多元函数微分学练习题完整版
《多元函数微分学》练习题参考答案
解:在 L 上任取一点 P ( x, y ),
f (x , y ) = 0
考虑 d = ( x − x0 ) + ( y − y0 ) 在条件 f ( x, y ) = 0 下的极值问题 作 F = ( x − x 0 ) + ( y − y 0 ) + λ f ( x , y ) ,则
' ⎧ ⎪ F x = 2(x − x 0 ) + λ f 'x ( x , y ) = 0 , ⎨ ' ⎪ ⎩F y = 2( y − y 0 ) + λ f 'y (x , y ) = 0 2 2 2 2 2
P87-练习 4 设 z = f ( xy,
x y ) + g ( ) ,其中 f 有二阶连续偏导数, g 有二阶导数,求 y x
∂2z . (2000) ∂x∂y
解: 根据复合函数求偏导公式
∂z 1 y = f1′ ⋅ y + f 2′ ⋅ + g ′ ⋅ (− 2 ) , ∂x y x
24
∂2 z ∂ ⎛ ∂z ⎞ ∂ ⎛ 1 y ⎞ = ⎜ ⎟ = ⎜ f1′ ⋅ y + f 2′ ⋅ + g ′ ⋅ ( − 2 ) ⎟ ∂x∂y ∂y ⎝ ∂x ⎠ ∂y ⎝ y x ⎠ x 1 1 x y 1 = f1′ + y[ f11′′ x + f12′′ ⋅ (− 2 )] − 2 f 2′ + [ f 21′′ x + f 22′′ ⋅ (− 2 )] − g ′′ ⋅ 3 − g ′ ⋅ 2 y y y y x x 1 x y 1 = f1′ + xyf11′′ − 2 f 2′ − 3 f 22′′ − 3 g ′′ − 2 g ′ y y x x
多元函数微分学练习题及答案
三. 设Lx, y, z, ln x ln y 3ln z (x2 y2 z2 5R2 )
求得此函数定义域内唯一的稳定点R,,R 3R , 也是所 求函数的最大值点, 所求最大值为f R, R, 3R ln 3 3R5 .
ln x ln y 3ln z ln 3 3R5
u y xf2 ( xz xyz y ) f 3
.
3、f x ( x, y)
(
x
2 xy 3 2 y2
)2
,
x
2
0, x 2 y 2 0
y2
0 ,
f y (x,
y)
x2(x2 (x2
y2 y2 )2
)
,
x2
o, x 2 y 2 0
y2
0
五、(
f1
f2 )dx
y (z) 1
f2 (z) dy. y (z) 1
六、 xe2 y fuu e y fuy xe y f xu f xy e y fu.
4、1; 5、必要条件,但不是充分条件; 6、可微;
7、 2 f (v )2 f 2v ; v 2 y v y 2
8、
9 2
a
3
;
9、(1,2);10、 1 ; 8
二、(1)当 x y 0时,在点( x, y)函数连续;
(2)当 x y 0时,而( x, y)不是原点时,
则( x, y)为可去间断点,(0,0)为无穷间断点.
4、lim( x 2 y )2 x2 y2 ( ). x0 y0
5、函数 f ( x, y)在点( x0 , y0 )处连续,且两个偏导数 f x ( x0 , y0 ), f y ( x0 , y0 )存在是 f ( x, y)在该点可微
(完整版)多元函数微积分复习试题
多元函数微积分复习题一、单项选择题1.函数()y x f ,在点()00,y x 处连续是函数在该点可微分的 ( B )(A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件.2.设函数()y x f ,在点()00,y x 处连续是函数在该点可偏导的 ( D )(A) 充分而不必要条件; (B) 必要而不充分条件;(C) 必要而且充分条件; (D) 既不必要也不充分条件.3.函数()y x f ,在点()00,y x 处偏导数存在是函数在该点可微分的 ( B ).(A) 充分而不必要条件; (B) 必要而不充分条件;(C) 必要而且充分条件; (D) 既不必要也不充分条件. 4.对于二元函数(,)z f x y =, 下列结论正确的是 ( C ).A. 若0lim x xy y A →→=, 则必有0lim (,)x x f x y A →=且有0lim (,)y y f x y A →=; B. 若在00(,)x y 处zx∂∂和z y ∂∂都存在, 则在点00(,)x y 处(,)z f x y =可微; C. 若在00(,)x y 处zx∂∂和z y ∂∂存在且连续, 则在点00(,)x y 处(,)z f x y =可微; D. 若22z x ∂∂和22z y ∂∂都存在, 则. 22z x ∂∂=22zy ∂∂.5.二元函数(,)z f x y =在点00(,)x y 处满足关系( C ).A. 可微(指全微分存在)⇔可导(指偏导数存在)⇒连续;B. 可微⇒可导⇒连续;C. 可微⇒可导, 或可微⇒连续, 但可导不一定连续;D. 可导⇒连续, 但可导不一定可微.6.向量()()3,1,2,1,2,1a b =--=-,则a b = ( A ) (A) 3 (B) 3- (C) 2- (D) 25.已知三点M (1,2,1),A (2,1,1),B (2,1,2) ,则→→•AB MA = ( C ) (A) -1; (B) 1; (C) 0 ; (D) 2;6.已知三点M (0,1,1),A (2,2,1),B (2,1,3) ,则||→→+AB MA =( B )(A);2-(B) (C)2; (D)-2;7.设D 为园域222x y ax +≤ (0)a >, 化积分(,)DF x y d σ⎰⎰为二次积分的正确方法是_____D____.A. 20(,)aa adx f x y dy -⎰⎰B. 202(,)adx f x y dy ⎰C. 2cos 0(cos ,sin )a a ad f d θθρθρθρρ-⎰⎰D. 2cos 202(cos ,sin )a d f d πθπθρθρθρρ-⎰⎰8.设3ln 1(,)x Idx f x y dy =⎰⎰, 改变积分次序, 则______.I= BA. ln30(,)y e dy f x y dx ⎰⎰B. ln330(,)y edy f x y dx ⎰⎰C. ln33(,)dy f x y dx ⎰⎰ D. 3ln 1(,)x dy f x y dx ⎰⎰9. 二次积分cos 20(cos ,sin )d f d πθθρθρθρρ⎰⎰可以写成___________. DA. 1(,)dy f x y dx ⎰⎰B. 100(,)dy f x y dx ⎰C. 11(,)dx f x y dy ⎰⎰ D. 10(,)dx f x y dy ⎰10. 设Ω是由曲面222x y z +=及2z =所围成的空间区域,在柱面坐标系下将三重积分(,,)I f x y z dx dy dz Ω=⎰⎰⎰表示为三次积分,________.I = CA . 22120(cos ,sin ,)d d f z dz ρπθρρθρθ⎰⎰⎰B. 22220(cos ,sin ,)d d f z dz ρπθρρθρθρ⎰⎰⎰C . 22222(cos ,sin ,)d d f z dz πρθρρθρθρ⎰⎰⎰D . 222(cos ,sin ,)d d f z dz πθρρθρθρ⎰⎰⎰11.设L 为y x 0面内直线段,其方程为d y c a x L ≤≤=,:,则()=⎰Ldx y x P , ( C )(A ) a (B ) c(C ) 0 (D ) d12.设L 为y x 0面内直线段,其方程为d x c a y L ≤≤=,:,则()=⎰Ldy y x P , ( C )(A ) a (B ) c (C ) 0 (D ) d13.设有级数∑∞=1n n u ,则0lim =∞→n n u 是级数收敛的 ( D )(A) 充分条件; (B) 充分必要条件; (C) 既不充分也不必要条件; (D) 必要条件;14.幂级数∑∞=1n n nx 的收径半径R = ( D )(A) 3 (B) 0 (C) 2 (D) 115.幂级数∑∞=11n n x n的收敛半径=R ( A )(A) 1 (B) 0 (C) 2 (D) 316.若幂级数∑∞=0n nn x a 的收敛半径为R ,则∑∞=+02n n n x a 的收敛半径为 ( A )(A) R (B) 2R(C) R (D) 无法求得17. 若lim 0n n u →∞=, 则级数1n n u ∞=∑( ) DA. 收敛且和为B. 收敛但和不一定为C. 发散D. 可能收敛也可能发散18. 若1n n u ∞=∑为正项级数, 则( B )A. 若lim 0n n u →∞=, 则1n n u ∞=∑收敛 B. 若1n n u ∞=∑收敛, 则21n n u ∞=∑收敛C. 若21n n u ∞=∑, 则1n n u ∞=∑也收敛 D. 若1n n u ∞=∑发散, 则lim 0n n u →∞≠19. 设幂级数1n n n C x ∞=∑在点3x =处收敛, 则该级数在点1x =-处( A )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不定 20. 级数1sin (0)!n nx x n ∞=≠∑, 则该级数( B )A. 是发散级数B. 是绝对收敛级数C. 是条件收敛级数D. 可能收敛也可能发散二、填空题1.设22(,)sin (1)ln()f x y x y x y =+-+,则 =')1,0(x f ___1___.2.设()()()22ln 1cos ,y x y x y x f +-+=,则)1,0('x f =____0______.3.二重积分的变量从直角坐标变换为极坐标的公式是()()⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρsin ,cos ,4.三重积分的变量从直角坐标变换为柱面坐标的公式是()()⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z f dxdydz z y x f ϕρρϕρϕρ,sin ,cos ,,5.柱面坐标下的体积元素 z d d d dv θρρ=6.设积分区域222:D x y a +≤, 且9Ddxdy π=⎰⎰, 则a = 3 。
(完整版)多元函数微分学测试题及答案
第8章 测试题1.),(y x f z =在点),(00y x 具有偏导数且在),(00y x 处有极值是 0),(00=y x f x 及0),(00=y x f y 的( )条件.A .充分B .充分必要C .必要D .非充分非必要2.函数(,)z f x y =的偏导数z x∂∂及z y ∂∂在点(,)x y 存在且连续是 (,)f x y 在该点可微分的( )条件.A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件3. 设(,)z f x y =的全微分dz xdx ydy =+,则点(0,0) 是( )A 不是(,)f x y 连续点B 不是(,)f x y 的极值点C 是(,)f x y 的极大值点D 是(,)f x y 的极小值点4. 函数22224422,0(,)0,0x y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0,0)处( C )A 连续但不可微B 连续且偏导数存在C 偏导数存在但不可微D 既不连续,偏导数又不存在5.二元函数22((,)(0,0),(,)0,(,)(0,0)⎧+≠⎪=⎨⎪=⎩x y x yf x y x y 在点(0,0)处( A). A .可微,偏导数存在 B .可微,偏导数不存在C .不可微,偏导数存在D .不可微,偏导数不存在6.设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数. 则=∂∂22y z( ). (A)222y v v f y v y v f ∂∂⋅∂∂+∂∂⋅∂∂∂; (B)22y vv f∂∂⋅∂∂;(C)22222)(y v v fy v v f ∂∂⋅∂∂+∂∂∂∂; (D)2222y v v f y v v f ∂∂⋅∂∂+∂∂⋅∂∂.7.二元函数33)(3y x y x z --+=的极值点是( ).(A) (1,2); (B) (1.-2); (C) (-1,2); (D) (-1,-1). 8.已知函数(,)f x y 在点(0,0)的某个邻域内连续,且223(,)(0,0)(,)lim 1()x y f x y xy x y →-=+,则下述四个选项中正确的是( ).A .点(0,0)是(,)f x y 的极大值点B .点(0,0)是(,)f x y 的极小值点C .点(0,0)不是(,)f x y 的极值点D .根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点10.设函数(,)z z x y =由方程z y z x e -+=所确定,求2z y x ∂∂∂ 11.设(,)f u v 是二元可微函数,,y x z f x y ⎛⎫= ⎪⎝⎭,求 z z x y x y ∂∂-∂∂ 12.设222x y z u e ++=,而2sin z x y =,求u x ∂∂11.设(,,)z f x y x y xy =+-,其中f 具有二阶连续偏导数,求 2,z dz x y ∂∂∂.13.求二元函数22(,)(2)ln f x y x y y y =++的极值14.22在椭圆x +4y =4上求一点,使其到直线2360x y +-=的距离最短.第8章测试题答案1.A2.A3.D4.C5.A6.C7.D8.C 8. ()()3(1)z y z y e e ---9. 2122z z x y x y f f x y y x∂∂-=-∂∂ 10.2222(12sin )x y z u xe z y x++∂=+∂11.123123231113223233 ()(),()()dz f f yf dx f f xf dyzf f x y f f x y f xyf x y=+++-+∂=+++-+-+∂∂12.极小值11(0,)f ee-=-13. r h==14. 83(,)55。
(完整版)多元函数微分法及其应用习题及答案
第八章 多元函数微分法及其应用(A)1.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z∂∂∂2 ,则在D 上,xy zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。
2.求下列函数的定义域(1)y x z -=;(2)22arccos yx z u +=3.求下列各极限(1)x xy y x sin lim 00→→; (2)11lim 00-+→→xy xyy x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→4.设()xy x z ln =,求y x z ∂∂∂23及23y x z∂∂∂。
5.求下列函数的偏导数 (1)xyarctgz =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数dt dz 。
7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dtdu。
8.曲线⎪⎩⎪⎨⎧=+=4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?9.求方程1222222=++cz b y a x 所确定的函数z 的偏导数。
10.设y x ye z x 2sin 2+=,求所有二阶偏导数。
11.设()y x f z ,=是由方程y z z x ln =确定的隐函数,求xz∂∂,y z ∂∂。
12.设x y e e xy =+,求dxdy 。
13.设()y x f z ,=是由方程03=+-xy z e z确定的隐函数,求xz∂∂,y z ∂∂,y x z ∂∂∂2。
高等数学第九章多元函数微分学试题及答案
第九章 多元函数微分学§9.1 多元函数的概念、极限与连续性一、多元函数的概念1.二元函数的定义及其几何意义设D 是平面上的一个点集,如果对每个点()D y x P ∈,,按照某一对应规则f ,变量z 都有一个值与之对应,则称z 是变量x ,y 的二元函数,记以()y x f z ,=,D 称为定义域。
二元函数()y x f z ,=的图形为空间一卦曲面,它在xy 平面上的投影区域就是定义域D 。
例如 221y x z --=,1:22≤+y x D , 此二元函数的图形为以原点为球心,半径为1的上半球面,其定义域D 就是 xy 平面上以原点为圆心,半径为1的闭圆。
2.三元函数与n 元函数()z y x f u ,,= ()Ω∈z y x ,,空间一个点集称为三元函数()n x x x f u ,,21 = 称为n 元函数它们的几何意义不再讨论,在偏导数和全微分中会用到三元函数。
条件极值中,可能会遇到超过三个自变量的多元函数。
二、二元函数的极限设函数),(y x f 在区域D 内有定义,),(000y x P 是D 的聚点,如果存在常数A ,对于任意给定的0>ε,总存在0>δ,当),(y x P 满足δ<-+-=<20200)()(0y y x x PP 时,恒有ε<-A y x f ),(成立。
则记以()A y x f y y x x =→→,lim 0或()()()A y x f y x y x =→,lim00,,。
称当()y x ,趋于()00,y x 时,()y x f ,的极限存在,极限值A ,否则称为极限不存在。
值得注意:这里()y x ,趋于()00,y x 是在平面范围内,可以按任何方式沿任意曲线趋于()00,y x ,所以二元函数的极限比一元函数的极限复杂;但考试大纲只要求知道基本概念和简单的讨论极限存在性和计算极限值,不像一元函数求极限要求掌握各种方法和技巧。
(完整版)高等数学(同济版)多元函数微分学练习题册.doc
(完整版)高等数学(同济版)多元函数微分学练习题册.doc第八章多元函数微分法及其应用第一作一、填空:1. 函数 z ln(1 2 )y x23x y 的定义域为x12. 函数 f (x, y, z) arccosz的定义域为y 2x 23. 设 f ( x, y) x 2 y 2 , (x) cos x, ( x) sin x, 则f [ (x), (x)].sin xy .4. lim xx 0二、(): 1. 函数1的所有断点是 :sin x sin y(A) x=y=2n π( n=1,2,3,?);(B) x=y=n π (n=1,2,3, ?) ; (C) x=y=m π (m=0, ±1,± 2,? );(D) x=n π ,y=m π (n=0, ± 1,± 2,?,m=0,± 1,± 2,? )。
答:()sin 2( x 2 y 2 , x 2y 22. 函数 f (x, y)x 2 y 2在点( 0, 0):2 ,x 2 y 2( A )无定;(B )无极限;( C )有极限但不;( D )。
答:()三、求 lim2xy 4 .x 0 xyya四、明极限 limx 2 y 22 不存在。
2 2xx y ( x y)y 0第二节作业一、填空题:1 sin( x2 y), xy 01. 设 f ( x, y)xy ,则 f x (0,1) .x 2 ,xy2. 设 f (x, y)x ( y 1) arcsinx, 则 f x ( x,1).y二、选择题(单选):设 z 2x y 2 , 则 z y 等于 :( A) y 2 x y 2 ln 4; (B) (x y 2 ) 2 y ln 4; (C ) 2 y( x y 2 ) e x y 2 ;(D ) 2 y 4 x y 2 .答:()三、试解下列各题:1. 设 z ln tan x , 求 z, z .2. 设 z arctan y, 求2z .y x yxx y四、验证 rx 2 y 2 z 2 满足2r2r2r 2 .x 2 y 2 z 2r第三节作业一、填空题:1. 函数 zy 当x 2, y时的全增量z全微分值x 1, x 0.1, y0.2dz.y2. 设z e x , 则dz.二、选择题(单选):1. 函数 z=f(x,y) 在点 P 0( x 0,y 0)两偏导数存在是函数在该点全微分存在的:( A )充分条件;( B )充要条件;( C )必要条件;( D )无关条件。
(完整版)多元函数微分学及其应用习题解答
(((x 2 + y 2 ≤ 1, x+ y }(1- (t + 4) 2 解:令 t=xy , lim = lim= lim 2=- t →0 t →0习题 8-11. 求下列函数的定义域:(1) z =解: x -x - y ;y ≥ 0, y ≥ 0 ⇒ D ={x, y ) y ≥ 0, x ≥ y }x(2) z = ln( y - x) +;1 - x2 - y 2解: y - x ≥ 0, x ≥ 0,1 - x 2 - y 2 ⇒ D ={ x , y ) y > x ≥ 0 且 x2+ y 2 < 1}(3) u = R 2 - x 2 - y 2- z 2 +1x 2 + y 2+ z 2 - r 2(R > r > 0) ;解: 0 ≤ R 2 - x 2 - y 2 - z 2,0 < x 2 + y 2 + z 2 - r 2 ⇒⇒ D = {x , y , z ) r 2< x 2 + y 2 + z 2 ≤ R 2}(4) u = arccoszx 2 + y 2。
解:z2 2 ≠ 0 ⇒ D = {x, y ) z ≤x 2 + y 2 且 x 2 + y 2≠ 02. 求下列多元函数的极限::(1) lim ln( x + e y )x →1 x 2 + y 2y →0;解: limx →1y →0ln( x + e y ) x 2 + y 2 = ln(1+ 1)1= ln 2(2) lim 2 - xy + 4x →0xy y →0;1- 2 - xy + 4 2 t + 4 1 x →0xy t 1 4 y →01 / 28x →0 y →0x →0lim x +y = , m 不同时,极值也不同,所以极限不存在 。
(3) lim sin xyx →0x y →5;sin xy sin xy解: lim = 5lim = 5x →0 x 5xy →5y →01 - cos( x2 + y 2 ) (4) lim( x 2 + y 2 )e x 2 y 2;x →0 y →0解:Q 1 - cos( x 2 + y 2 ) = 2(sinx 2 + y 2 2)2 ,∴ l im x →0 y →01 - cos( x2 + y 2 ) 1= 2 ⋅ ⋅ 0 = 0( x 2 + y 2 )e x 2 y 2 2(5) lim( x 2 + y 2 ) xy 。
(完整版)多元函数微分学复习题及答案
第八章 多元函数微分法及其应用 复习题及解答一、选择题1. 极限lim x y x yx y→→+00242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0或12 2、设函数f x y x y y xxy xy (,)sin sin=+≠=⎧⎨⎪⎩⎪1100,则极限lim (,)x y f x y →→0= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于23、设函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件5、设u y x =arctan ,则∂∂u x = ( B )(A)xx y 22+(B) -+y x y 22 (C) yx y 22+(D)-+xx y 226、设f x y yx(,)arcsin=,则f x '(,)21= ( A ) (A )-14(B )14 (C )-12 (D )127、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C )(A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若f x x x x f x x x x (,),(,)'232612=+=+,则f x x y '(,)2= ( D ) (A) x +32(B) x -32(C) 21x + (D) -+21x 9、设z y x =,则()(,)∂∂∂∂z x zy+=21 ( A ) (A) 2 (B) 1+ln2 (C) 0 (D) 110、设z xye xy =-,则z x x x'(,)-= ( D ) (A)-+2122x x e x () (B)2122x x e x ()- (C)--x x e x ()122 (D)-+x x e x ()12211、曲线x t y t z t ===24sin ,cos ,在点(,,)202π处的法平面方程是 (C )(A) 242x z -=-π (B) 224x z -=-π (C) 42y z -=-π (D) 42y z -=π12、曲线45x y y z ==,,在点(,,)824处的切线方程是 (A )(A)842204x z y --=-= (B)x y z +==+122044 (C) x y z -=-=-85244 (D)x y z -=-=351413、曲面x z y x z cos cos +-=ππ22在点ππ2120,,-⎛⎝ ⎫⎭⎪处的切平面方程为 (D )(A )x z -=-π1 (B )x y -=-π1 (C )x y -=π2 (D )x z -=π214、曲面x yz xy z 2236-=在点(,,)321处的法线方程为 (A ) (A )x y z +=--=--58531918 (B )x y z -=-=--3823118(C )83180x y z --= (D )831812x y z +-=15、设函数z x y =-+122,则点 (,)00是函数 z 的 ( B ) (A )极大值点但非最大值点 (B )极大值点且是最大值点 (C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数z f x y =(,)具有二阶连续偏导数,在P x y 000(,)处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点P 0是函数z 的极大值点 (B )点P 0是函数z 的极小值点 (C )点P 0非函数z 的极值点 (D )条件不够,无法判定 17、函数f x y z z (,,)=-2在222421x y z ++=条件下的极大值是 ( C )(A) 1 (B) 0 (C)-1 (D) -2 二、填空题 1、极限limsin()x y xy x→→0π= ⎽⎽⎽⎽⎽⎽⎽ .答:π 2、极限limln()x y x y e x y→→++01222=⎽⎽⎽⎽⎽⎽⎽ .答:ln23、函数z x y =+ln()的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:x y +≥14、函数z xy=arcsin 的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:-≤≤11x ,y ≠0 5、设函数f x y x y xy y x (,)ln =++⎛⎝ ⎫⎭⎪22,则f kx ky (,)= ⎽⎽⎽⎽⎽⎽⎽ .答:k f x y 2⋅(,)6、设函数f x y xy x y (,)=+,则f x y x y (,)+-= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-Q )7、设f x y x y x y A x y (,)ln()//=-⋅+<+≥⎧⎨⎩11212222222,要使f x y (,)处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:-ln28、设f x y x y x y x y Ax y (,)tan()(,)(,)(,)(,)=++≠=⎧⎨⎪⎩⎪22220000,要使f x y (,)在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:1 9、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数f x y x y yx (,)cos =-122的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线y x =±及x =011、设z x y y =-+sin()3,则∂∂z xx y ===21_________ .答:3cos512、设f x y x y (,)=+22,则f y (,)01= _________ .答:113、设u x y z x y z(,,)=⎛⎝ ⎫⎭⎪,则)3,2,1(d u =_________ .答:38316182d d ln d x y z --14、设u x x y =+22,则在极坐标系下,∂∂ur= _________ .答:0 15、设u xy y x =+,则∂∂22u x = _________.答:23yx16、设u x xy =ln ,则∂∂∂2u x y = ___________ .答:1y17、函数y y x =()由12+=x y e y 所确定,则d d y x = ___________ .答:22xye xy - 18、设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy= _______ .答:2112xyz xy --19、由方程xyz x y z +++=2222所确定的函数z z x y =(,)在点(1,0,-1)处的全微分d z = _________ .答:d d x y -220、曲线x t y t z t ===23213,,在点(,,)1213处的切线方程是_________.答:x y z -=-=-12221321、曲线x te y e z t e t t t ===232222,,在对应于 t =-1点处的法平面方程是___________. 答:01132=+--e y x 22、曲面xe y e z e ey z x ++=+223321在点(,,)210-处的法线方程为_________ . 答:e ze y x 22212=-+=- 23、曲面arctan y xz 14+=π在点(,,)-210处的切平面方程是_________.答:y z +=2124、设函数z z x y =(,)由方程123552422x xy y x y e z z +--+++=确定,则函数z的驻点是_________ .答:(-1,2) 27、函数z x y x y =----2346122的驻点是_________.答:(1,1)25、若函数f x y x xy y ax by (,)=+++++22236在点 (,)11-处取得极值,则常数a =_________, b =_________.答:a =0,b =426、函数f x y z x (,,)=-22在x y z 22222--=条件下的极大值是_______答:-4 三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.42、求极限limsin x y y xxy →→+-0211.解:lim sin x y y xxy →→+-0211=⋅++→→lim sin ()x y y x xy xy 00211= 43、求极限lim sin()x y x y x yxy →→-+0023211. 解:原式=lim ()sin()x y x y x y x y xy →→-++0232211=-++⋅→→limsin()x y x y xy xy 002111=-124、求极限lim x y xxye xy→→-+0416 . 解:lim x y xxye xy→→-+00416=++-→→lim ()x y x xye xy xy 00416= -85、设u x y y x =+sin cos ,求 u u x y ,. 解:u y y x x =-sin sinu x y x y =+cos cos6、设z xe ye y x =+-,求z z x y ,. 解:z e ye x y x =--z xe e y y x =+-7、设函数z z x y =(,)由yz zx xy ++=3所确定,试求∂∂∂∂z x zy,(其中x y +≠0). 解一:原式两边对x 求导得yz x x zxz y ∂∂∂∂+++=0,则∂∂z x z y y x =-++同理可得:∂∂z y z x y x =-++ 解二:xy xz F F y z xy y z F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数z x xy y x y =-++-+23243122的极值.解:由z x y z x y x y=-+==-+-=⎧⎨⎩43403430,得驻点(,)-10074334>=--==yy yxxy xx z z z z D z xx =>40,函数z 在点(,)-10处取极小值z (,)-=-101.9、设z e x y =+32,而x t y t ==cos ,2,求d d z t. 解:d d (sin )()zte t e t x y x y =-+++3223232=-++(sin )3432t t e x y10、设z y xy x =ln(),求∂∂∂∂z x z y,. 解:z y y xy xy x x x =⋅+ln ln 1 z xy xy yy y x x =+-11ln() 11、设u a x a x yz a =->+ln ()0,求d u . 解:∂∂u x a a ax x yz =-+-ln 1,∂∂u y a z a x yz =⋅+ln ,∂∂u zya a x yz =+ln d (ln )d ln (d d )u a a ax x a a z y y z x yz x yz =-+++-+112、求函数z x y e xy =++ln()22的全微分.解:∂∂∂∂z x x ye x y e z y y xe x y e xyxyxyxy=+++=+++222222,[]d ()d ()d z x y ex ye x y xe y xyxy xy =+++++12222 四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为x y z ,,米.水池底部的单位造价为a .则水池造价()S xy xz yz a =++44 且 xyz =128令 ()L xy xz yz xyz =+++-44128λ由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得 x y z ===82由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e xzy x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以 z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+-2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx e kn xyk t kn sin 2222--=∂∂,所以22x y k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。
多元函数微分学习题.-共28页
第五部分 多元函数微分学(1)[选择题]容易题1—36,中等题37—87,难题88—99。
1.设有直线⎩⎨⎧=+--=+++031020123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( )(A) 平行于π。
(B) 在上π。
(C) 垂直于π。
(D) 与π斜交。
答:C2.二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x y x xyy x f 在点)0,0(处 ( )(A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C3.设函数),(),,(y x v v y x u u ==由方程组⎩⎨⎧+=+=22v u y v u x 确定,则当v u ≠时,=∂∂x u( ) (A)v u x - (B) v u v -- (C) v u u -- (D) vu y- 答:B4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( )(A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。
(B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。
(C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。
(D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。
答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( )(A) )32,31,31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )92,91,91(2- 答:A6.函数z f x y =(.)在点(,)x y 00处具有两个偏导数f x y f x y x y (,),(,)0000 是函数存在全 微分的( )。
(完整版)第九章多元函数微分法及其应用答案.doc
第九章 多元函数微分法及其应用一、填空题1.若 f ( x, y) x 2 y 2 xy tan x,则 f (tx , ty ) t 2 x 2 t 2 y 2 t 2xy tanxt 2 f ( x, y) .y y 2.若 f ( x)x 2 y 21 u2.y( y 0) ,则 f (x)y3.函数 z arcsin y的定义域为 {( x, y) || y| 1且x0} .xx14. lim(1 xy) sin xy e .xy5.若 ze xyyx 2,则zxe xy x 2 .y6.若 f ( x, y) 5x 2 y 3 ,则 f x (0,1) 10xy 3 |(0,1) 0 .7.若 u ln(1 x 2y 22) ,则 du22 ( xdx ydy zdz) .zx 2y 2zyyy8.设 z e x ,则 dzy e x dx 1e x dy .x 2 x9.已知 z sin( y e x) ,而 y x 3,则dz(3x 2 e x )cos( x 3 e x ) .dx10. 已知 ze x 2 y,而 x sin t , y t 3,则 dzsin t 2 t 3(cost 6t 2).dte11. 设 zln(1 x2y 2) , 则 dz x 11dx2dy .y 23312. 设 zu 2v , 而 u x cos y, v x sin y , 则 z 3x 2 cos 2 ysin y ,xz 32y 2sin 2y) .yx cos y(cos13.若 z f (x, y) 在区域 D 上的两个混合偏导数2z,2z 连续 ,则在 D 上x yy x2z2z.x yy x14.函数 z f (x, y) 在点 (x 0 , y 0 ) 处可微的 必要 条件是 z f ( x, y) 在点 ( x 0 , y 0 ) 处的偏导数存在 .(填“充分”、“必要”或“充分必要” )15.函数 z f (x, y) 在点 (x 0 , y 0 ) 可微是 zf (x, y) 在点 (x 0 , y 0 ) 处连续的 充分 条件 . (填“充分”、“必要”或“充分必要” )16.设 f ( x, y, z) xy 2 z 3 ,其中 z z( x, y) 是由方程 x 2 y 2 z 2 3xyz 0所确定的 隐函数,则 f x (1,1,1) 2 . 二、选择题1.二元函数 zlnx 2 4arcsin x 21的定义域是 ( A ) y 2y 2( A ){( x, y) |1 x 2y 24};( ) {( x, y) |1 x 2 y 24} ;B (C ){( x, y) |1 x 2y 24}; ( ) {( x, y) |1 x 2 y 24} .D2. 设函数 z ln( xy) , 则z( C )x(A )1;(B ) x;(C ) 1;( D ) y.yyxx3. 设函数 z sin( xy 2) , 则z( D )x( A )2; ( ) xy cos(xy 2( ) 22) ; ( ) 2 2xy cos(xy ) B ) ;Cy cos(xy D y cos( xy ) .4. 设函数 z 3xy, 则z( D )x( A ) 3xy( ) xy ; (C ) xy 1 ; (D ) 3xyln 3y ; 3 ln3 xy3 y .B5. 设函数 z1 , 则 z( C )xyy( A )1 ; ( ) 1 ; (C ) 12 ; ( ) 1 2 .2Bx 2yxyDxyx y6. 设函数 z sin xy , 则2z( A )x2( A )y 2sin xy ;2sin xy ;( ) 2 sin xy ; ( D ) x 2sin xy .( B ) yCx 7. 设二元函数 zx y, 则 dz ( B )x y( A )2( xdx ydy) ; (B )2( xdy ydx) ;( C )2( ydyxdx) ; (D )2( ydx xdy) .(x y)2( x y) 2( x y)2( x y)28. 设函数 y f ( x) 是由方程 y xeyx 0 确定 , 则dy(B )dx( A ) e y y;(B ) ey1y ;(C ) ey1y ;(D ) e yy.1 xe 1 xe1 xe1 xe9. 设函数 zf (x, y) 是由方程 x2y3xyz20 确定 , 则z( B)x( A )2x yz 2 ; ( B )2x yz 2; (C )3y 2xz 2; ( D ) 3y 2xz 2 .2xyz2xyz2xyz2xyz 10. 若函数 f ( x, y) 在点 ( x 0 , y 0 ) 处不连续,则 ( C)( A ) lim f (x, y) 必不存在;(B )0 , y 0 ) 必不存在;xx 0 yy 0( C ) f (x, y) 在点 (x 0 , y 0 ) 必不可微;( D ) f x ( x 0 , y 0 ), f y (x 0, y 0 ) 必不存在 .f(x11.考虑二元函数 f (x, y) 的下面 4 条性质:①函数 f ( x, y) 在点 ( x 0 , y 0 ) 处连续;②函数 f ( x, y) 在点 ( x 0 , y 0 ) 处两个偏导数连续;③函数 f ( x, y) 在点 ( x 0 , y 0 ) 处可微;④函数 f ( x, y) 在点 ( x 0 , y 0 ) 处两个偏导数存在 .则下面结论正确的是(A )(A )②③ ①;( B )③ ②①;(C )③ ④ ①;D )③ ① ④。
《微积分(下)》第2章多元函数微分学练习题--参考答案
第2章 多元函数微分学一、二元函数的极限专题练习:1.求下列二元函数的极限: (1)()11(,)2,2lim2;y xy x y xy +⎛⎫→- ⎪⎝⎭+ (2)()()2222(,),3limsin;x y x y x y →∞∞++(3) ()(,)0,1sin lim;x y xyx →(4)((,)0,0limx y →解: (1) 当1(,)2,2x y ⎛⎫→- ⎪⎝⎭时,10xy +→,因此()[]1112(1)11(,)2,(,)2,22lim2lim1(1)e yxy y xy x y x y xy xy -++⎛⎫⎛⎫→-→- ⎪⎪⎝⎭⎝⎭⎧⎫+=++=⎨⎬⎩⎭。
(2) 当()(,),x y →-∞+∞时,2230x y →+,因此222233sin ~x y x y++, ()()()()22222222(,),(,),33limsinlim 3x y x y x y x y x y x y →∞∞→∞∞+=+⋅=++。
(3) 当()(,)0,1x y →时,0xy →,因此sin ~xy xy ,()()(,)0,1(,)0,1sin limlim 1x y x y xy xyx x →→==。
(4) 当()(,)0,0x y →10,0xy →→,因此,(())())(,)0,0(,)0,0(,)0,01limlimlim12x y x y x y xy xy→→→===。
2.证明:当()(,)0,0x y →时,()44344(,)x y f x y xy=+的极限不存在。
证明: 取2(0)y kx k =≠,则()()()()()()()444484433334444444(,)0,0(,)0,0(,)0,0limlimlim11x y x y x y x y k x x k k xyxk xk k →→→===++++显然此极限值与k 的取值相关,因此当()(,)0,0x y →时,()44344(,)x y f x y xy=+的极限不存在。
多元函数微分学练习题
(2)
xy ; (3) lim x x 2 y 2 y 3.问下列函数在 (0, 0) 点是否连续?
1 (4) lim 1 x x y 4
。
x3 y , x 2 y 2 0, 6 2 (1) f ( x, y ) x y 0, x 2 y 2 0; x3 y3 , x 2 y 2 0, sin (2) f ( x, y ) x 2 y 2 0, x 2 y 2 0. 4. 设 D 是 Oxy 平面中的有界闭区域,M 0 为 D 外的一点。 证明在 D 中必存在点 P0
8.设 z arcsin
x x2 y2
,求
2z 2z z , 2, 。 x yx x
4 a 2t
9.证明:函数 u
1 2a t
e
( x b ) 2
( a, b 为常数)当 t 0 时满足方程
u 2u a2 2 。 t x
x y 10.设 u ( x, y ) yf y xg x ,其中函数 f , g 具有二阶连续导数。证明 2u 2u x 2 y 0。 xy x 2 f 2u 2u 11.设二元函数 f 具有二阶连续导数,且满足 2 y , x y , 2 x, xy x y 求f。 12.有一边长分别为 x 6m 与 y 8m 的矩形,如果 x 边增加 5cm ,而 y 边减少 10cm ,问这个矩形的对角线的长度的变化情况?
(1, 1, 1)
。
1 2 2 , x 2 y 2 0, ( x y ) sin 2 2 x y 2.设 f ( x, y ) 0, x 2 y 2 0.
(完整版)多元函数微分学及其应用习题解答
1 / 28习题8-11. 求下列函数的定义域: (1) y x z -= ;解:0,0x y D ≥≥⇒=(){,0,x y y x ≥≥(2) 221)ln(yx xx y z --+-=;解:220,0,1y x x x y D -≥≥--⇒=(){}22,01x y y x xy >≥+<且(3) )0(122222222>>-+++---=r R rz y x z y x R u ;解:222222220R x y z x y z r ≤---<++-⇒,0D ⇒=(){}22222,,x y z rx y z R <++≤(4) 22arccosyx z u +=。
221,0x y D ≤+≠⇒=(){}22,0x y z x y ≤+≠2. 求下列多元函数的极限:: (1) 22y 01)e ln(limyx x y x ++→→;解:y 1ln 2x y →→== (2) xy xy y x 42lim0+-→→;解:令t=xy,1200001(4)12lim 14x t t y t -→→→→-+===-2 / 28(3) x xyy x sin lim50→→;解:0050sin sin lim5lim 55x x y y xy xyx x →→→→==(4) 22x 222200e)()cos(1limy y x y x y x ++-→→;解:22222222222x 001cos()11cos()2(sin ),lim 20022()ey x y x y x y x y x y →→+-+-+=∴=⋅⋅=+Q (5) xyy x y x )(lim 220+→→。
解:0,xy >设22ln()xy x y +两边取对数,由夹逼定理2200222222lim ln()2222000ln()()ln()0lim ln()0,lim()1x y xy x y xyx x y y xy x y x y x y xy xy x y x y e→→+→→→→≤+≤++<+=∴+==xylnxy 当时同理可得,3. 证明下列极限不存在: (1) y x yx y x -+→→00lim;证明:(1)(,)(,)(,)(1)m x x y y mx f x y f x mx m x+===-当沿直线趋于原点(0,0)时.001lim,1x y x y mm x y m →→++=--不同时,极值也不同,所以极限不存在。
(完整版)多元函数微分法及其应用习题及答案
(完整版)多元函数微分法及其应⽤习题及答案第⼋章多元函数微分法及其应⽤(A)1.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z 2,xy z2 ,则在D 上,xy zy x z =22。
(2)函数()y x f z ,=在点()00,y x 处可微的条件是()y x f z ,=在点()00,y x 处的偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的条件。
2.求下列函数的定义域(1)y x z -=;(2)22arccos yx z u +=3.求下列各极限(1)x xy y x sin lim 00→→; (2)11lim 00-+→→xy xyy x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→4.设()xy x z ln =,求y x z 23及23y x z。
5.求下列函数的偏导数 (1)xyarctgz =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数dt dz 。
7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dtdu。
8.曲线??=+=4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾⾓是多少?9.求⽅程1222222=++c11.设()y x f z ,=是由⽅程y z z x ln =确定的隐函数,求xz,y z ??。
12.设x y e e xy =+,求dxdy 。
13.设()y x f z ,=是由⽅程03=+-xy z e z确定的隐函数,求xz,y z ??,y x z 2。
14.设y ye z x cos 2+=,求全微分dz 。
15.求函数()222ln y x z ++=在点()2,1的全微分。
多元函数微积分练习题共6页
练习题一 多元函数微分学部分练习题 1 求函数yx yx z -++=11的定义域.2已知xy y x xy y x f 5),(22-+=-,求),(y x f . 3计算下列极限 (1)22)0,1(),()ln(limy x e x y y x ++→ (2) 4422),(),(lim y x y x y x ++∞∞→(3)243lim)0,0(),(-+→xy xy y x (4)xy x xy 1)1,0(),()1(lim +→(5)2222)1,2(),(2lim y x y x xy y x ++→ (6)2222)0,0(),()(2sin lim yx y x y x ++→ 4 证明极限yx yx y x +-→)0,0(),(lim不存在.5 指出函数22),(y x yx y x f -+=的间断点.6计算下列函数的偏导数(1))ln(2y x z = (2)x xy z )1(-= (3)),(2y x f x z = (4))(xy xz ϕ=(5)y xy y x z 2344+-+= (6))ln(22y x z += (7))3cos(22y x e z y x += (8)y xy z )1(+= (9)2221zy x u ++=(10)⎰=220sin y x dt t z7 计算下列函数的二阶偏导数(1)243y xy x z -+= (2))ln(xy y z =(3)y e z xy sin = (4)),(2y x f x z = (5)2(,)z f xy x = 8求下列函数的全微分(1)xy xe z = (2)221yx z +=(3)xy z arcsin = (4)),(y x yf xy z += 9 设⎰=xydt t y x f 12sin ),(,求df .10 (1)22uv v u z -=,其中y x u cos =,x y v sin =,求xz ∂∂,yz ∂∂(2))arctan(),,(z y x z y x f u ++==,其中)cos(xy z =,求xz ∂∂,yz ∂∂(3)v u e z -=, t u sin =,2t v =,dz dt(4)),(22y x yx f z -=,求xz ∂∂,yz ∂∂(5)设),()2(xy x g y x f z +-=,求xz ∂∂,yz ∂∂;11 (1)设0)ln(22=+-+y x xy x ,求dxdy . (2)设xyz e z =,求yz x z ∂∂∂∂,. (3)已知⎩⎨⎧=++=++1022z y x z y x ,求dz dx ,dz dy. 12 求曲线⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=211t z t t y t t x 在点1=t 的切线及法平面方程.13求曲线⎩⎨⎧=++=++06222z y x z y x 在点)1,2,1(0-M 处的切线与法平面方程.14求曲面3=+-xy z e z 在点)0,1,2(M 处的切平面和法线方程. 15求函数22)1(-+=y x z 的极值.16求函数32z xy u =在条件a z y x =++)0,,,(>a z y x 下的极值.17求函数32z xy u =在曲面03222=-++xyz z y x 上点)1,1,1(P 处,沿曲面在该点朝上的法线方向的方向导数.18 设222(,,)3f x y z x y z xy x y z =+++-++,求(1,2,3)gradf . 二 多元函数积分学部分练习题 1、改变下列二次积分的积分次序(1)⎰⎰1102),(x dy y x f dx (2)⎰⎰--yy dx y x f dy 21110),((3)⎰⎰⎰⎰+2242220),(),(y y y dx y x f dy dx y x f dy2、计算下列二重积分(1)⎰⎰Dxyd σ,其中区域D 是曲线xy 1=,2=x 及x y =所围成的区域. (2)⎰⎰+Dd y x σ)(,其中区域D 是曲线x y 42=及x y =所围成的区域.(3)⎰⎰+Dd y x σ)(,其中区域D :1≤+y x .(4)⎰⎰+Dd y x σ)cos(,其中区域D 是曲线x y =,0=y 及2π=x 所围成的区域.(5)⎰⎰--Dy xd e σ22,其中积分区域D 为中心在原点,半径为a 的圆周所围成的闭区域.(6)⎰⎰+Dd y x σ22,其中积分区域为D :122≥+y x ,x y x 222≤+,0≥y .3、设函数),(y x f 连续,且⎰⎰+=Ddxdy y x f xy y x f ),(),(,其中D 是由0=y ,2x y =和1=x 所围成的区域.4、设函数)(u f 具有连续导数,且0)0(=f ,3)0(='f ,求3220222)(limtd y x f t y x t πσ⎰⎰≤+→+.5 计算下列三重积分(1)⎰⎰⎰Ω++dxdydz z y x )sin(,其中Ω是由三个坐标面与平面2π=++z y x 所围成的立体;(2)计算⎰⎰⎰Ωzdxdydz ,其中Ω是由曲面222y x z --= 以及22y x z +=所围成的空间形体.(3)计算积分⎰⎰⎰Ωxyzdxdydz ,其中Ω是球面4222≤++z y x 在第一卦限的部分.6 试计算立体Ω由曲面228y x z --=及22y x z +=所围成的体积. 7计算⎰⎰⎰Ωdxdydz e z ,其中Ω是球面1222≤++z y x .8 计算下列曲线积分(1)LxydS ⎰,其中L 为圆222a y x =+在第一象限内的部分;(2)222()x y z dS Γ++⎰,其中Γ是球面9222=++z y x 与平面0=++z y x 的交线.(3)⎰+-+L dy y x dx y )2()1(3,其中L 是曲线23x y =上从点)0,0(O 到点)1,1(A 的一段弧;(4)计算⎰+Lxdy ydx ,其中L 为圆周θcos r x =,θsin r y =上由0=θ到πθ2=的一段弧.(5)在过点)0,0(O 和)0,(πA 的曲线族)0(sin >=a x a y 中求一条直线L ,使沿该曲线到点O 到点A 的积分⎰+++Ldy y x dx y )2()1(3的值最小.(6)计算⎰⎰∑dS z1,其中∑为球面4222=++z y x 被平面1=z 截出的上半部分.(7)计算⎰⎰∑++dS z y x )(222,其中∑为锥面222y x z +=介于平面0=z 与1=z 之间的部分. (8)计算⎰⎰∑+dxdy y x e z 22,其中∑是锥面22y x z +=夹在平面1=z 和2=z 之间部分的外侧.(9)计算⎰⎰∑++=dxdy z dzdx y dydz x I 333,其中∑为以点)0,0,1(A ,)0,1,0(B ,)1,0,0(C 为顶点的三角形的上侧.9求曲线Γ:a x =,at y =,221at z =(10≤≤t ,0>a )的质量,设其线密度为az2=ρ. 10 (1) 设L 为取正向的圆周922=+y x ,计算曲线积分⎰-+-Ldy x x dx y xy )4()22(2的值.(2)利用Stokes 公式计算曲线积分⎰++=L xdz zdy ydx I ,其中L 是球面2222a z y x =++与平面0=++z y x 的交线,由z 轴的正向看去,圆周沿逆时针方向.(3)计算对坐标的曲线积分⎰++L dy x dx x xy 2)(2,其中L 为222R y x =+的第一象限由),0(R 到)0,(R 的一段弧.(4)已知1)(=πϕ,试确定)(x ϕ,使曲线积分⎰+-BAdy x dx xyx x )()]([sin ϕϕ 与路径无关,并求当A ,B 分别为)0,1(,),(ππ时线积分的值(5)计算⎰⎰∑++=yzdxdy xydzdx xzdydz I ,其中∑是圆柱面222R y x =+与平面0=x ,0=y ,0=z 及h z =)0(>h 所围成的在第一卦限中的立体的表面外侧.11(1)设k z j y i x r ϖϖϖϖ++=,计算r rot ϖ.(2)设()A xyz xi yj zk =++r r r r,计算divA r希望以上资料对你有所帮助,附励志名言3条:1、有志者自有千计万计,无志者只感千难万难。
多元函数微分学练习题及答案
六、设 z (u, x, y), u xe y,其中 f 具有连续的二阶偏导 数,求 2 z . xy
练习题答案
一、1、C(C 为常数); 2、(A)1 x 2 y 2 4; 3、 x (1 y)2 y
4、1; 5、必要条件,但不是充分条件; 6、可微;
7、 2 f (v )2 f 2v ; v 2 y v y 2
则 ab3c27abc5 a0,b0,c0
5
四、1、
zx(lyn )xln y1,
zy
ln x y
xln y
2、u x f 1 y 2 . f ( y x zx ) y f 3 ,z u yx2 f(x z xy y )f3 z
.
3、fx(x,y)(x22xyy32)2,x2
练习题 一. 填空:
1、设在区域D上函数 f 存在偏导数,且 fx fy 0
则在D上,f( x,y) ( )
2 、 二 元 函 数 z ln 4 arcsin 1 的 定 义 域 是
x2 y2
x2 y2
( ).
3、设 f ( xy, x ) ( x y)2,则 f ( x, y) ( ). y
4、lim( x 2 y )2 x2 y2 ( ). x0 y0
5、函数 f ( x, y)在点( x0 , y0 )处连续,且两个偏导数 f x ( x0 , y0 ), f y ( x0 , y0 )存在是 f ( x, y)在该点可微
的( ).
6、设
f
( x,
y)
( x 2
8、
9 2
a
3
;
9、(1,2);10、 1 ; 8
(完整版)多元函数微分学复习题及答案精选全文完整版
可编辑修改精选全文完整版第八章 多元函数微分法及其应用 复习题及解答一、选择题 1. 极限= (提示:令22y k x =) ( B )(A) 等于0 (B) 不存在 (C) 等于(D) 存在且不等于0或2、设函数,则极限= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于2 3、设函数,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数在点处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件 5、设,则= ( B )(A)(B)(C)(D)6、设,则 ( A )(A ) (B ) (C ) (D )7、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C ) (A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若,则= ( D ) (A) (B)(C)(D)9、设,则( A )(A) 2 (B) 1+ln2 (C) 0 (D) 1 10、设,则 ( D )(A) (B)(C) (D)11、曲线在点处的法平面方程是 (C ) (A) (B)(C)(D)12、曲线在点处的切线方程是 (A )(A) 842204x z y --=-=(B) (C) (D)13、曲面在点处的切平面方程为 (D )(A ) (B )(C )(D )14、曲面在点处的法线方程为 (A )(A ) (B ) (C ) (D )15、设函数,则点是函数 的 ( B )(A )极大值点但非最大值点 (B )极大值点且是最大值点(C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数具有二阶连续偏导数,在处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点是函数的极大值点 (B )点是函数的极小值点(C )点非函数的极值点 (D )条件不够,无法判定17、函数在222421x y z ++=条件下的极大值是 ( C )(A) (B) (C) (D)二、填空题 1、极限= ⎽⎽⎽⎽⎽⎽⎽ .答:2、极限=⎽⎽⎽⎽⎽⎽⎽ .答:3、函数的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:4、函数的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:,5、设函数,则= ⎽⎽⎽⎽⎽⎽⎽ .答:6、设函数,则= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-)7、设,要使处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:8、设,要使在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:19、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线及11、设,则_________ .答:3cos5 12、设,则= _________ .答:1 13、设,则=_________ .答:14、设,则在极坐标系下,= _________ .答:015、设,则= _________.答:16、设,则= ___________ .答:17、函数由所确定,则= ___________ .答:18、设函数由方程所确定,则= _______ .答:19、由方程所确定的函数在点(1,0,-1)处的全微分= _________ .答:20、曲线在点处的切线方程是_________.答:21、曲线在对应于点处的法平面方程是___________. 答:01132=+--e y x22、曲面在点处的法线方程为_________ .答:eze y x 22212=-+=- 23、曲面在点处的切平面方程是_________.答:24、设函数由方程确定,则函数的驻点是_________ .答:(-1,2) 27、函数的驻点是_________.答:(1,1)25、若函数在点处取得极值,则常数_________,_________.答:0,426、函数在条件下的极大值是_______答:三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.4 2、求极限 .解:= 43、求极限 .解:原式=4、求极限 .解:= -85、设,求.解:6、设,求.解:7、设函数由所确定,试求(其中).解一:原式两边对求导得,则同理可得:解二:xy xz F F y z xy yz F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数的极值.解:由,得驻点074334>=--==yyyxxy xx z z z z D,函数在点处取极小值.9、设,而,求.解:=-++(sin )3432t t e x y10、设,求.解:11、设,求.解:,,12、求函数的全微分.解:四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为米.水池底部的单位造价为. 则水池造价 且令由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e x z y x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+- 2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx ekn xy k tkn sin 2222--=∂∂, 所以22xy k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。
-多元函数微分习题+答案
2004年 年
设z=z(x,y)是由 x 2 − 6 xy + 10 y 2 − 2 yz − z 2 + 18 = 0 确定的函数,求 z = z ( x, y ) 的极值点和极值.
提示
因为
x 2 − 6 xy + 10 y 2 − 2 yz − z 2 + 18 = 0
2λ 2( x + 3 y − 10) − 9 x = 0 2λ 6( x + 3 y − 10) − y=0 4 x2 y2 =0 1 − − 9 4
F = ( x + 3 y − 10) 2 + λ (1 −
9
−
4
)
14
得驻点
3 4 x= ,y= , 5 5
对应面积
即 P ( x , y , z ) 的任意性知曲面上各点的法线总垂直于 常向量.
7
〖证法二 任取曲面上一点P0 ( x 0 , y 0 , z 0 ) 证法二〗 证法二
cx − az = cx 0 − az 0 则直线 L: 在曲面上, cy − bz = cy 0 − bz 0
而L的对称式方程为 L: x − x0 y − y0 z − z0 = = a b c 可见过曲面上任意一点的直线均平行于{a,b,c}, 即曲面是母线平行于{a,b,c}的柱面。
dx
其中 f , ϕ 具有一阶连续偏导,且 ∂ϕ ≠ 0 ,求 du ∂z 【解】 du = 解
dx fx + fy dy dz + fx dx dx
dy = cos x dx
dz ′ ϕ1 2 x + ϕ′2 e cos x + ϕ′ =0 3 dx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元函数微分学练习题 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】
第五章(多元函数微分学) 练习题
一、填空题
1. (,)(0,0)sin()lim
x y xy y →= . 2. 22
(,)(0,0)1lim ()sin x y x y x y →+=+ . 3. 1(,)(0,0)lim [1sin()]xy
x y xy →+= . 4. 设21sin(), 0,(,)0, 0x y xy xy f x y xy ⎧≠⎪=⎨⎪=⎩
则(0,1)x f = .
5. 设+1(0,1)y z x x x =>≠,则d z = .
6. 设22ln(1)z x y =++,则(1,2)d z = .
7.
设u =d u = .
8.
若(,)f a a x ∂=∂
,则x a →= . 9.
设函数u =0(1,1,1)M -处的方向导数的最大值为 .
10. 设函数23u x y z =++,则它在点0(1,1,1)M 处沿方向(2,2,1)l =-的方向导数为 .
11. 设2z xy =,3l i j =+,则21x y z
l ==∂=∂ .
12. 曲线cos ,sin ,tan 2
t x t y t z ===在点(0,1,1)处的切线方程是 . 13. 函数z xy =在闭域{(,)0,0,1}D x y x y x y =≥≥+≤上的最大值是 .
14. 曲面23z z e xy -+=在点(1,2,0)处的切平面方程为 .
15. 曲面2:0x z y e -∑-=上点(1,1,2)处的法线方程是 .
16. 曲面22z x y =+与平面240x y z +-=平行的切平面方程是 .
17. 曲线2226,2
x y z x y z ⎧++=⎨++=⎩在点(1,2,1)-处切线的方向向量s = .
18. 设2),,(yz e z y x f x =,其中),(y x z z =是由方程z y x e z y x --+=+确定的隐函数,则=)1,1,0(x f .
二、选择题
1. 设0x 是n R ⊂E 的孤立点,则0x 是E 的 ( )
(A)聚点; (B)内点; (C)外点; (D)边界点.
2. 设0x 是n R ⊂E 的内点,则0x 是E 的 ( )
(A)孤立点; (B)边界点; (C)聚点; (D)外点.
3. 设22
2, (,)(0,0)(,)0, (,)(0,0)x y x y f x y x y x y ⎧+≠⎪=+⎨⎪=⎩
,则(0,0)y f =( )
(A) 0 (B) 1 (C) 2 (D) 1-
4. 若),(y x f 在),(00y x =0x 的两个偏导数)(0x x
f ∂∂,)(0x y f ∂∂存在,则 ( ) (A)f 在0x 可微; (B)f 在0x 连续;
(C)f 在0x 存在任何方向的方向导数; (D)f 在0x 关于x 与y 皆连续.
5. 二元实值函数),(y x f 的两个偏导数x
f ∂∂,y f ∂∂在),(00y x =0x 连续是f 在0x 可微的( ) (A) 充分条件 (B) 必要条件
(C) 充要条件 (D) 既不是充分也不是必要的条件
6. 函数22223u x y xz y =+-+-在点(1,1,2)-处的方向导数的最大值为( )
(A); (B) (C);
7. 函数332233z x y x y =+--的极小值点是( )
(A) (0,0) (B) (2,2) (C) (2,0) (D) (0,2)
8. 设),(y x f z =在),(00y x =0x 可微,z ∆是f 在0x 的全增量,则在0x 处有 ( )
(A)dz z =∆; (B)y x f x f z y x ∆'+∆'=∆)()(00x ;
(C)dy f dx f z y x )()(00x x '+'=∆; (D)))()((),(22y x dz z ∆+∆=+=∆ρρο.
9. 设)(22z x yf z x -=+(其中f 可微),且能确定隐函数),(y x f z =,则=∂∂+∂∂y z y x z z
( )
(A) )()(22z x f z y y x -'++; (B) x ;
(C) )()2(22z x f xz y y x -'++; (D) z .
10. 设方程)()(22y x F y x F y +++=能确定隐函数)(x f y =(其中F 可微),且
1)4(,2
1)2(,2)0(='='=F F f ,则=')0(f ( ) (A) 71; (B)71-; (C)41-; (D)3
1-. 11. 曲面1=xyz 上平行于平面03=+++z y x 的切平面方程是 ( )
(A)03=-++z y x ; (B)02=-++z y x ;
(C)01=-++z y x ; (D)0=++z y x .
三、计算与证明题
1. 设(,)w f x y z xyz =++,f 具有二阶连续偏导数,求2,w w x x z
∂∂∂∂∂. 2. 设函数(,)z z x y =是由方程2222(,)0F z x z y --=所确定的隐函数,其中(,)F u v 具有一阶连续偏导数,试求表达式11z z x x y y
∂∂+∂∂. 3. 设函数(,)()x y z f xy g y x =+,f 具有二阶连续偏导数,g 二阶连续可导,求2z x y
∂∂∂. 4. 设函数(), ()y y x z z x ==由方程组(),(,,)0z xf x y F x y z =+=确定,其中f 和F 分别具有一阶连续导数和一阶连续偏导数,求dz dx
.
5. 设(,,)u u x y z =由方程222222(,,)0F u x u y u z ---=所确定,求证: 1111u u u x x y y z z u
∂∂∂++=∂∂∂. 6. 设方程222()z x y z yf y
++=能确定隐函数(,)z z x y =,求证: 222()22z z x y z xy xz x y
∂∂--+=∂∂. 7. 求函数23z x y y =+-的极值.
8. 求函数22(2)x z e x y y =++的极值.
9. 在平面320x z -=上求一点,使它与点(1,0,1)A ,(2,2,3)B 的距离平方和为最小.
10. 求原点到曲线22
1
z x y x y z ⎧=+⎨++=⎩的最长和最短距离.
11. 设⎪⎩
⎪⎨⎧=+≠++=000),(222222y x y x y x xy y x f ,证明:),(y x f 在点(0 0)并不连续,但存在两个偏导数.
12.设函数 ⎪⎩⎪⎨⎧=+≠++= 0
, 0, 0 , ),(222222y x y x y x xy y x f 证明:f 在(0,0)连续但不可微. 13.设函数 22
22322222 , 0 ,(,)()0 , 0
x y x y f x y x y x y ⎧+≠⎪⎪=⎨+⎪+=⎪⎩ 证明:f 在(0,0)连续但不可微.
14.设函数
2
22
22
22
, 0 ,
(,)
0 ,0
x y
x y
x y
f x y
x y
⎧
+≠
⎪
+
=⎨
⎪+=
⎩
证明:f在(0,0)连续,偏导数存在但不
可微.。