,0),(0,b ),于是有|b |•||=4×=1,∴b=±2,即y=kx +b 的解析式为y=﹣2x +2或y=﹣2x ﹣2.4.设直线l 和10个正方形的最上面交点为A ,过A 作AB ⊥OB 于B ,过A 作AC ⊥OC 于C , ∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这10个正方形分成面积相等的两部分,∴两边分别是5,∴三角形ABO 面积是7,∴OB•AB=7,∴AB=,∴OC=AB=,由此可知直线l 经过(,3),设直线方程为y=kx (k ≠0),则3=k ,解得k=∴直线l 解析式为y=x .故答案为:y=x .5.(1) (3,0)、x <3(2) ∵S △COE =S △ADE ∴S △AOB =S △CBD 即33321621⨯⨯=⨯⨯D y ,y D =233 当y =233时,23233333==+-x x ,∴D (23323,) (3) 连接CF ∵∠CDF =60°∴△CDF 为等边三角形连接AC ∵AB =AC =BC =6∴△ABC 为等边三角形∴△CAF ≌△CBD (SAS )∴∠CAF =∠ACB =60°∴AF ∥x 轴设D (m ,333+-m )过点D 作DH ⊥x 轴于H ∴BH =3-m ,DB =6-2m =AF∴F (2m -6,33)由平移可知:G (m -9,m 3-)令⎪⎩⎪⎨⎧-=-=m y m x 39∴点G 在直线393--=x y 上6. (1)设直线的解析式为y=kx +b ,把A (﹣1,5),B (3,﹣3)代入,可得:{533=+--=+b k b k ,解得:,所以直线解析式为:y=﹣2x +3,把P (﹣2,a )代入y=﹣2x +3中,得:a=7; (2)由(1)得点P 的坐标为(﹣2,7),令x=0,则y=3,所以直线与y 轴的交点坐标为(0,3),所以△OPD 的面积=.7.∵点A 、B 的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10, ∴CA==8,∴C 点纵坐标为:8,∵将△ABC 沿x 轴向右平移,当点C 落在直线y=x ﹣5上时,∴y=8时,8=x ﹣5,解得:x=13,即A 点向右平移13﹣2=11个单位, ∴线段BC 扫过的面积为:11×8=88.故选:B .8.(1)令x=0,则y=8,∴B (0,8),令y=0,则﹣2x +8=0,∴x=4,∴A (4,0), (2)∵点P (m ,n )为线段AB 上的一个动点,∴﹣2m +8=n ,∵A (4,0),∴OA=4,∴0<m <4∴S △PAO =OA ×PE=×4×n=2(﹣2m +8)=﹣4m +16,(0<m <4) )3,0(30343)1(,9B y x x y 即时,中,当在==+= ∴OB=3同理OC=4 ∵15)(21=⋅+OB OA OC ,153)4(21=⨯+⨯OA ∴OA=6 即点A 的坐标为(6,0) 设AB 所在直线的解析式为y=kx+b⎩⎨⎧⎩⎨⎧=+=-==213063k b b k b 解得则∴AB 所在直线的解析式为 (2)在中,当,即DF= 在中,当m x m y 32,321-=+-=时 mm m EF 35)32(=--= (3)10.(1)∵直线y=﹣2x +a 与y 轴交于点C (0,6),∴a=6,∴该直线解析式为y=﹣2x +6 (2)①∵点D (﹣1,n )在直线BC 上,∴n=﹣2×(﹣1)+6=8,∴点D (﹣1,8)设直线AD 的解析式为y=kx +b ,将点A (﹣3,0)、D (﹣1,8)代入y=kx +b 中,得:,解得:,∴直线AD 的解析式为y=4x +12.②令y=﹣2x +6中y=0,则﹣2x +6=0,解得:x=3,∴点B (3,0).∵A (﹣3,0)、D (﹣1,8),∴AB=6.S △ABD =AB•y D =×6×8=24.③∵点M 在直线y=-2x+6上,∴M (m ,-2m+6),时,即S=6m-18.11. (1)设函数解析式为y=kx +b , 由题意将两点代入得:{15=+-=+-b k b k ,解得:{32=-=k b .∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=32,令x=0,得y=﹣2, 3232221=⨯⨯=∴s 12.(1)在OC 上截取OK =OE .连接EK .∵OC =OA ,∠1=90°,∠OEK =∠OKE =45°,∵AP 为矩形外角平分线,∴∠BAP =45°∴∠EKC =∠PAE =135°.∴CK =EA .∵EC ⊥EP ,∴∠3=∠4.∴△EKC ≌△PAE . ∴EC =EP (2)y 轴上存在点M ,使得四边形BMEP 是平行四边形.如图,过点B 作BM ∥PE 交y 轴于点M ,∴∠5=∠CEP =90°,∴∠6=∠ 4.在△BCM 和△COE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,,46C O E B C M OC BC ∴△BCM ≌△COE ,∴BM =CE 而CE =EP ,∴BM =EP .由于BM ∥EP ,∴四边形BMEP是平行四边形由△BCM ≌△COE 可得CM =OE =3,∴OM =CO -CM =2.故点M 的坐标为(0,2).13.(1)设函数解析式为y=kx +b ,由题意将两点代入得:,解得:.∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=,令x=0,得y=﹣2,∴S=×2×=.14.(1)设直线AB 的解析式为y =kx +b(k ≠0).将A(1,0),B(0,-2)代入解析式,得⎩⎪⎨⎪⎧k +b =0,b =-2.解得⎩⎪⎨⎪⎧k =2,b =-2.∴直线AB 的解析式为y =2x -2.(2)S △BOC =12×2×2=2.15.(1)32 当x =-1时,y =-2×(-1)+1=3,∴B(-1,3).将B(-1,3)代入y =kx +4,得k =1.(2)y =kx +4与x 轴的交点为(-4k ,0),∵-2<x 0<-1,∴-2<-4k<-1,(1)解得2<k<4.16.(1)当y=0时,x+1=0,解得x=﹣2,则A(﹣2,0),当x=0时,y=x+1=1,则B(0,1);(2)AB==,当AP=AB时,P点坐标为(﹣,0)或(,0);当BP=BA时,P点坐标为(2,0);当PA=PB时,作AB的垂直平分线交x轴于P,连结PB,如图1,则PA=PB,设P(t,0),则OA=t+2,OB=t+2,在Rt△OBP中,12+t2=(t+2)2,解得t=﹣,此时P点坐标为(﹣,0);(3)如图2,设D(x,x+1),当x>0时,∵S△ABC+S△BCD=S△ACD,∴•2•2+•2•x=4,解得x=2,此时D点坐标为(2,2);当x<0时,∵S△BCD﹣S△ABC=S△ACD,∴•2•(﹣x)﹣•2•2=4,解得x=﹣6,此时D点坐标为(﹣6,﹣2),综上所述,D点坐标为(2,2)或(﹣6,﹣2).故答案为(﹣2,0),(0,1);(2,2)或(﹣6,﹣2).17.略18.(1)令x=0,则y=8,∴B(0,8),令y=0,则﹣2x+8=0,∴x=4,∴A(4,0),(2)∵点P(m,n)为线段AB上的一个动点,∴﹣2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S△PAO=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4)。
在平面直角坐标系中求几何图形的面积
C(3,4)
。
•
• A(0,2)
2 1 -2 o• -1 -1 -2
s2 s1
1 2 3 4
5
• B(5,0)
x
S=S1+S2
10.如图所示,则△ ABC的面积是
。
返回
10.如图所示,则△ ABC的面积是 8 。
y 5 4 3
A(0,2)
N
C(3,4)
s1
•
M
s2
2
•
s3
1 2 3 4
Ge bu heng bu Shu ge Heng ge Bu chang
•
A(0,2)2
1 -2
•
•
B(5,0) x
o• -1 -1 -2
1
2
3
4
5
Zuos yous Sh s Xia s
Yan chang
xige
lianxi
若在坐标轴上存在一点P,使得S△ BCP AOBC,求P点坐标。 y
-4
-3
-2
-1
o 1 -1 H
2
3
4
5
x
-2 • C(0,-2) -3 -4
选取在坐标轴上的边作为三角形的底。
5.已知:A(3,5),B(1,2),C(5,2), 则△ ABC的面积 6 。
y 5
A(3,5)
4
3 2 1 -2 o -1 -1 -2
B(1,2)
•
H C(5,2)
•
1
2
3
4
•
5
x
y 5 4 3 2 1 -2 o• -1 -1 -2 1 2 3
M
平面直角坐标系面积问题
平面直角坐标系面积问题介绍平面直角坐标系是数学中常见的一种坐标系,由两条相互垂直的数轴组成。
在平面直角坐标系中,我们可以通过坐标点的位置来描述平面上的几何图形。
而面积问题则是研究平面上各种几何图形的大小。
本文将介绍平面直角坐标系中常见的几何图形,并讨论如何计算这些图形的面积。
我们将重点关注矩形、正方形、三角形和圆形这四种常见几何图形。
矩形矩形是平面上最简单的几何图形之一,由四条边和四个顶点组成。
在平面直角坐标系中,我们可以用两个对角顶点的坐标表示一个矩形。
矩形的面积计算公式为:A=l⋅w,其中A表示矩形的面积,l表示矩形的长度,w表示矩形的宽度。
对于一个顶点坐标为(x1,y1)和(x2,y2)的矩形,其长度l=|x2−x1|,宽度w=|y2−y1|。
根据上述公式可以计算出矩形的面积。
正方形正方形是一种特殊的矩形,其四条边长度相等且四个角均为直角。
在平面直角坐标系中,我们可以用一个顶点和边长表示一个正方形。
正方形的面积计算公式为:A=s2,其中A表示正方形的面积,s表示正方形的边长。
对于一个顶点坐标为(x,y)的正方形,其边长s可以通过计算两个对角顶点之间的距离得到。
然后根据上述公式可以计算出正方形的面积。
三角形三角形是平面上最基本的几何图形之一,由三条边和三个顶点组成。
在平面直角坐标系中,我们可以用三个顶点的坐标表示一个三角形。
三角形的面积计算公式有多种,下面介绍两种常用方法。
海伦公式海伦公式适用于已知三边长度的情况。
假设三边长度分别为a、b和c,则三角形的半周长s=a+b+c。
三角形的面积A可以通过以下公式计算:2A=√s⋅(s−a)⋅(s−b)⋅(s−c)矢量叉积法矢量叉积法适用于已知三个顶点坐标的情况。
假设三个顶点的坐标分别为(x1,y1)、(x2,y2)和(x3,y3),则三角形的面积A可以通过以下公式计算:A=12|(x1y2+x2y3+x3y1)−(y1x2+y2x3+y3x1)|圆形圆形是平面上最常见的几何图形之一,由一个圆心和半径组成。
平面直角坐标系三角形面积割补法
平面直角坐标系三角形面积割补法
平面直角坐标系三角形的面积可以使用割补法来计算。
割补法是一种计算几何图形面积的方法,特别适用于计算不规则图形的面积。
在平面直角坐标系中,我们可以利用坐标点的位置关系来计算三角形的面积。
首先,我们假设三角形的顶点分别为A(x1, y1), B(x2, y2)和C(x3, y3)。
然后,我们可以利用以下公式来计算三角形的面积:
S = |(x1(y2 y3) + x2(y3 y1) + x3(y1 y2))/2|。
其中,S表示三角形的面积,|...|表示取绝对值。
这个公式实际上是利用向量叉乘的方法来计算三角形的面积,具体推导过程可以参考向量的叉乘定义和性质。
另外,割补法还可以通过将三角形划分为多个简单形状的组合来计算面积。
例如,我们可以将三角形划分为一个矩形和两个三角形,然后分别计算这些简单形状的面积,最后将它们相加即可得到原三角形的面积。
除了割补法,我们还可以使用海伦公式或者行列式的方法来计算三角形的面积。
海伦公式适用于已知三边长度的情况,而行列式的方法则可以通过顶点坐标直接计算面积。
总之,平面直角坐标系三角形的面积割补法是一种简单而有效的计算方法,通过合理的划分和计算可以得到准确的结果。
希望这些信息能够帮助你理解如何使用割补法来计算三角形的面积。
坐标的面积公式
坐标的面积公式在数学中,我们经常需要计算平面上各种图形的面积。
当图形的边界由坐标轴上的点确定时,我们可以使用坐标的面积公式来计算图形的面积。
坐标的面积公式是一个基础且实用的数学工具,在几何学、物理学以及工程学等领域都有广泛的应用。
1. 点与坐标轴在平面直角坐标系中,我们将平面分成四个象限,我们通常用两个数来表示一个点在坐标系中的位置。
这两个数分别为x坐标和y坐标,分别对应横轴和纵轴的位置。
例如,点A的坐标为(x, y)。
2. 矩形的面积公式首先,让我们以矩形为例来介绍坐标的面积公式。
矩形是由四条边界分割的图形,两条边界分别与x轴和y轴平行。
假设矩形的两个顶点坐标分别为(Ax, Ay),(Bx, By),(Cx, Cy)和(Dx, Dy)。
则矩形的面积可以通过以下公式计算:面积 = |(Bx - Ax) * (Cy - Ay)|上述公式表示矩形的面积为矩形两条边长之积的绝对值。
3. 三角形的面积公式接下来,我们来介绍计算三角形面积的公式。
假设三角形的三个顶点坐标分别为(Ax, Ay),(Bx, By)和(Cx, Cy)。
三角形的面积可以通过以下公式计算:面积 = |(Ax * (By - Cy) + Bx * (Cy - Ay) + Cx * (Ay - By)) / 2|上述公式使用了行列式的概念来计算三角形的面积,其中绝对值保证了面积的正值。
4. 多边形的面积公式除了矩形和三角形,我们还可以使用坐标的面积公式计算更复杂的多边形的面积。
对于n边形,我们可以将其划分为若干个三角形,然后使用三角形的面积公式分别计算每个三角形的面积,再将这些面积相加得到多边形的面积。
这个方法被称为三角剖分。
三角剖分方法的基本思想是找到多边形中一个顶点和相邻的两个顶点形成的三角形,计算该三角形的面积,并将它加入到总面积中。
然后,我们再移动到下一个顶点,重复相同的计算过程,直到遍历完所有的顶点。
最后,将得到的所有三角形的面积相加即可得到多边形的面积。
在平面直角坐标系中,求三角形面积的求法
在平面直角坐标系中,求三角形面积的求法在平面直角坐标系中, 求三角形面积的求法1. 引言在平面直角坐标系中,我们经常需要计算三角形的面积。
三角形的面积是一个基本的几何概念,它用于很多实际应用中,比如计算土地面积、建筑物的面积或者计算图形的面积等。
在这篇文章中,我们将学习在平面直角坐标系中求解三角形面积的几种不同方法。
2. 方法一:行列式法使用行列式法求解三角形的面积是最常见的方法之一。
该方法基于行列式的性质,通过计算三个点的坐标来求解。
在平面直角坐标系中,设三角形的三个顶点分别为A(x1,y1)、B (x2,y2)和C(x3,y3)。
那么,三角形的面积可通过以下公式来计算:S = |(1/2) * (x1 * (y2-y3) + x2 * (y3-y1) + x3 * (y1-y2))|其中,竖线表示计算行列式的值。
3. 方法二:海伦公式海伦公式也是求解三角形面积的另一种常用方法。
该方法是基于三角形的三条边长来计算的。
假设三角形的三边长分别为a、b和c,半周长为s = (a+b+c)/2,那么三角形的面积可以用以下公式计算:S = √(s * (s-a) * (s-b) * (s-c))海伦公式的优点是在不知道三角形顶点坐标的情况下,只需知道边长即可计算三角形面积。
4. 方法三:向量法向量法是一种通过向量的运算来求解三角形面积的方法。
设三角形的两边向量为a和b,则三角形的面积S可以通过如下公式计算:S = (1/2) * |a × b|其中,× 表示向量的叉积。
叉积的结果是一个向量,其模表示平行四边形的面积,所以需要除以2来得到三角形的面积。
5. 总结和回顾在平面直角坐标系中,我们可以使用行列式法、海伦公式和向量法来求解三角形的面积。
根据不同的情况和已知条件,我们可以选择最合适的方法来计算。
行列式法基于三角形的顶点坐标,适用于已知三个顶点坐标的情况;海伦公式基于三角形的边长,适用于只知道边长的情况;向量法适用于已知两条边的向量的情况。
平面直角坐标系与几何图形的综合(解析版)
【期末复习】浙教版八年级上册提分专题:平面直角坐标系与几何图形的综合各问题归纳总结若点()11y x A ,、()22y x B ,、()b a P ,问题一:若点P 在x 轴上,则b=0; 若点P 在y 轴上,则a=0;若点P 在第一象限,则a >0,b >0; 若点P 在第二象限,则a <0,b >0; 若点P 在第三象限,则a <0,b <0; 若点P 在第四象限,则a >0,b <0;问题二:若点A 、B 在同一水平线上,则21y y =; 若点A 、B 在同一竖直线上,则21x x =; 若点P 在第一、三象限角平分线上,则b a =;若点P 在第二、四象限角平分线上,则b a -=;问题三:点()b a P ,关于x 轴对称的点P 1坐标为()b a P -,1; 点()b a P ,关于y 轴对称的点P 2坐标为()b a P ,-2;点()b a P ,关于原点对称的点P 3坐标为()b a P --,3; 问题四:点的平移口诀“左减右加,上加下减”; 问题五:线段AB 的中点公式:⎪⎭⎫⎝⎛++222121y y x x ,;若点A 、B 在同一水平线上,则AB=21x x -;若点A 、B 在同一竖直线上,则AB=21y y -;若点A 、B 所在直线是倾斜的,则AB=()()221221y y x x AB -+-=(两点间距离公式)问题六:点()b a P ,到x 轴的距离=|b|;点()b a P ,到y 轴的距离=|a|;问题七:割补法,优先分割,然后才是补全 问题八:周期型:①判断周期数(一般3到4个);②总数÷周期数=整周期……余数(余数是谁就和每周期的第几个规律一样) 注意横纵坐标的规律可能不同。
【类题训练】1.如图,A (8,0),B (0,6),以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点C 的坐标为( )A .(10,0)B .(0,10)C .(﹣2,0)D .(0,﹣2)【分析】根据勾股定理求出AB ,根据坐标与图形性质解答即可. 【解答】解:由题意得,OB =6,OA =8, ∴AB ==10,则AC =10, ∴OC =AC ﹣OA =2, ∴点C 坐标为(﹣2,0), 故选:C .2.在平面直角坐标系中,点A 的坐标为(﹣1,3),点B 的坐标为(5,3),则线段AB 上任意一点的坐标可表示为( )A.(3,x)(﹣1≤x≤5)B.(x,3)(﹣1≤x≤5)C.(3,x)(﹣5≤x≤1)D.(x,3)(﹣5≤x≤1)【分析】根据A、B两点纵坐标相等,可确定AB与x轴平行,即可求解.【解答】解:∵点A的坐标为(﹣1,3),点B的坐标为(5,3),A、B两点纵坐标都为3,∴AB∥x轴,∴线段AB上任意一点的坐标可表示为(x,3)(﹣1≤x≤5),故选:B.3.如图,在四边形ABCD中,AD∥BC∥x轴,下列说法中正确的是()A.点A与点D的纵坐标相同B.点A与点B的横坐标相同C.点A与点C的纵坐标相同D.点B与点D的横坐标相同【分析】根据与x轴平行的直线上点的坐标特征计算判断.【解答】解:∵平行四边形ABCD中,AD∥BC∥x轴,∴点A与D的纵坐标相同,点B与C的纵坐标相同.故选:A.4.如图,已知∠AOB=30°,∠AOC=60°,∠AOD=90°,∠AOE=120°,∠AOF=150°,若点B可表示为点B(2,30),点C可表示为点C(1,60),点E可表示为点E(3,120),点F可表示为点F(4,150),点B 可表示为点B(2,30),则D点可表示为()A.D(0,90)B.D(90,0)C.D(90,5)D.D(5,90)【分析】根据题干得出规律,从而得出答案.【解答】解:根据题意知:横坐标表示长度,纵坐标表示角度,从而得出D点可表示为(5,90),故选:D.5.在平面直角坐标系中,若A(m+3,m﹣1),B(1﹣m,3﹣m),且直线AB∥x轴,则m的值是()A.﹣1B.1C.2D.3【分析】根据平行于x轴的直线上的点的纵坐标相等,建立方程求解即可求得答案.【解答】解:∵直线AB∥x轴,∴m﹣1=3﹣m,解得:m=2,故选:C.6.如图,在平面直角坐标系中,半径均为1个单位长度的半圆组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2022秒时,点P的坐标是()A.(2021,0)B.(2022,﹣1)C.(2021,﹣1)D.(2022,0)【分析】利用坐标与图形的关系,结合路程问题求解.【解答】解:一个半圆的周长是π,速度是每秒,所以走一个半圆需要2秒,2022秒正好可以走1011个半圆,故选:D.7.如图,在平面直角坐标系中,点A(1,1),B(3,1),C(3,3),D(1,3),动点P从点A出发,以每秒1个单位长度的速度沿AB﹣BC﹣CD﹣DA﹣AB﹣…路线运动,当运动到2022秒时,点P的坐标为()A.(1,1)B.(3,1)C.(3,3)D.(1,3)【分析】利用路程找规律,看最后的路脚点,再求解.【解答】解:由题意得:四边形ABCD是正方形,且边长是2,点P运动一周需要8秒,2022÷8商252余6,结果到点D处,故坐标为(1,3),故选:D.8.如图,在平面直角坐标系中,三角形ABC三个顶点A、B、C的坐标A(0,4),B(﹣1,b),C(2,c),BC 经过原点O,且CD⊥AB,垂足为点D,则AB•CD的值为()A.10B.11C.12D.14【分析】AB•CD可以联想到△ABC的面积公式,根据S△ABO+S△ACO=S△ABC即可求解.【解答】解:∵A(0,4),∴OA=4,∵B(﹣1,b),C(2,c),∴点B,C到y轴的距离分别为1,2,∵S△ABO+S△ACO=S△ABC,∴×4×1+×4×2=×AB•CD,∴AB•CD=12,故答案为:C.9.如图,在平面直角坐标系中,A,B,C三点坐标分别为(0,a),(0,3﹣a),(1,2),且点A在点B的下方,连接AC,BC,若在AB,BC,AC若所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为5个,那么a的取值范围是()A.﹣1<a≤0B.﹣1≤a≤1C.1≤a<2D.0<a≤1【分析】根据题意得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.【解答】解:∵点A(0,a),点B(0,3﹣a),且A在B的下方,∴a<3﹣a,解得:a<1.5,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为5个,∵点A,B,C的坐标分别是(0,a),(0,3﹣a),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的5个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的4个都在线段AB上,∴3≤3﹣a<4.解得:﹣1<a≤0,故选:A.10.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标为(2,).【解答】解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.11.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为.【分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x轴和y轴的距离相等,可得关于a的方程,求解即可.【解答】解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.12.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.【分析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).13.教材上曾让同学们探索过线段的中点坐标:在平面直角坐标系中,有两点A(x1,y1)、B(x2,y2),所连线段AB的中点是M,则M的坐标为(,),如:点A(1,2)、点B(3,6),则线段AB的中点M 的坐标为(,),即M(2,4).利用以上结论解决问题:平面直角坐标系中,若E(a﹣1,a),F(b,a﹣b),线段EF的中点G恰好位于y轴上,且到x轴的距离是1,则4a+b的值等于.【分析】根据中点坐标公式求出点G的坐标,根据线段EF的中点G恰好位于y轴上,且到x轴的距离是1,得到点G的横坐标等于0,纵坐标的绝对值为1,列出方程组求解即可.【解答】解:根据题意得:G(,),∵线段EF的中点G恰好位于y轴上,且到x轴的距离是1,∴,解得:4a+b=4或0.故答案为:4或0.14.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|,例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).已知点,B为y轴上的一个动点.(1)若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;(2)直接写出点A与点B的“非常距离”的最小值.【分析】(1)根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;(2)设点B的坐标为(0,y).因为|﹣﹣0|≥|0﹣y|,所以点A与点B的“非常距离”最小值为|﹣﹣0|=.【解答】解:(1)∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠4,∴|0﹣y|=2,解得y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);故答案为:(0,2)或(0,﹣2);(2)∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=;∴点A与点B的“非常距离”的最小值为.故答案为:.15.如图,在平面直角坐标系中,已知三点的坐标分别为A(0,4),B(2,0),C(2,5),连接AB,AC,BC.(1)求AC,AB的长;(2)∠CAB是直角吗?请说明理由.【分析】(1 )过点A作AH⊥BC于点H,再利用勾股定理求解即可;(2 )利用勾股定理的逆定理即可得出结论.【解答】解:(1)如图,∵A(0,4),B(2,0),C(2,5),∴OA=4,OB=2,BC=5,过点A作AH⊥BC于点H,∴BH=OA=4,AH=OB=2,∴CH=BC﹣BH=5﹣4=1,在Rt△OAB中,AB=,在Rt△ACH中,AC=;(2)∠CAB是直角,理由:由(1)得,AC=,AB=2,BC=5,∵,∴AC2+AB2=BC2,∴∠CAB是直角.16.对于某些三角形或四边形,我们可以直接用面积公式或者用割补法来求它们的面积.下面我们再研究一种求某些三角形或四边形面积的新方法:如图1,2所示,分别过三角形或四边形的顶点A,C作水平线的铅垂线l1,l2,l1,l2之间的距离d叫做水平宽;如图1所示,过点B作水平线的铅垂线交AC于点D,称线段BD的长叫做这个三角形的铅垂高;如图2所示,分别过四边形的顶点B,D作水平线l3,l4,l3,l4之间的距离h叫做四边形的铅垂高.【结论提炼】容易证明:“三角形的面积等于水平宽与铅垂高乘积的一半”,即“S=dh”【结论应用】为了便于计算水平宽和铅垂高,我们不妨借助平面直角坐标系.已知:如图3,点A(﹣5,2),B(5,0),C(0,5),则△ABC的水平宽为10,铅垂高为,所以△ABC 面积的大小为.【再探新知】三角形的面积可以用“水平宽与铅垂高乘积的一半”来求,那四边形的面积是不是也可以这样求呢?带着这个问题,我们进行如下探索:(1)在图4所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(4,1),D(﹣2,﹣4)四个点,得到四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是;用其它的方法进行计算得到其面积的大小是,由此发现:用“S=dh”这一方法对求图4中四边形的面积.(填“适合”或“不适合”)(2)在图5所示的平面直角坐标系中,取A(﹣5,2),B(1,5),C(4,2),D(﹣2,﹣3)四个点,得到了四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是,用其它的方法进行计算得到面积的大小是,由此发现:用“S=dh”这一方法对求图5中四边形的面积.(“适合”或“不适合”)(3)在图6所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(5,1),D(﹣1,﹣5)四个点,得到了四边形ABCD.通过计算发现:用“S=dh”这一方法对求图6中四边形的面积.(填“适合”或“不适合”)【归纳总结】我们经历上面的探索过程,通过猜想、归纳,验证,便可得到:当四边形满足某些条件时,可以用“S=dh”来求面积.那么,可以用“S=dh”来求面积的四边形应满足的条件是:.【分析】【结论应用】直接代入公式即可;【再探新知】(1)求出水平宽,铅垂高,代入公式求出面积,再利用矩形面积减去周围四个三角形面积可得答案;(2)(3)与(1)同理;【归纳总结】当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=dh”来求面积.【解答】解:【结论应用】由图形知,铅垂高为4,S△ABC==20,故答案为:4,20;【再探新知】(1)∵四边形ABCD的水平宽为8,铅垂高为9,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为36,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为8×9﹣=37.5,∴用“S=dh”这一方法对求图4中四边形的面积不合适,故答案为:36,37.5,不合适;(2)∵四边形ABCD的水平宽为9,铅垂高为8,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为36,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为8×9﹣=36,∴用“S=dh”这一方法对求图4中四边形的面积,合适,故答案为:36,36,合适;(3)∵四边形ABCD的水平宽为9,铅垂高为10,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为45,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为10×9﹣=45,∴用“S=dh”这一方法对求图4中四边形的面积,合适,故答案为:合适;【归纳总结】当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=dh”来求面积,故答案为:一条对角线等于水平宽或铅垂高.17.如图所示,在平面直角坐标系中,P(2,2),(1)点A在x的正半轴运动,点B在y的正半轴上,且P A=PB,①求证:P A⊥PB;②求OA+OB的值;(2)点A在x的正半轴运动,点B在y的负半轴上,且P A=PB,③求OA﹣OB的值;④点A的坐标为(8,0),求点B的坐标.【分析】(1)①过点P作PE⊥x轴于E,作PF⊥y轴于F,根据点P的坐标可得PE=PF=2,然后利用“HL”证明Rt△APE和Rt△BPF全等,根据全等三角形对应角相等可得∠APE=∠BPF,然后求出∠APB=∠EPF=90°,再根据垂直的定义证明;②根据全等三角形对应边相等可得AE=BF,再表示出OA、OB,然后列出方程整理即可得解;(2)③根据全等三角形对应边相等可得AE=BF,再表示出PE、PF,然后列出方程整理即可得解;④求出AE的长度,再根据全等三角形对应边相等可得AE=BF,然后求出OB,再写出点B的坐标即可.【解答】(1)①证明:如图1,过点P作PE⊥x轴于E,作PF⊥y轴于F,∵P(2,2),∴PE=PF=2,在Rt△APE和Rt△BPF中,,∴Rt△APE≌Rt△BPF(HL),∴∠APE=∠BPF,∴∠APB=∠APE+∠BPE=∠BPF+∠BPE=∠EPF=90°,∴P A⊥PB;②解:∵Rt△APE≌Rt△BPF,∴BF=AE,∵OA=OE+AE,OB=OF﹣BF,∴OA+OB=OE+AE+OF﹣BF=OE+OF=2+2=4;(2)解:③如图2,∵Rt△APE≌Rt△BPF,∴AE=BF,∵AE=OA﹣OE=OA﹣2,BF=OB+OF=OB+2,∴OA﹣2=OB+2,∴OA﹣OB=4;④∵PE=PF=2,PE⊥x轴于E,作PF⊥y轴于F,∴四边形OEPF是正方形,∴OE=OF=2,∵A(8,0),∴OA=8,∴AE=OA﹣OE=8﹣2=6,∵Rt△APE≌Rt△BPF,∴AE=BF=6,∴OB=BF﹣OF=6﹣2=4,∴点B的坐标为(0,﹣4).18.如图,在平面直角坐标系xOy中,点B(1,0),点C(5,0),以BC为边在x轴的上方作正方形ABCD,点M(﹣5,0),N(0,5).(1)点A的坐标为;点D的坐标为;(2)将正方形ABCD向左平移m个单位,得到正方形A'B'C'D',记正方形A'B'C'D'与△OMN重叠的区域(不含边界)为W:①当m=3时,区域内整点(横,纵坐标都是整数)的个数为;②若区域W内恰好有3个整点,请直接写出m的取值范围.【分析】(1)先求出正方形的边长为BC=4,再求点的坐标即可;(2)①画出正方形A'B'C'D',结合图形求解即可;②在△OMN中共有6个整数点,在平移正方形ABCD,找到恰好有3个整数解的情况即可.【解答】解:(1)∵点B(1,0),点C(5,0),∴BC=4,∵四边形ABCD是正方形,∴A(1,4),D(5,4),故答案为:(1,4),(5,4);(2)①如图:共有3个,故答案为:3;②在△OMN中共有6个整数点,分别是(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1),∵区域W内恰好有3个整点,∴2<m≤3或6≤m<7.19.类比学习是知识内化的有效途径,认真读题是正确审题的第一步:对于平面直角坐标系xOy中的点P(a,b),若点P'的坐标为(其中k为常数,且k≠0),则称点P'为点P的“k系好友点”;例如:P(1,2)的“3系好友点”为即.请完成下列各题.(1)点P(﹣3,1)的“2系好友点”P'的坐标为.(2)若点P在y轴的正半轴上,点P的“k系好友点”为P'点,若在三角形OPP'中,pp′=3OP,求k的值.(3)已知点A(x,y)在第四象限,且满足xy=﹣8;点A是点B(m,n)的“﹣2系好友点”,求m﹣2n的值.【分析】(1)根据“k系好友点”的定义列式计算求解;(2)设P(0,t)(t>0),根据定义得点P′(kt,t),则PP′=|kt|=3OP=3t,即可求解;(3)点A是点B(m,n)的“﹣2系好有点”,可得点A(m﹣2n,n﹣),由xy=﹣8得到(m﹣2n)2=16,即可求解.【解答】解:(1)点P(﹣3,1),根据“k系好友点”的求法可知,k=2,∵﹣3+2×1=﹣1,1+=﹣,∴P′的坐标为(﹣1,﹣),故答案为(﹣1,﹣);(2)设P(0,t)其中t>0,根据“k系好友点”的求法可知,P′(kt,t),∴PP'∥x轴,∴PP'=|kt|,又∵OP=t,PP'=3OP,∴|kt|=3t,∴k=±3;(3)∵B(m,n)的﹣3系好有点A为(m﹣2n,n﹣),∴x=m﹣2n,y=n﹣,又∵xy=﹣8,∴(m﹣2n)•(n﹣)=﹣8,∴m﹣2n=±4,∵点A在第四象限,∴x>0,即m﹣2n=4.20.如图,在以点O为原点的平面直角坐标系中点A,B的坐标分别为(a,0),(a,b),点C在y轴上,且BC∥x轴,a,b满足|a﹣3|+=0.点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线运动(回到O为止).(1)直接写出点A,B,C的坐标;(2)当点P运动3秒时,连接PC,PO,求出点P的坐标,并直接写出∠CPO,∠BCP,∠AOP之间满足的数量关系;(3)点P运动t秒后(t≠0),是否存在点P到x轴的距离为t个单位长度的情况.若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用绝对值和二次根式的非负性即可求得;(2)当P运动3秒时,点P运动了6个单位长度,根据AO=3,即可得点P在线段AB上且AP=3,写出P 的坐标即可;作PE∥AO.利用平行线的性质证明即可;(3)由t≠0得点P可能运动到AB或BC或OC上.再分类讨论列出一元一次方程解得t即可.【解答】解:(1)∵|a﹣3|+=0且|a﹣3|≥0,≥0,∴|a﹣3|=0,=0,∴a=3,b=4,∴A(3,0),B(3,4),C(0,4);(2)如图,当P运动3秒时,点P运动了6个单位长度,∵AO=3,∴点P运动3秒时,点P在线段AB上,且AP=3,∴点P的坐标是(3,3);如图,作PE∥AO.∵CB∥AO,PE∥AO,∴CB∥PE,∴∠BCP=∠EPC,∠AOP=∠EPO,∴∠CPO=∠BCP+∠AOP;(3)存在.∵t≠0,∴点P可能运动到AB或BC或OC上.①当点P运动到AB上时,2t≤7,∵0<t≤,P A=2t﹣OA=2t﹣3,∴2t﹣3=t,解得:t=2,∴P A=2×2﹣3=1,∴点P的坐标为(3,1);②当点P运动到BC上时,7≤2t≤10,即≤t≤5,∵点P到x轴的距离为4,∴t=4,解得t=8,∵≤t≤5,∴此种情况不符合题意;③当点P运动到OC上时,10≤2t≤14,即5≤t≤7,∵PO=OA+AB+BC+OC﹣2t=14﹣2t,∴14﹣2t=t,解得:t=,∴PO=﹣2×+14=,∴点P的坐标为(0,).综上所述,点P运动t秒后,存在点P到x轴的距离为t个单位长度的情况,点P的坐标为(3,1)或(0,).。
一次函数与几何图形面积问题含答案
一次函数与几何图形面积问题解析课时小练一、新课导入(一)学习目标学会运用数形结合思想,能根据题意处理与面积有关的一次函数问题,依据函数性质及图形特征学会面积转化,建立相应的数式关系,运用方程或不等式的知识来解决问题.(二)预习导入如图,已知A(0,2),B(6,0),C(2,m)),当S△ABC=1时,m=______..二、典型问题知识点一:与静态图形有关的面积问题例1如图,点A,B的坐标分别为(0,2),(1,0),直线y=12x−3与y轴交于点C、与x 轴交于点D.(1)直线AB解析式为y=kx+b,求直线AB与CD交点E的坐标;(2)四边形OBEC的面积是________;分析:(1)运用待定系数法即可得到直线AB解析式,再根据方程组的解,即可得到直线AB 与CD交点E的坐标;(2)根据坐标轴上点的特征求出C、D两点的坐标,然后根据S四边形OBEC=S△DOC−S△DBE 面积公式计算即可;知识点二:与动态图形有关的面积问题例2如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A,交x轴于点B,S△AOB=8.(1)求点B的坐标和直线AB的函数解析式;(2)直线a垂直平分OB交AB于点D,交x轴于点E,点P是直线a上一动点,且在点D 的上方,设点P的纵坐标为m.①用含m的代数式表示△ABP的面积;②当S△ABP=6时,点P的坐标为;③在②的条件下,在坐标轴上,是否存在一点Q,使得△ABQ与△ABP面积相等?若存在,直接写出点Q的坐标,若不存在,请说明理由.分析:(1)利用一次函数图象上点的坐标特征可找出点A、B的坐标,结合S△AOB=8即可求出b值,进而可得出点B的坐标和直线AB的函数表达式;(2)①由OB的长度结合直线a垂直平分OB,可得出OE、BE的长度,利用一次函数图象上点的坐标特征可求出点D的坐标,进而可用含m的代数式表示出DP的值,再利用三角形的面积公式即可用含m的代数式表示△ABP的面积;②由①的结论结合S△ABP=6,即可求出m值,此题得解;③分点Q在x轴及y轴两种情况考虑,利用三角形的面积公式即可求出点Q的坐标,此题得解.三、阶梯训练A组:基础练习1.直线y=kx-4与两坐标轴所围成三角形的面积是4,则k=.2.已知直线y=2x+4与x轴、y轴分别交于A,B两点,点P(﹣1,m)为平面直角坐标系内一动点,若△ABP面积为1,则m的值为.3.如图,过点A(2,0)的两条直线l1,l2分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=13.(1)则点B的坐标为;(2)若△ABC的面积为4,求l2的解析式为.4.如图,直线y=12x+2分别与x轴、y轴相交于点A,B两点.(1)求点A和点B的坐标;(2)若点P是y轴上的一点,设△AOB、△ABP的面积分别为S△AOB与S△ABP,且S△ABP=2S△AOB,求点P的坐标.5.如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一动点,AB ⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)点M的坐标为;(2)求直线MN的解析式;(3)若点A的横坐标为﹣1,求四边形ABOC的面积.6.如图,在平面直角坐标系中,O为坐标原点,直线l1:y=12x与直线l2:y=−x+6交于点A,l2与x轴交于B,与y轴交于点C.(1)求△OAC的面积;(2)若点M在直线l2上,且使得△OAM的面积是△OAC面积的34,求点M的坐标.B组:拓展练习7.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是().A.y=x+5B.y=x+10C.y=-x+5D.y=-x+108.如图,直线AB:y=12x+1分别与x轴、y轴交于点A.点B,直线CD:y=x+b分别与x轴、y 轴交于点C.点D.直线AB与CD相交于点P,已知S△ABD=4,则点P的坐标是.9.如图,在平面直角坐标系中,矩形OABC的顶点A(4,0),C(0,3),直线y=﹣32x+92交OA于点D,交BC于点E,动点P从点O出发,以每秒2个单位长度的速度沿OA﹣AB运动,到点B停止,设△PDE的面积为S(平方单位),点P的运动时间为t(秒).(1)求点D和点E的坐标;(2)求S与t之间的函数关系式,并写出t的取值范围;(3)当点P在边AB上运动,且PD+PE的值最小时,直接写出直线EP的解析式.四、归纳小结方法、规律解决有关图形面积问题,着眼于相应条件在环境下的集中和转化,利用函数的性质及图形特征,运用全等、勾股及方程等相关知识进行处理,如何建立相应的方程或进行相应的计算,从而确定点的坐标,灵活运用条件是处理问题的关键.一次函数与几何图形面积问题解析课时小练答案预习导入1或53.例1(1)点A,B的坐标分别为(0,2),(1,0),∴k+b=0,b=2.解得k=−2,b=2.∴直线AB的解析式是y=-2x+2.∴y=−2x+2,y=12x−3.解得x=2,y=−2.∴E(2,-2).(2直线CD的解析式为y=12x−3.当x=0时,y=-3,当y=0时,x=6,则点C的坐标是(0,-3),点D的坐标是(6,0).S四边形OBEC=S△DOC−S△DBE=12×6×3−12×5×2=4.例2(1)∵直线AB:y=﹣x+b交y轴于点A,交x轴于点B,∴点A的坐标为(0,b),点B的坐标为(b,0).∵S△AOB=12b2=8,∴b=±4.∵点A在y轴正半轴上,∴b=4.∴点B的坐标为(4,0),直线AB的函数解析式为y=﹣x+4;(2)①∵直线a垂直平分OB,OB=4,∴OE=BE=2.当x=2时,y=﹣x+4=2.∴点D的坐标为(2,2).∵点P的坐标为(2,m)(m>2),∴PD=m﹣2.∴S△ABP=S△APD+S△BPD=12DP•OE+12DP•BE=12×2(m﹣2)+12×2(m﹣2)=2m﹣4;②∵S△ABP=6,∴2m﹣4=6.∴m=5.∴点P的坐标为(2,5);③假设存在.当点Q在x轴上时,设其坐标为(x,0).∵S△ABQ=12AO•BQ=12×4×|x﹣4|=6,∴x1=1,x2=7.∴点Q的坐标为(1,0)或(7,0);当点Q在y轴上时,设其坐标为(0,y).∵S△ABQ=12BO•AQ=12×4×|y﹣4|=6,∴y1=1,y2=7.∴点Q的坐标为(0,1)或(0,7).综上所述:假设成立,即在坐标轴上,存在一点Q,使得△ABQ与△ABP面积相等,且点Q 的坐标为(1,0)或(7,0)或(0,1)或(0,7).1.±2.2.由y=2x+4,当x=0时,y=4;当y=0时,x=﹣2∴点A(﹣2,0),点B(0,4).如图,过点P作PE⊥x轴,交线段AB于点E.∴点E横坐标为﹣1.∴y=﹣2+4=2.∴点E(﹣1,2).=12×PE×2=1,∴|m﹣2|=1.∴m=3或1.∵S△ABP故答案为3或1.3.(1)(0,3);(2)y=12x−1.4(1)在y=12x+2中,令y=0,则12x+2=0,解得x=-4,∴点A的坐标为(-4,0).令x=0,则y=2,∴点B的坐标为(0,2);(2)∵点P是y轴上的一点,∴设点P的坐标为(0,y).又∵点B的坐标为(0,2),∴BP=y−2.∵S△AOB=12OA·OB=12×4×2=4,S△ABP=12BP·OA=12|y-2|×4=2|y-2|,又∵S△ABP=2S△AOB,∴2y−2=2×4.解得y=6或y=-2.∴点P的坐标为(0,6)或(0,-2).5.(1)(﹣2,0);(2)设直线MN的函数解析式为y=kx+b,把点(﹣2,0)和(0,6)分别代入上式,得−2k+b=0,b=6.解得k=3,b=6.∴直线MN的函数解析式为y=3x+6;(3)把x=﹣1代入y=3x+6,得y=3×(﹣1)+6=3.∴点A(﹣1,3).∴点C(0,3).∵AB⊥x轴,AC⊥y轴,∠BOC=90°,∴四边形ABOC为矩形,OB=1,OC=3.∴四边形ABOC的面积=1×3=3.6.(1)联立{y=12x,y=−x+6,解之得{x=4,y=2.∴A(4,2)由y=-x+6,当x=0,y=6,∴C(0,6).∴S△OAC=12×6×4=12;(2)当△OMC的面积是△OAC的面积的34时,∴M点的横坐标是34×4=3,当点M在线段OA上时,把x=3代入y=12x得y=32,则此时M(3,32);当点M在线段AC上时,把x=3代入y=-x+6得y=3,则此时M(3,3).综上所述,M的坐标为(1,32)或(3,3).7.C.8.(8,5).9.(1)由y=﹣32x+92,当y=0时,x=3.∴点D(3,0),当y=3时,x=1.∴点E(1,3).(2)如图1,①当点P在OD段时,此时0≤t≤32,S =12×PD ×OC =12×3t −2t ×3=﹣3t +92;②当点P 在DA 段时,此时32<t ≤2,同理可得S =3t ﹣92;③当点P (P ′)在AB 段时,此时2<t ≤72,S =S 梯形DABE ﹣S △ADP ′﹣S △BEP ′=6﹣12×1×(2t ﹣4)﹣12×3×(7﹣2t )=2t ﹣52;故S =−3t +92,0≤t ≤323t −92,32<t ≤22t −52,2<t ≤72;(3)在x 轴上取点D 的对称点D ′(5,0),连接D ′E 交AB 于点P ,则此时PD +PE 的值最小,将点E ,D ′的坐标代入一次函数解析式y =kx +b ,得5k +b =0,k +b =3.解得k =−34,b =154.故直线EP 的解析式为y =﹣34x +154.。
如何求平面直角坐标系中三角形的面积
如何求平面直角坐标系中三角形的面积在平面直角坐标系中,求解三角形的面积是几何学中的基本问题之一。
下面将介绍两种求解平面直角坐标系中三角形面积的方法。
方法一:行列式法行列式法是一种常用的求解三角形面积的方法。
设三角形的顶点为A(x1, y1),B(x2, y2),C(x3, y3)。
首先将三个顶点的坐标依次排列成行:A(x1, y1) B(x2, y2) C(x3, y3)然后将A点的坐标复制到下方形成两行:A(x1, y1) B(x2, y2) C(x3, y3)A(x1, y1) B(x2, y2) C(x3, y3)接下来按照主对角线往右上方的方向连线,并将相乘的结果写在对应的线上:A(x1, y1) B(x2, y2) C(x3, y3)A(x1, y1) B(x2, y2) C(x3, y3)计算两条斜线上的乘积之和,再减去两条副对角线上的乘积之和,最后除以2即可得到三角形的面积。
行列式法的计算较为繁琐,但是适用于所有类型的三角形。
方法二:海伦公式海伦公式是通过三角形的边长来求解三角形面积的一种方法。
假设三角形的三边长度分别为a、b、c,半周长为p。
首先计算半周长p:p = (a + b + c) / 2然后套用海伦公式进行计算:面积S = √(p * (p - a) * (p - b) * (p - c))海伦公式较为简单,适用于已知三边长度的情况。
根据不同的题目要求和数据提供的形式,可以选择适合的方法进行计算。
总之,无论使用哪种方法,都可以准确求解平面直角坐标系中三角形的面积。
三角形的面积计算在实际生活中有着广泛的应用。
例如,在建筑工程中,需要计算地基的面积以确定施工方案;在地理测量学中,需要求解地理图形的面积和边长,以准确描述地理实体特征。
因此,掌握求解三角形面积的方法是十分重要的。
总结起来,通过行列式法和海伦公式,我们可以准确求解平面直角坐标系中的三角形面积。
无论是使用繁琐的行列式法,还是简便的海伦公式,都能满足求解三角形面积的需求。
几何图形的面积问题(与函数值域转化)(解析版)
几何图形的面积问题(与函数值域转化)一、考情分析圆锥曲线中几何图形的面积问题,是近几年高考命题的重点和难点。
在2018年的全国卷和2019年的全国卷中,都有圆锥曲线的大题压轴的第二问出现。
题目的难度是可想而知的,这其中涉及到:距离,斜率,切线,直线与圆,三角形的面积,四边形的面积等。
此专题,从这个出发点出发,梳理了最近的高考题和诊断性考试题,得出曲径通幽的解题之法。
归根结底,最终都是转换到函数值域。
二、经验分享圆锥曲线中的几何图形的面积问题,以及围绕与几何图形的面积问题关键是: 其一,选取合适的变量,第二,建立目标函数,转化函数的取值范围与最值问题(也就是转化成函数值域问题), 第三,构造函数,用导数的方法求其最大值与最小值。
其求解策略一般有以下几种:①几何法:根据题目上传达的几何图形以及几何关系,建立目标函数,若目标函数有明显几何特征和意义,则考虑几何图形的性质求解;②代数法: 若目标函数的几何意义不明显,利用基本不等式、导数等方法求函数的值域或最值,注意变量的范围,在对目标函数求最值前,常要对函数进行变换,注意变形技巧,若一个函数式的分母中含有一次式或二次式、分子中含有一次式或二次式的二次根式,则可以通过换元的方法把其转化为分母为二次式、分子为一次式的函数式,这样便于求解此函数式的最值.三、题型分析(一)角的最值问题例1. 已知椭圆22221(0)x y a b a b +=>>上一点A 关于原点O 的对称点为,B F 为其右焦点,若,AF BF ⊥设,ABF α∠=且,,124ππα⎡⎤∈⎢⎥⎣⎦则椭圆离心率的取值范围是 .【答案】26[,]23【点评】本题的关键是利用椭圆的定义建立等量关系式2sin 2cos 2c c a αα+=,然后借助已知条件,,124ππα⎡⎤∈⎢⎥⎣⎦利用三角函数的图象求解离心率的范围. 【变式训练1】【百校联盟2018届TOP202018届高三三月联考】.已知平行四边形ABCD 内接于椭圆()2222:10x y a b a b Ω+=>>,且AB , AD 斜率之积的范围为32,43⎛⎫-- ⎪⎝⎭,则椭圆Ω离心率的取值范围是( ) A. 13,23⎛⎫⎪⎪⎝⎭ B. 32,32⎛⎫⎪ ⎪⎝⎭ C. 13,43⎛⎫⎪ ⎪⎝⎭D. 11,43⎛⎫⎪⎝⎭【答案】A【变式训练2】【2019届河北武邑中学高三周考】已知直线:60l x y +-=和曲线22:2220M x y x y +---=,点A 在直线l 上,若直线AC 与曲线M 至少有一个公共点C ,且030MAC ∠=,则点A 的横坐标的取值范围是( )A .()0,5B .[]1,5C .[]1,3D .(]0,3 【答案】B【解析】设()00,6A x x -,依题意有圆心到直线的距离sin302d AM =≤,即()()22001516x x -+-≤,解得[]01,5x ∈.【变式训练3】【2019届山东省济宁市高三3月模拟】已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12,F F ,焦距为2(0)c c >,抛物线22y cx =的准线交双曲线左支于,A B 两点,且0120(AOB O ∠=为坐标原点),则该双曲线的离心率为 ( ) A.31 B. 2 C. 21 D. 51【答案】A【解析】由题意得,当()22222424c a b cx y a-=-⇒= ,则 ()()2222222244,,2424ca b ca b c cA B aa⎛⎛-- -- ⎝⎝,又因为120AOB ∠=︒, ()22242242244244tan 384084032ca b c c a c a c a a aπ-==-+=⇒-+=4222840423(4231,)331e e e e e ∴-+=⇒=±-<⇒=⇒=舍去.(二)距离的最值问题例2.【2019届山东菏泽一中宏志部高三上学期月考】若过点()2 3 2P --,的直线与圆224x y +=有公共点,则该直线的倾斜角的取值范围是( )A .0 6π⎛⎫ ⎪⎝⎭,B .0 3π⎡⎤⎢⎥⎣⎦, C. 0 6π⎡⎤⎢⎥⎣⎦, D .0 3π⎛⎤ ⎥⎝⎦, 【答案】B【解析】当过点(23,2)P --的直线与圆224x y += 相切时,设斜率为k ,则此直线方程为+2=k(23)y x +,即k 2320x y k -+-=.由圆心到直线的距离等于半径可得2|232|21k k -=+,求得0k =或3k =,故直线的倾斜角的取值范围是[0,]3π,所以B 选项是正确的.【变式训练1】【2020届河北省武邑中学高三上学期测试】在平面直角坐标系x y O 中,圆1C :()()221625x y ++-=,圆2C :()()2221730x y r -+-=.若圆2C 上存在一点P ,使得过点P 可作一条射线与圆1C 依次交于点A ,B ,满足2PA =AB ,则半径r 的取值范围是( ) A .[]5,55 B .[]5,50 C .[]10,50 D .[]10,55 【答案】A【解析】由题,知圆1C 的圆心为(1,6)-,半径为5,圆2C 的圆心为(17,30),半径为r ,两圆圆心距为22(171)(306)30++-=,如图,可知当AB 为圆1C 的直径时取得最大值,所以当点P 位于点1P 所在位置时r 取得最小值,当点P 位于点2P 所在位置时r 取得最大值.因为max ||10AB =,||2||PA AB =,所以min 5r =,max 55r =,故选A .(三)几何图形的面积的范围问题例3.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( )A.45πB.34πC.(625)π-D.54π 【答案】A【解析】设直线l :240x y +-=.因为1||||2C l OC AB d -==,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线.圆C 半径最小值为11422255O l d -=⨯=,圆C 面积的最小值为1. 【变式训练1】【北京市朝阳区2018届高三第一学期期末】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,A B 间的距离为2,动点P 与A , B 距离之比为2,当,,P A B 不共线时, PAB ∆面积的最大值是 A. 22 B. 2 C.223 D. 23【答案】A【变式训练2】【吉林省普通中学2020届第二次调研】已知F 为抛物线2y x =的焦点,点,A B 在该抛物线上且位于x 轴的两侧,而且·6OAOB =(O 为坐标原点),若ABO ∆与AFO ∆的面积分别为1S 和2S ,则124S S +最小值是( )A .73 B . 6 C . 132D . 3【答案】B【变式训练3】【2016高考新课标1卷】设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【解析】(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k .可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[.(四)函数转化例4.【2019届成都一诊】设椭圆()012222>>=+b a by a x C :的左右顶点为A,B.P 是椭圆上不同于A,B 的一点,设直线AP,BP 的斜率分别为m,n ,则当()||ln ||ln 32323n m mnmn b a +++⎪⎭⎫ ⎝⎛-取得最小值时,椭圆C 的离心率为( )A.51 B.22 C.54D.23【答案】D【解析】设()()(),,,0,,0,00y x P a B a A -,点P 在双曲线上,得()01220220>>=+b a b y a x C :,2202220)(ax a b y -=,所以a x y m +=00,a x y m -=00,化简,22ab mn -=原式⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+-+⎪⎪⎪⎪⎭⎫⎝⎛--=b a b a b a b a a b a b a b b a ln 63232ln 62323232222所以设1>=b a t ,函数t t t t t f ln 63232)(23++-=,求导可以得到:2t =时,函数取得最小值=)2(f ,2=ba,23=e 。
平面直角坐标系中三角形面积的求法
平面直角坐标系中三角形面积的求法嘿,伙计们!今天我们来聊聊一个非常有趣的话题——如何在平面直角坐标系中求三角形的面积。
我知道你们可能会觉得这个话题有点儿枯燥,但是别担心,我会用一种轻松幽默的方式来讲解这个问题,让你们在轻松愉快的氛围中学到知识。
我们要明确什么是三角形。
三角形就是由三条线段相互连接的图形,这三条线段叫做三角形的边,而它们相互连接的地方叫做三角形的顶点。
好了,现在我们知道了三角形的基本概念,接下来我们就要开始求三角形的面积了。
那么,三角形的面积到底是怎么求出来的呢?其实,这个问题还有一个更简单的方法,那就是:如果一个三角形的底边长是a,高是h,那么它的面积就是ah/2。
这个公式是不是很简单呢?而且还很好记,因为它的名字叫做“海伦公式”。
那么,我们如何应用这个公式来求解具体的三角形面积呢?其实,只要知道三角形的底边长和高,就可以直接将这两个数值代入公式进行计算了。
比如说,我们有一个三角形,它的底边长是10,高是8,那么它的面积就是10 * 8/2=40。
有时候我们并不知道三角形的具体尺寸,只知道其中两个顶点的坐标。
这时候,我们就需要运用一些几何知识来求解了。
具体来说,我们可以先求出三角形的另外两个顶点的坐标,然后再将这些坐标代入海伦公式进行计算。
这个过程可能会比较复杂一点儿,但是只要你掌握了方法,就一定能够成功求解。
那么,我们如何求出三角形的另外两个顶点的坐标呢?这里就要用到一些基本的几何知识了。
我们要知道三角形的三个顶点是共线的,也就是说它们在同一条直线上。
我们要知道三角形的内角和是180度。
有了这两个条件,我们就可以根据已知的两个顶点的坐标来求出第三个顶点的坐标了。
具体的求法有很多种,这里我就不一一介绍了,你们可以去网上找一些相关的教程学习一下。
求解三角形的面积并不是一件难事儿。
只要你掌握了海伦公式和一些基本的几何知识,就可以轻松地解决这个问题了。
如果你觉得这个问题还是有点儿难度的话,也不要灰心丧气。
平面直角坐标系中如何求几何图形的面积
图1图2图3平面直角坐标系中如何求几何图形的面积一、 求三角形的面积1、 有一边在坐标轴上或平行于坐标轴例1:如图1,平面直角坐标系中,△ABC 求出三角形ABC 的面积吗2、无边在坐标轴上或平行于坐标轴例2:如图2,平面直角坐标系中,已知点A (-3,-1)、B (1,3)、C (2,-3),你能求出三角形ABC 的面积吗归纳:求三角形面积的关键是确定某条边及这条边上的高,如果在坐标系中,某个三角形中有一条边在坐标轴上或平行于坐标轴,则根据这条边的两个顶点的坐标易求出这边的长,根据这条边的相对的顶点可求出他的高。
二、求四边形的面积例3:如图3,你能求出四边形ABCD 的面积吗分析:四边形ABCD 是不规则的四边形,面积不能直接求出,我们可以利用分割或补形来求。
归纳:会将图形转化为有边与坐标轴平行的图形进行计算。
怎样确定点的坐标一、 象限点解决有关象限点问题的关键是熟记各象限的符号特征,由第一到底四象限点的符号特征分别为(+,+)、 (-,+)、(-,-)、(+,-)。
例1:已知点M (a 3-9,1-a )在第三象限,且它的坐标都是整数,则a =( ) A 、1 B 、2 C 、3 D 、0二、轴上的点解决有关轴上点问题的关键是把握“0”的特征,x 轴上点的纵坐标为0,可记为(x ,0);y 轴上点的横坐标为0,可记为(0,y );原点可记为(0,0)。
例2:点P (m+3,m+1)在直角坐标系的x 轴上,则P 点的坐标为( ) A 、(0,-2) B 、(2,0) C 、(4,0) D 、(0,-4)三、象限角平分线上的点所谓象限角平分线上的点,就是各象限坐标轴夹角平分线上的点。
解决这类问题的关键是掌握“y x =”的特征,一、三象限角平分线上点的横、纵坐标相等,可记为(x ,x );二、四象限角平分线上的点横、纵坐标互为相反数,可记为(x ,-x )。
例3:已知点Q (8,4m 222++++m m m )在第一象限的角平分线上,则m=_________.四、对称点对称点的横、纵坐标之间有很密切的关系,点P (a ,b )关于x 轴对称的点的坐标上(a ,-b );关于y 轴对称的点的坐标是(-a ,b );关于原点对称的点的坐标是(-a ,-b );关于一、三象限角平分线对称的点的坐标是(b ,a );关于二、四象限角平分线对称的点的坐标是(-b,-a ). 例4:点(-1,4)关于原点对称的点的坐标是( )A、(-1,-4)B、(1,-4)C、(1,4)D、(4,-1)五、平行于坐标轴的直线上的点平行于x轴的直线上点的纵坐标相同,平行于y轴的直线上点的横坐标相同。
专题28 求几何图形面积及面积法解题的问题(解析版)
专题28 求几何图形面积及面积法解题的问题一、几何图形面积公式1.三角形的面积:设三角形底边长为a ,底边对应的高为h ,则面积S=ah/22.平行四边形的面积:设平行四边形的底边长为a ,高为h ,则面积S=ah3.矩形的面积:设矩形的长为a ,宽为b ,则面积S=ab4.正方形的面积:设正方形边长为a ,对角线长为b ,则面积S=222b a = 5.菱形的面积:设菱形的底边长为a ,高为h ,则面积S=ah若菱形的两条对角线长分别为m 、n ,则面积S=mn/2也就是说菱形的面积等于两条对角线乘积的一半。
6.梯形的面积:设梯形的上底长为a,下底长为b ,高为h ,则面积S=(a+b )h/27.圆的面积:设圆的半径为r,则面积S=πr 28.扇形面积计算公式9.圆柱侧面积和表面积公式(1)圆柱的侧面积公式S 侧=2πrh2360r n s π⋅=lr s 21=或(2)圆柱的表面积公式:S 表=2S 底+S 侧=2πr 2+2πrh10.圆锥侧面积公式从右图中可以看出,圆锥的母线L 即为扇形的半径,而圆锥底面的周长是扇形的弧长2πr ,这样,圆锥侧面积计算公式:S 圆锥侧=S 扇形=πrL注意:有时中考题还经常考查圆的周长、扇形的弧长的公式的应用。
(1)圆的周长计算公式为:C=2πr(2)扇形弧长的计算公式为:(3)其他几何图形周长容易计算,不直接给出。
二、用面积法解题的理论知识1.面积方法:运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
2.面积法解题的特点:把已知量和未知量用面积公式联系起来,通过运算达到求证的结果。
所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
三、面积方法问题主要涉及以下两部分内容1.证明面积相等的理论依据(1)三角形的中线把三角形分成两个面积相等的部分。
中考数学--几何图形的面积计算-割补法50练(含答案)
几何图形的面积计算-割补法50练一、填空题(共50题)1.如图,是由一个大圆和四个相同的小圆组成的图案,若大圆的半径为2,则阴影部分的面积为________.2.如图,扇形OPQ可以绕着正六边形ABCDEF的中心O旋转,若∠POQ=120°,OP等于正六边形ABCDEF边心距的2倍,AB=2,则阴影部分的面积为________.3.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB= 2√3,以点O为圆心,OB 长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为________.(结果保留π)4.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4 √2cm,则图中阴影部分的面积为________.5.如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是________.6.如图,菱形ABCD的边长为2,点B,C,D在以点A为圆心,AB为半径的圆弧上,则图中阴影部分的面积是________.7.如图,平面直角坐标系xOy中,等边△ABC在的顶点A在y轴的正半轴上,B(−5,0),C(5,0),点D(11,0),将△ACD绕点A顺时针旋转60º得到△ABE,则弧BC的长度为________,线段AE的长为________,图中阴影部分面积为________.8.如图,在△ABC中,∠ABC=90°,AB=BC=2,以点C为圆心,线段CA的长为半径作AD⌢,交CB的延长线于点D,则阴影部分的面积为________(结果保留π).9.已知:如图,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由BC⌢,线段CD和线段BD所围成图形的阴影部分的面积为________.10.如图,在边长为3的正六边形ABCDEF中,将四边形ADEF绕点A顺时针旋转到四边形AD′E′F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是________.11.如图,四边形ABCD是菱形,∠B=60°,AB=1,扇形AEF的半径为1,圆心角为60°,则图中阴影部分的面积是________.12.如图,点P为⊙O外一点,PA,PB分别与⊙O相切于点A,B,∠APB=90°.若⊙O的半径为2,则图中阴影部分的面积为________(结果保留π).13.4张长为a 、宽为b ( a > b ) 的长方形纸片, 按如图的方式拼成一个边长为a + b 的正方形, 图中空白部分的面积为S 1, 阴影部分的面积为S 2, 若S 1=2S 2, 则a, b 满足的数量关系为________ .14.如图,在 △ABC 中, AB =4√3,BC =4,∠ABC =90∘,以 AB 为直径..画弧,与 AC 交于点D ,则图中阴影部分的面积为________(结果保留 π ).15.在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是________.16.如图,在等腰直角三角形 ABC 中, ∠ACB =90°,AB =4 ,以点A 为圆心, AC 长为半径作弧,交 AB 于点D , 则图中阴影部分面积为________.17.如图,在扇形AOB 中 ∠AOB =90° ,正方形CDEF 的顶点C 是 AB⌢ 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为 2√2 时,则阴影部分的面积为________.18.如图,矩形ABCD被分割成一个菱形和两个三角形,如果其中一个三角形的面积是菱形面积的1,那么AB:AD的值是________.419.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是________.20.如图,将一个边长为2的大正方形分成了4个全等的小正方形,阴影部分由3段圆弧围成,大圆弧的半径是2,两个小圆弧的半径都是1,则阴影部分的面积为________.21.如图,矩形ABCD的边AB=2,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是________ (结果保留π)。
平面直角坐标系解答题-答案
平面直角坐标系解答题【答案】1. 4个2. 解:(1)∵A(-3,4),B(-1,-2),O为坐标原点,把△AOB向右平移3个单位,得到△DEF;∴D(0,4),E(2,-2),F(3,0);(2)过点A作AD⊥y轴于点D,过点B作BE⊥y轴于点E,∵△AOB的面积等于△DEF的面积,∴△DEF的面积=(3+1)×6-×3×4-×1×2=5.3. 解:(1)张明是以中心广场为原点,正东方向为x轴正方向,正北方向为y轴正方向,建立如图所示的平面直角坐标系3,如图;(2)李华是用方向和距离描述牡丹园的位置;(3)中心广场(0,0),南门(100,-600),望春亭(-200,-100),游乐园(200,-400),音乐台(0,400).4. (16,3);(32,0);(2n,3);(2n+1,0)5. 2;0;4;0;6;0;2n;0;向下6. 解:(1)AB==;(2)AB=5-(-1)=6;(3)△ABC为直角三角形.理由如下:∵AB==,AC==2,BC==5,∴AB2+AC2=BC2,∴△ABC为直角三角形.7. 3,4;2,0;1,-1;98. -1,-2;3,29. 解:(1)∵点A(a,3-2a)在第一象限∴点A到y轴的距离为a、到x轴的距离为3-2a,∴a=3-2a,解得a=1;(2)∵点A到x轴的距离小于到y轴的距离,∴a>3-2a,解得a>1,∵点A(a,3-2a)在第一象限,∴,即0<a<,∴当1<a<时,点A到x轴的距离小于到y轴的距离.10. (a,b);(-3,-2);3;(3,2),(3,-2),(-3,2),(-3,-2);1211. (4,3);(2,-3)12.解:以火车站为原点建立直角坐标系.各点的坐标为:火车站(0,0);医院(-2,-2);文化宫(-3,1);体育场(-4,3);宾馆(2,2);市场(4,3);超市(2,-3).13.解:(1)如图,(2)S△ABC=×(2+3)×(2+2)=10.14. A1(-1,4),B1(-3,2),C1(2,1).15. (1)建立如图所示的平面直角坐标系.C(2,2),D(3,3),E(4,4),F(5,5).(2)点B,C,D,E,F的坐标分别由A的坐标向右平移1,2,3,4,5个单位长度,再向上平移1,2,3,4,5个单位长度得到.(3)1016. (1)1秒:2 2秒:33秒:(3,0),(0,3),(1,2),(2,1) 44秒:(4,0),(0,4),(1,3),(3,1),(2,2) 5(2)11.(3)15秒.17. 以学校为原点,以学校的正东方向为x轴的正半轴,以学校的正北方向为y 轴的正半轴建立平面直角坐标系,按照比例尺1∶10 000标出学校、工厂、体育馆、百货商店的位置,如图所示.18. (1)16 17 18 19 20 21 22 23 24 25 26 27(2)(1,16),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27).(3)m=n+1519. △OAB的面积为=4.20.解:(1)6;(2)①解:由题意得,∴,解得x=3或1,答:符合条件的点P有两个(3,3),(1,3);②符合条件的点P的坐标为(3,3).21.解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).22.解:(1)∵点P在y轴上,∴2m+1=0,解得m=-,所以P点的坐标为(0,-);(2)∵点P在x轴上,∴m-1=0,解得m=1,所以P点的坐标为(3,0);(3)∵点P的纵坐标比横坐标大3,∴m-1=(2m+1)+3,解得m=-5,所以P点的坐标为(-9,-6);(4)∵点P在过点A(2,-3),且与x轴平行的直线上,∴m-1=-3,解得m=-2.所以P点的坐标为(-3,-3).23.解:设AC=a,根据题意可以得到AB=3△ABC的面积为6,也就是3a÷2=6解得:a=4当点C在y轴正半轴时,点C的坐标为(0,4);当点C在y轴负半轴时,点C的坐标为(0,-4).24. 解:(1)由图象可知,点A(2,3),点D(-2,-3),点B(1,2),点E(-1,-2),点C(3,1),点F(-3,-1);对应点的坐标特征为:横坐标、纵坐标都互为相反数;(2)由(1)可知,a+3+2a=0,4-b+2b-3=0,解得a=-1,b=-1.25. (1)点B、E关于x轴对称.(2)横坐标相同,纵坐标互为相反数.26. 以校门为原点,向东为x轴正方向,向北为y轴正方向建立平面直角坐标系.(1)校门(0,0);学生公寓(3,1);图书馆(2,3);汉语文学院(1,5);外国语学院(-1,4);工程学院(-3,6);信息中心(-3,1);应用科学院(-4,4);社会学院(-6,0);生命科学院(-6,2);体育馆(-6,6).(2)学生公寓位于校门北偏东70°方向上,到校门图上距离为1.5厘米,实际距离为1 500米.(3)社会科学院位于校门正西方向上,距离校门2 900米,应用科学院位于校门北偏西45°方向上,距离校门约为2 800 米.27. (1)如图,所作图形的坐标分别为(-5,3),(-5,0),(0,0),(0,3).(2)如图,所作图形的坐标分别为(0,0),(0,-3),(5,-3),(5,0).(3)如图,所作图形的坐标分别为(0,-3),(0,0),(-5,0),(-5,-3).28.(0,4);(-3,1);-1<a<1且0<b<2.29.解:(1)如图所示;(2)如图所示,作出点B关于y轴的对称点B′,连接AB′交y轴于点P.点P(0,2).30.解:(1)点B有两种情况,一正一负.故点B的坐标是(0,1)或(0,-1).(2)如上图.A′(,0),B′(- ,±1)),C′(- ,0).(3)从图可知C′A=|- |+ =2BB′=,高为1,∴梯形面积=(2 + )×1÷2= .【解析】1.解:∵到x轴的距离是2,y轴的距离是3的点每一个象限都有1个,∴距离坐标为(2,3)的点的个数是(2,3)(-2,3)(-2,-3)(2,-3)共4个.故答案为:4.根据“距离坐标”的定义和平面直角坐标系解答.本题考查了点的坐标,读懂题目信息,理解“距离坐标”的定义是解题的关键.2.(1)利用平移规律得出各点坐标即可;-S△ADO-S△BEO进而求出即可.(2)利用S梯形ABED此题主要考查了坐标与图形变化以及三角形面积求法,利用特殊面积转化求出△DEF的面积是解题关键.3.(1)根据牡丹园坐标(300,300)画出直角坐标系;(2)利用方向角和距离描述牡丹园的位置;(3)利用所画的坐标坐标系,根据各特殊位置点的坐标特征写出其它景点的坐标.本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.4.解:∵A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,∴A n(2n,3);∵B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,横坐标都和2有关为2n+1,∴B的坐标为B n(2n+1,0).故答案为:①(16,3)(32,0)②(2n,3)(2n+1,0).根据图形写出点A系列的坐标与点B系列的坐标,根据具体数值找到规律即可.此题考查点的坐标问题,依次观察各点的横纵坐标,得到规律是解决本题的关键.5.解:(1)由图可知,A4,A8,A12都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,OA12=6,∴A4(2,0),A8(4,0),A12(6,0),;故答案为:2,0;4,0;6,0;(2)根据(1)OA4n=4n÷2=2n,∴点A4n的坐标(2n,0);故答案为:2n,0;(3)∵2014÷4=503…2,∴2014除以4余数为2,∴从点A2014到点A2015的移动方向与从点A2到A3的方向一致为:向下.故答案为:向下.(1)观察图形可知,A4,A8,A12都在x轴上,求出OA4、OA8、OA12的长度,然后写出坐标即可;(2)根据(1)中规律写出点A4n的坐标即可;(3)根据2014除以4余数为2,可知从点A2014到点A2015的移动方向与从点A2到A3的方向一致.此题主要考查了点的坐标,仔细观察图形,确定出A4n都在x轴上,进而得出点的变化规律是解题的关键.6.(1)直接利用两点间的距离公式计算;(2)由于横坐标相同,所以A、B两点间的距离等于纵坐标差的绝对值;(3)先根据两点间的距离公式计算出AB、AC、BC,然后根据勾股定理的逆定理进行判断.本题考查两点间的距离公式:若平面内两点M(x1,y1)、N(x2,y2),则MN=.7.解:(1)∵规定:向上向右走为正,向下向左走为负∴A→C记为(3,4)B→C记为(2,0)C→D记为(1,-1);A→B→C→D记为(1,4),(2,0),(1,-1);(2)据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,-1);∴该甲虫走过的路线长为1+4+2+1+1=9.(3)P点位置如图所示.(4)∵M→A(3-a,b-4),M→N(5-a,b-2),∴5-a-(3-a)=2,b-2-(b-4)=2,∴点A向右走2个格点,向上走2个格点到点N,∴N→A应记为(-2,-2).(1)根据规定及实例可知A→C记为(3,4)B→C记为(2,0)C→D记为(1,-1);A→B→C→D记为(1,4),(2,0),(1,-1);(2)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长;(3)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标,在图中标出即可.(4)根据M→A(3-a,b-4),M→N(5-a,b-2)可知5-a-(3-a)=2,b-2-(b-4)=2,从而得到点A向右走2个格点,向上走2个格点到点N,从而得到N→A应记为什么.本题主要考查了利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.8.解:(1)根据题意可知,点A与点B关于x轴对称,点C与点D关于x轴对称,所以点B的坐标是(-1,-2),点D的坐标是(3,2).故答案为-1,-2;3,2;(2)按要求平移长方形后四个顶点的坐标分别是(0,)、(0,-3)、(4,-3)、(4,);(3)运动时间1秒时,△BCQ的面积=×4×4=8,运动时间4秒时,△BCQ的面积=×4×(4+4-4)=8.(1)根据A、C两点的坐标以及矩形的性质,可得点A与点B关于x轴对称,点C与点D关于x轴对称,进而可得答案;(2)根据横坐标右移加,左移减;纵坐标上移加,下移减,可得答案;(3)根据三角形的面积公式,可得答案.本题考查了坐标与图形变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了矩形的性质,坐标与图形的性质,三角形的面积公式.9.(1)根据第一象限内点的横坐标与纵坐标都是正数,到x、y轴的距离相等列出方程求解即可;(2)根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度列出不等式,然后求解即可.本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.解:第a排第b列用两个有顺序的数字表示为(a,b);①(-3,-2);②3;③(3,2),(3,-2),(-3,2),(-3,-2);④∵4=1×4=2×2,∴在第一象限内有(1,4)(4,1)(2,2),同理在第二三四象限内各有三个点,共有3×4=12个点.故答案为:(a,b);①(-3,-2);②3;③(3,2),(3,-2),(-3,2),(-3,-2);④12.根据第一个数表示排数,第二个数表示列式解答;①②根据图形写出即可;③根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度分四种情况写出即可;④把4分解成两个整数的积,再分点在四个象限内解答.本题考查了坐标确定位置,读懂题目信息理解有序数对表示点的坐标是解题的关键,难点在于③④要分多种情况考虑求解.11.解:(1)如图,(2)市场的坐标为(4,3),超市的坐标为(2,-3);(3)如图;(4)△ABC面积=3×6-×2×2-×4×3-×1×6=18-2-6-3=7.故答案为(4,3),(2,-3).(1)利用火车站和宾馆的坐标画出直角坐标系;(2)利用坐标系中各象限点的坐标特征写出市场、超市的坐标;(3)把体育场、宾馆和火车站的横坐标不变,纵坐标减去4描出各点即可得到△A′B′C′;(4)用矩形的面积分别减去三个三角形的面积求解.本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.会利用面积的和差计算不规则几何图形的面积.12.本题主要考查了平面坐标系内有序实数位置的确定,先确定原点位置,建立直角坐标系,根据坐标系表示各地的坐标.13.本题考查了坐标与图形性质:利用点的坐标计算相应线段的长.也考查了三角形的面积公式.(1)利用点的坐标的意义描点,然后连线得到△ABC;(2)根据三角形面积公式求解.14. 解:由题意可知,P( a,b),P1( a-2,b+3),对应点的横坐标减2,纵坐标加3.因此其他各点的对应点也是如此,又A(1,1),B(-1,-1),C(4,-2),所以A1(-1,4),B1(-3,2),C1(2,1).15. 略16. 略17. 略18. 略19. 过点A,B分别作y轴、x轴的垂线,垂足分别为C,E,两线交于点D,则四边形OCDE为正方形,面积为32=9.△ACO和△OBE的面积均为×3×1=,△ABD的面积为×2×2=2.所以△OAB的面积为9-2×-2=4.20.本题主要考查学生的理解及应变能力,能理解新定义,根据新定义的内容及平面直角坐标系的相关知识能计算出结果.(1)根据给出的直角距离的公式代入即可求解;(2)①根据给出的直角距离的公式代入即可求解,最后计算绝对值时别忘了有两个解;③根据第一、三象限的角平分线上点的特征:纵横坐标相等即可确P点坐标为(3,3).21.根据A点坐标A(3,4)得到OB=3,AB=4,OA绕原点O逆时针旋转90°至OA′后过A'作A'B'垂直x轴于点B'通过证明△AOB≌△OA′B′可得A'点坐标.22.本题考查了平面直角坐标系内点的坐标特点.根据这四个条件逐一求出即可.(1)点P在y轴上,P点的横坐标为0求得m的值,代入点P的坐标即可求解;(2)点P在x轴上,P点的纵坐标为0求得m的值,代入点P的坐标即可求解;(3)点P的纵坐标比横坐标大3,P点的纵坐标减去横坐标是3求得m的值,代入点P的坐标即可求解;(4)与x轴平行的直线上的点纵坐标相等,P点的纵坐标为-3求得m的值,代入点P的坐标即可求解;23.本题考查了平面直角坐标系内点的坐标与三角形的面积的关系,属于能力提高类题目,难度不大,在本题的解题过程中,能够准确的确定AB,AC的长度是解题关键点.24.(1)根据点的位置,直接写出点的坐标;(2)根据(1)中发现的规律,两点的横坐标、纵坐标都互为相反数,即横坐标的和为0,纵坐标的和为0,列方程,求a、b的值.25. 本题应用直角坐标系内对称点的位置特点.26. 略27. (1)所作图形的纵坐标不变,横坐标分别减5;(2)所作图形的横坐标不变,纵坐标分别减3;(3)求出所作图形的坐标可画出图形.28.解:根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2014除以4,根据商和余数的情况确定点A2015的坐标即可;再写出点A1(a,b)的“伴随点”,然后根据x轴上方的点的纵坐标大于0列出不等式组求解即可.∵A1的坐标为(3,1),∴A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2015÷4=503余3,∴点A2015的坐标与A3的坐标相同,为(-3,1);∵点A1的坐标为(a,b),∴A2(-b+1,a+1),A3(-a,-b+2),A4(b-1,-a+1),A5(a,b),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n,点A n均在x轴上方,∴解得-1<a<1,0<b<2.故答案为:(0,4);(-3,1);-1<a<1且0<b<2.29.(1)根据关于x轴对称的点的坐标特点画出△A1B1C1即可;(2)作出点B关于y轴的对称点B′,连接AB′交y轴于点P,根据点P在坐标系中的位置写出点P的坐标即可.30.(1)根据A、C两点的坐标求出三角形的底,再根据三角形的面积公式求出三角形的高为1,即点B的纵坐标的绝对值为1,所以点B的坐标有两种情况,一正一负,画出三角形即可.(2)将△ABC的三个顶点分别沿x轴向左平移个单位长,得到对应点A′,B′,C′,顺次连接即可.(3)四边形C′ABB′是一个梯形,根据梯形的面积公式计算即可.。