合成氨变换工段设计说明

合集下载

合成氨变换工段工艺设计

合成氨变换工段工艺设计

合成氨变换工段工艺设计合成氨是化工工业中的重要原料,广泛应用于制取尿素、硝化铵等农业肥料,以及制取氨水、氨盐、化肥、染料等合成工艺中。

合成氨变换工段是合成氨生产中的关键环节,其工艺设计对合成氨的产量、质量以及能耗等方面有重要影响。

一、工艺概述合成氨的变换反应器是将反应物氮气和氢气通过催化剂的作用,在一定条件下发生气相合成反应,生成合成氨。

反应器通常采用固定床催化剂反应器,催化剂的选择和催化剂床层的设计都是工艺设计的重要环节。

冷凝器主要用于对反应产生的氨气进行冷凝回收,常见的冷凝器有直接冷凝器和间接冷凝器两种形式,工艺设计中需要根据具体情况选择适用的冷凝方式。

循环气压缩机主要用于将反应器中未反应的气体通入新的循环,提高气相合成反应的转化率。

在工艺设计中,需要考虑压缩机的压比、功率消耗等参数。

氨气的分离净化装置主要用于对合成氨中的杂质进行去除,提高合成氨的纯度。

常用的分离净化装置有吸附装置、膜分离装置等,具体的工艺设计需要根据生产要求和经济效益进行选择。

二、工艺参数及控制合成氨的变换工段的工艺参数主要包括反应温度、反应压力、空速、催化剂活性等。

这些参数直接影响合成氨的产率、选择性和能耗。

反应温度是合成氨变换反应的重要参数,通过控制温度可以提高反应速率和转化率,但过高的温度会导致副反应的发生,降低合成氨的选择性。

反应压力主要用于控制氨气的产量和能耗,压力越高产氨越多,但能耗也相应增加。

空速是指单位时间内通过反应器的氮气体积,可以通过调控压力和进气量来实现,过小的空速会影响反应的效果,而过大会导致固定床催化剂的床层冲击和阻力升高,影响反应转化率。

催化剂活性主要指催化剂的活性组分含量和粒径等参数,这些参数会影响合成氨的选择性和催化剂的寿命。

在工艺设计中,需要考虑这些参数的合理选择和控制,以提高合成氨的产量和质量,并降低能耗。

三、能耗控制合成氨的变换工段是合成氨生产中的能耗重点。

能耗的控制主要体现在压力控制、催化剂选择和热交换等方面。

年产10万吨合成氨变换工段工艺设计

年产10万吨合成氨变换工段工艺设计

合成氨是一种重要的工业原料,广泛应用于农业、化工、医药等领域。

本文基于年产10万吨合成氨的工段工艺设计,旨在优化工艺流程,提高生产效率和质量,同时满足环保要求。

合成氨的主要生产方法是哈柏-博斯曼(Haber-Bosch)工艺,该工艺通过高温高压条件下将氮气和氢气催化反应生成合成氨。

下面是年产10万吨合成氨变换工段的工艺设计:一、气体预处理:氮气和氢气作为原料需要经过脱氧、除尘、脱硫等处理。

首先,气体通过管路系统进入脱氧器,脱氧器中通过还原剂将氧气还原成水蒸气,并通过除尘装置去除颗粒杂质。

然后,气体进入脱硫装置,通过催化剂将硫化氢还原成硫。

最后,气体经过压缩机增压至反应器所需的高压。

二、反应器系统:反应器是合成氨的核心设备,采用多床连续负压式反应器。

氮气和氢气按照适当的配比通过输送装置进入反应器,反应器内通过催化剂将氮气和氢气催化反应生成合成氨。

反应器床层数可根据实际需要确定,废热可回收利用进行预热。

同时,反应器系统还要配备适当的温度、压力和流量控制装置,以保证反应器内的运行条件稳定。

三、合成氨分离:反应后的气体中含有未反应的氮气、氢气和合成氨,需要进行分离处理。

首先,将反应气体冷却至低温,通过液相分离装置将液态氨分离出来。

然后,将氨气经过压缩,通过冷凝器冷却至液态,并收集分离出的液态氨。

未反应的氮气和氢气通过管道再次回流到反应器进行循环利用。

此外,分离出的液态氨还需要经过精制和储存处理,以确保质量和安全。

四、废气处理:合成氨生产中会产生大量的废气,包括未反应的氮气、氢气、氨气和其他杂质气体。

废气处理主要包括低温分离、吸收、洗涤等步骤。

首先,废气通过低温分离装置将其中的液态氨和水分离出来。

然后,通过吸收剂将氨气吸收,以减少其排放。

最后,利用洗涤液去除废气中的其他杂质气体,确保废气达到环境排放标准。

五、能耗优化:为了降低能耗和提高生产效率,可以采用余热回收和过程优化等措施。

余热回收可通过换热器将反应废热回收利用,进行气体预热和水蒸气生产。

「年产三万吨合成氨厂变换工段工艺设计」

「年产三万吨合成氨厂变换工段工艺设计」

年产三万吨合成氨厂变换工段工艺设计一、工艺流程概述1.原料准备:将天然气(主要是甲烷)与空气作为主要原料,通过气体净化系统去除其中的杂质、硫化物和水分。

2.原料配送:将净化后的天然气和空气分别输送至气体净化系统进行进一步的处理和分析。

3.变换反应槽:将净化后的天然气和空气通过压缩机压缩至一定压力后,经过暖气交换器加热至高温(约500-600℃),再进入变换反应槽。

4.变换催化剂:在变换反应槽中,使用催化剂(通常是高温高压下的铁-钴催化剂)促进N2和H2的反应。

反应生成的合成氨会随气流从反应槽中流出。

5.除气系统:将反应槽中的气体通过除尘器,冷却器和吸附剂等设备进行处理,去除其中的固体颗粒、水分和其他杂质。

6.合成氨回收:经过除气系统处理后的气体中仍含有未反应的氮气和氢气,通过压缩机再次压缩进入蒸馏塔。

在蒸馏塔中,根据不同的沸点,将氨气和氮气分离开来,再通过冷凝器冷凝为液态氨。

7.废水处理:在工艺过程中产生的废水会经过处理系统去除其中的有机物和杂质,以保证排放的废水符合环保要求。

二、设备布置和操作要点1.变换反应槽的设计要考虑到温度、压力和气体流动速度的控制。

同时,需要定期更换催化剂,以维持优良的反应性能。

2.除气系统中的设备要进行定期维护和清洁,确保其正常工作和去除气体中的杂质、固体颗粒和水分。

3.合成氨回收装置要根据产品质量要求设置合适的操作参数,例如蒸馏塔的温度和压力。

此外,冷凝器的冷却水流需要保持稳定,以确保气体顺利冷凝为液态氨。

4.废水处理系统应配置适当的物理和化学处理单元,如过滤器、沉淀池和生物处理等,以达到废水排放标准。

5.需要建立相应的安全措施,如设立监测系统,确保气体和液体在整个工艺中的安全运输和使用。

三、工艺控制和性能优化1.在变换反应槽中,可以通过调节供气比例、压力和温度等参数来控制合成氨的产率和选择性。

同时,也可以根据反馈控制系统监测和调整催化剂的性能。

2.除气系统中的设备可以通过监测气体的组成和温度、压力等参数,来调整操作参数,以达到满足产品质量要求的除气效果。

合成氨变换工段工艺设计

合成氨变换工段工艺设计

1.4 工艺流程简述全低变的工艺流程示意图见图1-1。

图1-1 低温变换工艺流程示意图Fig1-1 Schematic diagram of the low tem p erature conversion p rocess半水煤气首先进入油水分离器,脱除部分固体和液体杂质后进入活性炭滤油器,进一步脱除杂质。

经净化的半水煤气进入变换气换热器与从第二变换炉出来的变换气进行逆向热交换,使其温度上升到180 ℃左右,变换气温度下降到160 ℃左右。

出变换气换热器的半水煤气再进入煤气换热器与从第一变换炉出来的变换气进行逆向热交换,变换气自身的温度下降到300 ℃左右,半水煤气升温到200 ℃左右。

出煤气换热器的半水煤气与来自管网的中压水蒸气混合,一方面使半水煤气温度上升到变换反应温度,另一方面使半水煤气增湿,并达到设计要求所需要的汽气比进入第一变换炉发生变换反应,在第一变换炉内CO 的变换率可达到60%左右。

经第一变换炉变换后出来的变换气进入煤气换热器与半水煤气逆向换热后进入淬冷过滤器I ,逆向与喷淋下来的冷却水换热并使冷却水汽化,此时变换气的温度下降到230 ℃左右,冷却水和变换气换热后汽化,从而使蒸汽含量达到设计要求,湿变换气进入第二变换炉第一段催化剂床层进行变换反应。

经第二变换炉第一段催化剂床层变换反应后CO 的变换率可达到85%左右,温度上升到280 ℃左右进入淬冷过滤器II ,逆向与喷淋下的冷却水进行热交换,使其温度下降到190 ℃左右,同时补充水蒸气,达到设计要的汽气比进入第二变换炉第二段催化剂床层进行变换,最终CO 的变换率可达到99%。

出第二变换炉第二段的变换气经过变换气换热器后,再经过变换气冷却器降温至40 ℃左右,去后续工段。

第二章 物料衡算及热量衡算2.1设计条件计算基准:1吨NH 3。

设备生产能力:t/h 7222.92430010703=⨯⨯ 由设计所给条件取每吨氨耗用半水煤气3520Nm 3,则每小时的半水煤气用量为:3520×9.7222=34222.2 Nm 3/h初始半水煤气组成见下表2-1。

合成氨CO变换工段设计

合成氨CO变换工段设计

设计任务 (4)摘要 (5)第一章概述 (5)1.1目的和意义 (5)1.2工艺原理 (7)1.3工艺条件 (7)1.4工艺流程确定 (8)1.5主要设备的选择说明 (10)第二章变化工段物料及能量衡算 (10)2.1已知条件及计算基准 (10)2.2中温变换炉物料及热量衡算 (10)2.2.1水汽比的确定 (10)2.2.2中变炉CO的实际变换率的求取 (11)2.2.3中变炉催化剂平衡曲线 (12)2.2.4最佳温度曲线的计算 (12)2.2.5中变炉一段催化床层的物料及热量衡算 (13)2.2.6中变炉二段催化床层的物料及热量衡算 (17)2.3低温炉的物料及能量衡算 (21)2.3.1低变炉物料计算 (22)2.3.2出低变炉的变换气温度估算: (23)2.3.3低变炉的热量衡算 (23)2.3.4低变催化剂操作线计算 (25)2.3.5低变炉催化剂平衡曲线 (25)2.3.6最佳温度曲线的计算 (29)2.4饱和热水塔的热量和物料衡算 (27)2.4.1饱和塔的热量和物料衡算 (27)2.4.2热水塔的物料和热量衡算 (29)2.5主换热器的物料与能量的衡算 (31)2.6中间变换器物料与热量衡算 (33)第三章设备计算 (35)3.1中温变换炉的计算 (35)3.1.1触媒用量的计算 (35)3.1.2第一段床层触媒用量 (35)3.1.3 第二段床层触媒用量 (36)3.1.4 触媒直径的计算 (38)3.1.5中变炉进出口管径的选择 (39)3.2低温变换炉的计算 (40)3.2.1催化剂用量计算 (40)3.2.2催化剂床层阻力 (41)3.3主换热器的计算 (42)3.3.1传热面积的计算 (42)3.3.2设备直径与管板的确定 (43)3.3.3传热系数的验算 (43)3.3.4壳侧对流传热系数计算 (44)3.3.5总传热系数核算 (46)3.3.6其他换热器的选择 (46)3.4泵的选择 (47)第四章设备布置 (49)4.1设备布置的内容 (49)4.2设备布置的要求 (49)4.3设备布置图 (49)第五章环境保护与安全措施 (50)5.1环境保护 (50)5.1.1设计标准 (50)5.1.2主要污染物 (50)5.1.3三废处理 (50)5.1.4环境管理及检测 (51)5.2安全措施 (52)5.2.1设计依据 (52)5.2.2安全防护措施 (52)5.2.3安全卫生管理 (52)第六章设计体会和收获 (54)6.1设计陈述 (54)6.2体会和收获 (54)符号说明 (55)参考文献 (56)致谢 (57)附图 (58)设计任务1、设计项目名称:40万吨/年合成氨一氧化碳变换工段设计2、生产方法:中串低工艺3、生产能力:年产四十万吨合成氨日生产量为(一年连续生产330天):400000/330=1212.12T/d=50.51T/h4、原料组成:半水煤气摘要变换工段工序是合成氨生产中关键的一步,其主要任务是将变换气中的一氧化碳转化为二氧化碳。

年产2万吨合成氨变换工段工艺设计设计

年产2万吨合成氨变换工段工艺设计设计

合成氨是一种重要的工业化学品,广泛用于农业肥料、化肥、塑料、炸药等领域。

为了满足市场需求,设计一个年产2万吨合成氨变换工段的工艺。

合成氨工艺通常包括三个主要步骤:气体净化、合成反应和分离纯化。

以下是一个基本的工艺设计方案。

1.气体净化从天然气中提取氢气(H2)和氮气(N2),一种常用的方法是通过蒸汽重整和高温转热反应。

天然气先经过脱硫除硫化氢(H2S)处理,然后进入蒸汽重整器,与水一起反应生成H2和CO。

再通过转热反应,将CO转化为CO2和H22.合成反应合成反应通常采用哈贝-博斯曼工艺(Haber-Bosch Process),即在高温(400-500摄氏度)和高压(200-300巴)下,将氢气与氮气催化反应生成氨。

反应器通常采用固定床催化剂,催化剂常用的是铁(Fe)或铁钼(Fe-Mo)催化剂。

反应器主要分为顶座和底座两部分,用以升温和降温,以保持恒定的反应温度。

3.分离纯化合成氨的产物中除了氨外还含有一些杂质,如副产物氮氧化物(NOx)和未反应的氢气。

因此,需要对产物进行分离纯化,以获得高纯度的合成氨。

分离纯化一般采用蒸馏、吸附和压缩等方法。

首先,通过蒸馏将氨与轻杂质分离。

然后,使用吸附剂去除重杂质,如CO、CO2和H2O。

最后,利用压缩机将氨气压缩,得到最终产品。

此外,为了实现连续生产,工艺中还需要一些辅助设备,如冷却器、加热器、循环泵和控制阀等。

以上是一个简单的年产2万吨合成氨变换工段的工艺设计方案。

实际设计中还需要考虑各种因素,如安全性、能源消耗、成本等。

同时,工艺设计还应根据具体情况进行优化和改进,以提高产量和效率。

年产二十万吨合成氨变换工段工艺设计

年产二十万吨合成氨变换工段工艺设计

合成氨变换工段是合成氨生产过程中的关键工艺环节之一,它将合成气中的氮气和氢气在催化剂的作用下,通过催化反应转化为合成氨。

本文将围绕年产二十万吨合成氨的变换工段工艺设计进行详细阐述,旨在提供一个完整的工艺设计方案。

首先,变换工段的催化剂选择非常重要。

对于年产二十万吨合成氨的工艺,常用的催化剂有铁素体、铁铬铝混合催化剂等。

这些催化剂在一定的操作条件下,能够实现高效的合成氨转化率和选择性。

在实际应用中,应根据具体工艺要求和经济效益进行选择。

其次,合成气的净化和预热是变换工段的重要准备工作。

合成气中常含有一定的杂质,如氧、水蒸气、二氧化碳等,这些杂质会影响催化剂的活性和寿命。

因此,合成气需要通过一系列净化设备,如除氧、除硫、除水等步骤,将其净化为适合变换反应的合成气。

同时,为了提高反应的热效应,还需要对合成气进行预热,一般可以采用换热器进行热量回收。

接下来是变换反应的具体设计。

变换反应是一个平衡反应,根据Le Chatelier原理,可以通过提高反应温度、降低反应压力、增加氢气过量等方式推动平衡向产氨方向偏移。

在实际设计中,应在考虑较高转化率的前提下,平衡反应速率和催化剂活性与寿命的关系,做出合理的选择。

另外,变换反应需要保持一定的循环气速和循环气气体组成。

循环气速过高会造成能耗增加,循环气速过低则会影响气体传质效果。

循环气气体组成应符合催化剂的操作条件,一般应保持一定的氢气过量,同时控制氮气和氢气的比例。

最后是变换工段的控制策略。

合成氨变换工段是一个高温高压的工艺过程,对于安全和稳定运行,需要建立完善的自动化控制系统。

控制策略应包括反应温度和压力的控制、循环气速和气体组成的控制、催化剂的修复和更换等。

在实际设计中,应结合具体的工艺要求和设备性能,进行综合技术经济分析,选取最佳的工艺参数和操作条件。

同时,在设计过程中还应考虑到工艺的可持续性和环境保护要求,合理利用资源,减少废物排放,实现工艺的可持续发展。

合成氨变换工段工艺设计

合成氨变换工段工艺设计

合成氨变换工段工艺设计1. 引言合成氨是一种重要的化工原料,在农业、化工和医药等行业广泛应用。

合成氨的生产过程中,合成氨变换工段是一个关键的工艺环节。

本文将介绍合成氨变换工段的工艺设计。

2. 工艺流程合成氨变换工段的工艺流程包括进料处理、反应器设计、温度控制和产品回收四个重要环节。

2.1 进料处理合成氨的主要原料是氮气和氢气,进料处理环节主要包括氮气和氢气的纯化和混合。

氮气和氢气需要通过特定的纯化设备去除杂质,以确保反应的纯度和效果。

然后,纯化后的氮气和氢气按照一定比例进行混合。

2.2 反应器设计反应器是合成氨变换工段的核心设备,根据反应器设计的不同,可以分为固定床反应器和流化床反应器两种。

固定床反应器是一种较为常见的反应器形式,氮气和氢气催化反应产生合成氨。

固定床反应器需要考虑催化剂的选择、填充物的设计以及反应器的传热设计等因素。

流化床反应器是近年来逐渐应用的一种反应器形式,其优点包括更好的热传递性能和更好的反应效果。

流化床反应器需要考虑反应器的气固分离、催化剂的循环和再生等因素。

2.3 温度控制温度对合成氨反应的影响非常重要,合适的反应温度可以提高反应速率和选择性。

在合成氨变换工段中,需要通过控制进料气体的温度和反应器的温度来实现对反应的控制。

温度控制还需要考虑热量的平衡问题,包括进料气体的预热和产物蒸汽的回收利用等。

2.4 产品回收合成氨变换工段的最终目标是获得高纯度的合成氨产品。

在产品回收环节中,需要进行氨的冷凝和气液分离。

冷凝过程中需要考虑温度和压力的控制,以确保氨的高效冷凝。

气液分离过程中,可以采用吸收液的方式将氨从气相中吸收出来,再进行后续处理和精制。

3. 设备选择合成氨变换工段的设备选择主要包括反应器、纯化设备、冷凝器和分离器等。

反应器的选择需要考虑反应速率、选择性和热传导等因素。

常用的反应器材料有不锈钢、镍基合金等。

纯化设备的选择需要考虑氮气和氢气的纯度要求以及生产规模等因素。

合成氨变换工段设计

合成氨变换工段设计

合成氨变换工段设计合成氨是一种广泛应用的化学品,用途包括制造肥料、燃料电池等。

合成氨的生产过程是一个复杂的工程过程,在工段设计中需要综合考虑原料、设备、工艺和安全等因素。

首先,在合成氨的生产过程中,主要原料是氢气和氮气。

这两种原料通过压缩和净化等预处理工序后,进入合成反应器进行化学反应。

从合成反应器出来的产物需要经过进一步的冷却、净化和分离工序,才能得到合格的合成氨。

在合成氨的工段设计中,为了提高反应效率,需要合理选择反应器的类型和条件。

常用的反应器有固定床反应器和流化床反应器。

固定床反应器具有结构简单、操作稳定等特点,适合小规模生产。

而流化床反应器具有热量和质量传输效果好的特点,适合大规模生产。

根据实际情况,可以选择合适的反应器进行设计。

在反应器的设计中,需要考虑反应的热力学和动力学特性。

合成氨反应是一个放热反应,需要控制反应温度和压力以保证反应的进行。

同时,还需要考虑反应速度和产物选择性等因素,以提高反应的效率和产品质量。

在产物的冷却和净化工序中,主要考虑的是如何高效地将合成氨从反应器中分离出来,并去除反应产物中的杂质和不稳定物质。

常用的分离和净化方法有吸收、吸附和蒸馏等。

根据实际情况,可以选择合适的方法进行设计。

除了原料和产物,合成氨的工段设计中还需要考虑废气的处理和安全措施。

由于合成氨的生产过程中产生的废气中含有大量的氮气和氢气,需要进行安全处理,以防止爆炸和污染。

常用的处理方法有燃烧、吸附和压缩等。

同时,还需要配备相应的安全设施,如安全阀、警报器等,以保证生产过程的安全性。

在合成氨的工段设计中,还需要考虑设备的选型和布局。

设备的选型要根据生产量、质量要求和经济效益等因素进行综合考虑。

设备的布局要根据设备之间的流程要求和工艺条件进行合理安排,以提高生产效率和安全性。

总之,合成氨的工段设计是一个综合考虑原料、设备、工艺和安全等因素的过程。

只有根据实际情况进行合理的设计,才能保证合成氨的生产过程稳定、高效和安全。

合成氨变换工段工艺过程设计

合成氨变换工段工艺过程设计

合成氨变换工段工艺过程设计
合成氨是一种氮肥的主要原材料,广泛应用于农业生产中。

合成氨的生产工艺比较复杂,需要经过多个过程的变换才能得到最终的产品。

以下是合成氨变换工段工艺过程的设计。

第一步:氨气合成
氨气合成是合成氨工艺的核心环节,是通过一系列反应将纯净的氢气和氮气合成氨气。

氮气主要来自于空分装置,而氢气主要来自于蒸汽重整装置。

氮气和氢气混合进入催化转化器,经过高温高压催化剂的作用,在催化剂的表面上发生一系列反应,生成氨气。

第二步:氨气变换
氨气变换是将氨气和过量的氮气通过低温催化转化器进行反应,生成高纯度的合成气体。

合成气体主要由氨气、氢气和少量的氮气组成。

合成气体进入变换反应器,在催化剂的作用下,发生一系列反应,将多余的氮气转化为氨气,提高合成气体的纯度。

为了提高合成氨的产率和纯度,还需要进行一系列辅助工艺,如排水处理、冷凝除尘等。

排水处理是为了去除合成氨中的水分,保证合成氨的纯度。

在排水处理过程中,合成氨中的水分会通过分离器分离出来,再经过干燥塔吸附去除水分,最后得到干燥的合成氨。

冷凝除尘是为了去除合成氨中的杂质,保证合成氨的纯度。

在冷凝除尘过程中,合成氨通过冷凝器冷却,使其中的杂质凝结成固体颗粒,然后经过除尘器除去颗粒物,最后得到纯净的合成氨。

综上所述,合成氨变换工段工艺过程的设计包括氨气合成和氨气变换两个主要步骤,同时还需要进行排水处理和冷凝除尘等辅助工艺。

这些步骤的设计要考虑反应温度、反应压力、催化剂的选择和管理,以及对产物的分离、干燥和净化等。

通过合理的工艺设计和操作管理,可以提高合成氨的生产效率和产品质量。

小合成氨厂低温变换工段工艺设计

小合成氨厂低温变换工段工艺设计

小合成氨厂低温变换工段工艺设计1.工艺流程合成氨的低温变换工艺流程包括氨气脱除、氢气供应、氮氢混合、压缩、变换反应和冷却净化等步骤。

具体流程如下:(1)氨气脱除:从合成气中去除氨气。

合成气通常包括氮气、氢气和少量的甲烷、一氧化碳等。

氨气脱除可以采用吸收剂或者低温冷凝的方式进行。

(2)氢气供应:合成氨需要大量的氢气供应。

氢气可以通过蒸汽重整、部分氧化等方式产生。

(3)氮氢混合:将氮气和氢气按照一定的比例混合,以提供合适的反应物组成。

(4)压缩:将混合气体压缩到合适的工艺压力,以增加反应速率和提高反应效果。

(5)变换反应:将压缩的气体通入低温变换器中,反应产生氨气。

这个过程是一个放热反应,需要控制反应温度和催化剂的作用。

(6)冷却净化:将变换产生的气体冷却,去除其中的杂质和不稳定的气体组分,以获得高纯度的合成氨。

2.工艺参数合成氨的低温变换工段的设计需要考虑多个工艺参数,包括反应温度、反应压力、气体流量、催化剂选择等。

(1)反应温度:低温变换反应需要控制在适当的温度范围内进行。

反应温度过高会导致催化剂失活,而温度过低则会影响反应速率和产氨量。

(2)反应压力:反应压力是影响反应平衡的重要参数,对氨气产率和选择性有很大影响。

通常情况下,反应压力较高可以提高氨气产率,但同时也增加了设备的投资和运行成本。

(3)气体流量:气体流量直接影响反应物在催化剂上的接触和反应速率。

合适的气体流量可以提高反应效果,但如果流量过大,会增加压力损失和能耗。

(4)催化剂选择:催化剂是低温变换反应的关键,其选择需要考虑活性、稳定性和寿命等因素。

常用的催化剂有铁、铂、钼等,可以单一使用或者组合使用。

3.安全控制在低温变换工段的设计中,安全控制是非常重要的。

一方面,低温反应需要保证设备和管道的密封性和抗冻性,以防止设备爆炸和泄漏事故。

另一方面,反应温度和压力需要在合适的范围内稳定控制,以防止设备超负荷运行和产生危险反应。

此外,还需要考虑废气处理、电力供应等问题,以确保低温变换工段的安全和稳定运行。

合成氨变换工段设计

合成氨变换工段设计

合成氨变换工段设计一、工艺简介合成氨(NH3)是一种重要的化学原料,广泛应用于肥料、化工、冶金等领域。

合成氨通常是通过哈伯-博士过程进行合成的,该过程主要有三个阶段:气化反应、变换反应和分离装置。

其中,变换反应是合成氨反应的核心环节。

二、工艺流程1.进料系统:将氮气(N2)和氢气(H2)以一定的比例通入反应器。

进料系统应包括氮气和氢气的净化装置,以确保进入反应器的气流中不含有不利于反应的杂质。

2.反应器:反应器是合成氨变换的关键装置,需要选择适当的催化剂,并控制合适的反应温度和压力。

反应器的设计应满足以下要求:具有高的转化率和选择性、较小的压力损失、对催化剂具有良好的分布和稳定性。

3.除尘装置:合成氨反应会产生一些固体杂质,如烟尘颗粒等。

除尘装置主要用于去除这些固体杂质,以确保产品的纯度。

4.产品收集系统:将合成氨收集并进行后续的分离和提纯。

收集系统应包括冷凝器、吸收塔等设备,以确保合成氨的回收率。

三、工艺参数1.反应温度:合成氨变换反应通常在300-500°C的温度范围内进行,具体温度的选择应考虑催化剂的活性和热力学平衡等因素。

2.反应压力:合成氨变换反应的压力通常在10-30MPa之间,压力的选择应使反应的平衡位置有利于产生高的氨气浓度。

3.氮气和氢气的比例:氮气和氢气的比例对合成氨反应的转化率和选择性有重要影响,一般通过调节氮气和氢气的流量比例来控制。

4.催化剂的选择:催化剂的选择应考虑其活性和稳定性,促使反应的进行,并提高催化剂的利用率。

四、工艺设备1.反应器:选用合适的反应器,如固定床反应器或流化床反应器,确保催化剂的分布均匀和反应的高转化率。

2.净化装置:包括氮气和氢气的净化装置,用于去除进料中的杂质。

3.冷凝器:用于冷却和冷凝反应器出口的气体,以便进行后续的分离和提纯。

4.吸收塔:用于收集合成氨气体,并进行后续的分离和提纯。

五、工艺控制1.温度控制:根据反应的热力学特性,控制反应温度在适当的范围内,以提高反应的转化率和选择性。

五万吨合成氨变换工段工艺初步设计

五万吨合成氨变换工段工艺初步设计

五万吨合成氨变换工段工艺初步设计合成氨(NH3)是一种广泛应用于肥料生产、化工工业和能源领域的重要中间体。

在这个问题中,我们将进行五万吨合成氨的变换工段工艺初步设计。

1.工艺选择合成氨的常见工艺路线包括谷氨酸法、煤气化法、重整法和协同催化法等。

鉴于规模和技术可行性,我们将选取协同催化法作为工艺路线。

2.原料准备合成氨的主要原料是氮气(N2)和氢气(H2)。

N2可通过空分设备分离出来,而H2可通过天然气蒸汽重整装置或制氢装置生产。

原料气体经过净化步骤去除杂质,确保质量符合要求。

3.催化反应催化反应采用协同催化剂,具体是煤基催化剂和铁基催化剂的组合。

反应器采用固定床反应器,进料气体在催化剂上进行反应。

反应条件包括压力、温度和气体配比等,根据实际情况进行确定。

常用的反应条件为高压(3-10MPa)、高温(350-550℃)和适当的氮氢比例。

4.产品分离反应生成的氨气通过冷却、减压和吸附等步骤进行分离。

氨气与水通过冷却器进行热交换,降低温度。

然后通过分离器进行减压,使氨气从溶液中析出。

氨气回收后,通过吸附剂去除残余的杂质,以达到纯度的要求。

最后,通过压缩机将氨气压缩到适当的压力,以供应下游工艺。

5.傍热回收在冷却和减压过程中,需要高能量输入。

为了节约能源,可以采用傍热回收技术,将部分废热回收利用。

具体的方案包括采用换热器进行热交换和采用适当的废热锅炉等。

6.废水处理合成氨过程中会产生废水,其中含有氨氢离子和少量的有机物。

为了达到环保要求,需要进行废水处理。

常见的废水处理方法包括中和、沉淀、过滤和氨气脱除等步骤。

7.安全措施在合成氨生产过程中,需要采取一系列安全措施,包括定期检查设备,防止泄漏和爆炸,储存和运输氨气等。

同时,要培训和教育操作人员,提升他们的安全意识。

8.自动化控制合成氨生产是一个复杂的过程,需要精确的控制和监测。

可以采用自动化控制系统,实时监控反应温度、压力、流量等参数,并进行相应的调整,以保证产品质量和工艺的稳定运行。

6万吨合成氨变换工段工艺设计

6万吨合成氨变换工段工艺设计

6万吨合成氨变换工段工艺设计合成氨变换工段是合成氨生产过程中的关键环节,它将通过合成产生的氨气进行变换,使其转化为氮气和水。

本文将对6万吨合成氨变换工段的工艺设计进行详细介绍。

1.工艺原理合成氨变换工段采用的是低温变换法,主要基于以下反应:2NH3⇌N2+3H2该反应是一个平衡反应,具有可逆性。

为了提高反应速率和收率,需满足一定的条件,包括适宜的温度、压力和催化剂。

2.工艺流程合成氨变换工段的工艺流程一般包括进料、加热、反应、冷却和分离等步骤。

(1)进料:合成氨气从合成回收装置进入变换工段。

(2)加热:合成氨气在加热炉中加热至适宜的反应温度。

常用的加热方式包括电阻加热和燃气加热。

(3)反应:加热后的氨气进入变换器中进行反应。

变换器一般采用多层催化剂填料,以提高反应效率。

反应温度和压力需根据反应动力学和平衡原理进行优化选择。

(4)冷却:反应后的气体在冷却器中冷却,以控制温度,防止反应逆向进行。

(5)分离:冷却后的气体经过分离装置进行分离,将氮气、水和未反应的氨气分离开。

一般采用冷凝器和吸附器等装置进行分离。

3.工艺参数合成氨变换工段的工艺参数包括反应温度、压力、催化剂选择和反应时间等。

(1)反应温度:反应温度对合成氨的变换速率和收率有着重要影响。

通常选择适宜的反应温度,一般在300-500℃之间。

(2)反应压力:反应压力也是一个重要的工艺参数,它会影响变换速率和收率。

一般选择适宜的反应压力,大致在15-35MPa之间。

(3)催化剂选择:催化剂选择直接关系到反应效果。

常用的催化剂有铁、镍、钼等。

催化剂要具有高效催化性能和较好的稳定性。

(4)反应时间:反应时间需要根据生产规模和设备容量进行确定。

一般情况下,生产规模越大,反应时间越长。

4.工艺优化为了提高工艺效果和经济性,还可以采取以下优化措施。

(1)催化剂再生:催化剂在反应过程中会发生失活,需要定期进行再生。

通过再生可以延长催化剂寿命,减少生产成本。

合成氨变换工段毕业设计说明书

合成氨变换工段毕业设计说明书

合成氨变换工段毕业设计说明书摘要本文是关于重油为原料年产8万吨氨一氧化碳变换工段初步设计。

在合成氨的生产中,一氧化碳变换反应是非常重要的反应。

用重油制造的原料气中,含有一部分一氧化碳,这些一氧化碳不能直接做为合成氨的原料,而且对合成氨的催化剂有毒害作用,必须在催化剂的催化作用下通过变换反应加以除去。

一氧化碳变换反应既是原料气的净化过程,又是原料气的制造过程。

本设计主要包括工艺路线的确定、中温变换炉的物料衡算和热量衡算、触媒用量的计算、中温变换炉工艺计算和设备选型、换热器的物料衡算和热量衡算以及设备选型等。

并且综合各方面因素对车间设备布置进行了合理的设计,最终完成了20 000字的设计说明书及生产工艺流程图、车间平立面布置图及主体设备装配图的绘制。

关键词:重油;一氧化碳变换;中温变换炉;流程图AbstractThis article was about the annual output of heavy oil as raw materials to transform eight thousand tons of carbon monoxide ammonia preliminary design section. In the production of ammonia, transformation of carbon monoxide was a very important reaction. Manufactured using heavy oil feed gas which containa part of carbon monoxide, carbon monoxide could not be directly used as those of the raw materials of synthetic ammonia, but also a catalyst for ammonia poisoning effect there must be a catalyst for transformation through the catalytic reaction to be removed. Transformation of carbon monoxide is a gas purification process of raw materials, but also the manufacturing process of feed gas. The design of the main routes which include the identification process, the medium variant of the furnace material balance , heat balance, the calculation of the amount of catalyst, in the variable furnace process of calculation and selection of equipment, heat exchanger of the material balance and heat balance as well as equipment selection type and so on. Taking all factors and workshop equipment to carry out a reasonable arrangement of the design. In the end, the20 000-word statement and map production process, shopping facade and the main equipment layout drawing assembly were completed.Key words: Heavy oil; Transformation of carbon monoxide; Temperature shiftconverter; Flow chart目录摘要 (Ⅰ)Abstract (Ⅱ)第1章总论 (1)1.1 概述 (1)1.1.1 一氧化碳变换反应的意义与作用 (1)1.1.2 国内外研究现状 (1)1.2 设计依据 (1)1.3 厂址的选择 (2)1.3.1 厂址选则 (2)1.3.2 方案比较 (2)1.4 设计规模与生产制度 (3)1.4.1 设计规模 (3)1.4.2 生产制度 (3)1.5 原料与产品规格 (3)1.5.1 原料规格 (3)1.5.2 产品规格 (3)第2章工艺设计与计算 (4)2.1 工艺原理 (4)2.2 工艺路线的选择 (4)2.3 工艺流程简述 (4)2.4 工艺参数 (5)2.4.1 原料气体组分 (5)2.4.2 工作压力 (5)2.4.3 工作温度 (5)2.4.4 计算基准 (6)2.5 物料衡算 (6)2.5.1 变换气量及变换率计算 (6)2.5.2 总蒸汽量计算 (7)2.5.3 中变炉物料衡算 (7)2.6 热量衡算 (16)2.6.1 中变炉一段CO变换反应热量衡算 (16)2.6.2 中变炉二段CO变换反应热量衡算 (17)2.6.3 中变炉三段CO变换反应热量衡算 (18)2.6.4 换热器热量衡算 (18)2.6.5 物料衡算和热量衡算一览表 (18)第3章设备选型 (22)3.1 设备选型原则 (22)3.2 主要设备计算 (22)3.2.1 中变炉设备计算 (22)3.2.2 换热器设备计算 (29)3.3 其他主要设备 (30)第4章设备一览表 (31)第5章车间设备布置设计 (33)5.1 车间布置设计的原则 (33)5.1.1 车间设备布置的原则 (33)5.1.2 车间设备平立面布置的原则 (34)5.1.3 本工段设计设备布置原则 (28)第6章自动控制 (29)6.1 主要的控制原理 (29)6.2 自控水平与控制点 (29)第7章安全和环境保护 (30)7.1 三废产生情况 (36)7.2 三废处理情况 (37)第8章公用工程 (37)8.1 供水 (37)8.2 供电 (38)8.3 通风 (38)8.4 供暖 (38)8.5 电气 (38)结束语 (39)参考文献..................................................................................................... 错误!未定义书签。

合成氨变换工段工艺设计

合成氨变换工段工艺设计

添加标题
添加标题
智能化:自动化控制,提高生产 效率,降低人工成本
挑战:技术研发投入大,市场竞 争激烈,环保要求不断提高
感谢观看
汇报人:
单击此处添加副标题
合成氨变换工段工艺设计
汇报人:
目录
01 02 03 04 05 06
添加目录项标题 合成氨变换工段概述 合成氨变换工段工艺流程 合成氨变换工段设备与操作 合成氨变换工段安全与环保 合成氨变换工段优化与改进
01
添加目录项标题
02
合成氨变换工段概述
合成氨变换工段定义
合成氨变换工段是 合成氨生产过程中 的一个重要环节
冷却目的:降低变换气的温度,提高反应效率 冷却方式:采用水冷或气冷方式 分离目的:将变换气中的氨和氮气分离,提高氨的纯度 分离方式:采用冷凝、吸收或膜分离等方式
04
合成氨变换工段设备与操作
设备组成及功能
压缩机:用于提高气体压力, 提高反应速率
冷凝器:用于气体冷凝,回 收热量和氨气
换热器:用于热量交换,提 高反应效率
净化效果:提高原料气纯度,降低有害物 质含量
净化后原料气输送:输送至合成氨变换工 段进行反应
变换反应
反应原理:氮气和氢气在催化剂作用下生成氨气 反应条件:高温、高压、催化剂 反应产物:氨气、氮气、氢气 反应过程:氮气和氢气在催化剂作用下发生反应,生成氨气和氮气,同时释放出热量和压力。
变换气冷却与分离
防火防爆:设置 防火防爆设施, 防止火灾爆炸事 故
环保措施:采用 环保技术,减少 废气、废水、废 渣排放,保护环 境
环保要求及排放控制
废水处理:采用先进处理技 术,实现废水循环利用
废气处理:采用高效净化设 备,减少废气排放

年产20万吨合成氨变换工段工艺设计

年产20万吨合成氨变换工段工艺设计

年产20万吨合成氨变换⼯段⼯艺设计第1页化⼯设计说明书设计题⽬: 年产20万吨合成氨变换⼯段⼯艺设计系别:化学化⼯学院专业:班级:学⽣:指导⽼师:20年X⽉X⽇本章符号对照表M ——相对分⼦质量,g/mol t/T ——温度,℃ /K Vm ——摩尔体积(0℃,0.1Mpa )22.4/(L/mol) V ——半⽔煤⽓体积,m 3 p co 、p H2O 、p co2 、p H2 ——分别为CO 、H 2 O 、CO 2和H 2各组分的分压H ——标准摩尔焓(kJ /mol )ρ/r ——密度/(kg/ m 3) S ——标准摩尔熵/(J/mol ·k) K p ——平衡常数Kt ——反应速率常数,mol/(MPa0.5·g ·h ) m ——质量,kgy co 、y H2O 、y co2 、y H2 ——分别为CO 、H 2 O 、CO 2和H 2 摩尔分数X ——实际变换率,%y a 、y a ′——分别为原料⽓及变换⽓中⼀氧化碳的摩尔分数Cp ——⽓体的平均⽐热容,kJ/(kmol ·℃)或kJ (kg ·℃)R ——⽓体常数,8.314J/(mol ·K)E ——化学反应活化能,J/molg ——重⼒加速度,m/s2G ——⽓体质量流速,kg/(m2·h) Tm ——最适宜温度,Ki ——⽔蒸⽓在t ℃时的焓,kj/kgΦ——饱和度,% Q ——热量,kJw ——⼲⽓空间速度 m/s u ——催化剂⾃由容积分数 R ——汽/⽓⽐ Di ——塔体内直径,mm d e ——当量直径,m H 塔⾼,mmη——管板填充系数 n ——列管根数 t ——管⼦中⼼距µm ——混合⽓体在温度t 时的黏度,MPa·sµi ——混合⽓体中i 组分在温度t 时的黏度,MPa·sy i ——混合⽓体中i 组分摩尔分数 M i ——混合⽓体中i 组分的分⼦量S a ——⼸形截⾯积,m 2 hˊ——⼸形⾼度,m H ——档板间距,mF ——传热⾯积,m 2 L ——列管长度,m K ——总传热系数,kJ/(m 2 ·h·℃) φ——塔体焊缝隙数 [σ]300 ——筒体材料在设计温度300℃下的许⽤应⼒ C 1 ——钢板厚度负偏差,mm C 2——腐蚀裕量,mm⽬录前⾔ (7)1 绪论 (7)1.1 氨的性质和⽤途 (7)1.2 ⼩型氨⼚的发展 (8)1.3 合成氨⽣产⽅法简介 (8)1.4 ⼀氧化碳变换在合成氨中的意义 (8)2 ⼀氧化碳脱除⽅发和选择 (11)2.1⼀氧化碳的脱除⽅法 (11)2.2⼀氧化碳脱除的⽅案选择 (11)3 ⼀氧化碳变换⽅案 (12)3.1变换原理 (12)3.2变换⽅案的选择 (13)3.3 中变炉的选择 (13)4 变换⼯艺的计算 (15)4.1 中变炉的计算 (15)4.2 饱和热⽔塔出⼝热⽔温度估算 (24) 4.3 饱和热⽔塔物料和热量计算 (24)4.4 换热⽓物料和热量的计算 (28)5 设备的计算 (35)5.1 变换炉的计算 (35)5.2 饱和热⽔塔的计算 (38)5.3主热交换器的计算 (44)5.4 中间换热器的计算 (48)5.5 ⽔加热器的计算 (50)5.6 热⽔循环塔的计算 (53)5.7 变换冷却器的计算 (56)6 变换炉的结构的计算 (60)6.1 变换炉设计条件 (60)6.2变换炉结构计算 (60)7 设备的选型 (66)8 变换反应的⼯艺参数和⼯艺条件 (67) 8.1变换反应的⼯艺参数 (67)8.2 变换过程的⼯艺条件 (67)9 设计结果⼀览表 (70)参考⽂献 (71)致谢 (72)年产20万吨合成氨变换⼯段⼯艺设计指导⽼师:摘要:⽤中温中压三段变换的⽅法,半⽔煤⽓⾸先经过饱和热⽔塔,在饱和热⽔塔内⽓体与塔顶流下的热⽔逆流接触进⾏热量与质量传递,使半⽔煤⽓体温增湿,出塔⽓体进⼊⽓⽔分离器分离夹带的液滴,再进⼊主热换热器、中间换热器和电炉升温,使温度达到320℃左右进⼊变换炉⼀段。

合成氨厂CO变换工艺设计说明书

合成氨厂CO变换工艺设计说明书

68t氨/d 合成氨厂CO变换工艺设计摘要氨是一种重要的化工产品,主要用于化学肥料的生产。

合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。

合成氨的生产主要分为:原料气的制取;原料气的净化与氨合成。

一氧化碳变换是指一氧化碳与水蒸气反应生产二氧化碳和氢气的过程。

在合成氨工艺流程中起着非常重要的作用。

在合成氨生产中,原料气中的一氧化碳都来源于含碳氢物质,如煤、天然气、油等。

半水煤气则是以煤为原料制得的含有氢气和一氧化碳等多种气体的混合物。

一氧化碳会使催化剂中毒,而合成氨工艺中所需的氢气则是一氧化碳和水反应制得。

因此在氨合成过程中必须进行一氧化碳变换。

这样不但去除了一氧化碳同时产生了合成氨的原料气氢气。

本次设计的主要任务是设计完成合成氨过程中净化车间一氧化碳多段变换的工艺流程。

本次设计采用中变串低变的工艺流程,在本流程中使用宽变催化剂可使操作条件有较大变化。

它使入炉煤气的蒸汽比有较大幅度的降低,而且使一氧化碳含量降低。

正是由于选用宽温催化剂,使得反应条件得以大大改进。

选用该流程的目的是为了让原料气净化程度高,流程简单,操作方便,稳定性好,催化剂使用时间长。

设计说明书包括三部分:工艺设计说明、变换工段的工艺计算及主要设备的工艺计算。

另外,附有四张设计图纸:一张管道及仪表流程图,一张平面布置图,一张物料流程图及一张设备一览表。

关键词:半水煤气、CO变换、催化剂The CO Transform Process DesignOf 68t ammonia/d Synthetic Ammonia plantAbstractAmmonia is an important chemical product, mainly for the production of chemical fertilizers. The production of synthetic ammonia has developed into a mature chemical production process through years of development. It is mainly divided into: the preparation of the raw gas; the purification of the raw gas and a the synthesis of mmonia.The transformation of carbon monoxide refers to the production of carbon monoxide and hydrogen response with carbon dioxide and water. It plays a very important role in the synthetic ammonia process. In the production of synthetic ammonia the carbon monoxide is containing comes from hydrocarbon, such as coal, oil and gas, etc. Semi-water gas is made for the raw coal and a mixture of gases including hydrogen and carbon monoxide. Carbon monoxide will make catalyst poisoned in the process , but hydrogen is made for the reaction of water and carbon monoxide. Therefore in the ammonia synthetic process must have the transformation of carbon monoxide. In addition to this , it also products the hydrogen gas which is the materal gas of synthetic ammonia. The main task of the design is to complete the transformation of carbon monoxide which is a part of the purification workshop of ammonia synthetic process . This design use the process of low temperature combined middle temperature, and the use of the wide temperature shift catalyst can make a significant changes in the operating conditions. It makes the ratio of steam into the furnace gas reduced significantly, and reduce the level of carbon monoxide. The reaction conditions can be improved greatly because of the selection of the wide temperature catalyst. The choice of using the process is to let the raw gas have a high degree purification, have a simple process , easy to operate, stability is good, catalyst have a long use time.The design specification includes three components: the design specifications of the process, the process calculation of the transform section and the process calculation ofmain equipment. In addition, four design drawings is accompanied: a piping and instrumentation diagrams, a layout plan, a material flow chart and an equipment list. Keywords: Semi-water gas, CO shift, catalyst目录摘要 (I)Abstract (II)前言 (1)第一章一氧化碳变换的工艺说明 (2)1.1设计依据 (2)1.2原料动力学消耗定额和消耗量 (2)1.3一氧化碳变换原理 (2)1.4一氧化碳变换催化剂 (3)1.4.1 铁-铬系一氧化碳中温变换催化剂 (3)1.4.2 一氧化碳宽温耐硫变换催化剂 (4)1.5工艺流程说明 (5)1.6设备选型及布置 (8)1.6.1设备选型的基本要求 (8)1.6.2 设备布置说明 (8)1.7三废治理说明 (9)1.8本工段各种工艺操作指标 (10)第二章一氧化碳变换工艺计算 (11)2.1设计条件 (11)2.2中温变换炉物料及热量计算 (12)2.2.1干变换气量及变换率的计算 (12)2.2.2 总蒸汽比(汽/气)的计算 (13)2.2.3中变炉一段催化剂层物料及热量衡算 (14)2.2.4 中变炉二段催化剂层物料及热量计算 (20)2.3低温变换炉物料及热量计算 (24)2.3.1 物料计算 (24)2.3.2 热量衡算 (25)2.3.3平衡曲线、最适宜温度曲线及操作线计算 (26)2.4饱和热水塔出口温度的估算 (27)2.4.1 水加热器出口变换气温度计算 (27)2.4.2 热水塔出口排水温度 (27)2.4.3饱和塔出口半水煤气温度 (28)2.5中间换热器物料及热量计算 (28)2.5.1蒸汽过热段 (28)2.5.2 半水煤气换热器 (30)2.6主热交换器物料及热量横算 (31)2.6.1 已知条件 (31)2.6.2 进设备半水煤气温度计算 (32)2.6.3 出热交换器的变换气温度计算 (33)2.7调温水加热器中变换气放出的热量计算 (34)2.8水加热器中低变气放出热量计算 (35)2.9饱和热水塔物料及热量计算 (36)2.9.1饱和塔物料及热量计算 (36)2.9.2热水塔物料及热量计算 (38)2.9.3 进饱和塔水温核算 (41)第三章典型设备计算 (41)3.1中温变换炉计算 (42)3.1.1已知条件 (42)3.1.2催化剂用量计算 (43)3.1.3催化剂床层直径的确定 (44)3.2低温变换炉计算 (46)3.2.1 已知条件 (46)3.2.2 催化剂用量计算 (47)3.2.3 催化剂床层直径的确定 (47)3.3饱和热水塔计算 (48)3.3.1 饱和塔计算 (48)3.3.2 热水塔计算 (53)参考文献 (59)附录1 (60)附录2 (61)附录3 (62)附录4 (63)致谢 (64)前言合成氨是化学工业的重要组成部分,在国民经济中有相当重要的位置。

年产50万吨合成氨中变换工段设计

年产50万吨合成氨中变换工段设计

合成氨的变换工段是氨的生产过程中的重要环节,其设计与优化对于氨的产量和质量有着重要影响。

下面是一个关于年产50万吨合成氨中变换工段设计的1200字以上的介绍。

1.变换工段的作用和原理变换工段是合成氨工艺中的核心环节,其主要作用是将气态的合成气(由氮气和氢气组成)转化为合成氨。

这一过程是通过在催化剂的作用下,将氮气和氢气通过一系列反应逐步转化为合成氨。

其中最主要的反应是氮气与氢气的催化剂反应,也称为哈伯—波克反应。

2.变换反应的热力学和动力学特性合成氨的变换反应是一个热力学上的放热反应,即在常温下会产生大量的热量。

这一特性对于反应器的设计和操作有着重要影响。

同时,反应速率也是变换反应的重要特性之一、在变换工段中,反应速率的控制是通过反应器的温度、压力和催化剂的选择来实现的。

3.反应器的选择和设计在变换工段中,常用的反应器有固定床反应器和流化床反应器两种。

固定床反应器是将催化剂填充在反应器内,通过气流将气体输入反应器进行反应。

而流化床反应器则是将催化剂以固体颗粒的形式悬浮在气流中进行反应。

两种反应器都有各自的优点和适用范围,具体的选择需要考虑到反应条件、催化剂的活性和成本等因素。

4.反应条件的优化反应条件是指反应器中温度、压力和气体流速等因素的控制。

这些条件对于反应速率和产物质量有着重要的影响。

通常,较高的反应温度和压力可以促进反应速率,但同时也会增加能耗和催化剂磨损等问题。

因此,需要在考虑反应速率的基础上综合考虑能耗和催化剂寿命等因素,寻找最优的反应条件。

5.催化剂的选择和优化催化剂是变换反应中的关键因素,其选择和优化对于反应速率和产物质量有着至关重要的影响。

合成氨的变换反应通常采用铁基催化剂或铁铬双金属催化剂。

催化剂的活性和稳定性是选择催化剂的两个主要指标。

而在实际操作中,催化剂的中毒和失效问题也需要考虑。

综上所述,年产50万吨合成氨中变换工段的设计是一个复杂而重要的工作。

需要综合考虑反应速率、能耗、催化剂选择和产物质量等多个因素,并通过合理的反应器设计和反应条件的优化来实现高效的合成氨生产。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工商职业技术学院毕业论文题目:合成氨变换工段设计作者:焦鹏丽学号:**********系别:化工工程系专业:应用化工技术指导教师:晋萍专业技术职务讲师2012 年1月1工商职业技术学院毕业设计说明书题目:合成氨变换工段设计作者:焦鹏丽学号:**********系别:化工工程系专业:应用化工技术指导教师:晋萍专业技术职务讲师2012 年1月1摘要:本文是关于煤炭为原料一氧化碳变换工段初步设计。

在合成氨的生产中,一氧化碳变换反应是非常重要的反应。

用煤炭制造的原料气中,含有一部分一氧化碳,这些一氧化碳不能直接做为合成氨的原料,而且对合成氨的催化剂有毒害作用,必须在催化剂的催化作用下通过变换反应加以除去。

一氧化碳变换反应既是原料气的净化过程,又是原料气的制造过程。

本设计主要包括工艺路线的确定、中温变换炉的物料衡算和热量衡算、触媒用量的计算、中温变换炉工艺计算和设备选型、换热器的物料衡算和热量衡算以及设备选型等。

关键词:煤炭;一氧化碳变换;中温变换炉;流程图结论中提到完成了设计宗指,但你的设计宗指到底是什么?没有表达出来。

结论中也没有对你的设计做一个总结,你到底做这个设计的做用是什么?解决了什么问题?目录中二级目录应比一级目录再缩进两格,下级目录同理。

目录第一章绪论 01.1 氨的性质和用途 01.1.1 氨的性质 01.1.2 氨的用途 01.2 我国合成氨生产现状 (1)1.3 一氧化碳变换在合成氨中的意义 (1)第二章变换流程及工艺条件 (2)2.1 变换工艺原理 (2)2.1.1变换反应的热力学分析 (2)2.1.2 变换反应的动力学分析 (2)2.2变换工艺的选择 (3)2.3 工艺条件 (4)2.3.1 温度 (4)2.3.2 压力 (5)2.3.3 水汽比 (5)第三章工艺计算 (6)3.1 基本工艺数据的确定 (6)3.1.1水气比的确定 (6)3.2中变炉一段催化床层的物料衡算 (7)3.2.1 中变炉一段催化床层的物料衡算 (7)3.2.2中变炉一段催化床层的热量衡算 (8)3.2.3 中变一段催化剂操作线的计算 (11)3.3中间冷凝过程的物料和热量计算 (12)3.4中变炉二段催化床层的物料与热量衡算 (13)3.4.1中变炉二段催化床层的物料衡算: (13)3.4.2中变炉二段催化床层的热量衡算 (15)3.4.3中变二段催化剂操作线计算 (16)3.5 主换热器的物料与热量的衡算 (18)3.6 调温水加热器的物料与热量衡算 (19)3.7低变炉的物料与热量衡算 (20)3.7.1低变炉的物料衡算 (20)3.7.2低变炉的热量衡算 (22)3.7.3 低变催化剂操作线计算 (23)3.7.4 最佳温度曲线的计算 (24)第四章设备计算 (25)4.1中变炉的计算 (25)4.1.1催化剂用量的计算 (25)4.1.2设备直径与管板的确定 (27)结论 (28)致 (29)参考文献 (30)第一章绪论氨是一种重要的化工产品,主要用于化学肥料的生产,它不仅是所有食物和肥料的重要成分,也是所有药物直接或间接的组成。

由于氨的广泛用途,氨是世界上产量最多的无机化合物之一。

合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。

1.1 氨的性质和用途1.1.1 氨的性质氨的分子式NH,在标准状态下是无色气体,比空气轻,具有特殊的刺激性臭味。

3人们在大约100cm/m氨的环境中,每天接触8H会引起慢性中毒。

物理性质:氨极易溶于水,溶解时放出大量的热,可产生含NH15%~30%的氨水,氨水3溶液是碱性,易挥发。

液氨或干燥的氨气对大部分物质没有腐蚀性,但在有水的条件下,对铜、银、锌等金属有腐蚀作用。

氨与空气或氧的混合物在一定浓度围能发生爆炸,有饱和水蒸气存在时,氨-空气混合物的爆炸界限较窄。

化学性质:氨在常温时非常稳定,在高温、电火花或紫外线光的作用下可分解为氮和氢,其分解速度在很大程度上与气体接触的表面性质有关。

氨是一种可燃性物质,自燃点为630℃,一般较难点燃。

氨与空气或氧的混合物在一定围能够发生爆炸。

常压,常温下的爆炸围分别为15.5%~82%(氧气)。

氨易与很多物质发生反应,例如在铂催化剂作用能与氧反应生成NO。

1.1.2 氨的用途氨在国民经济中占有重要的地位。

现在大约有80%的氨用来制造化学肥料,其余作为生成其它化工产品的原料。

除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素,磷酸氨,硝酸氨,硫酸氨,氨水以及含氮混肥和复肥为原料的。

氨在工业上主要用来制造炸药和各种化学纤维及塑料。

从氨可以制取硝酸,进而再制造硝酸铵,硝化甘油,三硝基甲苯和硝基纤维素等。

在化纤和塑料工业中,则以氨、硝酸和尿素等作为氮源,生产己酰胺、尼龙6单体、人造丝、丙烯晴、酚醛树脂和尿醛树脂等产品。

氨的其它工业用途也十分广泛,例如,作用制冰、空调、冷藏等系统的制冷剂,在冶金工业中用来提炼矿石中的铜、镍等金属,在医药和生物化学方面用做生产磺胺类药物、维生素、蛋氨酸和其它氨基酸等等。

1.2 我国合成氨生产现状2002年,我国合成氨实际产量36750 k/ta,2003年生产能力为41600k/ta,总生产能力和产量均居世界第一位,但单系列装置规模较小,合成氨装置平均规模为50kt/a。

目前我国共有合成氨装置800余套,其中300k/ta以上大型成氨生产装置34套(其中一套为400k/ta),设计总生产能力为109000k/ta,实生产能力为100000k/ta,约占中国大陆合成氨总生产能力的22%。

300k/ta以上大型合成氨生产装置,我国共有小合成氨设备700多套,生产能力为28000k/ta,约占中国大陆合成氨总生产能的66%。

乌鲁木齐石油化工建设的450k/ta合成氨装置,是目前国单套生产能力最大的合成氨装置。

1.3 一氧化碳变换在合成氨中的意义用不同燃料制得的合成原料气,均含有一定量的一氧化碳。

一般固体燃料制得的水煤气中含CO35%—37%,半水煤气中含CO25%—34%,天然气蒸汽转化制得的转化气中含CO较低,一般为12%—14%,一氧化碳不是合成氨生产所需要的直接原料,而且在一定条件下还会与合成氨的铁系催化剂发生反应,导致催化剂失活。

因此,在原料气使用之前,必须将一氧化碳清除。

清除一氧化碳分两步进行,第一步是大部分CO先通过变换反应:CO + H2O(g)= CO2+ H2这样既能把一氧化碳变为易于清除的二氧化碳而且又制得等量的氢,而所消耗的只是廉价的水蒸气。

因此,一氧化碳变换既是原料气的净化过程,又是原料气制造的继续。

第二步是少量残余的一氧化碳再通过其他净化方法加以脱除。

第二章 变换流程及工艺条件2.1 变换工艺原理一氧化碳是氨合成反应的毒物,在原料气中含量为13%-30%,一氧化碳变换主反应为:CO + H 2O = CO 2 + H 2 (2-1)通过上述反应,CO 转化为较易被消除的CO 2并获得宝贵的H 2,因而一氧化碳变换既是气体的净化过程,又是原料气制取的继续。

最后,少量的CO 再通过其他净化法加以脱除。

此外,一氧化碳与氢之间还可发生下列反应:CO + H 2 = C + H 2O (2-2)CO + 3H 2 = CH 4 + H 2O (2-3)但是,由于变换所用催化剂对反应式(2-1)具有良好的选择性,从而抑制了其他副反应的发生。

变换过程中还包括下列反应式:2H 2 + O 2 = 2H 2O (2-4)2.1.1变换反应的热力学分析变换反应是一个放热的可逆反应,反应的热效应视H 2O 的状态而定,若为液态水,则是微吸热反应;如是水蒸汽则为放热反应,通常都是以水蒸气为准。

放热反应放出的热量随温度的升高而降低。

不同温度下的反应热可以用下式计算:△H=⎰∆+∆ΘT p dT C H298298 2.1.2 变换反应的动力学分析(1)变换反应的平衡常数由于CO 变换反应是在常压或压力不高的条件下进行的,故计算平衡常数时用各组分分压表示便可。

K p =00222222H co H co H co H co y y y y p p p p ⋅⋅=⋅⋅只需要反应焓变与温度的关系就可根据)2/(/RT H dT dLnKp ΘΘ∆=导出平衡常数与温度的关系:lgK p =3994.704/T+12.220227lgT-0.004462T+0.67814×10-6T 4-36.72508式中:p CO 、p H 2O 、p CO 2 、p H 2——分别为CO 、H 2 O 、CO 2和H 2各组分的分压; y CO 、y H 2O 、y CO 2 、y H 2——分别为CO 、H 2 O 、CO 2和H 2 摩尔分数。

2.2变换工艺的选择变换工艺主要有4种:全中变、中串低、全低变和中低低。

合理选择变换工艺应考虑以下因素:半水煤气、水和蒸汽的质量;半水煤气中硫化氢含量;变换气中CO 含量要求;对变换后续工段的影响;企业现有的管理水平和操作水平。

中变段间煤气冷激与中变炉喷水冷激两种中低低工艺流程各有优缺点。

现比较如:A 、节能效果:段间喷水热回收率高,直接将段间高位能转化为蒸气,增加了汽气比,降低了蒸汽消耗,节能效果比段间煤气冷激要好。

B 、设备:段间喷水冷激需在中变炉设置蒸发层和喷头,这样与煤气冷激相比中变炉的结构就更为复杂,设备高度亦需增加,煤气冷激流程有部分半水煤气不经过主热交,因此主热换热面积也比炉喷水流程要小。

C 、操作运行:煤气冷激流程操作简单,但需防止中变下段发生偏流,造成床层漏氧,引起低变一段催化剂中毒失活,炉喷水冷激操作要求高,冷激水最好能用脱氧软水,喷水冷激装置既要达到所需的喷淋量,又要保证雾化好,以免中变下段催化剂粉化和结块。

通过以上比较,中变炉喷水冷激流程具有节能,运行费用低等优点,中变段间煤气冷激流程具有操作简单、投资省等优点。

因此本设计采用中变-低变串联流程。

流程图如下:图2–12.3 工艺条件2.3.1 温度变换反应存在最佳温度,如果整个反应过程能按最佳温度曲线进行,则反应速率最大,即相同的生产能力下所需催化剂用量最少。

但是实际生产中完全按最佳温度曲线操作是不现实的。

首先,在反应初期,x很小,但对应的Tm很高,且已超过了催化剂的耐热温度。

而此时,由于远离平衡,反应的推动力大,即使在较低温度下操作仍有较高的反应速率。

其次,随着反应的进行,x不断升高,反应热不断放出,床层温度不断提高,而依据最适宜曲线,Tm却要求不断降低。

因此,随着反应的进行,应从催化床中不断移出适当的热量,使床层温度符合Tm的要求。

生产上控制变换反应温度应遵循如下两条原则。

根据催化床与冷却介质之间的换热方式的不同,移出方式可分为连续换热和多段换热式两大类。

相关文档
最新文档