材料成型工艺

合集下载

材料成型工艺

材料成型工艺

材料成型工艺材料成型工艺是制备各种产品的关键步骤之一。

通过合理选择和应用不同的成型工艺,可以使原材料得以变形和固化,最终得到各种形状的制品。

本文将对材料成型工艺进行探讨,包括其定义、分类、应用以及未来发展方向。

一、定义材料成型工艺是将原材料进行物理或化学变化以实现形状、尺寸和性能的转变的过程。

它涉及到多种工艺手段,如挤压、注塑、压铸、锻造等。

不同的材料和产品需要采用不同的成型工艺来满足其特定的需求。

二、分类根据材料的性质和成型方式的不同,材料成型工艺可以分为热成型和冷成型两大类。

1. 热成型热成型是指在制备过程中需要加热原材料使其达到易变形状态的成型工艺。

其中,锻造是最常见的热成型工艺,它通过在高温下对金属进行力量变形,从而改变其形状和内部组织结构。

此外,还有热挤压、热压缩等热成型工艺被广泛应用于金属、陶瓷等材料的制备过程中。

2. 冷成型冷成型是指在常温下通过机械力量对原材料进行成型的工艺。

注塑、挤压、压铸等冷成型工艺被广泛应用于塑料、橡胶等非金属材料和一些金属材料的制备过程中。

这些工艺可以将原材料加工成各种形状的制品,例如注塑成型可以制备出各种塑料制品,挤压成型可以制备出各种型材等。

三、应用材料成型工艺广泛应用于工业生产中的各个领域,包括汽车制造、电子产品、建筑材料、医疗器械等。

不同的产品对材料的成型要求不同,因此需要选择合适的工艺来满足需求。

1. 汽车制造汽车是材料成型工艺的重要应用领域之一。

汽车的车身、发动机、内饰等都需要通过成型工艺来实现制造。

例如,汽车车身常采用冷成型工艺,如压铸、冲压、注塑等;而发动机零部件则常使用热成型工艺,如锻造、炭化等。

2. 电子产品电子产品的制造离不开材料成型工艺。

电子元件常采用微成型工艺制备,如电路板的印制、集成电路的封装等。

这些工艺要求高精度、高质量的成型,以满足电子产品的需求。

3. 建筑材料建筑材料的成型工艺对于房屋的稳定性和美观度起着重要作用。

例如,水泥制品常采用模压成型工艺,如砖块、管道等;金属材料则可通过锻压、挤压等工艺制备成各种型材。

材料成型原理及工艺

材料成型原理及工艺

材料成型原理及工艺材料成型是指将原料通过一定的工艺过程,使其获得所需形状的过程。

在材料成型中,最常见的方式包括热成型、冷成型和粉末冶金成型等。

这些成型工艺的原理和应用在各个领域都有广泛的应用。

热成型是指通过加热材料使其软化并塑性变形以达到所需形状的一种成型方法。

主要包括热压成型、热拉伸成型、热挤压成型等。

其原理是通过加热使材料达到一定的软化点或熔点,然后通过外力施加,使材料塑性变形并成型。

热成型适用于塑料、玻璃、金属等材料的成型,并且可以制造复杂形状的产品。

冷成型是通过机械力作用在室温下进行的成型方法。

冷成型主要包括挤压成型、压铸成型、冷轧成型等。

其中,冷挤压是常见的一种冷成型方式,主要应用于金属材料的成型。

其原理是通过施加机械力,使材料在室温下产生塑性变形,并达到所需形状。

具有高精度、高效率的特点。

粉末冶金成型是一种将粉末材料在一定温度下进行成型的方法。

其主要过程包括压制和烧结两个过程。

首先将粉末材料经过一定的工艺处理得到一定的物理性质,然后该粉末被用来制造一种新型的成型工艺。

原理是通过压制使粉末粒子结合,并在一定的温度下进行烧结,最终得到所需形状的产品。

其优点是可以制造复杂形状的产品,同时可以利用废料进行再利用。

在材料成型过程中,还有一些辅助工艺和辅助设备的应用,以实现更好的成型效果。

例如模具是实现材料成型的重要工具,通过对模具进行设计和制造,可以获得不同形状和尺寸的产品。

在热成型过程中,需要控制加热温度、保持时间、冷却速率等参数,以确保产品的质量。

在冷成型过程中,需要选择合适的冷却介质和冷却方式,以使产品达到所需的硬度和强度。

在粉末冶金成型过程中,需要控制压制力、压制时间和烧结温度等参数,以实现产品的致密度和力学性能。

总结起来,材料成型的原理和工艺非常丰富多样,根据不同材料和产品的要求选择合适的成型方式可以实现高效率、高质量的制造。

随着科技的进步和工艺的改进,材料成型在各个行业的应用也越来越广泛。

材料成型原理与工艺

材料成型原理与工艺

04
材料成求极高,需要具备轻质、高强度、 耐高温等特性。材料成型原理与工艺的发展为航空航天领域 提供了更多的选择,如钛合金、复合材料等。
这些新型材料的应用有助于减轻飞机和航天器的重量,提高 其性能和安全性。
汽车工业领域的应用
随着环保意识的提高和新能源汽车的 兴起,汽车工业对轻量化材料的需求 越来越大。
件。
锻造工艺
01
02
03
04
自由锻造
利用自由锻锤或压力机对坯料 进行锻打,形成所需形状和尺
寸的锻件。
模锻
利用模具对坯料进行锻打,使 坯料在模具中形成所需形状和
尺寸的锻件。
热锻
将坯料加热至高温后进行锻打 ,使材料易于塑性变形。
冷锻
在常温下对坯料进行锻打,适 用于塑性较差的材料。
焊接工艺
熔化焊
压力焊
材料成型原理与工艺的发展使得汽车 零部件的制造更加高效、精确,如铝 合金、镁合金等轻质材料的广泛应用 ,有助于降低汽车能耗和排放。
能源领域的应用
能源领域如核能、太阳能等需要大量的特殊材料,如耐高 温、耐腐蚀的材料。
材料成型原理与工艺的进步为能源领域提供了可靠的材料 解决方案,如高温合金、耐腐蚀涂层等,有助于提高能源 利用效率和安全性。
材料成型原理与工艺
• 材料成型原理概述 • 材料成型工艺介绍 • 材料成型原理与工艺的发展趋势 • 材料成型原理与工艺的应用前景
01
材料成型原理概述
材料成型的基本概念
材料成型是通过物理或化学手 段改变材料的形状,以达到所 需的结构和性能的过程。
材料成型涉及多种工艺和技术, 如铸造、锻造、焊接、注塑等。
泡沫金属
通过在金属基体中引入孔洞,制备 出具有轻质、高比强度的泡沫金属 材料。

材料成型工艺基础

材料成型工艺基础

材料成型工艺基础材料成型工艺是制造业中非常重要的一环,它涉及到各种材料的成型加工,包括金属、塑料、陶瓷等材料。

在现代工业生产中,材料成型工艺的发展对产品质量、生产效率和成本控制都有着重要的影响。

因此,了解材料成型工艺的基础知识对于从事相关行业的人员来说是至关重要的。

首先,材料成型工艺的基础包括材料的物理性能和化学性能。

材料的物理性能包括硬度、强度、韧性、塑性等,而化学性能则包括材料的化学成分、腐蚀性等。

了解材料的这些基本性能对于选择合适的成型工艺以及调整工艺参数都有着重要的指导作用。

其次,材料成型工艺的基础还包括成型工艺的分类和特点。

根据成型工艺的不同特点,可以将它们分为传统成型工艺和先进成型工艺。

传统成型工艺包括锻造、铸造、焊接等,而先进成型工艺则包括注塑成型、激光切割、3D打印等。

每种成型工艺都有其独特的特点和适用范围,了解这些特点对于选择合适的成型工艺和优化工艺流程都至关重要。

另外,材料成型工艺的基础还包括成型模具的设计和制造。

成型模具是进行材料成型加工的重要工具,它的设计和制造质量直接影响到成型工艺的效率和产品质量。

因此,了解成型模具的设计原理和制造工艺对于提高成型工艺的水平和质量都至关重要。

最后,材料成型工艺的基础还包括成型工艺的控制和优化。

成型工艺的控制包括工艺参数的设定、设备的调试以及生产过程的监控等,而成型工艺的优化则包括提高生产效率、降低生产成本、改善产品质量等。

了解成型工艺的控制和优化方法对于提高生产效率和产品质量都有着重要的意义。

总之,材料成型工艺的基础知识对于从事相关行业的人员来说是非常重要的。

只有深入了解材料成型工艺的基础知识,才能更好地选择合适的成型工艺,优化工艺流程,提高生产效率和产品质量。

希望本文所述内容能对相关行业的从业人员有所帮助。

成型工艺分为哪几类

成型工艺分为哪几类

成型工艺分为哪几类成型工艺是制造工程中的重要环节,用于将材料加工成所需的形状和尺寸。

根据不同的工艺特点和操作方法,常见的成型工艺可以分为以下几类:1.塑料成型工艺塑料成型工艺是将熔融态的塑料通过一定的方法和工具形成所需的产品形状的工艺过程。

常见的塑料成型工艺包括注塑成型、挤出成型、吹塑成型、压缩成型等。

注塑成型是将熔化的塑料注入模具中,冷却后得到固态产品;挤出成型是将塑料熔化后通过挤出机挤出成型;吹塑成型是通过将熔化的塑料吹进模具中形成空心产品;压缩成型是将熔化的塑料放入模具,通过加压和冷却形成产品。

2.金属成型工艺金属成型工艺是将金属材料通过力的作用,使其发生塑性变形以得到所需形状和尺寸的工艺过程。

常见的金属成型工艺包括锻造、轧制、拉伸、冲压等。

锻造是将金属加热至一定温度后施加力使其变形成型;轧制是通过辊轧对金属进行塑性变形;拉伸是将金属材料拉伸至所需长度和形状;冲压是利用冲压模具对金属材料进行冲击和变形。

3.真空成型工艺真空成型工艺是利用真空态下的热塑性材料,将其加热软化后通过负压将其吸附成型于模具上的工艺过程。

常见的真空成型工艺包括真空吸塑成型、真空热成型等。

真空吸塑成型是将塑料片材加热至软化状态,然后用真空将其吸附在模具上形成所需形状;真空热成型是将热塑性材料加热至它的软化点,然后用真空将其吸附在模具上形成产品。

4.橡胶成型工艺橡胶成型工艺是将橡胶材料加工成所需形状和尺寸的工艺过程。

常见的橡胶成型工艺包括压模成型、浇注成型、挤出成型等。

压模成型是将橡胶材料放置于模具中,通过压力和加热使其发生塑性变形;浇注成型是将橡胶液体倒入模具中,通过固化形成所需的产品;挤出成型是将橡胶熔化后通过挤出机挤出成型。

5.粉末冶金工艺粉末冶金工艺是利用金属或非金属粉末为原料,通过成型、烧结和后处理等工艺,制备出具有一定形状和性能的产品。

常见的粉末冶金工艺包括压制成型、烧结、热处理等。

压制成型是将粉末填充至模具中,通过压力使其形成一定形状;烧结是将成型后的粉末在高温下加热使其颗粒间发生结合;热处理是对烧结后的产品进行热处理,改变其结构和性能。

材料的成型工艺性是什么

材料的成型工艺性是什么

材料的成型工艺性是什么材料的成型工艺性指的是材料在制备和加工过程中的可塑性和可加工性。

不同材料在成型工艺性方面的表现各不相同,主要取决于其化学和物理性质,如材料的结构、组成、硬度、熔点、熔化性能和可变形性等。

材料的成型工艺性对于制备产品的形状、尺寸、性能和质量有着重要的影响。

常见的材料成型工艺包括挤压、拉伸、成型、模压、注塑、压铸、锻压、铸造、复合加工等。

挤压工艺是将高温软化的材料通过模具挤出,形成均匀连续的截面形状,通常适用于金属和塑料等材料的加工。

它的主要特点是可以制备形状复杂、尺寸稳定、表面光滑的产品。

拉伸工艺主要适用于金属和塑料等材料,通过拉伸和应力处理使材料产生塑性变形,达到所需形状和尺寸的加工要求。

拉伸工艺可以制备出高强度、高韧性和高精度的材料产品。

成型工艺是指将金属或非金属材料加热到软化温度后,通过压力使材料填充模具空腔,冷却后形成所需产品形状和尺寸。

成型工艺适用于不同形状和尺寸的产品制备,如塑料制品、玻璃纤维制品和橡胶制品等。

模压工艺是指将预先加热软化的材料放在模具中,经过高温和高压条件下,使材料在模具中硬化成型的一种成型方法。

模压工艺适用于制备复杂、高精度和高强度要求的产品。

注塑工艺是将预先加热软化的塑料通过注射机注入模具中,经过高温和高压条件下使材料快速冷却硬化成型。

注塑工艺适用于制备各种塑料制品,如家电外壳、餐具、玩具等。

压铸工艺是将金属或合金加热至熔点后,通过注射机将液态金属注入模具中,经过冷却和固化后形成所需产品。

压铸工艺适用于制备尺寸精确、表面光滑的金属制品。

锻压工艺是将金属材料放在模具中,通过施加外力使材料发生塑性变形,达到所需形状和尺寸的加工要求,适用于制备高强度和高精度的金属制品。

铸造工艺是将液态金属或合金倒入预先制备好的模具中,经过冷却和固化后形成所需产品形状和尺寸的一种制造方法。

铸造工艺适用于制备大型、复杂形状和尺寸的金属制品。

复合加工工艺是将两种或多种材料进行复合加工,通过化学或物理方法使材料在成型过程中相互融合、吸附或粘合,形成多种材料组合的产品。

材料成型工艺

材料成型工艺

材料成型工艺复习资料1.材料成型技术可分为:凝固(或称液态)成型技术(铸造)、塑性成型技术(锻压)、焊接(连接)成型技术、粉末冶金成型技术、非金属成型技术等。

2.铸造是将熔融金属浇注、压摄或吸入铸型腔中,待其凝固够而获得一定形状和性能的铸件工艺方法。

3.液态金属的凝固方式:逐层凝固;糊状凝固;中间凝固。

4.铸造合金从浇注到室温经历的收缩阶段:液态收缩;凝固收缩;固态收缩。

5.影响收缩的因素;化学成分、浇注温度、铸件结构与铸型条件等。

6.铸铁的熔炼设备:冲天炉、电弧炉、工频炉等,其中冲天炉应用最广。

7.机器造型按照砂型紧压方式的不同分为:振击压实造型、微振压实造型、高压造型、气冲造型、射压造型和抛砂造型。

8.常用的特种铸造方法有熔模铸造、金属型铸造、压力铸造、离心铸造、低压铸造、陶瓷型铸造等。

9.熔模铸造是指用易熔材料(蜡)制成模样,然后在其表面涂挂若干层耐火材料,待其硬化干燥后,将模样熔去后面而制成形壳,再经焙烧、浇注而获得铸件的一种方法。

10.浇注位置的选择应考虑:1,重要加工面或主要工作面应出于铸型的底面或侧面。

2,铸件上的大平面结构或薄壁结构应朝下或成侧立状态。

3,对于容易产生缩孔的铸件,应使厚的部分放在上部或侧面。

4,应尽量减少芯子的数量,便于芯子安放、固定、检查和排气。

5,便于起模,使造型工艺简化。

6,应尽量使铸件的全部或大部置于同一沙箱中,或使主要加工面与加工的基准面处于同一砂型中,以避免产生错箱、披缝和毛刺,降低铸件精度,增加清理工作量。

11.金属塑性成形是利用金属材料所具有的塑性变形能力,在外力的作用下使金属材料产生预期的塑性变形来获得具有一定形状、尺寸和力学性能的零件或毛坯的加工方法。

12.模锻是在模锻设备上利用高强度锻模使金属坯料在模膛内受压产生变形而获得所需形状、尺寸以及内部质量的锻件的成型工艺。

13.拉拔是将金属坯料拉过拔模的模孔而变形得到的成型工艺。

14.挤压是将金属坯料在挤压模内受压被挤出模孔而变形的成型工艺。

金属材料八大成形工艺

金属材料八大成形工艺

金属材料八大成形工艺
(6)金属型铸造(gravity die casting) 金属型铸造:指液态金属在重力作用下充填金属铸型并在型中 冷却凝固而获得铸件的一种成型方法。 应用:金属型铸造既适用于大批量生产形状复杂的铝合金、镁 合金等非铁合金铸件,也适合于生产钢铁金属的铸件、铸锭等。
金属材料八大成形工艺
金属材料八大成形工艺
(3)挤压 挤压:坯料在三向不均匀压应力作用下,从模具的孔口或 缝隙挤出使之横截面积减小长度增加,成为所需制品的加 工方法叫挤压,坯料的这种加工叫挤压成型Байду номын сангаас 应用:主要用于制造长杆、深孔、薄壁、异型断面零件。
金属材料八大成形工艺
(4)拉拔 拉拔:用外力作用于被拉金属的前端,将金属坯料从小于 坯料断面的模孔中拉出,以获得相应的形状和尺寸的制品 的一种塑性加工方法。 应用:拉拔是金属管材、棒材、型材及线材的主要加工方 法。
金属材料八大成形工艺
(10)连续铸造(continual casting) 连续铸造:是一种先进的铸造方法,其原理是将熔融的金属, 不断浇入一种叫做结晶器的特殊金属型中,凝固(结壳)了的 铸件连续不断地从结晶器的另一端拉出,它可获得任意长或特 定的长度的铸件。 应用:用连续铸造法可以浇注钢、铁、铜合金、铝合金、镁合 金等断面形状不变的长铸件,如铸锭、板坯、棒坯、管子等。
金属材料八大成形工艺
(4)低压铸造(low pressure casting) 低压铸造:是指使液体金属在较低压力(0.02~0.06MPa)作用下 充填铸型,并在压力下结晶以形成铸件的方法.。 应用:以传统产品为主(气缸头、轮毂、气缸架等)。
金属材料八大成形工艺
(5)离心铸造(centrifugal casting) 离心铸造:是将金属液浇入旋转的铸型中,在离心力作用下填 充铸型而凝固成形的一种铸造方法。 应用:离心铸造最早用于生产铸管,国内外在冶金、矿山、交 通、排灌机械、航空、国防、汽车等行业中均采用离心铸造工 艺,来生产钢、铁及非铁碳合金铸件。其中尤以离心铸铁管、 内燃机缸套和轴套等铸件的生产最为普遍。

材料成型工艺技术

材料成型工艺技术

材料成型工艺技术材料成型工艺技术是指将材料通过一定的工艺方法,经过加工、成形、塑造等过程,使其达到特定的形状和性能要求的一种技术。

这种技术可以广泛应用于各个行业,如汽车、航空、电子、家电等领域。

材料成型工艺技术的发展,为各个行业提供了更多的可能性和选择。

材料成型工艺技术主要包括压力成型、热成型、造型、粉末冶金等多种方法。

其中,压力成型是一种将材料放入模具中,在给定的条件下施加一定的压力,使材料在模具内成型的方法。

这种方法适用于加工金属、塑料、陶瓷等材料。

压力成型工艺技术具有成形精度高、表面光洁度好等特点,被广泛应用于制造各种零部件。

热成型是一种通过加热材料使其变软,然后通过外界力的作用使其变形的方法。

这种方法适用于加工塑料、橡胶等材料。

热成型工艺技术能够使材料保持一定的形状稳定性,并且在加工过程中能够消除材料内部的应力,提高产品的性能。

造型是一种通过模板、模具等工具对材料进行塑造的方法。

这种方法适用于加工陶瓷、玻璃等材料。

造型工艺技术能够使材料呈现出各种复杂的形状,满足设计师的要求,并且能够提高生产效率。

粉末冶金是一种通过将金属粉末进行成型、烧结等处理,制造出具有特定形状和性能的材料的方法。

这种方法适用于生产精密零部件、高温合金等材料。

粉末冶金工艺技术能够扩大材料的应用范围,提高产品的性能。

在材料成型工艺技术中,工艺参数的控制是非常重要的。

工艺参数包括温度、压力、速度等多个方面。

通过合理控制这些参数,可以使成型产品具有更好的性能。

材料成型工艺技术的发展,对于提高产品质量、降低产品成本、增加产品种类等方面具有重要作用。

随着科技的不断进步,材料成型工艺技术也在不断创新和发展,为各行各业的发展提供更多的机会和挑战。

材料成型工艺基础

材料成型工艺基础

材料成型工艺基础
材料成型工艺是指将原材料通过一系列工艺加工操作,变成形状和尺寸符合要求、性能稳定的零件或产品的过程。

常见的材料成型工艺有:
1. 热压成型:将材料加热至一定温度,然后放入模具中进行压制成型。

常见的热压成型工艺有热挤压、热拉伸、热压铸等。

2. 冷压成型:将材料放入模具中进行压制成型,常见的冷压成型工艺有冷挤压、冷拉伸等。

3. 注塑成型:将熔化的塑料注入模具中,通过加压和冷却固化成型。

常见的注塑成型工艺有射出成型、吹塑成型、挤出成型等。

4. 粉末冶金成型:将粉末材料放入模具中,在高压下压制成型,通过烧结或烤模固化成型。

常见的粉末冶金成型工艺有烧结成型、热等静压成型、烤模成型等。

5. 造型成型:将液态、半固态或塑性的材料通过造型工具或手工造型进行成型。

常见的造型成型工艺有砂型铸造、蜡型铸造、压铸等。

以上是常见的材料成型工艺,每种工艺都有各自的特点和适用范围,应根据材料的性质、需求和经济性等因素选择适合的工艺。

材料成型工艺的概念

材料成型工艺的概念

材料成型工艺的概念材料成型工艺是指将原材料通过加工加热、压力施加和形状调控等方式,使其在一定条件下发生形变和变形,最终得到所需形状、尺寸和性能的工艺过程。

它是材料加工过程中不可或缺的一部分,广泛应用于工业生产中的各个领域,如航空航天、汽车制造、电子产品、建筑材料等。

材料成型工艺的核心任务是使原材料达到工程要求,并使成品具备所需的性能。

它一般包括以下几个主要步骤:原料准备、成型加工、成型模具设计与制造、工艺参数的选择与优化等。

首先,原料准备是材料成型工艺的基础,它包括原材料的选择、配比以及必要的预处理。

原材料的选择要考虑到其物理性质、化学性质、热性能等因素,以保证最终成品的质量和性能。

配比的合理性对于成型工艺的顺利进行也非常重要。

某些情况下,需要对原材料进行预处理,如洗涤、干燥、粉碎等,以提高其适应成型工艺的能力。

其次,成型加工是材料成型工艺的核心环节,它是将原材料通过机械、物理或化学手段改变其形状的过程。

常见的成型加工方式包括压力成型、热成型、注塑成型等。

压力成型是指通过施加外力使原材料变形,如铸造、锻造、挤压等。

热成型是指利用加热使原材料软化或熔化,通过模具或模具一体化设备将其成形,如吹塑、热压缩、热成型等。

注塑成型是指将熔融的塑料材料注入到模具中,在冷却固化后得到所需形状和尺寸的制品。

除了上述方式,还有很多其他的成型加工方式,如剪切、拉伸等。

第三,成型模具设计与制造是材料成型工艺中至关重要的环节。

模具是实现产品成形的关键工具,在成型加工过程中起着至关重要的作用。

模具的设计要求高度精准,能够准确实现产品的形状、尺寸和表面质量要求,同时要考虑到生产效率、模具寿命等因素。

模具的制造则需要一定的专业技术和机械设备支持,包括数控机床、电火花、线切割等。

最后,工艺参数的选择与优化是材料成型工艺的重要环节。

根据成型材料的性质,结合产品的要求和设备的条件,选择合适的工艺参数对成型工艺的稳定性和成品的质量有着至关重要的影响。

成型加工方法的工艺

成型加工方法的工艺

成型加工方法的工艺
成型加工方法通常包括以下几种工艺:
1. 锻造:通过对金属材料施加压力,使其在强大的力量下变形,从而得到所需形状的方法。

常见的锻造方法包括冷锻、热锻、自由锻和数控锻造等。

2. 压力加工:利用压力将金属材料塑性变形,通过压制、拉伸、弯曲等方式改变材料形状。

常见的压力加工方法包括冲压、拉伸、弯曲、镦粗、滚压等。

3. 切削加工:通过在工件表面切削掉一部分材料,使工件达到所需形状的方法。

常见的切削加工方法包括车削、铣削、钻孔、插齿、磨削等。

4. 焊接:将两个或更多金属材料通过加热或施加压力的方法连接在一起的过程。

常见的焊接方法包括电弧焊、气焊、激光焊、电阻焊等。

5. 拉伸成型:将材料在拉力的作用下,通过拉伸变形来改变材料形状的方法。

常见的拉伸成型方法包括拉伸、扩张、冷挤压、深冲等。

6. 注塑成型:将熔化或溶解的材料注入模具中,经过冷却、凝固后得到所需形状的方法。

常见的注塑成型方法包括塑料注塑、金属注塑、橡胶注塑等。

7. 压力成型:通过应用压力将材料挤压成所需形状的方法。

常见的压力成型方
法包括挤压、冲压、滚压等。

以上是一些常见的成型加工方法,不同材料和产品的加工要求可能会有所不同,工艺选择应根据具体情况进行。

复合材料的成型工艺

复合材料的成型工艺

复合材料的成型工艺复合材料的成型工艺主要包括以下几种:1. 手糊成型工艺:是一种湿法铺层成型法,通过涂刷胶液和铺设纤维织物,在模具上形成一定厚度的层片,然后进行固化。

2. 喷射成型工艺:是将树脂和纤维混合后,通过喷射的方式在模具表面形成一定厚度的层片,再进行固化。

3. 树脂传递模塑技术(RTM技术):将纤维织物放入模具中,然后注入树脂,经过一定的温度和压力条件进行固化,形成复合材料制品。

4. 袋压法成型:是将纤维织物放入密封的袋子里,然后通过压力使纤维织物紧密结合在一起,再经过固化得到复合材料制品。

5. 真空袋压成型:是在袋压法的基础上,通过抽真空的方式排除纤维织物内的空气和水分,提高制品的密实度和质量。

6. 热压罐成型技术:是将预浸料放入金属模具中,通过热压罐的高温高压作用,使预浸料粘结成复合材料制品。

7. 液压釜法成型技术:是将预浸料放入密封的液压釜中,通过液体介质的压力使预浸料紧密结合在一起,再经过固化得到复合材料制品。

8. 热膨胀模塑法成型技术:是将纤维织物放入模具中,利用热膨胀原理使纤维织物紧密结合在一起,再经过固化得到复合材料制品。

9. 夹层结构成型技术:是将两层或更多层预浸料之间夹入一层泡沫材料或其他材料,通过加热加压或抽真空的方式使其粘结成复合材料制品。

10. 模压料生产工艺:是将纤维织物和树脂混合后,经过一定温度和压力条件进行固化,形成模压料,然后将其加工成制品。

11. ZMC模压料注射技术:是将ZMC模压料加热后注入模具中,经过一定的温度和压力条件进行固化,形成复合材料制品。

12. 层合板生产技术:是将多层预浸料按照一定的顺序叠放在一起,然后经过热压或冷压的方式使其粘结成复合材料层合板。

13. 卷制管成型技术:是将纤维织物和树脂混合后,通过卷制机卷制成管状制品。

14. 纤维缠绕制品成型技术:是将纤维织物缠绕在芯模上,然后注入树脂或进行热处理,形成复合材料制品。

15. 连续制板生产工艺:是将预浸料连续通过加热和加压装置,使其连续地粘结成复合材料板材。

金属材料成型工艺

金属材料成型工艺

金属材料成型工艺:基本要求与注意事项一、引言金属材料是工业制造中的重要组成部分,其成型工艺对于产品的质量、性能和外观都具有至关重要的影响。

本文将详细介绍金属材料的几种主要成型工艺,包括铸造、锻造、焊接、粉末冶金等,并阐述在金属制作成型和制作过程中需要注意的问题及工艺。

二、金属材料成型工艺1.铸造工艺:铸造是将熔融的金属倒入模具中,待其冷却凝固后形成所需形状的工艺。

铸造工艺适用于制造复杂形状的零件,但易产生气孔、缩孔等缺陷。

2.锻造工艺:锻造是将金属坯料放在砧铁上,通过冲击或压力使其变形,达到所需形状和尺寸的工艺。

锻造工艺适用于制造高强度、耐腐蚀的零件,但易产生变形和裂纹。

3.焊接工艺:焊接是通过高温或压力将两块金属连接在一起的工艺。

焊接工艺适用于制造大型或复杂的零件,但易产生热影响区和应力裂纹。

4.粉末冶金工艺:粉末冶金是将金属粉末在高温下烧结成型的工艺。

粉末冶金工艺适用于制造复杂形状、高精度和小批量零件,但成本较高。

三、金属制作成型和制作需要注意的问题及工艺1.材料选择:根据产品要求选择合适的金属材料,考虑其物理性能、化学成分、力学性能等因素。

2.模具设计:根据产品要求设计合理的模具结构,确保模具的强度、刚度和精度。

3.成型过程控制:严格控制成型过程中的温度、压力、时间等因素,确保产品达到预期的形状和尺寸。

4.质量检测:对成型后的产品进行质量检测,包括外观检查、尺寸检测、无损检测等,确保产品质量符合要求。

5.环境保护:在金属制作成型和制作过程中要注意环境保护,减少废气、废水、废渣的产生,降低能源消耗和碳排放。

6.生产效率:在保证产品质量的前提下,要尽可能提高生产效率,降低生产成本,提高市场竞争力。

四、结论金属材料成型工艺是工业制造中的重要环节,对于产品的质量、性能和外观具有决定性的影响。

在实际生产中,要根据产品要求选择合适的成型工艺,注意材料选择、模具设计、成型过程控制、质量检测、环境保护和生产效率等方面的问题,以确保产品的质量和生产的顺利进行。

常见的材料成型及加工工艺流程

常见的材料成型及加工工艺流程

常见的材料成型及加工工艺流程材料成型及加工工艺流程是制造业中非常重要的一部分,它涉及到了原材料的加工、成型和组装等过程。

在不同的制造行业中,常常会遇到各种不同的材料成型及加工工艺流程。

本文将针对常见的材料成型及加工工艺流程进行介绍与分析,以便读者有更清晰的了解。

一、金属材料成型及加工工艺流程金属材料是制造业中最为常见的一种原材料,它可以用于各种不同的制造过程中。

在金属材料成型及加工工艺流程中,常见的工艺流程包括:锻造、铸造、切削、焊接、热处理等。

1.锻造锻造是将金属坯料置于模具内,通过施加压力使其产生流变形,从而得到所需形状和尺寸的加工工艺。

常见的锻造设备包括:锻压机、锤击机、压力机等。

锻造工艺可以用于生产各种不同形状和尺寸的金属制品,如:车轮、曲轴、车轴等。

2.铸造铸造是将金属熔化后,倒入模具中,经冷却后得到所需形状和尺寸的加工工艺。

常见的铸造工艺包括:砂型铸造、金属型铸造、压铸等。

铸造工艺可以用于生产各种不同形状和尺寸的金属制品,如:汽车零部件、机械零部件等。

3.切削切削是利用刀具对金属进行切削加工,从而得到所需形状和尺寸的加工工艺。

常见的切削设备包括:车床、铣床、磨床等。

切削工艺可以用于生产各种不同形状和尺寸的金属制品,如:螺栓、螺母、螺旋桨等。

4.焊接焊接是将金属件通过加热或加压等方法,使其熔化后再连接在一起,从而得到所需形状和尺寸的加工工艺。

常见的焊接方法包括:气焊、电弧焊、激光焊等。

焊接工艺可以用于生产各种不同形状和尺寸的金属制品,如:焊接结构、焊接零件等。

5.热处理热处理是将金属件加热至一定温度,使其组织结构发生改变后再冷却,从而得到所需性能的加工工艺。

常见的热处理方法包括:退火、正火、淬火、回火等。

热处理工艺可以用于提高金属制品的强度、硬度、韧性等性能,如:弹簧、轴承、齿轮等。

二、塑料材料成型及加工工艺流程塑料材料在制造业中也是一种非常常见的原材料,它可以用于各种不同的制造过程中。

分析材料成型的工艺

分析材料成型的工艺

分析材料成型的工艺材料成型工艺是指将原始材料通过各种加工手段和工艺流程,使其达到所需形状和尺寸的过程。

它是材料加工中不可或缺的一部分,广泛应用于各个行业中的生产制造过程中。

在材料成型工艺中,通常包括模具设计、原料准备、成型工艺、后续处理等环节。

首先,材料成型的第一步是模具设计。

模具的设计是为了能够将原料加工成所需形状和尺寸的零件或产品。

模具设计需要充分考虑成型材料的特性、成型工艺的要求以及产品的功能和外观等因素,通过模具的形状和结构来实现对原材料的加工和形状控制。

接下来是原料准备。

原料准备是将所需的材料按照一定的比例和要求进行混合或处理,以便于后续的成型加工。

原料可以是金属、塑料、陶瓷等不同材质的物质,每种材质都有其独特的性质和加工要求。

在成型工艺中,最常见的方式包括锻造、铸造、挤压、注塑等。

锻造是通过对金属材料施加外力和压力,使其达到所需的形状或尺寸。

铸造是将熔融的材料倒入模具中,通过冷却和凝固来得到所需的形状。

挤压则是将材料通过模具的缝隙进行压缩和挤出,形成所需的产品形状。

注塑则是将熔融的塑料材料注入模具中,通过冷却和固化得到所需的形状。

除了以上几种常见的成型工艺,还存在其他一些特殊的成型工艺,如压力成型、热成型、真空成型等。

这些工艺通过不同的手段和方法,对材料进行加工和形状控制,使其能够满足产品的需求。

在材料成型过程中,还需要考虑一些因素和要求,如温度、压力、速度等。

这些因素对成型过程中材料的性能和成形结果都有重要影响。

正确控制这些因素,可以保证成型过程的质量和效率。

最后是成型后的后续处理。

成型后的零件或产品可能需要进行清洁、修整、磨削、涂装等处理,以便于满足产品的要求和提高外观质量。

这些后续处理过程可以进一步改善成型产品的表面质量和性能。

总结起来,材料成型工艺是将原始材料通过模具加工成所需形状和尺寸的过程。

它包括模具设计、原料准备、成型工艺和后续处理等环节。

通过不同的成型工艺和加工方法,可以满足各种不同行业和领域的需求。

材料成型工艺

材料成型工艺

材料成型工艺材料成型工艺是制造业中非常重要的一环,它涉及到材料的加工、成型和制造过程,对于最终产品的质量和性能有着直接的影响。

在材料成型工艺中,我们需要考虑材料的选择、加工工艺、成型方法等诸多因素,以确保最终产品能够满足设计要求。

首先,材料的选择至关重要。

不同的材料具有不同的物理和化学性质,因此在进行材料成型工艺时,我们需要根据最终产品的要求来选择合适的材料。

例如,对于需要耐高温的产品,我们可以选择耐高温的金属材料或者陶瓷材料;而对于需要轻质的产品,我们可以选择塑料或者复合材料。

在选择材料时,还需要考虑到材料的可加工性、成本以及环保性等因素,以便在满足产品性能要求的同时,尽可能降低制造成本。

其次,加工工艺也是影响材料成型工艺的重要因素之一。

不同的材料需要采用不同的加工工艺,例如金属材料可以采用锻造、铸造、切削等工艺,而塑料材料则可以采用注塑、挤出、压延等工艺。

在选择加工工艺时,需要考虑到材料的性质、成型的复杂程度、生产效率以及加工精度等因素,以确保最终产品能够达到设计要求。

最后,成型方法也是影响材料成型工艺的重要因素之一。

不同的成型方法对最终产品的形状、尺寸和性能都有着直接的影响。

例如,对于金属材料,可以采用冷冲压、热冲压、拉伸等成型方法;而对于塑料材料,可以采用注塑成型、挤出成型、吹塑成型等方法。

在选择成型方法时,需要考虑到产品的设计要求、成型效率、成型精度以及生产成本等因素,以确保最终产品能够达到客户的要求。

综上所述,材料成型工艺是制造业中不可或缺的一部分,它涉及到材料的选择、加工工艺、成型方法等诸多因素。

在进行材料成型工艺时,我们需要综合考虑材料的性质、产品的设计要求、生产效率以及成本等因素,以确保最终产品能够达到客户的要求。

只有不断优化材料成型工艺,才能够提高产品的质量、降低生产成本,从而在市场竞争中占据优势地位。

各种材料成形工艺流程

各种材料成形工艺流程

各种材料成形工艺流程各种材料成形工艺流程材料成形是工业生产中的重要环节之一,通过将原材料加工成特定形状,用于制造各种产品。

不同的材料适用于不同的成形工艺,下面将介绍一些常见的材料成形工艺流程。

1. 金属材料成形工艺:金属材料成形通常包括铸造、锻造、压力加工、焊接、剪切等工艺。

首先,铸造是将熔化的金属倒入模具中,冷却后得到所需形状的零件。

其次,锻造是将金属材料经过高温和压力处理,使其改变形状和性能,得到所需的零件。

然后,压力加工是将金属材料放入模具中,经过压力和形变来制造零件。

最后,焊接是将两个或多个金属材料通过加热或压力连接在一起。

剪切是通过切割金属材料来得到所需的形状。

2. 塑料材料成型工艺:塑料材料成型通常包括注塑成型、挤压成型、吹塑成型等工艺。

注塑成型是将塑料颗粒熔化,注入模具中,通过冷却固化得到所需形状的零件。

挤压成型是将熔化的塑料通过模具挤出,通过冷却固化得到所需形状的产品。

吹塑成型是将熔化的塑料通过吹塑机吹气而成型,用于制造中空的产品。

3. 玻璃材料成形工艺:玻璃材料成形主要包括浮法成形和玻璃制品成形两种工艺。

浮法成形是将玻璃熔化后,在液面上浮动,经过冷却后得到所需形状的平板玻璃。

制造玻璃制品的成形工艺包括玻璃吹制、拉伸、压延等。

玻璃吹制是将熔化的玻璃通过吹管吹气形成中空的形状,然后经过冷却后固化。

玻璃拉伸是在玻璃材料上施加拉力,使其形成所需形状。

玻璃压延是将玻璃材料通过辊子的压力来改变形状。

4. 陶瓷材料成形工艺:陶瓷材料成形主要包括成型、干燥、烧结等工艺。

成型是将陶瓷材料通过压制或注塑等工艺制造成所需形状的零件。

干燥是将成型的陶瓷材料进行适当的烘干处理,去除水分。

烧结是将干燥的陶瓷材料置于高温环境中,使其粒子着密,得到所需性能和形状的陶瓷零件。

综上所述,不同的材料适用于不同的成形工艺。

金属材料成形通常包括铸造、锻造、压力加工、焊接、剪切等工艺;塑料材料成型通常包括注塑成型、挤压成型、吹塑成型等工艺;玻璃材料成形主要包括浮法成形和玻璃制品成形两种工艺;陶瓷材料成形主要包括成型、干燥、烧结等工艺。

材料成型工艺

材料成型工艺

材料成型工艺
材料成型工艺是指将原材料通过一定的加工方式,使其形状、尺寸和性能得到
满足要求的过程。

在工业生产中,材料成型工艺是非常重要的一环,它直接影响着产品的质量和成本。

本文将从材料成型工艺的基本概念、工艺流程、常见问题及解决方法等方面进行探讨。

首先,材料成型工艺的基本概念。

材料成型工艺是指通过加工手段,将原材料
加工成所需形状和尺寸的工艺过程。

这些加工手段包括了多种多样的方式,例如锻造、铸造、压延、焊接等。

不同的材料和产品要求,需要采用不同的成型工艺,以确保产品的质量和性能。

其次,材料成型工艺的工艺流程。

一般来说,材料成型工艺的流程包括原料准备、成型加工、热处理、表面处理等环节。

在原料准备阶段,需要对原材料进行筛选、配料、预处理等工作。

在成型加工阶段,根据产品的要求,选择合适的成型工艺进行加工。

在热处理和表面处理阶段,通过热处理工艺和表面处理工艺,改善材料的性能和表面质量。

再次,常见问题及解决方法。

在材料成型工艺中,常见的问题包括成型不良、
尺寸偏差、表面缺陷等。

针对这些问题,可以采取一些解决方法,如优化工艺参数、改进模具设计、加强设备维护等。

另外,也可以通过引进先进的成型设备和技术,提高生产效率和产品质量。

综上所述,材料成型工艺在工业生产中起着至关重要的作用。

通过对材料成型
工艺的基本概念、工艺流程、常见问题及解决方法的探讨,可以更好地理解和应用材料成型工艺,提高产品质量,降低生产成本,推动工业生产的发展。

希望本文对您有所帮助,谢谢阅读。

材料成型工艺

材料成型工艺

材料成型工艺
材料成型工艺是一种通过加工、调整和重组材料分子结构,使其达到特定形状和性能的工艺。

材料成型工艺可以分为几种不同的类型,包括热成型、冷成型、挤出成型、注塑成型和压缩成型等。

以下是对这些成型工艺的简要介绍:
热成型是指将原料加热至其熔化点或软化点,然后通过压力和模具的作用,使其流动并填充到模具中,最终得到所需的形状。

热成型工艺常用于塑料、橡胶和玻璃等材料的加工。

冷成型是指将原料在室温下进行成型的工艺。

冷成型通常涉及将原料放入一个具有所需形状的模具中,然后通过施加压力使其凝固或固化。

冷成型适用于金属和陶瓷等高温材料的加工。

挤出成型是一种通过将原料压入加热的筒状模具中,并通过施加压力使其流动并最终形成所需的形状。

挤出成型通常用于塑料管道、电线和绳索等连续成型的产品。

注塑成型是一种将熔化的原料通过注射机注入模具中,再施加压力使其冷却和凝固的工艺。

注塑成型广泛应用于塑料制品的生产,如塑料壳体、零件和容器等。

压缩成型是一种将原料放置在模具中,并通过施加压力使其填充和固化的工艺。

压缩成型适用于陶瓷、金属和混凝土等材料的加工。

除了以上这些常见的成型工艺外,还有其他一些特殊的成型工
艺,如吹塑成型、真空成型、旋转成型和拉伸成型等。

每种成型工艺都有其独特的优缺点和适用范围,根据材料的性质和成型要求选择合适的成型工艺非常重要。

总之,材料成型工艺是一种关键的加工工艺,通过调整和重组材料的分子结构,能够实现所需的形状和性能。

不同的成型工艺适用于不同类型的材料和产品,因此选择合适的成型工艺对于材料加工和制造具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.问答题1、吊车大钩可用铸造、锻造、切割加工等方法制造,哪一种方法制得的吊钩承载能力大?为什么?2、什么是合金的流动性及充形能力,决定充形能力的主要因数是什么?3、铸造应力产生的主要原因是什么?有何危害?消除铸造应力的方法有哪些?4.试讨论什么是合金的流动性及充形能力?5. 分别写出砂形铸造,熔模铸造的工艺流程图并分析各自的应用范围.6.液态金属的凝固特点有那些,其和铸件的结构之间有何相联关系?7.什么是合金的流动性及充形能力,提高充形能力的因素有那些?8.熔模铸造、压力铸造与砂形铸造比较各有何特点?他们各有何应用局限性?9.金属材料固态塑性成形和金属材料液态成形方法相比有何特点,二者各有何适用范围?10. 缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止?11. 什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合?12. 手工造型、机器造型各有哪些优缺点?适用条件是什么?13.从铁-渗碳体相图分析,什么合金成分具有较好的流动性?为什么?14. 铸件的缩孔和缩松是怎么形成的?可采用什么措施防止?15. 什么是顺序凝固方式和同时凝固方式?各适用于什么金属?其铸件结构有何特点?16. 何谓冒口,其主要作用是什么?何谓激冷物,其主要作用是什么?17. 何谓铸造?它有何特点?18. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高?19.金属材料的固态塑性成形为何不象液态成形那样有广泛的适应性?20..冷变形和热变形各有何特点?它们的应用范围如何?21. 提高金属材料可锻性最常用且行之有效的办法是什么?为何选择?22. 金属板料塑性成形过程中是否会出现加工硬化现象?为什么?23. 纤维组织是怎样形成的?它的存在有何利弊?24.许多重要的工件为什么要在锻造过程中安排有镦粗工序?25. 模锻时,如何合理确定分模面的位置?26. 模锻与自由锻有何区别?..27.板料冲压有哪些特点?主要的冲压工序有哪些?28. 间隙对冲裁件断面质量有何影响?间隙过小会对冲裁产生什么影响?29. 分析冲裁模与拉深模、弯曲模的凸、凹模有何区别?30. 何谓超塑性?超塑性成形有何特点?31、落料与冲孔的主要区别是什么?体现在模具上的区别是什么?32、比较落料或冲孔与拉深过程凹、凸模结构及间隙Z有何不同?为什么?33、手工电弧焊与点焊在焊接原理与方法上有何不同?34.手工电弧焊原理及特点是什么?35、产生焊接应力和变形的主要原因是什么,怎样防止或减少应力和变形?36. 试说明焊条牌号J422和J507中字母和数字的含义及其对应的国标型号,并比较它们的应用特点。

37. 什么是焊接热影响区?低碳钢焊接热影响区内各主要区域的组织和性能如何?从焊接方法和工艺上,能否减小或消灭热影响区?38. 为什么存在焊接残余应力的工件在经过切削加工后往往会产生变形?如何避免?39. 铸铁焊接性差主要表现在哪些方面?试比较热焊、冷焊法的特点及应用。

40. 低合金高强度结构钢焊接时,应采取哪些措施防止冷裂纹的产生?41. 试比较钎焊和胶接的异同点。

42.何谓金属材料的焊接性,其所用的评价方法各有何优缺点?43.塑料成形主要采用哪种方法?简述其工艺过程。

44. 塑料的结晶性与金属有何不同?为什么?45. 塑料注射模具一般由几部分组成?浇注系统的作用是什么?46. 分析注射成形、压塑成形、传递成形的主要异同点。

47.热塑性塑料注射模的基本组成有那些?48. 橡胶的注射成形与压制成形各有何特点?49.什么叫模具,其主要组成有那几部分?50.粉末冶金成形技术包括哪些内容?它主要适用于哪种情况?51.粉末压制品为什么在压制后,一定要经过烧结才能达到要求的强度和密度?52.粉末冶金工艺生产制品时通常包括哪些工序?53.为什么金属粉末的流动特性是重要的?54.为什么粉末冶金零件一般比较小?55.粉末冶金零件的长宽比是否需要控制?为什么?..56.为什么粉末冶金零件需要有均匀一致的横截面?57.怎样用粉末冶金工艺来制造孔隙细小的过滤器?58.试比较制造粉末冶金零件时使用的烧结温度与各有关材料的熔点?59.烧结过程中会出现什么现象?60.怎样用粉末冶金来制造含油轴承?61.什么是浸渗处理?为什么要使用浸渗处理?62.采用压制方法生产的粉末冶金制品,有哪些结构工艺性要求?63.用粉末冶金生产合金零件的成形方法有哪些?64.试列举粉末冶金工艺的优点。

65.粉末冶金工艺的主要缺点是什么?66.列举常用的热固性塑料与热塑性塑料,说明两者的主要区别是什么?67.塑料在粘流态的粘度有何特点?68.塑料的结晶性与金属有何不同?为什么?69.热塑性塑料成形工艺性能有哪些?如何控制这些工艺参数?70.塑料注射模具一般由几部分组成?浇注系统的作用是什么?71.分析注射成形、压塑成形、传递成形的主要异同点。

72.橡胶材料的主要特点是什么?常用的橡胶种类有哪些?73.为什么橡胶先要塑炼?成形时硫化的目的是什么?74.简述橡胶压制成形过程。

控制硫化过程的主要条件有哪些?75.橡胶的注射成形与压制成形各有何特点?76.陶瓷制品的生产过程是怎样的?77.陶瓷注浆成形对浆料有何要求?其坯体是如何形成的?该法适于制作何类制品?78.陶瓷压制成形用坯料为何要采用造粒粉料?压制成形主要有哪几种方法?各有何特点?79.陶瓷热压注成形采用什么坯料?如何调制?该法在应用上有何特点?80.复合材料成形工艺有什么特点?81.复合材料的原材料、成形工艺和制品性能之间存在什么关系?82.在复合材料成形时,手糊成形为什么被广泛采用?它适合于哪些制品的成形?83.模压成形工艺按成形方法可分为哪几种?各有何特点?84.纤维缠绕工艺的特点是什么?适于何类制品的成形?85.颗粒增强金属基复合材料的成形方法主要有哪些?..86. 选择材料成形方法的原则与依据是什么?请结合实例分析。

87. 材料选择与成形方法选择之间有何关系?请举例说明。

88. 零件所要求的材料使用性能是否是决定其成形方法的唯一因素?简述其理由。

89. 轴杆类、盘套类、箱体底座类零件中,分别举出1~2个零件,试分析如何选择毛坯成形方法。

90. 为什么轴杆类零件一般采用锻造成形,而机架类零件多采用铸造成形?91. 为什么齿轮多用锻件,而带轮、飞轮多用铸件?92. 在什么情况下采用焊接方法制造零件毛坯?93. 举例说明生产批量对毛坯成形方法选择的影响。

94.对于中小批量生产的制品是否适宜用粉末压制法制造?为什么?95.还原粉末和雾化粉末的特点是什么?96.粉末压制制品为什么在压制后,一定要经过烧结才能达到所要求的强度和密度?97.粉末压制机械零件、硬质合金、陶瓷都是用粉末经压制烧结而成。

它们之间有何区别?各适用于哪些制品?98.硬质合金中的碳化钨和钴各起什么作用?能否用镍、铁代替钴?为什么?99.粉末压制件设计的基本原则是什么?为什么要这样规定?10. 试述注射成形、挤出成形、模压成形原理及主要技术参数的正确选用。

101. 塑料成形特性的内容及应用有哪些?102. 热塑性塑料注射模的基本组成有哪些?103. 何谓分型面?正确选择分型面对制品品质有哪些影响?104. 热塑性注射模普通浇注系统由哪些部分组成?各个组成部分的作用和设计原则是什么?105. 注射模成形零件设计包含哪些基本内容?106. 压塑模按凸凹模结构特征分类可分几类?它们各有什么特征?107. 压塑模的半闭合式凸凹模结构组成、储料槽、排气槽的结构有哪些?108. 挤出机头的分类及特点有哪些?机头设计的主要内容是什么?109. 塑料制品的结构技术特征包括哪些内容?针对具体的塑料制品,如何分析其技术特征110. 简述影响橡胶注射成形的主要技术因素及注射成形的应用特征。

111. 压延成形技术能够生产哪些橡胶制品?其生产过程与塑料压延有何异同?112. 挤出成形在橡胶加工中有何作用?影响挤出成形的主要因素是什么?113. 橡胶制品的成形特性包括哪些内容?114.模具的结构一般由哪几部分组成?何谓模具的封闭高度?有何作用?..115.对模具材料有哪些性能要求?选择模具材料的原则和需要考虑的因素有哪些?116.什么是模具寿命?有哪些因素会影响模具寿命?117.模具的主要失效形式有哪些?它们的失效机理是什么?118.模具制造的特点有哪些?模具的制造一般分为几个阶段?119.模具电火花加工的基本原理是什么?它必须满足哪几个基本条件?120.如何拟定材料成形方案?121.材料成形过程与材料的选择有什么关系?122.如何考虑材料成形过程的经济性与现实可能性?123.如何控制成形件的品质?124.什么叫做再制造技术?再制造技术的发展趋势如何?125.制造技术的主要研究内容是什么?名词解释1.液态金属的充型能力2.铸件的收缩3.铸件的缩孔和缩松4.铸件的化学偏析5.铸造应力6.低压铸造7.金属的可锻性8.体积不变定理9.最小阻力定律10.加工硬化11.落料和冲孔12.焊接热影响区13.金属材料的焊接性14.碳当量ωCE15.熔化焊接16.压力焊17.粉末压制塑料注射成形18.塑料的流动性19.注射过程20.模具基本组成..填空题1.影响金属充型能力的因素有:()、()和()。

2.浇注系统一般是由(),(),(),和()组成的。

3.壁厚不均匀的铸件,薄壁处易呈现()应力,厚壁处呈现()应力。

4.粗大厚实的铸件冷却到室温时,铸件的表层呈()应力,心部呈()应力。

5.铸造应力有( )、( )、( )三种。

6.纯金属或共晶成分的铸造合金在凝固后易产生( );结晶温度范围较宽的铸造合金凝固后易产生( )。

7.铸铁合金从液态到常温经历()收缩、()收缩和()收缩三个阶段;其中()收缩影响缩孔的形成,()收缩影响内应力的形成。

8.为防止产生缩孔,通常应该设置(),使铸件实现()凝固。

最后凝固的是()。

9.合金的流动性大小常用()来衡量,流动性不好时铸件可能产生()和缺陷。

10.浇注位置的选择原则是;();分型面的选择原则为: ()。

11.铸件上质量要求较高的面,在浇注时应该尽可能使其处于铸型的()。

12.低压铸造的工作原理与压铸的不同在于()。

13.金属型铸造采用金属材料制作铸型,为保证铸件质量需要在工艺上常采取的措施包括:()、()、()、()。

14. 影响铸铁石墨化的主要因素有()。

15. 球墨铸铁的强度和塑性比灰铸铁(),铸造性能比灰铸铁()。

16. 铸件的凝固方式有()。

17. 铸造应力的种类有(),()和()。

18. 浇注系统的作用是()。

19.常用的铸造合金有(),()和()三大类,其中()应用最广泛。

20.应用最广泛而又最基本的铸造方法是()铸造,此外还有()铸造,其中主要包括(),(),()和()等。

相关文档
最新文档