概率论论文-浅谈中心极限定理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈中心极限定理
摘要:中心极限定理的产生具有一定的客观背景,最常见的是林德伯格-莱维中心极限定理和棣莫弗-拉普拉斯中心极限定理。它们表明了当n 充分大时,方差存在的n 个独立同分布的随机变量和近似服从正态分布,在实际中的应用相当广泛。本文讨论了中心极限定理的内涵及其在生活实践中的应用。
关键词:中心极限定理;正态分布;生活中的应用。
引言:在实际问题中,常常需要考虑许多随机因素所产生的总的影响,如测量误差、炮弹
射击的落点与目标的偏差等。同时许多观察表明,若一个随机变量是由大量相关独立的随机因素的综合影响所构成的,而其中每一个随机因素的单独作用是微小的,则这样的随机变量通常是服从或近似服从正态分布。这种现象就是中心极限定理产生的客观背景。
在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。王勇老师讲到中心极限定理时,曾非常激动地说这个定理一被提出便震惊了全世界,而且重复了数遍。由此足以见得中心极限定理的重要性。
目前我们研究的是独立同分布条件下的中心极限定理:
林德伯格-莱维中心极限定理:设
{}n X 是独立同分布的随机变量序列,且
)(,)(2>==σμi i X Var X E 存在,若记
n
n X
Y n
i i
n σμ
-=
∑=1
则对任意实数y ,有
{}⎰
∞
--∞
→=Φ=≤y
t n n t y y Y P .d e π21)(lim 2
2
这个中心极限定理是由林德伯格和莱维分别独立的在1920年获得的,定理告诉我们,
对于独立同分布的随机变量序列,其共同分布可以是离散分布,也可以是连续分布,可以是正态分布,也可以是非正态分布,只要其共同分布的方差存在,且不为零,就可以使用该定理的结论。只有当n 充分大时,
n
Y 才近似服从标准正态分布)1,0(N ,而当n 较小时,此种
近似不能保证。也就是说,在n 充分大时,可用)1,0(N 近似计算与n
Y 有关事件的概率,而
n 较小时,此种计算的近似程度是得不到保障的。当
)
1,0(~N Y n 时,则有
)
,
(~),,(~2
2
1
n N X n n N X
n
i i
σμσμ∑=。
现如今旅游、汽车等行业越来越受欢迎。在这些行业中就会用得到中心极限定理。 例如,某汽车销售点每天出售的汽车服从参数为λ=2的泊松分布,若一年365天都经
营汽车销售,且每天出售的汽车数是相互独立的,求一年中售出700辆以上汽车的概率。[1]
解:设
i ξ为第i 天出售的汽车的数量,则36521......ξξξξ+++=为一年的总销量,由
2)()(==i i Var E ξξ,知=)(ξE 365×2=730
利用中心极限定理得
P(ξ>700)=1-P(ξ≤700)≈1—
)730730
700(
-Φ=1-Φ(一1.11)=0.8665
在理论中,我们也可用它来解决一些比较抽象的问题,比如下面的极限求解问题。 例如,利用中心极限定理证明:
21
!lim 0
=∑=-∞→n
k k n
n k n e [1] 证明:设{
k ξ}独立同分布且k ξ~P(1),k=1,2…….
则a=
()
k E ξ=l ,2
σ=
()
k Var ξ=1
∵由泊松分布的可加性知
∑=n
k k
1
ξ
~P(n)
∴n
n k k n k n i i n k k e
k n k P n P -====∑∑∑∑=⎪⎭⎫ ⎝⎛==⎪⎭⎫ ⎝⎛≤0011
!ξξ 又∵由中心极限定理知:
()⎥
⎦⎤
⎢⎣⎡≤-=⎪⎭⎫ ⎝⎛≤-=⎪⎭⎫ ⎝⎛≤∑∑∑===010111
k n k n k k n k k P n P n P ξξξ ()()00111Φ→⎥⎦⎤⎢⎣⎡≤-=∑=n k k n P ξ
()∞→=
n 21
∴
21!lim 0=∑=-∞→n
k k n
n k n e 如果在林德伯格-勒维中心极限定理中,
n
X 服从二项分布,就可以得到以下的定理。
棣莫弗-拉普拉斯中心极限定理:设n 重伯努利试验中,事件A 在每次试验中出现的概
率为p (0
S 为n 次试验中事件A 出现的次数,且记
npq
np S Y n n -=
*,则对任意
实数y ,有
dt
e
y y Y P y
t
n n ⎰
∞
--
∞
→==≤2
*
2
21
)()(lim π
φ。
它表明,n 充分大时,
npq
np S Y n n -=
*分布近似服从与标准正态分布,常称为“二项分
布收敛于正态分布”,正态分布是二项分布的极限分布,当n 充分大时,我们可以利用该定理的结论来计算二项分布的概率。
棣莫弗-拉普拉斯中心极限定理的应用也很广泛,例如:假设某校要建新校区,里面有学生5000人,只有一个开水房。由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假设后勤集团经过调查,发现每个学生在傍晚一般有1%的时间要占用一个水龙头,现有水龙头45个,现在总务处遇到的问题是:
(1)未新装水龙头前,拥挤的概率是多少?
(2)至少要装多少个水龙头,才能以95%以上的概率保证不拥挤?[2]
解:(1)设同一时刻,5000个学生中占用水龙头的人数为X ,则)01.0,5000(~B X 拥挤的概率是:
∑=-⎪
⎪⎭⎫ ⎝⎛=≤≤-=>=45
0k 500099.001.05000-145)(0 P 145)P(p k
k k ξξ
由棣莫弗一拉普拉斯中心极限定理,n=5000,p=0.01,q=0.99,
04.7,50==npq np
故
2389.0)1.7()71.0()04.750
0()04.75045(
)450(=---=---=≤≤φφφφξP
即拥挤的概率为
7611.02389.01)45(=-=>ξP
(2)欲求m ,使得95.0)0(≥≤≤m P ξ,则由棣莫弗一拉普拉斯中心极限定理可知,
95.0)04.750
0()04.750(
≥---φφm
由于
0)09.7()04.750
0(
≈-=-φφ
即
95.0)04.750
(
≥-m φ
查表得645
.104
.750
≥-m