15.2.1_分式的乘方 公开课
15.2.1_分式的乘除(2)
x3 2 y 3 z 4 例4. 计算: ( 2 ) ( ) ( ) . 2 y x xy
x3 2 y z 解: ( 2 ) ( 2 ) 3 ( ) 4 y x xy
( x 3 )2 y3 (xy) 4 2 2 2 3 (y ) ( x ) ( z) 4
x : y : z 2 :3: 4
x y z 2 2 2 2x y z
2 2 2
则分式
的值.
已知
2 x 3 y z 0,3x 2 y 6 z 0, z 0
则分式
x y z 2 2 2 2x y z
2 2 2
的值.
2x y 2 (1)( ) 3z 3 4 2ab 2 6a 3c 3 ( 2) ( 2 ) 3 ( 2 ) c d b b 2 x 1 2 x 6x 9 2 1 ( 3)( ) ( ) 2 2 3 x 9 x x 2x 1
练习2
计算:
-2 x 4 y 2 3 ( 1)( ) ; 3z 2ab3 2 6a 4 -3c 3 (2)( 2 ) 3 ( 2 ) . -c d b b
试解相关题
x y 2. ( x y) xy 2x 6 ( x 3)( x 2) 3. ( x 3) 2 4 4x x 3 x
1 2 (3) 2 原式= 1 2 3
a ab ac (a b) c a (b c) 2 2 2 解: a ab 2ab a b a 2 b2
2 2 2 2
2
课堂练习
练习1 计算:
2m 2 n 5 p 2 q 5mnp ( 1) ; 2 2 3q 3 pq 4mn m -n (n-m) m+n (2) ; 2 2 2 m (m-n) mn 16-a 2 a- 4 a- 2 (3) 2 . 2a+8 a+ 2 a +8a+16
15.2.1分式的乘除第2课时
方法点拨
分式乘方的“三点注意” 1. 要把分式加上括号,分式中分子、分母 的系数也要乘方. 2.分式乘方时,分式本身的符号也要同时 乘方. 3.注意分子、分母乘方后的符号.
b b ab ( ) ∴ a b a - b a b
2
b (a - b)(a b) a b = a b ab a 1 ( 2) 当a=-1,b=-2时,原式= =-1 1 答案:-1
2 2
特别提醒
解本题的注意事项:
(1)已知条件中的等式是非负数的和等于0这种关系.
2
2
方法提示
分式乘除运算的“两点注意” 1.运算顺序:分式的乘除运算要从左到右依次运算. 2. 运算技巧:乘除混合运算,先统一成乘法运算, 能约分的要先约分,以减少运算量.
知识应用
二.分式的乘方 例3.计算
2a b (1) ( ) c
2
3
ab c bc (2) ( ) ( ) ( ) c ab a
15.2.1分式的乘除 第2课时
基础知识
1.分式的乘除混合运算: 乘法 运算. (1)分式的乘除混合运算可以统一为_____ 乘方 ,再 (2)式与数有相同的混合运算顺序:先 _____ 乘除. 2.分式的乘方: (1) 语 言 叙 述 : 分 式 乘 方 要 把 分 子 、 分 母 分 别 乘方 . n _____ a a n (2)字母表示: (n是正整数). ( ) =
思维训练
3 已知|3a-b+1|+ (3a b) =0. 2
2
人教版数学八年级上册15.2.1:分式的乘除法课件
分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
(2)12xy8x2y 5a
解:原式
12xy 5a
8
1 x2
y
12xy 5a 8x2 y
3 10 ax
巩固 练习
(3) xy yx ; xy xy
解:原式 x y -(x y) ; xy xy
(x y)(x y) (x y)(x y)
分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
一定要注意符号变化呦!
当分子分母是多项式时,先分解因式便于约分的进行
3a16b 分 的乘法法则:
解:原 式 分 的乘法法则:
2
4b9a (3)因式分解在分式乘除法中的应用;
思考:类比分数的乘除法法则,你能说出分式的乘除法法则吗?
分数除以分数,把除数的分子、分母颠倒位置后,与被除数相乘。
2 分式运算的结果通常要化成最简分式或整式.
4 xy (3)因式分解在分式乘除法中的应用; 当分子分母是多项式时,先分解因式便于约分的进行 2
3 3 分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
6 x y 分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
当分子分母是多项式时,先分解因式便于约分的进行
分 的乘法法则:
(3)因式分解在分式乘除法中的应用;
4xy 分 的除法法则:
解:原 式 (2)运用法则时注意符号变化;
(3)因式分解在分式乘除法中的应用;
3
3y2x (1)分式的乘除法法则;
当分子分母是多项式时,先分解因式便于约分的进行
分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
15.2.1《分式的乘除--2》教案
学科:数学 授课教师: 年级:八 总第 课时课 题15.2.1《分式的乘除----分式的乘除及乘方的混合运算》课时教学目标 知识与技能 1、熟练地进行分式乘除法的混合运算.2、掌握分式的乘方。
过程与方法 在探索过程中,体会知识间的关系,感受数学与生活的联系.情感价值观 培养学生转化思想和解决问题的能力及逆向思维能力。
培养学生认真思考的习惯. 教学重点 1、熟练地进行分式乘除法的混合运算. 2、掌握分式的乘方。
教学难点熟练地进行分式乘除法及分式的乘方的混合运算.教学方法 创设情境-主体探究-合作交流-应用提高 媒体资源 多媒体投影教 学 过 程教学流程 教 学 活 动学生活动设计意图复习旧知 计算: (1) ÷ ×(- ) (2) ÷( )×(- )计算复习分式的乘除 分式乘除混合运算 1、例题1:计算:2、例题2:(P138页:例题4)÷ × 3、练习:P139页:练习:第1题。
动手计算掌握乘除混合运算) 4 ( 3 ) 9 8 ( 2 3 2 3 2 b xb a xy yx ab - ÷ - ⋅ x x x x x x x - - + ⋅+ ÷ + - - 3 )2 )(3 ( ) 3 (4 4 4 6 2 2 y x 3x y -xy 12x22x y 34x y 53x x +23259x -253x x -分式的乘方1、探究:思考:计算:2、分式的乘方:分式乘方要把分子、分母分别乘方。
=3、例题:计算:P139页:例题:5 。
4、练习:P139页:练习:第2题探究思考解答理解掌握分式的乘方巩固深化1、计算(1))2(216322baabcab-⋅÷(2)103326423020)6(25baccabbac÷-÷xyyxxyyx-÷-⋅--9)()()(343222222)(xyxxyyxyxxxy-⋅+-÷-2、计算)6(4382642zyxyxyx-÷⋅- (2)9323496222-⋅+-÷-+-aababaa229612316244yyyyyy--÷+⋅-+-(4)xyyxyyxxyxxyx-÷+÷-+222)(讨论计算熟练进行分式乘除法及分式的乘方的混合运算.课堂小结1、分式乘方。
人教版八年级上册数学15.2.1分式的乘除第1课时分式的乘除课件
分数
概念 意义
基本 性质
加减乘 除运算
应用
数
般
类
类
类
类
类式
方 法
比
一 般
分式
比
概念 意义
比
基本 性质
比
加减乘 除运算
比通 性
应用
探究新知
知识点1 分式的乘法 问题1 一个长方体容器的容积为V,底面的长为a,宽为b,
当容器内的水占容积的 m 时,水面的高度为多少? n
V 长方体容器的高为___a_b_____.
b
C. ab
D. a
知识点2 分式的除法 问题2 大拖拉机m 天耕地a hm2,小拖拉机n天耕地b hm2,
大拖拉机的工作效率是小拖拉机的工作效率的多少倍?
大拖拉机的工作效率为 a hm2/天; m
小拖拉机的工作效率为 b hm2/天. n
大拖拉机的工作效率是小拖拉机的工作效率的 a b 倍. mn
例2 计算(1):
a2 4a 4
a2 2a 1
a 1 a2 4
a 22 a 12
a
a 1
2 a
2
分子、分母是多 项式时,先分解 因式便于约分.
xx
a 22 a 1
a 12 a 2 a 2
a
a2
1 a
2
< 针对训练 >
计算 a2
b a3
的结果为(
D)
A. b B. -b
【选自教材P138 练习 第2题】
(2)12xy 8x2 y 5a 3 10ax
(4) x y y x x y x y
1
3. 计算:
【选自教材P138 练习 第3题】
八年级上册数学15.2.1第2课时分式的乘方及乘除混合运算级
乘方
(x - y)2 x2 y2
(x2
y2)
(x
x3 - y)3
除法变乘法
(x - y)2 (x y)( x y) x3
x2 y2
(x - y)3
分解因式
x2 xy y2 .
乘法、约分
探索新知
知识点2 分式的乘方
含有乘方的分式乘除混合运算的步骤 (1)先算分式的乘方; (2)除法变乘法; (3)若分子或分母为多项式,要分解因式; (4)进行乘法运算,约分得到结果.
第十五章 分式
15.2.1 分式的乘除
第2课时 分式的乘方及乘除混合运算
学习目标-新课导入-探索新知-课堂小结-课堂练习
人教版·八年级上册
学习目标
1.进一步熟练分式的乘除法则,会进行乘、除法的混合运算.(重点) 2.了解并掌握分式的乘方法则.(重点) 3.能熟练运用分式的乘方法则进行计算,会进行含乘方的分式的乘 除混合运算.(难点)
(x
3)(x
3)
1.
课堂练习
7.(1)化简:a a
2 2
-
4 a
(
a -1 a2
)2
a a2
2 1 2a
.
解:原式 (a 2)(a 2) a(a 1)
a 12 a 22
a(a 2) (a 1)(a 1)
a a
2 1
.
1
(2)当a=5时,其结果为 2 .
(3)请你选择一个你喜欢的数作为a的值,则a不可以取 0,±1,-.2
(2)( 3xy 2 )3; 4z
解:(1)
( 2a2b )2 3c
( 2a 2b) 2 (3c)2
4a4b2 9c2
;
15.2.1.2 分式的乘方及乘除混合运算(课件)人教版数学八年级上册
3
2)原式=
2 2
2=
(3np) 9n p
小组讨论
1. 请同学们根据刚才有关分式乘方的练习,总结一下进行分
式乘方时,有哪些需要注意的地方.
要先确定乘方结果的符号,负的分式的偶次方为正,奇次方为负
2.如果将分式的乘方和乘除运算混合在一起,运算顺序应该
例
1
a-b2 -a 3
÷2
5:计算:
2.
·
a -b
ab b-a
2
3
(a-b)2
a
+ab
a
解:原式= a2b2 ·
(a+b)(a-b)= b2 .
3·
(a-b)
例
ab2
6:已知(a-3)2+|b-4|=0,求a+b2
1
ab3
的值.
÷2
2·
a -b 2(a-b)
3.通过经历转化过程,感受事物间辩证统一的相互关系,
让学生在探索讨论中养成与他人合作交流的习惯,并培
养克服困难的勇气和信心.
旧识回顾
2x
3
4b 25ac3
请同学们计算:(1)
÷
;(2)5a·6b2 .
5x-3 25x2-9
2x
3
(1) 原 式 =
÷
=
5x-3
(5x+3)(5x-3)
2
2x (5x+3)(5x-3) 10x +6x
15.2分式的运算
15.2.1分式的乘除
15.2.1.2
分式的乘方及乘除混合运算
学习目标
1. 通过转化思想将乘除混合运算统一为乘法运算,熟练地
初中数学人教版八年级上册《15.2.1分式的乘除》优质课公开课比赛获奖课件面试试讲课件
x 4y x 2 解:原式 2 2 x 4 x 4 3x 6 xy
( x 2 y )(x 2 y ) x2 2 1 ( x 2) 3x( x 2 y )
1 ( x 2 y) 1 ( x 2) 3 x 1
x 2y 2 3x 6 x
2
1
111 1 a 1 1 a
1
注意: 将分式 的分子、 分母因 式分解 后约分。
x 4y 3x 6 xy 课堂练习: 2 x 2 4 x 4 x 2 2
2 2 2
一
分式除法 法则:除 以一个数 等于乘以 这个数的 倒数。 (将分式 的分子与 分母交换 位置)
2
2
a b ab
3
x y 4y
2
x 6x 9
2
5 x 20
2
温故知新:
3 1 计算: 3 3 1 95 9 5 10 6 2 2 4 10 6 2 2 分式的乘法法则:分式乘分式, 知识迁移:模仿 计算1
用分子的积作为积的分子,分 母的积作为积的分母.
• 三项式:
• 1、提公因式; • 2、完全平方公式(十字相 乘法); • 3、提公因式 加 完全平 方公式。
游戏规则:
• 一、仅用提公因式进行运算的就鼓 掌三次; • 二、仅用公式法进行因式分解的就 拍桌子三次; • 三、需要用提公因式和公式法两种 方法解决的就跺脚三次。
x 2x
2
x y
3x 2x (2) x 1 x 1
你能得出分式的除法法则吗? 分式除法法则: 除以一个数等于乘以这个 数的倒数。(将分式的分子与 分母交换位置)
15.2.1+分式的乘除+课件-+2024—2025学年人教版数学八年级上册
3
9 x2
x 3
x
3
例 3:计算
9 6 x x2
x3
分子分母中有多项式时,分式乘除有哪些运算步骤?
检测
x2 1
x 1 2 2x
2
x 2x 1 x 1 x 1
例4.通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,
因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都
(ab)n = an·bn
的证明
n个ab
(ab)n = ab·ab·……·ab
n 个a
(
幂的意义
)
n个b
=(a·a·……·a) (b·b·……·b) ( 乘法交换律、结合律 )
=an·bn.
n
(
幂的意义
a
猜想 结果是多少呢?你能说出推理过程吗?
b
)
n
分式的乘方法则
an
a
n
初步应用
例1
计算:
巩固练习
计算:
初步应用
例2 计算:
巩固练习
计算:
实际应用
“丰收1号”小麦的试验田是边长为a m(a>1)的正方形
去掉一个边长为1 m的正方形蓄水池后余下的部分,“丰收2号”
小麦的试验田是边长为(a-1)m的正方形,两块试验田的小
麦都收获了500 kg.
(1)哪种小麦的单位面积产量高?
么?
15.2.1 分式的乘除(第2课时)
课前检测
结合课前小测第4题的计算,你能说说分式的乘法法则和除法法则吗?
若同时有乘除运算,你会计算吗?
计算
《分式的乘除》人教版数学ppt课件1
45 35
1 024 . 243
2.对于任意一个正整数n,第n步得到的折线的总长度是多少?
(4)n 4 4 3 33
4 44 3 33
4 3
4n 3n
.
分
对于任意一个正整数n,有
式
的
( f )n g
=
fn gn
.
乘 方 法
分式乘方要把分子、分母分别乘方.
则
【例题】
例3 计算:
(1 )
(
x y2
1
(a-1)2 m2,单位面积产量是 5 0 0 kg/m2.
(a 1)2
∵0<(a-1)2< a 2-1,
∴ 500 a2 1
500 (a 1)
2
,∴“丰收2号”小麦的单位面积产量高.
( 2 ) (a 5 0 1 0 )2a 5 2 0 0 1(a 5 0 1 0 )2a 5 2 0 0 1a a 1 1 ,
n 航行的时间比是______.
面积产量是 kg/m2;
a b ∴“丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的 倍.
作效率的( )倍. 第二步,把上述折线中每一条线段重复第一步的做法,便得到由长度相等的线段组成的折线,总长度为
m n 【例2】“丰收1号”小麦的试验田是边长为a m的正方形去掉一个边长为1 m的正方形蓄水池后余下的部分,“丰收2号”小麦的试验
m m 7
课堂练习 计算
3a 16b
3ab 10xy
(1) 4b 9a 2 (2) 4x 2 y 21b
12xy (3)
8x 2 y
5a
2y 2 (4) 3xy
3x
太有趣了,我还想做
15.2.1.2分式的乘方(课件)八年级数学上册(人教版)
2a
x2 y2 2
x 3
2
(2)(
) ( x y) (
) .
xy
x y
a 2 b 3 2a c 2
a 6b 3 2a c 2
(1)(
) 3 ( ) 3 9 3 2
3
cd
d
2a
c d
d 4a
a 6b3 d 3 c 2
a 3b 3
3 9 2
.
6
mn
mn
m
m
A.-
B.
C.-
D.
2
2
2
2
2a 3 2b 2
2b 2
-
-
2.计算 b2 · a ÷ a 的结果是( B )
8a
8a3
16a2
16a2
A.-
B.- 6 C.
D.- 6
b6
b
b6
b
3.下列运算正确的是( D )
A.(-a3)2=-a6
B.2a2+3a2=6a2
C.2a2·a3=2a6
b2 3
3
y
8x
8x
3
4
4
2
3
4
2
x y
x y
x y
z
2 3 2 4 2
(2) 原式
3
2
y x
z
y x x y
2
z
3 .
x y
订正错题本
n
x
x2n
D. 2 n 3n
y
y
n
计算时符号弄错
n
x
n x
2 n (1) 2 n2
2024年人教版八年级上册第十五章 分式分式的运算
15.2.1 分式的乘除 第1课时 分式的乘除课时目标1.通过类比分数的乘除法法则得出分式的乘除法法则,从中体会“数式通性”和类比转化的思想方法,发展学生的抽象能力.2.使学生经历分式的乘除运算规律的发现过程,培养学生自主探索、自主学习、自主归纳知识的意识,进一步提高学生的运算能力.3.通过运用分式的乘除法法则进行运算,解决一些与分式乘除法有关的实际问题,使学生养成理论联系实际的习惯,发展实践能力,培养应用意识. 学习重点运用分式的乘除法法则进行运算. 学习难点分子、分母为多项式的分式的乘除运算. 课时活动设计回顾引入大家之前学习过分数的乘除法法则,现在是否还有印象?师生活动:教师在黑板列出2道分数乘除法的题目,并请两位学生上台板书. 计算:(1)23×56; (2)23÷56.解:(1)23×56 = 2×53×6 = 59. (2)23÷56 = 23×65= 2×63×5 = 45.设计意图:通过回顾分数的乘除法法则引入新课,为学习分式的乘除法法则作铺垫.探究新知问题1:一个长方体容器的容积为V ,底面的长为a ,宽为b ,高为h ,当容器内的水占容积的mn 时,水高多少?解:水高=h ×mn =Vab ×m n =Vmabn.问题2:大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?解:倍数=大拖拉机的工作效率小拖拉机的工作效率=a m ÷b n =a m ×n b =an bm.问题3:观察下列运算.23×45=2×43×5;57×29=5×27×9;23÷45=23×54=2×53×4;57÷92=5×27×9.猜一猜:a b ×dc =?b a ÷dc =? 解:a b ×d c =a×db×c , b a ÷d c =b a ·c d =b×ca×d.类比分数的乘除法法则,你能说出分式的乘除法法则吗?师生活动:通过教学活动1中的具体例子,引导学生回忆前面学过的分数的乘除法法则,利用类比的方法得出分式的乘除法法则.乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 用式子表示为:a b ·c d =a·c b·d ,a b ÷c d =a b ·d c =a·db·c.设计意图:以此活动激活学生原有的知识体系,充分体现学生的学习是在原有知识的基础上自我生成的一个过程,有利于让学生更好地掌握类比的学习方法.典例精讲 例1 计算:(1)4x3y ·y2x 3; (2)ab 32c 2÷-5a 2b 24cd .解:(1)原式= 4xy6x 3y = 23x 2.(2)原式=ab 32c 2·4cd-5a 2b 2=-4ab 3cd10a 2b 2c 2=-2bd5ac .例2 计算:(1)a 2-4a+4a 2-2a+1·a -1a 2-4; (2)149−m 2÷1m 2-7m .解:(1)原式=(a -2)2(a -1)2·a -1(a -2)(a+2)=(a -2)2(a -1)(a -1)2(a -2)(a+2) =a -2(a -1)(a+2). (2)原式=1(7+m)(7-m)×m(m -7)1=-m7+m .例3 如图,“丰收1号”小麦的试验田是边长为a m 的正方形去掉一个边长为1 m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)m 的正方形,两块试验田的小麦都收获了500 kg .(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?解:(1)“丰收1号”小麦的试验田面积是(a 2-1)m 2,单位面积产量是500a 2-1 kg/m 2; “丰收2号”小麦的试验田面积是(a -1)2 m 2,单位面积产量是500(a -1)2 kg/m 2. ∵a >1,∴(a -1)2>0,a 2-1>0.∵(a -1)2-(a 2-1)=2-2a <0,∴(a -1)2<a 2-1. ∴500a 2-1<500(a -1)2.所以“丰收2号”小麦的单位面积产量高. (2)500(a -1)2÷500a 2-1=500(a -1)2·a 2-1500=(a+1)(a -1)(a -1)2=a+1a -1.所以“丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的a+1a -1倍.设计意图:通过例题,使学生掌握分式的乘除法法则,引导学生用分式的乘除法解决生活中的实际问题,提高“用数学”的意识,让学生感受到学以致用,体会到能够完整解决问题的喜悦,同时训练学生的书面表达能力,培养学生解决问题的能力.巩固训练 1.计算:(1)3a 5b ·2b6a 2; (2)2x5mn ÷y4x .解:(1)原式=3a·2b5b·6a 2=15a .(2)原式= 2x5mn ×4xy = 2x·4x5mn·y = 8x 25mny . 2.计算:(1)a -b2ab ·3a 2b3a 2-3b 2; (2)9y 2-x 2x 2+2x+1÷2x -6yx+1. 解:(1)原式= (a -b)·3a 2b2ab·3(a+b)(a -b) = a2a+2b . (2)原式= 9y 2-x 2x 2+2x+1·x+12x -6y=(3y -x)(3y+x)·(x+1)(x+1)2·2(x -3y)=-3y+x2x+2.设计意图:通过巩固训练,及时巩固本节课所学知识,帮助学生熟练掌握分式的乘除法法则.课堂小结1.本节课探究了分式的哪些问题?2.分式的乘法法则:a b ·c d =a·cb·d .3.分式的除法法则:a b ÷c d =a b ·d c =a·d b·c.设计意图:通过课堂小结,回顾本节课所学知识,及时查漏补缺.课堂8分钟.1.教材第138页练习第2,3题,第146页习题15.2第1,2题.2.七彩作业.第1课时 分式的乘除一、分式的乘除法法则:分式的乘除{乘法法则:a b ·cd =a·cb·d ;除法法则:a b ÷c d =a b ·d c =a·d b·c .二、例题讲解.注意:1.运用法则时注意符号的变化; 2.因式分解在分式乘除法中的应用; 3.结果要化成最简分式或整式. 三、课堂评价.教学反思第2课时 分式的乘方及乘除混合运算课时目标1.让学生经历分式的乘方法则的生成过程,培养学生自主探索、自主学习、交流合作的意识,提高学生的总结归纳能力.2.运用分式的乘除法法则、分式的乘方法则解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的运算能力.3.类比分数的乘除法、乘方混合运算,进行分式的乘除法、乘方混合运算,让学生体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力. 学习重点会进行分式的乘方运算,分式的乘除法、乘方混合运算. 学习难点分式的乘除法、乘方混合运算以及运算中符号的确定. 课时活动设计回顾引入引导学生用自己的语言描述分式的乘除法法则. 教师在黑板上列出分式的乘除法法则: 分式的乘法法则:a b ·cd = a·cb·d ;分式的除法法则:a b ÷cd=a·d b·c.设计意图:通过回顾分式的乘除法法则,来确认学生是否掌握了分式的乘法、除法运算,为本节课的学习打好基础.探究新知问题1:计算:2x5x -3÷325x 2-9·x5x+3.解:原式=2x 5x -3·25x 2-93·x5x+3=2x 23.问题2:计算下列各题:(1)(a b )2; (2)(a b )3; (3)(a b )4; (4)(a b )n.(n 为正整数) 解:(1)原式=a b ·a b =a·a b·b =a 2b 2.(2)原式=a b ·a b ·a b =a·a·a b·b·b =a 3b 3.(3)原式=a b ·a b ·a b ·a b =a·a·a·a b·b·b·b =a 4b 4.师生活动:教师引导学生观察前三个小问中等式两边有怎样的联系,再根据乘方的意义和分式乘法的法则推导出分式乘方的运算法则:(a b )n =ab ×ab ×…×a b ⏟ n 个=a×a×…×a⏞ n 个b×b×…×b ⏟ n 个=a n b n,即(a b )n =a nb n .(n 为正整数) 教师引导学生用文字描述分式乘方的运算法则:分式乘方要把分子、分母分别乘方.设计意图:先引导学生观察若干特例,再归纳出分式乘方的运算法则.在这个过程中学生可以通过比较、联想、探索,从直观中归纳出理性的规律,促使学生学习从特殊到一般的认识事物的思维方法.典例精讲 例 计算: (1)(-2a 2b 3c)2; (2)(a 2b-cd 3)3÷2a d 3·(c2a)2.解:(1)原式=(-2a 2b)2(3c)2=4a 4b 29c 2.(2)原式= a 6b 3-c 3d 9 ÷2a d 3·c 24a 2 = a 6b 3-c 3d 9·d 32a ·c 24a 2= -a 3b 38cd 6.设计意图:引导学生回忆前面学过的分数的乘除法、乘方混合运算,利用类比的方法进行分式的乘除法、乘方混合运算,体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,提高学生的运算能力.巩固训练 1.计算:(1)2x 2-3y 2·-5y6x ÷10y-21x 2; (2)a 2-1a 2-4a+4÷a+12−a ·2+a1−a ;(3)(-x 2y )2·(-y 2x)3÷(-y x )4.解:(1)原式=2x 2-3y 2·-5y 6x ·-21x 210y =-7x 36y 2.(2)原式=(a+1)(a -1)(a -2)2·-(a -2)a+1·a+2-(a -1)=a+2a -2.(3)原式=x 4y 2·(-y 6x 3)·x 4y4=-x 5. 2.先化简,再求值:a -1a+2·a 2-4a 2-2a+1÷1a 2-1,其中a 满足a 2-a =0. 解:原式=a -1a+2·(a+2)(a -2)(a -1)2·(a +1)(a -1)=(a -2)(a +1)=a 2-a -2=-2.设计意图:通过巩固训练,让学生自主探索、充分交流,在运算的过程中使学生掌握基础知识、基本的运算方法,体会运算法则和运算顺序,内化自身的运算认知,在循序渐进的运算中,提高自己的运算能力,同时通过具体的解题步骤,让学生感受到数学的严谨性,规范解题步骤和书写格式.课堂小结1.本节课探究了分式的哪些问题?2.分式乘方的运算法则:分式乘方要把分子、分母分别乘方.3.分式的乘除混合运算.设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第139页练习第1,2题,第146页习题15.2第3题.2.七彩作业.第2课时 分式的乘方及乘除混合运算一、分式的乘除法运算.分式的乘除法运算归根结底是乘法运算. 二、分式的乘方:(a b )n =a nb n ,即分式乘方要把分子、分母分别乘方. 三、例题讲解. 四、课堂评价.教学反思15.2.2分式的加减第1课时分式的加减课时目标1.让学生经历分式的加减法法则的生成过程,培养学生自主探索、自主学习、自主归纳知识的意识,提高学生知识的类比迁移能力.2.运用分式的加减法法则解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的运算能力.3.类比分数的加减法运算,进行分式的加减法运算,让学生体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力.学习重点运用分式的加减运算法则进行运算.学习难点异分母分式的加减运算.课时活动设计情境引入甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?教师引导分析,学生思考、交流.解:甲工程队一天完成这项工程的1n ,乙工程队一天完成这项工程的1n+3,两队共同工作一天完成这项工程的(1n +1n+3).设计意图:通过具体问题情境导入新课,让学生感受到分式的加减运算是由实际需要产生的,激发学生的学习兴趣,提高学生的学习效率.探究新知问题1:2009年、2010年、2011年某地的森林面积(单位:km 2)分别是S 1,S 2,S 3,2011年与2010年相比,森林面积增长率提高了多少?学生小组讨论,选取两名学生分别列出2010年、2011年的森林面积增长率: 解:2010年的森林面积增长率是S 2-S 1S 1,2011年的森林面积增长率是S 3-S 2S 2.根据2010年、2011年的森林面积增长率,得出结论: 解:2011年与2010年相比,森林面积增长率提高了S 3-S 2S 2-S 2-S 1S 1.教学中讨论这两个问题时,重点放在列出算式,为引出分式的加减法法则做准备.问题2:请同学们先填空,再观察下列分数加减运算的过程:15+25= (35),15-25 = (-15); 12+13=(36)+(26)=(56),12-13=(36)-(26)=(16). 追问:你能根据上面的式子,类比分数加减法法则,得出分式的加减法法则吗? 师生活动:学生先观察分数加减运算的过程,然后选一名学生用符号总结前两个分数加减运算的规律:a c ±bc = a±b c;再选一名学生用符号总结后两个分数加减运算的规律:a b ±cd = ad bd ±bcbd=ad±bc bd .教师引导学生用文字表述分式的加减法法则: 同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.设计意图:从学生已有的数学经验出发,建立新旧知识之间的联系.类比同分母与异分母分数的加减,学生很容易归纳出同分母分式与异分母分式加减的方法,培养学生交流合作能力和创新实践能力.典例精讲 例 计算: (1)m+n n+m -n n; (2)a 2a -b -b 2a -b ; (3)5x+3y x 2-y 2-2xx 2-y 2.解:(1)原式=(m+n)+(m -n)n=2mn . (2)原式=a 2-b 2a -b =(a+b)(a -b)a -b =a +b. (3)原式=3x+3yx 2-y2=3(x+y)(x+y)(x -y)=3x -y.设计意图:设置一组同分母分式的加减法运算,目的是让学生掌握同分母分式加减法法则:同分母分式相加减,分母不变,把分子相加减,同时内化运算法则,提升运算能力.巩固训练 1.计算: (1)a 2b 2ab-ab -b 2ab -a2; (2)a 2+b 2a -b-a -b ; (3)12p+3q +12p -3q.解:(1)原式=ab -b(a -b)a(b -a)=ab +b a =a 2b+ba.(2)原式=a 2+b 2-(a -b)(a+b)a -b=2b 2a -b .(3)原式=2p -3q+2p+3q(2p+3q)(2p -3q)=4p4p 2-9q 2.2.观察下列分式的加减的运算过程是否正确,如果不正确,请把正确的运算过程写下来.(1)a 2+b 2ab -a 2-b 2ab =a 2+b -a 2-b2ab =0;(2)x 2x -1-x -1=x 2x -1-x -11=x 2-(x -1)2x -1=2x -1x -1.解:(1)不正确,a 2+b 2ab -a 2-b 2ab =a 2+b -a 2+b2ab=2b 2ab =1a .(2)不正确,x 2x -1-x -1=x 2x -1-x+11=x 2-(x -1)(x+1)x -1=x 2-x 2+1x -1==1x -1.设计意图:通过设置巩固训练,巩固本节课所学知识,及时查漏补缺.课堂小结1.本节课探究了分式的哪些问题?2.分式的加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第141页练习第1,2题,第146页习题15.2第4,5题.2.七彩作业.第1课时分式的加减一、分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,用式子表示为ac ±bc=a±bc;异分母分式相加减,先通分,变为同分母的分式,再加减,用式子表示为ab ±cd=adbd±bcbd=ad±bcbd.二、例题讲解:(1)分式加减运算的结果要化成最简分式或整式;(2)同分母分式相加减时要注意:“把分子相加减”就是把各个分式的分子“整体”相加减,在这里要注意分数线的括号作用;(3)异分母分式加减法的一般步骤:①通分;②加减;③合并;④约分;(4)整式可以看成是分母为1的分式.三、课堂评价.教学反思第2课时分式的混合运算课时目标1.通过类比分数的混合运算顺序,归纳得出分式的混合运算顺序,体会数与式的发展过程,感悟数与式在运算法则和运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力.2.通过运用分式的混合运算解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的实践能力.3.通过使学生经历分式混合运算的过程,培养学生积极思考、自主探索、合作交流和辨析提高的学习意识,提高学生的运算能力.学习重点熟练地进行分式的混合运算.学习难点熟练地进行分式的混合运算及化简求值问题.课时活动设计情境引入有一财主死后,他的两个儿子高兴地打开父亲留下的藏宝地图,看到上面有一段文字记录:计算x 2-2x+1x2-1÷x-1x2+x-x的值,就是我留给你们的全部宝物.老大拿出纸笔一算,一气之下将藏宝图一把扔了,老二连忙捡起,经过仔细思考算出后,生气地一把火烧掉了它.财主忘记了写x的值,两个儿子是怎么计算出宝物的情况的呢?财主到底留下了多少宝物呢?通过本节课的学习,你就会明白其中的道理了.设计意图:设置故事情境引入新课,让枯燥的计算问题变得更具吸引力,调动起学生学习的积极性,激发他们的求知欲.探究新知 问题1:计算:(x 2-4x+4x 2-4-x x+2)÷x -1x+2.解:原式=[(x -2)2(x -2)(x+2)-xx+2]·x+2x -1=(-2x+2)·x+2x -1=-2x -1.教师引导学生类比分数的混合运算顺序,总结分式的混合运算顺序: 先乘方,再乘除,最后算加减,有括号的先算括号里面的. 教师针对这类题目给学生提供以下建议:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算更简便; (2)计算乘除时,要随时对分子、分母进行因式分解; (3)注意括号的“添”或“去”; (4)结果要化为最简分式或整式.设计意图:从学生已有的数学经验出发,建立新旧知识之间的联系.学生通过类比、思考,激活原有知识,让学生感悟自己的学习是在原有知识的基础上自我生成的过程.典例精讲 例 计算:(1)(2a b )2·1a -b -a b ÷b4; (2)(m +2+52−m )·2m -43−m ;(3)(x+2x 2-2x -x -1x 2-4x+4)÷x -4x .解:(1)原式=4a 2b 2·1a -b -a b ·4b =4a 2b 2(a -b)-4ab 2=4a 2b 2(a -b)-4a(a -b)b 2(a -b)=4a 2-4a 2+4ab b 2(a -b)=4ab b 2(a -b)=4aab -b 2.(2)原式=(m +2+52−m )·2m -43−m =9−m 22−m ·2(m -2)3−m=(3-m)(3+m)2−m·-2(2-m)3−m=-2(m +3)=-2m -6.(3)原式=[x+2x(x -2)-x -1(x -2)2]·xx -4=(x+2)(x -2)-(x -1)x x(x -2)2·xx -4 =x 2-4-x 2+x(x -2)2(x -4)=1(x -2)2.设计意图:设置这一组分式的混合运算的例题,目的是让学生进一步掌握分式混合运算时的运算顺序,培养学生良好的运算习惯,让学生在运算的过程中体会运算顺序和各项法则,内化自身的运算认知,在循序渐进的运算中,提高自己的运算能力.巩固训练 1.计算:(1)x 2x -1-x -1; (2)(1−2x+1)2÷x -1x+1;(3)2ab(a -b)(a -c)+2bc(a -b)(c -a); (4)(1x -y +1x+y )÷xyx 2-y 2.解:(1)原式=x 2x -1-(x+1)(x -1)x -1=x 2-x 2+1x -1=1x -1.(2)原式=(x+1x+1-2x+1)·x+1x -1=x -1x+1·x+1x -1=1.(3)原式=2ab -2bc(a -b)(a -c)=2b(a -c)(a -b)(a -c)=2ba -b . (4)原式=[x+y(x -y)(x+y)+x -y(x+y)(x -y)]·(x+y)(x -y)xy=2x(x+y)(x -y)]·(x+y)(x -y)xy=2y .2.先化简再求值:1x+1-1x 2-1·x 2-2x+1x+1,其中x =√2-1. 解:原式=1x+1-1(x+1)(x -1)·(x -1)2x+1 =1x+1-x -1(x+1)2=x+1−(x -1)(x+1)2=2(x+1)2.当x =√2-1时,原式=(√2-1+1)2=(√2)2=22=1. 设计意图:通过巩固训练,及时巩固本节课所学知识,帮助学生更好地掌握分式的乘除法法则,熟练地进行分式的混合运算.课堂小结1.本节课探究了分式的哪些问题?2.分式的混合运算顺序:先乘方,再乘除,最后算加减,有括号的先算括号里面的.3.进行分式的混合运算时注意的问题:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算更简便;(2)计算乘除时,要随时对分子、分母进行因式分解;(3)注意括号的“添”或“去”;(4)结果要化为最简分式或整式.设计意图:通过课堂小结,回顾本节课所学知识,及时查漏补缺.课堂8分钟.1.教材第142页练习第2题,第146页习题15.2第6题.2.七彩作业.第2课时分式的混合运算一、分式的混合运算顺序:先乘方,再乘除,最后算加减,有括号的先算括号里面的.二、例题讲解:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算简便;(2)计算乘除时,要随时对分子、分母进行因式分解;(3)注意括号的“添”或“去”;(4)结果要化为最简分式或整式.三、课堂评价.教学反思15.2.3整数指数幂第1课时整数指数幂的运算性质课时目标1.让学生经历负整数指数幂运算性质的得出过程,提高学生归纳、类比和抽象的能力,培养学生的创新意识.2.通过经历整数指数幂的获得过程,让学生感受到数学知识间合理的内在逻辑,培养学生的合情推理,提高学生的推理能力.3.让学生在运用整数指数幂的运算性质进行计算的过程中逐步内化自身的认知,提高学生的运算能力.学习重点掌握整数指数幂的运算性质.学习难点负整数指数的性质的理解和应用.课时活动设计复习回顾我们知道,当n是正整数时,a n=a·a·a·…·a⏟n个.回忆正整数指数幂的运算性质:(1)a m·a n=a m+n(m,n是正整数);(2)a m÷a n=a m-n(a≠0,m,n是正整数,并且m>n);(3)(a m)n=a mn(m,n是正整数);(4)(ab)n=a n b n(n是正整数);(5)(ab )n=anb n(n是正整数);(6)a 0= 1 (a ≠0).a m 中的指数m 可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么? 设计意图:引导学生回忆正整数指数幂的运算性质,温故而知新,唤醒学生已有的知识体系,通过复习正整数指数幂和0指数幂的性质,引入负整数指数幂,为新知识的合理介入指明了方向,有利于学生知识的完整构建,为本节课的学习作铺垫.探究新知用正整数指数幂的运算性质(2)(将m >n 这一条件去掉)和分式的约分两种方式计算52÷55,并观察两种方式的计算结果,你能有什么发现?学生自己独立完成计算,分小组交流讨论,教师给出完整的计算过程并总结. 52÷55=52-5=5-3,52÷55=5255=153.观察这两个式子可以发现5-3=153.学生通过上面的内容可以得到a m ÷a n =a m -n 这条性质也适用于像52÷55这样的情形.一般地,当n 是正整数时,a -n =1a n (a ≠0).这就是说,a -n (a ≠0)是a n 的倒数. 引入负整数指数和0指数后,a m ·a n =a m +n (m ,n 是正整数)这条性质能否推广到m ,n 是任意整数的情形?教师通过以下计算过程引导学生发现规律,并进行总结. a 3·a -5=a3a 5=1a 2=a -2=a 3+(-5),即a 3·a -5=a 3+(-5);a -3·a -5=1a 3·1a 5=1a 8=a -8=a (-3)+(-5),即a -3·a -5=a (-3)+(-5); a 0·a -5=1·1a 5=1a 5=a -5=a 0+(-5),即a 0·a -5=a (0)+(-5). 归纳:1.a m ·a n =a m +n 这条性质对于m ,n 是任意整数的情形仍然适用; 2.随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质也推广到整数指数幂.设计意图:按照从特殊到一般、从具体到抽象的认识过程,让学生类比发现,自己总结结论,实现学生主动参与、探究新知识的目的,从而培养学生归纳、类比和抽象的能力.典例精讲例计算:(1)a-2÷a5;(2)(b 3a2)-2;(3)(a-1b2)3;(4)a-2b2·(a2b-2)-3.解:(1)a-2÷a5=a-2-5=a-7=1a7.(2)(b 3a2)-2=b-6a-4=a4b-6=a4b6.(3)(a-1b2)3=a-3b6=b 6a3 .(4)a-2b2·(a2b-2)-3=a-2b2·a-6b6=a-8b8=b 8a8.提醒:(1)解题时应直接运用这些性质,而不要急于转化为分式形式;(2)整数指数幂的运算性质也可以逆向进行;(3)通常计算的最后结果要写成分式的形式.设计意图:这是一组直接运用整数指数幂的运算性质进行计算的题目,通过例题使学生掌握指数由正整数拓展到整数后的新情形,熟练使用运算方法,掌握运算技能,提高运算能力.归纳总结根据整数指数幂的运算性质,当m,n为整数时,a m÷a n=a m-n,a m·a-n=a m+(-n)=a m-n,因此a m÷a n=a m·a-n,即同底数幂的除法a m÷a n可以转化为同底数幂的乘法a m·a-n,特别地,ab =a÷b=a·b-1,所以(ab)n=(a·b-1)n,即商的乘方(ab)n可以转化为积的乘方(a·b-1)n,这样,整数指数幂的运算性质可以归纳为:(1)a m÷a n=a m+n(m,n是整数);(2)(a m)n=a mn(m,n是整数);(3)(ab)n=a n b n(n是整数).设计意图:类比负数的引入可以使减法转化为加法,得到负指数幂的引入可以使幂的除法转化为幂的乘法、商可以转化为积这个结论,从而使分式的运算与整式的运算统一起来,将整数指数幂的运算性质进行总结.课堂8分钟.1.教材第145页练习第1,2题,第147页习题15.2第7题.2.七彩作业.第1课时整数指数幂的运算性质一、正整数指数幂的运算性质.二、负整数指数幂的运算性质.三、例题讲解.四、整数指数幂的运算性质.教学反思第2课时科学记数法课时目标1.让学生经历小于1的正数的科学记数的获得过程,感受数学知识之间的内在联系,提高学生的归纳、类比和抽象能力.2.通过对小于1的正数的科学记数的过程,让学生感受到数学知识的本质所在,培养学生观察、分析和总结的能力.学习重点会用科学记数法表示小于1的正数.学习难点知道用科学记数法表示小于1的正数时,a×10-n形式中n的取值与小数中左起第一个非0数字前0的个数的关系.课时活动设计回顾引入1.用科学记数法表示745 000,2 930 000.2.大于10的数用a ×10n 表示时,a ,n 应满足什么条件?3.负整数指数幂的公式是什么?学生自主交流,讨论.思考:我们已经学会了用科学记数法表示一些较大的数,你能用科学记数法表示较小的数吗?设计意图:引导学生完成上述问题,温故而知新,唤醒学生已有的知识体系,为本节课的学习作铺垫.同时,提出新的问题,为新知识的学习明确了方向.探究新知1.填空:10-1=110= 0.1 ;10-2=1102= 0.01 ;10-3=1103= 0.001 ;…;10-n = 110n = .反过来:0.1=110=1×10-1;0.01=1102= 1×10-2 ;0.001=1103= 1×10-3 ;…;=110n = 1×10-n .2.解决问题:(1)0.000 025=2.5× 1105 = 2.5×10-5 ;(2)0.000 000 025 7=2.57× 1108 = 2.57×10-8 .运用由特殊到一般和类比的数学思想归纳出=10-n ,让学生看到可以利用10的负整数次幂,用科学记数法表示一些小于1的正数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤a <10.设计意图:让学生通过这种亲自参与、探索研究数学知识获得的过程,感受数学知识之间的密切联系,深化自己的认知,从而构建科学记数法的完整知识体系.典例精讲例纳米(nm)是非常小的长度单位,1 nm=10-9 m.把1 nm3的物体放到乒乓球上,就如同把乒乓球放到地球上.1 mm3的空间可以放多少个1 nm3的物体(物体之间的间隙忽略不计)?解:1 mm=10-3 m,1 nm=10-9 m.(10-3)3÷(10-9)3=10-9÷10-27=10-9-(-27)=1018.所以1 mm3的空间可以放1018个1 nm3的物体.1018是一个非常大的数,它是1亿(即108)的100亿(即1010)倍.设计意图:运用数学知识解决实际问题是学习数学的重要目标,让学生在学习知识的过程中解决实际问题,体会数学的“学以致用”.巩固训练计算(结果用科学记数法表示):(1)(3×10-5)×(5×10-3);(2)(3×10-15)÷(5×10-4);(3)(1.5×10-16)×(-1.2×10-3); (4)(-1.8×10-10)÷(9×108).解:(1)1.5×10-7;(2)6×10-12;(3)-1.8×10-19;(4)-2×10-19.设计意图:设置这类计算题,不仅是为了巩固本节课的所学知识,还为了通过做题让学生意识到用科学记数法表示数能使运算更简便.课堂小结1.如何用科学记数法表示大于10的数?2.如何用科学记数法表示小于1的正数?设计意图:让学生自己总结本节课的内容,帮助学生巩固新的知识,培养学生的总结概括能力.课堂8分钟.1.教材第145页练习第1,2题,第147页习题15.2第8,9题.2.七彩作业.第2课时科学记数法一、大于10的数的科学记数:N=a×10n(其中n是正整数,1≤a<10).二、小于1的正数的科学记数:N=a×10-n(其中n是正整数,1≤a<10).三、例题讲解.教学反思。
新人教版初中数学八年级上册15.2.1第2课时分式的乘方2公开课优质课教学设计
第2课时 分式的乘方一、教学目标:1、理解分式乘方的运算法则2、熟练地进行分式乘方的运算3.渗透类比转化的数学思想方法.二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.三、教学过程1、课堂引入计算下列各题:(1)2)(ba =⋅b a b a =( ) (2) 3)(b a =⋅b a ⋅b a b a =( ) (3)4)(b a =⋅b a ⋅b a b a b a ⋅=( ) [提问]由以上计算的结果你能推出nb a )((n 为正整数)的结果吗?2、例题讲解 例5.计算(1) 332)2(a b - (2)4234223)()()(c a ba cb ac ÷÷ [分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.3、随堂练习1.判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249a b - (3)3)32(x y -=3398xy (4)2)3(b x x -=2229b x x - 2.计算(1) 22)35(y x (2)332)23(c b a - (2)32223)2()3(x ay xy a -÷ (3)23322)()(z x z y x -÷- (4))()()(422xy xy y x -÷-⋅- (5)232)23()23()2(ayx y x x y -÷-⋅- 4、小结谈谈你的收获5、布置作业6、板书设计四、教学反思:。
【公开课】人教版八级数学上册 分式的乘除(课件)实用PPT
1、分式混合运算一定要按照运算顺序。 2、乘除混合运算统一为乘法运算。
⑴ 3a 3b • 8a2b a2 b2
4ab
2a
⑵ 2m2n • 5p2q 5mnp 3pq 2 4mn 3q
(3) ab 1 •ab
ab ab
复习
与幂运算有关的性质: 1、同底数幂相乘,底数不变,指数相加
动脑筋
填一填:
a2 b
ba
ba
ba22;
a3 b
aaa
bbb
ba 33;
a 4a
b b
a b
a b
a b
ba 44;
猜想
a n b
a n b n .
分式的乘方法则:
分式的乘方,把分子分母分别乘方.
•
a 即:
a n b
n
b n
(n是正整数)
例题2:
(1)
( 3x )2
【 公 开 课 】 人教版 八级数 学上册 分 式的 乘除( 课件) 实用P PT
例 :已a知 15,求 a4a21的。值
a
a2
例: 已 知1 1 5,
xy
求 2x 3xy 2y的 值。
x 2xy y
例: 已知x 2,
y7
求 x2 3xy 2y2 的值。
2x2 3xy 7y2
(3x)2
32 x2
9x 2
2y
(2y)2 22 y 2
4y 2
(2)
(ab)3 2c
(ab )3
2c
(ab)3 (2c)3
a3b3 8c 3
(3) ( xy )3
(xy)
15.2.1 分式的乘除 课件 人教版数学八年级上册
3
(2)
a4b2 -3c2
;
3
a4b2 -3c2
=((-a43bc22))33=-a2172cb66;
知3-练
感悟新知
3
(3)
xy x-y
;
3
解:
xy x-y
=(x(x-y)y3)3=(xx-3yy3)3 ;
(4)
a2-b2 ab
2
.
a2-b2 ab
2=[(a+(ba)b(a)2-b)]2=(a+ba)22b(a2-b)2.
课堂小结
分式的乘除
分式的乘除 分式的乘方 转化 分式的乘法 转化 分式的除法
混合运算
感悟新知
知1-练
例 1 计算: (1)3xy2·145xy32;(2)65xy2·(-4xy2);(3)ab4+ab2b2·a62-a2bb2.
解题秘方:利用分式的乘法法则进行计算.
感悟新知
(1)3xy2·145xy32;
解:3xy2·145xy32=1152xx23yy2=45xy;
知1-练
(2)65xy2·(-4xy2);
算后再约分;
(2)若分子、分母中有多项式,可先对多项式分解因式,
看能否约分,再进行乘法运算;
(3)若分式乘整式,可把整式看成分母为1 的“分式”参
与运算.
感悟新知
知1-讲
特别解读 分式乘法运算的基本步骤: 1. 确定积的符号,写在积中分式的前面; 2. 运用法则,将分子与分母分别相乘,是多项式的要带括号; 3. 约分,将结果化成最简分式或整式.
感悟新知
例 4 [母题 教材P139练习T1]计算:
知4-练
(1)98ax2yb÷23xb·32axb3y2; (2)1-3x2-x+12x2÷(x+1)·x42--x1.
15.2.1.1分式的乘除教案
(1)分式乘除法则的理解:学生可能难以理解为什么分式乘除可以分别独立地处理分子和分母,需要通过具体实例和图示来加深理解。
难点举例:解释为什么$\frac{2}{3} \times \frac{4}{5}$的结果不是$\frac{2 \times 4}{3 \times 5}$,而是$\frac{2 \times 4}{3 \times 5}$。
举例:对于分式$\frac{2}{3} \div \frac{4}{5}$,学生应能将其转换为$\frac{2}{3} \times \frac{5}{4}$,并得出结果$\frac{5}{6}$。
(3)分式乘除混合运算:学生需要理解并掌握在含有多个分式的表达式中,如何按照运算顺序进行计算。
举例:对于表达式$\frac{2}{3} \times \frac{4}{5} \div \frac{6}{7}$,学生应能按顺序先乘后除,得出最终结果。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式乘除的基本概念。分式乘除是指将两个或多个分式进行相乘或相除的运算。它在解决生活中的比例问题、计算速度变化等方面具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。假设有两辆速度不同的车,它们行驶的时间相同,如何计算它们的行驶距离比?通过这个案例,我们学习分式乘除在实际中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式乘除的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分式乘除的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版八年级数学上册课件 15.2.1分式的乘除(第1课时)
应化为最简分式或整式.
计算.计算结果
解:(1) 4x 3y
y 2x3
4xy 6x3 y
2 3x2
;
(2) ab3 5a2b2 ab3 4cd 4ab3cd 2bd . 2c2 4cd 2c2 5a2b2 10a2b2c2 5ac
例2:计算:
(1)
a2 a2
4a 4 2a 1
.
a2 1 (a 1)2
∴“丰收2号”小麦的单位面积产量高.
(2)
500 (a 1)2
500 a2 1
500 (a 1)2
a2 1 500
(a 1)(a 1) (a 1)2
a 1. a 1
∴“丰收2号”小麦的单位面积产量
是“丰收1号”小麦的单位面积产量
的
a 1 a 1
倍.
小结
(1)分式的乘除法法则; (2)运用法则时,注意符号的变化; (3)因式分解在分式乘除法中的应用; (4)步骤要完整,结果要最简,最后结果 中的分子、分母既可保持乘积的形式, 也可以写成一个多项式的形式.
1.(2014•济南中考)化简
m 1 m 1 m m2
1
1
A.m B.m C.m-1 D.m 1
(a
a 1 2)(a
2)
(a 2)2 (a 1)
a2
(a 1)2 (a 2)(a 2) (a 1)(a 2) ;
(2)
1 49 m2
m2
1 7m
49
1 m2
m2
7m 1
49
1
15.2.1分式的乘除 课件17张-2024—2025学年人教版数学八年级上册
解:(1)原式 解:(2)原式
注意:分子或分母是多项式的分式乘除法的解题一般步骤是: ①把各分式中分子或分母里的多项式分解因式; ②除法转化为乘法; ③约去分子与分母的公因式。
(1) 解:原式
(2)
解:原式
1.分式的分子、分母都是几个因式的积的形式,可先约去分子、分 母的公因式,再按照法则进行计算.
注意:计算结果要化为最简分式或整式
人教版(2012)八年级数学上册
感谢聆听
主讲:
人教版(2012)八年级数学上册
第十五章 分式
15.2 分式的运算 15.2.1 分式的乘除
(第1课时)
主讲:
情景导入
问题1 一个长方体容器的容积为V,底面的长为a,宽为b,当容器
内的水占容积的
时,水高多少?
长方体容器的高为:
水高为:
问题2 大拖拉机m天耕地a公顷,小拖拉机n天耕地 b公顷,大 拖拉机的工作效率是小拖拉机的工作效率的多少倍?
大拖拉机的工作效率是
公顷/天,小拖拉机的工作效
率是 公顷/天,大拖拉机的工作效率是小拖拉机的工
作效率的( )倍。
从上面的问题可知,为讨论数量关系有时需要 进行分式的乘除运算。 分式和分数具有类似的形式,我们可以类比分 数的运算法则认识分式的运算法则。
填空:
想一想:
类比分数的乘除法法则,你能说出分式的乘除 法法则吗?
边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的
试验田是边长为
米的正方形,两块试验田的小麦
都收获了500千克.
(1)哪种小麦的单位面
积产量高?
(2)高的单位面积产量
是低的单位面积产量的
多少倍?
1m
15.2.1第2课时 分式的乘方 课件
a3 b3
a
10
b
a ga ggggga bb b
a10 b10
10个
想一想:
(a)n
.
b
一般地,当n是正整数时,
n个
( a )n b
a ga ggggga bb b
aa bb
a b
an bn
n个
n个
这就是说,分式乘方要把分子、分母分别乘方.
想一想:到目前为止,正整数指数幂的运算法则都有什么?
第十五章
八年级数学上(RJ) 教学课件
分式
15.2.1 分式的乘除
第2课时 分式的乘方
导入新课
讲授新课
当堂练习
课堂小结
讲授新课
一 分式的乘除混合运算
例1 混合运算:
5
2x x
3
3 25x2
9
•
x 5x
3
.
解:原式= 2x • (5x 3)(5x 3) • x
5x 3
3
5x 3
2x2 . 3
(1) am·an =am+n ; (2) am÷an=am-n; (3) (am)n=amn; (4) (ab)n=anbn;
5
a b
n
an bn
.
知识要点
分式的乘方法则 理解要点:
( a )n b
an bn
.
(1)分式乘方时,一定要把分子、分母分别乘方,不
√ 要把
a n b
an bn
写成
y
3
g x
2Leabharlann x4 y2 z2x3 y3
gy x
4 2
g x
z
4
15.2.1分式的乘方(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式乘方相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示分式乘方的基本原理。
五、教学反思
在今天的课堂中,我们探讨了分式乘方的概念、性质与应用。回顾整个教学过程,我认为有几个地方值得反思。
首先,关于导入新课环节,我发现通过提问方式引导学生思考日常生活中的实际问题时,学生的兴趣和参与度有所提高。这说明将理论知识与生活实际相结合的教学方法能够激发学生的学习兴趣。在今后的教学中,我将继续采用这种方法,让学生感受到数学知识在实际生活中的重要性。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式的乘方》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算一个数的平方、立方的情况?”(如:计算正方形面积、体积等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式乘方的奥秘。
(3)实际应用:学会将分式乘方知识应用于解决实际问题,建立数学模型并进行求解。
举例:求解实际应用问题,如计算一个物体在连续n次翻倍后的长度、面积或体积。
2.教学难点
(1)分式乘方的符号规则:学生在进行分式乘方运算时,容易忽略符号的运算规则,如负数的偶数次幂等于正数,负数的奇数次幂等于负数。
举例:求解表达式(-a/b)^n的结果,其中a、b为正数,n为整数。
三、教学难点与重点
1.教学重点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
5
注意:先确 定乘方结果 的符号。
ab 3 a b 2 ) ( ) 例2 ( 3 2a ab
2 2
(a b) ab 2 3 2 2 8a (a b ) 3 2 6 (a b) ab 3 2 2 8a (a b) (a b)
3 2 6
b (a b) 2 8a(a b)
6
巩固练习
2 2
P139第2题
3a y 2 4mn 3 (1) ( ) · ( 3 2) 2mn 3m n x- 1 2 x2 - 6x +9 2 1 (2)( ) 阜( ) 2 2 3- x 9- x x - 2 x +1
例3:先化简,再求值。
x y 2 x y 3 x ( ) ( x y ) ( ) 2 xy x y
第十五章 分式
一、提出问题:
请问下面的运算过程对吗?
2 x2 ( x 3 ) 2 4 4x x x3 2 x2 ( x 3) 2 (2 x ) x3
2 x2
2 x2 ( x 3) 2 4 4x x x3 2 1 x2 × 2× ( x 2) x3 x3 2 2 ( x 2)( x 3) 除 法 转 化 为 乘 法 之 后
2
æ- 2a 2b ö ÷ (1) ç ç 3c ÷ ø è 3
2
æc ö ç ÷ ç 2a ÷ è ø
2
解:(1)原式 =
(
- 2a b
2
( 3c)
2
)
2
4a 4b 2 9c 2
6 3 2 运算顺序: ab 2a c (2)原式 = 缸 3 先乘方,再 3 9 2 c d d 4 a 乘除。
ab d c =- 3 9鬃 2 c d 2 a 4a
2
其中x=2007,但小明在计算时,把2007错抄成 x=207,可是计算结果还是正确的,请你分析这 是什么原因?
2
1 a a 1 例: 已 知a 5, 求 的 值。 2 a a x 2 例: 已 知 , y 7
4 2
x 3 xy 2 y 求 2 的 值。 2 2 x 3 xy 7 y
2 2
练习. 老师布置一道作业:计算
x x x 1 1 x 的值 2 3 x 2 x 1 ( x 1) 1 x
3
4
a a a a a a b b b b 4 ; b b
猜想
a a n. b b
n
n
分式乘方:把 分子、分母分 别乘方
例1:计算
æ a b ö 2a ÷ (2) ç 阜 3 3 ÷ ç - cd ø d è
a 3b 3 =6 8cd
6 3
3
2
练一练 判断下列各式是否成立,并改正.
b 2 b (1)( ) = 2 2a 2a
2 3b 2 9b ( ) = (2) 2 2a 4a 3 2y 3 8y ( ) = (3) 3 3x 9x 2 9 x 3x 2 ) = (4)( 2 2 x b xb
4、同底数幂相除,底数不变,指数相减。
am÷an=am-n(a≠0,m、n都是正整数,且m≥n)
动脑筋
填一填:
a a a a b b 2 ; b b
2
2
a b
4
3
a a a b b b
a ; 3 b
正确的解法:
可以运用乘法的交换 律和结合律
⑴
3a 3b a b 2 8a b 4ab 2a
2
2
⑵
2m n 5p q 5mnp 2 3q 3pq 4mn
ab 1 a b ab ab
2
2
(3)
复习 与幂运算有关的性质: 1、同底数幂相乘,底数不变,指数相加 am· an=am+n ( m、n都为正整数) 2、幂的乘方,底数不变,指数相乘. (am)n=amn ( m、n都为正整数) 3、积的乘方,等于把积的每一个因式分别乘方,再 把所得的幂相乘. (ab)n=anbn ( m、n都为正整数)
作业 习题15.2第3题
全品
预习
例 已知a +3a +1 0, 求 :
2
1 1 4 ( 2)a 2 (3) a + 4 a a 1 1 1 2 3 3 (4) a - 2 (5) a + 3 (6) a - 3 a a a
2
1 (1) a + a
1 拓展:若x - px +1 = 0, 则 : x + = p x
2 2
其中x 21, y 14
例4
已知x y 4 x 6 y 13 0 y 3 1 4 x 2 求( 3 ) ( ) ( 2 ) 的值 x xy y
2 2
1、分式的乘方法则; 分式乘方:分子、分母分别乘方。
2、分式的乘、除、乘方混合运算要注意什么?
运算顺序:先乘方,再乘除。