2020—2021学年初二上数学期中考试试卷含答案
2020-2021学年八年级上学期数学期中考试卷附答案
一.选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕以下图形中,是轴对称图形的是〔〕A、 B、C、D、2.〔3分〕假设一个多边形的内角和是1080度,那么这个多边形的边数为〔〕A、 6B、7C、8D、103.〔3分〕如图,∠1=∠2,那么不一定能使△ABD≌△ACD的条件是〔〕A、AB=ACB、BD=CDC、∠B=∠CD、∠BDA=∠CDA4.〔3分〕如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,假设CD=3,点Q是线段AB上的一个动点,那么DQ 的最小值〔〕A、 5B、 4C、 3D、 25.〔3分〕为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是〔〕A、5mB、15mC、20mD、28m6.〔3分〕如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.假设∠1=129°,那么∠2的度数为〔〕A、49°B、50°C、51°D、52°7.〔3分〕如下图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是〔〕A、SSSB、SASC、AASD、ASA8.〔3分〕如图,∠B=∠C=90°,E是BC的中点,DE平分线∠ADC,那么以下结论不正确是〔〕A、AE平分∠DAEB、AB∥CDC、△EBA≌△DCED、AB+CD=AD9.〔3分〕如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,那么这样的三角形〔不包含△ABC本身〕共有〔〕A、1个B、2个C、3个D、4个10.〔3分〕如下图的正方形网格中,网格线的交点称为格点.A、B 是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,那么点C的个数是〔〕A、 2B、 4C、 6D、8【二】填空题〔此题共6小题,每题3分,共18分〕11.〔3分〕等腰三角形一边长等于4,一边长等于9,它的周长是.12.〔3分〕如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于点D,如果BC=10cm,那么△BCD的周长是cm.13.〔3分〕如图△ABC中,AB=AD=DC,∠BAD=40°,那么∠C=.14.〔3分〕如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,那么AD=.15.〔3分〕如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E、假设AB=5,AC=4,那么△ADE的周长是.16.〔3分〕如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板〔即其边长为前一块被剪掉正三角形纸板边长的后,得图③、④,…,记第n〔n≥3〕块纸板的周长为Pn,那么周长Pn=.三.解答题〔此题共10题,共102分,解答应写文字说明,证明过程或演算步骤〕17.〔10分〕△ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF ⊥AC于F,求证:DE=DF.18.〔10分〕如图,边长为1的正方形网格中,△ABC的顶点均在格点上,在所给的直角坐标系中解答以下问题〔1〕画出△ABC关于x轴对称的△A′B′C′,并写出A′、B′、C′三点的坐标;〔2〕在y轴上作出点P,使PA+PB的长最小.〔保留痕迹找出点P 即可〕〔3〕假设△ABC内有一点Q〔2m+n,3.5〕关于x轴对称后Q′〔2.5,n﹣m〕,求m,n的值.19.〔10分〕等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.20.〔10分〕如图,AB=AC=10,∠A=40°,AB的垂直平分线MN交AC于D,求:〔1〕∠CBD的度数;〔2〕假设△BCD的周长是m,求BC的长.21.〔10分〕如图,在平面直角坐标系中,在第一象限内,OM与OB是两坐标轴的夹角的三等分线点E是OM上一点,EC⊥X轴于C 点,ED⊥OB于D点,OD=8,OE=10〔1〕求证:∠ECD=∠EDC;〔2〕求证:OE垂直平分CD、22.〔10分〕如图,△ABC为等边三角形,点D,E分别在BC,AC 边上,且AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.〔1〕求证:△ABE≌△CAD;〔2〕求AD的长.23.〔10分〕如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE、〔1〕求证:△DEF是等腰三角形;〔2〕当DE⊥EF,E是BC的中点时,试比较BD+CF与DF的大小.24.〔10分〕四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC= 120°,∠MBN=60°,∠MBN的两边分别交AD、CD于E、F.〔1〕当AE=CF时,如图1试猜想AE+CF与EF之间存在怎样的数量关系?请给予证明.〔2〕当AE≠CF,如图2的情况下,上问的结论分别是否仍然成立?假设成立,请给出证明;假设不成立,请说明理由.25.〔12分〕:在平面直角坐标系中,等腰Rt△ABC的顶点A、C在坐标轴上运动,且∠ACB=90°,AC=BC、〔1〕如图1,当A〔0,﹣2〕,C〔1,0〕,点B在第四象限时,那么点B的坐标为;〔2〕如图2,当点C在x轴正半轴上运动,点A在y轴正半轴上运动,点B在第四象限时,作BD⊥y轴于点D,试判断与哪一个是定值,并说明定值是多少?请证明你的结论.〔3〕如图3,当点C在y轴正半轴上运动,点A在x轴正半轴上运动,使点D恰为BC的中点,连接DE,求证:∠ADC=∠BDE、参考答案与试题解析一.选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕以下图形中,是轴对称图形的是〔〕A、 B、C、D、考点:轴对称图形.分析:根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线〔成轴〕对称,进而得出答案.解答:解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.应选:B、点评:此题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.〔3分〕假设一个多边形的内角和是1080度,那么这个多边形的边数为〔〕A、 6B、7C、8D、10考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,如果多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据n边形的内角和公式,得〔n﹣2〕•180=1080,解得n=8.∴这个多边形的边数是8.应选:C、点评:此题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.3.〔3分〕如图,∠1=∠2,那么不一定能使△ABD≌△ACD的条件是〔〕A、AB=ACB、BD=CDC、∠B=∠CD、∠BDA=∠CDA考点:全等三角形的判定.专题:压轴题.分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:解:A、∵∠1=∠2,AD为公共边,假设AB=AC,那么△ABD ≌△ACD〔SAS〕;故A不符合题意;B、∵∠1=∠2,AD为公共边,假设BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,假设∠B=∠C,那么△ABD≌△ACD〔AAS〕;故C不符合题意;D、∵∠1=∠2,AD为公共边,假设∠BDA=∠CDA,那么△ABD≌△ACD 〔ASA〕;故D不符合题意.应选:B、点评:此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.4.〔3分〕如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,假设CD=3,点Q是线段AB上的一个动点,那么DQ 的最小值〔〕A、 5B、 4C、 3D、 2考点:角平分线的性质;垂线段最短.分析:根据垂线段最短,过点D作DQ⊥AB于Q,此时DQ的值最小,再根据角平分线上的点到角的两边距离相等可得DQ=CD、解答:解:如图,过点D作DQ⊥AB于Q,由垂线段最短可得,此时DQ的值最小,∵∠C=90°,BD是∠ABC的平分线,∴DQ=CD=3.应选C、点评:此题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质并确定出DQ最短的情况是解题的关键.5.〔3分〕为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是〔〕A、5mB、15mC、20mD、28m考点:三角形三边关系.专题:应用题.分析:首先根据三角形的三边关系定理求出AB的取值范围,然后再判断各选项是否正确.解答:解:∵PA、PB、AB能构成三角形,∴PA﹣PB<AB<PA+PB,即4m<AB<28m.应选D、点评:三角形的两边,那么第三边的范围是:大于的两边的差,而小于两边的和.6.〔3分〕如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.假设∠1=129°,那么∠2的度数为〔〕A、49°B、50°C、51°D、52°考点:翻折变换〔折叠问题〕;三角形内角和定理.专题:计算题.分析:根据翻折的性质可知,∠DOE=∠A,∠HOG=∠B,∠EOF=∠C,又∠A+∠B+∠C=180°,可知∠1+∠2=180°,又∠1=129°,继而即可求出答案.解答:解:根据翻折的性质可知,∠DOE=∠A,∠HOG=∠B,∠EOF=∠C,又∵∠A+∠B+∠C=180°,∴∠DOE+∠HOG+∠EOF=180°,∴∠1+∠2=180°,又∵∠1=129°,∴∠2=51°.应选C、点评:此题考查翻折变换的知识,解答此题的关键是三角形折叠以后的图形和原图形全等,对应的角相等,同时注意三角形内角和定理的灵活运用.7.〔3分〕如下图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是〔〕A、SSSB、SASC、AASD、ASA考点:全等三角形的应用.分析:根据图象,三角形有两角和它们的夹边是完整的,所以可以根据〝角边角〞画出.解答:解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用〝角边角〞定理作出完全一样的三角形.应选D、点评:此题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8.〔3分〕如图,∠B=∠C=90°,E是BC的中点,DE平分线∠ADC,那么以下结论不正确是〔〕A、AE平分∠DAEB、AB∥CDC、△EBA≌△DCED、AB+CD=AD考点:全等三角形的判定与性质;平行线的判定.分析:由∠B=∠C=90°,直接得出选项B成立;作EF⊥AD垂足为点F,证得△DEF≌△DCE和△AFE≌△ABE,得出选项A、选项D成立;因为AB≠CD,AE≠DE,不可能得出选项C成立;由此得出结论即可.解答:解:∵∠B=∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故B正确;如图,作EF⊥AD垂足为点F,∴∠DFE=90°,∴∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DEF和△DCE中;,∴△DEF≌△DCE〔AAS〕;∴CE=EF,DC=DF,∠CED=∠FED,又∵∠B=∠C=∠DFE=90°,AE=AE,在Rt△AFE和Rt△ABE中,,∴Rt△AFE≌Rt△ABE〔HL〕;∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故A正确;AD=AF+DF=AB+CD,故D正确;∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE、∵AB≠CD,AE≠DE,∴△EBA≌△DCE不可能成立.即C不正确;应选:C、点评:此题题综合考查了角平分线的性质、三角形全等的判定与性质等知识点.9.〔3分〕如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,那么这样的三角形〔不包含△ABC本身〕共有〔〕A、1个B、2个C、3个D、4个考点:轴对称的性质.分析:先把田字格图标上字母如图,确定对称轴找出符合条件的三角形,再计算个数.解答:解:△HEC关于CD对称;△FDB关于BE对称;△GED关于HF对称;关于AG对称的是它本身.所以共3个.应选C、点评:此题考查了轴对称的性质;确定对称轴然后找出成轴对称的三角形是解题的关键.10.〔3分〕如下图的正方形网格中,网格线的交点称为格点.A、B 是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,那么点C的个数是〔〕A、 2B、 4C、 6D、8考点:等腰直角三角形;勾股定理.专题:网格型.分析:根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC 底边;②AB为等腰△ABC其中的一条腰.解答:解:如上图:分情况讨论①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.应选:C、点评:此题考查了等腰三角形的判定;解答此题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.【二】填空题〔此题共6小题,每题3分,共18分〕11.〔3分〕等腰三角形一边长等于4,一边长等于9,它的周长是22.考点:等腰三角形的性质.分析:题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:∵4+4=8<9,0<4<9+9=18∴腰的不应为4,而应为9∴等腰三角形的周长=4+9+9=22故填:22.点评:此题考查了等腰三角形的性质和三角形的三边关系;没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.〔3分〕如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于点D,如果BC=10cm,那么△BCD的周长是26 cm.考点:线段垂直平分线的性质;等腰三角形的性质.分析:连接BD,根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,然后求出△BCD的周长=BC+AC,代入数据计算即可得解.解答:解:如图,连接BD、∵DE是AB的垂直平分线,∴AD=BD,∴△BCD的周长=BC+BD+CD=BC+AD+CD=BC+AC,∵AC=16cm,BC=10cm,∴△BCD的周长=10+16=26cm.故答案为:26.点评:此题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.13.〔3分〕如图△ABC中,AB=AD=DC,∠BAD=40°,那么∠C=35°.考点:等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠B,根据等边对等角可得∠C=∠CAD,然后利用三角形的内角和定理列式进行计算即可得解.解答:解:∵AB=AD,∠BAD=40°,∴∠B=〔180°﹣∠BAD〕=〔180°﹣40°〕=70°,∵AD=DC,∴∠C=∠CAD,在△A BC中,∠BAC+∠B+∠C=180°,即40°+∠C+∠C+70°=180°,解得∠C=35°.故答案为:35°.点评:此题考查了等腰三角形两底角相等的性质,等边对等角的性质,熟记性质是解题的关键.14.〔3分〕如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,那么AD=8.考点:含30度角的直角三角形;等腰三角形的判定与性质.分析:根据直角三角形两锐角互余求出∠BDC=30°,然后根据30°角所对的直角边等于斜边的一半求出BD,再求出∠ABC,然后求出∠ABD=15°,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,从而得解.解答:解:∵∠DBC=60°,∠C=90°,∴∠BDC=90°﹣60°=30°,∴BD=2BC=2×4=8,∵∠C=90°,∠A=15°,∴∠ABC=90°﹣15°=75°,∴∠ABD=∠ABC﹣∠DBC=75°﹣60°=15°,∴∠ABD=∠A,∴AD=BD=8.故答案为:8.点评:此题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等角对等边的性质,熟记性质是解题的关键.15.〔3分〕如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E、假设AB=5,AC=4,那么△ADE的周长是9.考点:等腰三角形的判定与性质;平行线的性质.专题:压轴题.分析:由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.解答:解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.点评:此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.16.〔3分〕如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板〔即其边长为前一块被剪掉正三角形纸板边长的后,得图③、④,…,记第n〔n≥3〕块纸板的周长为Pn,那么周长Pn=3﹣.考点:规律型:图形的变化类;等边三角形的性质.分析:根据等边三角形的性质〔三边相等〕求出等边三角形的周长P1,P2,P3,P4,然后即可得到规律.解答:解:P1=1+1+1=3,P2=1+1+==3﹣,P3=1+1+×3==3﹣,P4=1+1+×2+×3==3﹣,…Pn=3﹣,故答案为:3﹣.点评:此题主要考查对等边三角形的性质的理解和掌握,此题是一个规律型的题目,题型较好.三.解答题〔此题共10题,共102分,解答应写文字说明,证明过程或演算步骤〕17.〔10分〕△ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF ⊥AC于F,求证:DE=DF.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:根据AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,利用角角边定理可证此题,解答:证明:∵AB=AC,D是BC中点,∴∠ABC=∠ACB,BD=DC、∵DE⊥AB于E,DF⊥AC于F,∴∠DEB=∠DFC=90°在△DEB和△DFC中,,∴△DEB≌△DFC〔AAS〕,∴DE=DF.点评:此题主要考查学生对全等三角形的判定与性质和等腰三角形的性质的理解和掌握,难度不大,是一道基础题.18.〔10分〕如图,边长为1的正方形网格中,△ABC的顶点均在格点上,在所给的直角坐标系中解答以下问题〔1〕画出△ABC关于x轴对称的△A′B′C′,并写出A′、B′、C′三点的坐标;〔2〕在y轴上作出点P,使PA+PB的长最小.〔保留痕迹找出点P 即可〕〔3〕假设△ABC内有一点Q〔2m+n,3.5〕关于x轴对称后Q′〔2.5,n﹣m〕,求m,n的值.考点:作图-轴对称变换;轴对称-最短路线问题.分析:〔1〕直接利用关于x轴对称点的性质得出各点坐标画出图形即可;〔2〕利用轴对称求最短路线的方法得出即可;〔3〕利用关于x轴对称点的性质得出横纵坐标关系得出答案.解答:解:〔1〕如下图:A′〔4,﹣4〕、B′〔1,﹣2〕、C′〔3,﹣2〕;〔2〕如下图:P点即为所求;〔3〕∵△ABC内有一点Q〔2m+n,3.5〕关于x轴对称后Q′〔2.5,n﹣m〕,∴,解得:.点评:此题主要考查了轴对称变换以及利用轴对称求最短路径问题,得出对应点位置是解题关键.19.〔10分〕等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.考点:等边三角形的判定;全等三角形的判定与性质.专题:探究型.分析:先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.解答:解:△APQ为等边三角形.证明:∵△ABC为等边三角形,∴AB=AC、在△ABP与△ACQ中,∵,∴△ABP≌△ACQ〔SAS〕.∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠PAC=60°,∴∠PAQ=∠CAQ+∠PAC=60°,∴△APQ是等边三角形.点评:考查了等边三角形的判定及全等三角形的判定方法.20.〔10分〕如图,AB=AC=10,∠A=40°,AB的垂直平分线MN交AC于D,求:〔1〕∠CBD的度数;〔2〕假设△BCD的周长是m,求BC的长.考点:线段垂直平分线的性质;等腰三角形的性质.分析:〔1〕由垂直平分线的性质可知DA=DB,可求得∠ABD=40°,再由AB=AC,可求得∠ABC,再利用角的和差可求得∠CBD;〔2〕由〔1〕可知AD=BD,可得BD+CD=AC=10,结合△BCD的周长可求得BC、解答:解:〔1〕∵AB的垂直平分线MN交AC于D,∴DA=DB,∴∠ABD=∠A=40°,∵AB=AC,∴∠ABC=∠ACB==70°,∴∠CBD=∠ABC﹣∠ABD=70°﹣40°=30°;〔2〕由〔1〕可知DA=DB,∴BD+DC=AD+DC=AC=10,∵△BCD的周长是m,∴BC=m﹣10.点评:此题主要考查线段垂直平分线的性质,掌握线段垂直平分线的点到线段两端点的距离相等是解题的关键.21.〔10分〕如图,在平面直角坐标系中,在第一象限内,OM与OB是两坐标轴的夹角的三等分线点E是OM上一点,EC⊥X轴于C 点,ED⊥OB于D点,OD=8,OE=10〔1〕求证:∠ECD=∠EDC;〔2〕求证:OE垂直平分CD、考点:角平分线的性质;全等三角形的判定与性质;等腰三角形的判定与性质.分析:〔1〕由角平分线的性质可得ED=EC,那么可得∠ECD=∠EDC;〔2〕由角平分线的性质可知ED=EC,在Rt△ODE中可求得DE=6,那么EC=6,在Rt△OEC中可求得OC=8=OD,可得点E、O都在线段CD的垂直平分线上,可知OE垂直平分CD、解答:证明:〔1〕∵OM与OB是两坐标轴的夹角的三等分线,∴OM平分∠BOC,∵EC⊥X轴于C点,ED⊥OB于D点,∴DE=CE,∴∠ECD=∠EDC;〔2〕在Rt△ODE中,OD=8,OE=10,由勾股定理可求得DE=6,由〔1〕可得EC=ED=6,在Rt△OCE中,OE=10,EC=6,由勾股定理可求得OC=8,∴OC=OD,∴点O、E都在线段CD的垂直平分线上,∴OE垂直平分CD、点评:此题主要考查角平分线的性质及等腰三角形的性质、线段垂直平分线的判定,由条件得到DE=CE且求得OC=OD=8是解题的关键,注意勾股定理的应用.22.〔10分〕如图,△ABC为等边三角形,点D,E分别在BC,AC 边上,且AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.〔1〕求证:△ABE≌△CAD;〔2〕求AD的长.考点:全等三角形的判定与性质;等边三角形的性质.分析:〔1〕根据AE=CD,AB=AC,∠BAC=∠C即可求得△ABE≌△CAD;〔2〕由〔1〕得∠AEB=∠ADC,即可求得∠BPQ=∠C,即可求得BP 的长,即可解题.解答:解:〔1〕∵在△ABE和△CAD中,,∴△ABE≌△CAD,〔SAS〕〔2〕∵△ABE≌△CAD,∴AD=BE,∠AEB=∠ADC∵∠DAC+∠ADC+∠ACB=180°,∠DAC+∠AEB+∠APE=180°,∴∠ACB=∠APE=60°,∴∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=6,∴AD=BE=BP+PE=6+1=7.点评:此题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,此题中求证△ABE≌△CAD是解题的关键.23.〔10分〕如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE、〔1〕求证:△DEF是等腰三角形;〔2〕当DE⊥EF,E是BC的中点时,试比较BD+CF与DF的大小.考点:全等三角形的判定与性质;等腰三角形的判定与性质.分析:〔1〕根据AB=AC可得∠B=∠C,即可求证△BDE≌△CEF,即可解题;〔2〕根据E是BC的中点BD=CF=BE=CE,即可求得DF∥BC,即可解题.解答:〔1〕证明:∵AB=AC,[来源:]∴∠B=∠C,∵在△BDE和△CEF中,,∴△BDE≌△CEF,〔SAS〕∴DE=EF,∴△DEF是等腰三角形;〔2〕解:∵E是BC的中点,BE=CF,BD=CE、∴BD=CF=BE=CE,∴BD+CF=BC,∴∠BDE=∠CFE,∴∠ADF=∠AFD,∴DF∥BC,∵BC>DF,∴BD+CF>DF.点评:此题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,此题中求证△BDE≌△CEF是解题的关键.24.〔10分〕四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC= 120°,∠MBN=60°,∠MBN的两边分别交AD、CD于E、F.〔1〕当AE=CF时,如图1试猜想AE+CF与EF之间存在怎样的数量关系?请给予证明.〔2〕当AE≠CF,如图2的情况下,上问的结论分别是否仍然成立?假设成立,请给出证明;假设不成立,请说明理由.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:〔1〕作BQ⊥EF,易证△ABE≌△CBF和△BEF为等边三角形,可得∠ABE=30°和EF=BF,即可解题;〔2〕延长DA,使得AQ=CF,可证RT△BCF≌RT△BAQ,可得∠ABQ=∠CBF,CF=AQ,进而可以求证△BEF≌△BEQ得到QE=EF,即可解题.解答:解:〔1〕作BQ⊥EF,∵AE=CF,AB=BC,∴根据勾股定理可得:BF=BE,∵∠MBN=60°∴△BEF为等边三角形,∴EF=BF=BE,在RT△ABE和RT△CBF中,,∴RT△ABE≌RT△CBF〔HL〕,∴∠ABE=∠CBF,∵∠MBN=60°,∠ABC=120°,∴∠ABE=∠CBF=30°,∴BF=2CF,∴AE+CF=EF;〔2〕延长DA,使得AQ=CF,∵AQ=CF,AB=AC,∴根据勾股定理可得:BQ=BF,在RT△BCF和RT△BAQ中,,∴RT△BCF≌RT△BAQ〔HL〕,∴∠ABQ=∠CBF,CF=AQ,∴∠FBQ=∠ABC=120°,∴∠QBE=60°,在△BEF和△BEQ中,,∴△BEF≌△BEQ〔SAS〕,∴QE=EF,∴EF=QE=AE+AQ=AE+CF.点评:此题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,此题中,〔1〕中求证RT△ABE≌RT△CBF,〔2〕中求证△BEF≌△BEQ是解题的关键.25.〔12分〕:在平面直角坐标系中,等腰Rt△ABC的顶点A、C在坐标轴上运动,且∠ACB=90°,AC=BC、〔1〕如图1,当A〔0,﹣2〕,C〔1,0〕,点B在第四象限时,那么点B的坐标为〔3,﹣1〕;〔2〕如图2,当点C在x轴正半轴上运动,点A在y轴正半轴上运动,点B在第四象限时,作BD⊥y轴于点D,试判断与哪一个是定值,并说明定值是多少?请证明你的结论.〔3〕如图3,当点C在y轴正半轴上运动,点A在x轴正半轴上运动,使点D恰为BC的中点,连接DE,求证:∠ADC=∠BDE、考点:全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.分析:〔1〕作BD⊥CD,易证△OAC≌△DCB,即可解题;〔2〕作BE⊥OC,易证OAC≌△ECB,可求得OC=AO+BD,即可解题;〔3〕过点B作BG⊥BC交y轴于点G,易证△BCG≌△CAD,可得BG=BD,进而可以求证△DBE≌△GBE,可得∠BDE=∠BGE,即可解题.解答:解:〔1〕作BD⊥CD,∵∠OCA+∠DCB=90°,∠OAC+∠DCB=90°,∴∠OAC=∠DCB,∵在△OAC和△DCB中,,∴△OAC≌△DCB,〔AAS〕∴CD=OA=2,BD=OC=1,OD=3,∴B点坐标为〔3,﹣1〕;〔2〕作BE⊥OC,那么四边形ODBE为矩形,∵∠ACO+∠BC O=90°,∠ACO+∠OAC=90°,∴∠BCO=∠CAO,∵△OAC和△ECB中,,∴△OAC≌△ECB,〔AAS〕∴EC=OA,∵四边形ODBE为矩形,∴OE=BD,∵OC=OE+EC,∴OC=AO+BD,∴存在定值,且为1;〔3〕过点B作BG⊥BC交y轴于点G,∴∠CBG=∠ACD=90°,∵∠BCG+∠ACG=90°,∠ACO+∠DCO=90°,∴∠DCO=∠CAO.在△BCG和△CAD中,,∴△BCG≌△CAD〔ASA〕,∴BG=CD=BD、∵∠ABC=∠BAC=45°,∴∠EBG=∠DBE=45°,在△DBE和△GBE中,,∴△DBE≌△GBE〔SAS〕,∴∠BDE=∠BGE,∵∠BCG+∠BGE=90°,∠BCG+∠ADC=90°,∴∠BGE=∠ADC,∴∠ADB=∠CDE、点评:此题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,此题中每一问都找出全等三角形并求证是解题的关键.。
泰安市2020—2021学年初二上期中数学试卷含答案解析
11.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是( )
A.15°B.20°C.25°D.30°
12.A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又赶忙从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程为( )
C、不是完全平方式,故本选项错误;
D、不是完全平方式,故本选项错误;
故选A.
6.下列运动属于旋转的是( )
A.滚动过程中的篮球的滚动
B.钟表的钟摆的摆动
C.气球升空的运动
D.一个图形沿某直线对折的过程
【考点】生活中的旋转现象.
【分析】依照旋转变换的概念,对选项进行一一分析,排除错误答案.
【解答】解:A、滚动过程中的篮球属于滚动,不是绕着某一个固定的点转动,不属旋转;
6.下列运动属于旋转的是( )
A.滚动过程中的篮球的滚动
B.钟表的钟摆的摆动
C.气球升空的运动
D.一个图形沿某直线对折的过程
7.如图,已知正方形ABCD的边长为2,假如将线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,那么AD′为( )
A. B. C. D.
8.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是( )
A.100米B.99米C.98米D.74米
【考点】生活中的平移现象.
【分析】依照已知能够得出此图形能够分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.
【解答】解:利用已知能够得出此图形能够分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,
2020-2021学年江苏省徐州市市区部分初中八年级(上)期中数学试卷(Word——答案)
2020-2021学年江苏省徐州市市区部分初中八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.(3分)自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A.B.C.D.2.(3分)下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.(3分)在以下列数值为边长的三角形中,不是直角三角形的是()A.4,7,9B.5,12,13C.6,8,10D.9,40,414.(3分)如图,一根木棍斜靠在与地面(OM)垂直的墙(ON)上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到点O的距离()A.变小B.不变C.变大D.无法判断5.(3分)在如图所示的若干个正方形拼成的图形中,与三角形ABC全等的三角形是()A.△AEG B.△ADF C.△DFG D.△CEG6.(3分)在△ABC中,AB=AC,D是BC边上的动点(点D与B,C不重合),△ABD和△ACD的面积分别表示S1和S2,下列条件不能说明AD是△ABC角平分线的是()A.BD=CD B.AD=BC C.∠ADB=∠ADC D.S1=S27.(3分)如图,在△ACB的两边上分别取点A,B使得CA=CB,将两个全等的直角三角板的直角顶点分别放在点A,B处,一条直角边分别落在∠ACB的两边上,另一条直角边交于点P,连接CP,则判定△ACP≌△BCP的依据是()A.AAS B.ASA C.SSS D.HL8.(3分)在△ABC中,AB=AC,设△ABC的面积为S,图1中,点E、F、M、N是中线AD上的点;图2中,三边的高AD、CF、BE交于点O;图3中,D为BC的中点,∠BAC=∠MDN=90°,这三幅图中,阴影部分面积为S的是()A.①B.①②C.①③D.①②③二、填空题(本大题共8小题,每小题4分,共32分)9.(4分)如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=°.10.(4分)若等腰三角形的一个底角为70°,则此等腰三角形的顶角为.11.(4分)如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则CD=.12.(4分)将一个矩形纸片沿BC折叠成如图所示的图形,若∠ABC=27°,则∠ACD的度数为.13.(4分)如图,等边△ABC中,D,E分别是AB、BC边上的一点,且AE=BD,则∠DPC=°.14.(4分)如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC与点G,连接CF,若AC=3,CG=2,则CF的长为.15.(4分)如图,在△ABC中,AB=5,BC=12,AC=13,三条角平分线相交于点P,则点P到AB的距离为.16.(4分)如图,正方形ABCD的边长为2,其面积标记为S1,以AD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2020的值为.三、解答题(本大题共9小题,共计84分)17.(8分)如图,已知AD平分∠EAC,且AD∥BC,求证AB=AC.18.(8分)已知:如图,MS⊥PS,MN⊥SN,PQ⊥SN,垂足分别为S、N、Q,且MS=PS.求证:△MNS≌△SQP.19.(12分)点A、B、C都在方格纸的格点上:(1)请在图①中再画出一个格点D,使与△ACD≌△CAB;(2)请在图②中再画出一个格点E,使△ABE为等腰三角形(画出所有正确答案).20.(10分)国庆节期间小红外出游玩时看了鲜花拼成的“71”字样以及“7”内部的两个花坛M、N,抽象为数学图形具体位置如图所示,请用尺规作图帮小红找一处观赏位置P,满足观赏点P到AB和BC的距离相等,并且观赏点P到点M、N的距离也相等.(保留作图痕迹,并写出结论)结论为:即为所求作的点.21.(8分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,也可以用面积法来证明,请将下面说理过程补充完整:证明:连接DB,过点D作BC边上的高DF,交BC的延长线与点F,则四边形DFCE为长方形,所以DF=EC=.(用含字母的代数式表示)因为S四边形ABCD=S△ACD+=+;S四边形ABCD=S△ADB+=;所以;所以.22.(8分)如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.(1)求证:点D在BE的垂直平分线上;(2)若∠ABE=20°,请求出∠BEC的度数.23.(8分)如图是实验室中的一种摆动装置,BC在地面上,△ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10,在旋转过程中;(1)当A、D、M三点在同一直线上时,求AM的长;(2)当A、D、M三点为同一直角三角形的顶点时,求AM2的值.24.(8分)如图,把正方形纸片ABCD对折后再展开,折痕为EF,然后将点A翻折到EF上的点M处,折痕为BN,最后沿MC折叠,得△BMC,请你证明△BMC是等边三角形.25.(14分)如图,△ABC是等边三角形,AC=2,点C关于AB对称的点为C′,点P是直线C′B上的一个动点.(1)若点P是线段C′B上任意一点(不与点C′,点B重合)①如图1,作∠P AE=60°交BC于点E,AP与AE相等吗?请证明你的结论;②如图2,连接AP,作∠APD=60°交射线BC于点D,PD与P A相等吗?请证明你的结论.(2)若点P在线段C′B的延长线上.①连接AP,作∠APD=60°交射线BC于点D,依题意补全图3;②直接写出线段BD、AB、BP之间的数量关系.2020-2021学年江苏省徐州市市区部分初中八年级(上)期中数学试卷试题解析一、选择题(本大题共8小题,每小题3分,共24分.)1.解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形.故选:D.2.解:A、全等三角形的周长相等,故本选项错误;B、全等三角形的面积相等,故本选项错误;C、正确;D、边长不相等的等边三角形不全等.故选:C.3.解:A、因为42+72≠98,所以不是直角三角形;B、因为52+128=132,所以是直角三角形;C、因为63+82=103,所以是直角三角形;D、因为92+404=412,所以是直角三角形;故选:A.4.解:在木棍滑动的过程中,点P到点O的距离不发生变化,理由是:连接OP,∵∠AOB=90°,P为AB中点,∴OP=AB=a,即在木棍滑动的过程中,点P到点O的距离不发生变化;故选:B.5.解:如图所示,BC=DG===,AB=FD=3,在△ABC和△FDG中,,∴△ABC≌△FDG(SSS),故选:C.6.解:若BD=CD,AB=AC,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∴AD是△ABC角平分线;故A选项不符合题意;若∠ADB=∠ADC,且∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,且AB=AC,∴AD是△ABC角平分线;故C选项不符合题意;若S1=S2,∴BD=CD,且AB=AC,∴AD是△ABC角平分线;故D选项不符合题意;若AD=BC;故选:B.7.解:∵∠CAP=∠CBP=90°,∴在Rt△ACP与Rt△BCP中,,∴Rt△ACP≌Rt△BCP(HL).故选:D.8.解:如图1,∵AB=AC,∴BD=CD,AD垂直平分BC,∴S△BDN=S△DCN,S△BMN=S△MNC,S△BFM=S△CFM,S△EFB=S△EFC,S△AEB=S△AEC,∴阴影部分面积为S;如图2,∵AB=AC,∴△ABC是等边三角形,且AD⊥BC,CF⊥AB,∴AD垂直平分BC,BE垂直平分AC,∴S△BDO=S△CDO,S△AEO=S△CEO,S△AFO=S△BFO,∴阴影部分面积为S;如图3,连接AD,∵AB=AC,∠BAC=90°,∴AD=BD,∠B=∠DAC=45°,∴∠ADM+∠BDM=90°,且∠MDA+∠ADN=90°,∴∠BDM=∠ADN,且AD=BD,∴△ADF≌△DBE(ASA)∴S△ADF=S△DBE,∴阴影部分面积为S;故选:D.二、填空题(本大题共8小题,每小题4分,共32分)9.解:在△ADC和△ABC中,,∴△ABC≌△ADC(SSS),∴∠D=∠B,∵∠B=130°,∴∠D=130°,故答案为:130.10.解:∵等腰三角形的一个底角为70°,∴顶角=180°﹣(70°×2)=40°,故答案为40°11.解:∵在Rt△ABC中,AC=4,∴AB==3,∴CD==2.4.故答案为:5.4.12.解:∵AB∥CD,∴∠ABC=∠1=27°,由折叠得:∠1=∠7=27°,∴∠ACD=180°﹣27°﹣27°=126°,故答案为:126°.13.解:∵△ABC为等边三角形,∴∠CAE=∠ABD=60°,AC=BA.在△ACE和△BAD中,,∴△ACE≌△BAD(SAS),∴∠ACE=∠BAD.∵∠DPC=∠CAP+ACP,∠BAD+∠CAP=∠ACP+∠CAP=60°,∴∠DPC=60°.故答案为:60.14.解:由作图可知,DE垂直平分线段BC,∴CG=GB=2,FG⊥CB,∴∠FGB=∠ACB=90°,∴FG∥AC,∵CG=GB,∴AF=FB,∴FG=AC=,∵∠FGC=90°,∴CF===,故答案为.15.解:∵AB2+BC2=32+122=169=AC4,∴△ABC是直角三角形,∵三条角平分线交于点P,∴点P到三边的距离相等,设为h,则S△ABC=×(4+12+13)h=,解得h=2,即点P到AB的距离为2.故答案为:2.16.解:根据题意:第一个正方形的边长为2;第二个正方形的边长为:×2;第三个正方形的边长为:()2×2,…第n个正方形的边长是()n﹣1×5,所以S2020的值是()2017即4﹣2017.故答案为2﹣2017.三、解答题(本大题共9小题,共计84分)17.证明:∵AD平分∠EAC,∴∠1=∠2,∵AD∥BC,∴∠6=∠B,∠2=∠C,∴∠B=∠C,∴AB=AC.18.解:∵MS⊥PS,MN⊥SN,∴∠M+∠MSN=∠MSN+∠PSQ,∴∠M=∠PSQ;在△MNS与△SQP中,,∴△MNS≌△SQP(AAS).19.解:(1)如图,△ACD即为所求.(2)如图,△ABE.20.解:如图,点P即为所求.故答案为:点P.21.证明:连接DB,过点D作BC边上的高DF,则四边形DFCE为长方形,所以DF=EC=b﹣a 因为S四边形ABCD=S△ACD+S△ABC=+;S四边形ABCD=S△ADB+S△DCB=;所以;所以a5+b2=c2.故答案为:b﹣a;S△ABC;;S△DCB;;;;a2+b2=c4.22.(1)证明:连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)解:∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE,∵∠ABE=20°,∴∠BEC=60°.23.解:(1)AM=AD+DM=40,或AM=AD﹣DM=20.(2)显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2﹣DM8=302﹣102=800,∴AM=20或﹣20.当∠ADM=90°时,AM2=AD6+DM2=302+103=1000,∴AM=10或﹣10.综上所述,满足条件的AM的值为20.24.证明:∵四边形ABCD是正方形,∴AB=BC,∵正方形纸片ABCD对折后再展开,折痕为EF,∴EF垂直平分BC,∴CM=BM,∵将点A翻折到EF上的点M处,折痕为BN,∴AB=MB,∴BM=BC,∴BM=BC=CM,∴△BMC是等边三角形.25.解:(1)①AP=AE,理由如下:∵△ABC是等边三角形,∴∠ABC=60°=∠BAC,AB=AC,∵点C'与点C关于AB对称,∴∠C'BA=∠CBA=60°,∵∠P AE=∠BAC=60°,∴∠P AB=∠EAC,∴△P AB≌△EAC(ASA),∴AP=AE;②PD=P A,理由如下:如图2中,作∠BPE=60°交AB于点E,∵△ABC是等边三角形,∴∠ABC=60°,∵点C'与点C关于AB对称,∴∠C'BA=∠CBA=60°=∠BPE,∴∠PEB=60°.∴△PBE是等边三角形,∴PB=PE,AEP=120°=∠PBD.∵∠BPD+∠DPE=60°,∠APE+∠DPE=60°,∴∠BPD=∠APE,在△PBD和△PEA中,,∴△PBD≌△PEA(ASA).∴PD=P A;(2)①解:补全图形,如图3所示:②解:结论:BD=BP+AB,理由:如图5中,在BD上取一点E.∵∠EBP=60°,BE=BP,∴△EBP是等边三角形,∴∠BPE=∠APD=60°,∴∠APB=∠EPD,∵PB=PE,P A=PD,∴△BP A≌△EPD(SAS),∴AB=DE,∴BD=BE+ED=BP+AB.。
2020-2021学年天津市部分区八年级(上)期中数学试卷 (解析版) (1)
2020-2021学年天津市部分区八年级第一学期期中数学试卷一、选择题1.(3分)在美术字中,有的是轴对称图形.下面4个汉字可以看成是轴对称图形的是()A.B.C.D.2.(3分)一个三角形的两边长为12和7,第三边长为整数,则第三边长的最大值是()A.16B.17C.18D.193.(3分)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC4.(3分)等腰三角形的两边长分别为6和12,则这个三角形的周长为()A.18B.24C.30D.24或305.(3分)点P(﹣2,1)关于y轴对称的点的坐标为()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(﹣2,1)6.(3分)已知在含有30°角的直角三角形中,斜边长为8cm,则这个三角形的最短边长为()A.2cm B.4cm C.6cm D.8cm7.(3分)已知△ABC≌△DEF,且△DEF的面积为18,BC=6,则BC边上的高等于()A.13B.3C.4D.68.(3分)如图,已知AB=BC,AD=CD,若∠A=80°,∠ABD=35°,则∠BDC的度数是()A.35°B.55°C.65°D.75°9.(3分)如图,已知BA⊥AC,BE为△ABC的角平分线,作ED⊥BC于D,则下列结论①AE=DE;②∠BEA=∠BED;③AB=BD;④∠CED=∠BED,其中一定成立的有()A.1个B.2个C.3个D.4个10.(3分)如图,已知△ABC是等边三角形,且AD=BE=CF,则△DEF是()A.等边三角形B.不等边三角形C.等腰三角形但不是等边三角形D.直角三角形11.(3分)如图,在∠MON内有一点P,点P关于OM的对称点是点G,点P关于ON 的对称点是点H,连接GH分别交OM,ON于点A,B.若GH的长是12cm,则△PAB 的周长为()A.12B.13C.14D.1512.(3分)如图所示,∠E=∠F=90°,AE=AF,AB=AC,下列结论①∠FAN=∠EAM;②EM=FN;③CD=DN;④△ACN≌△ABM.其中下列结论中正确的个数是()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题3分,共18分.将答案直接填在题中横线上. 13.(3分)在△ABC中,已知∠B=3∠A,∠C=5∠A,则∠A=,∠B=,∠C=.14.(3分)一个多边形的内角和等于它的外角和,则它是边形.15.(3分)在△ABC中,已知∠A=∠B=60°,且△ABC的周长为24cm,则AB的长为cm.16.(3分)如图,已知BC=CD,只需补充一个条件,则有△ABC≌△ADC.17.(3分)如图,在△ABC中,已知AB=AC,D为BC的中点,若∠B=50°,则∠DAC的度数为.18.(3分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE、CD的中点.若BN=4cm,则BM的长为cm.三、解答题:本大题共8小题,其中19题6分,20~24题每题8分,25~26题每题10分,共66分.写出文字说明、演算步骤或证明过程.19.(6分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.作出△ABC关于y对称的△A1B1C1,并写出点△A1B1C1的坐标.20.(8分)若一个多边形的内角和是1260°,求这个多边形的边数.21.(8分)如图,在△ABC中,AD是BC边上的中线,AE是BC边上的高线,已知AE =4,△ABD的面积是6,求BC的长.22.(8分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM =AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.23.(8分)如图,在△ABC中,已知AB=AC=BD,∠BAD=70°,求△ABC中各角的度数.24.(8分)如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm.求△ABC的周长.25.(10分)如图所示,在△ABC中,∠B=60°,AB=AC,点D、E分别在BC、AB上,且BD=AE,AD与CE交于点F.(1)求证:△ABC是等边三角形;(2)求证:AD=CE;(3)求∠DFC的度数.26.(10分)如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AF⊥BE于点F.(1)求证:△ABD≌△ACE;(2)直接写出BE,CE,AF之间的数量关系.参考答案一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的.请将答案选项填在下表中1.(3分)在美术字中,有的是轴对称图形.下面4个汉字可以看成是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不合题;故选:C.2.(3分)一个三角形的两边长为12和7,第三边长为整数,则第三边长的最大值是()A.16B.17C.18D.19解:设第三边为a,根据三角形的三边关系,得:12﹣7<a<12+7,即5<a<19,∵a为整数,∴a的最大值为18.故选:C.3.(3分)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:C.4.(3分)等腰三角形的两边长分别为6和12,则这个三角形的周长为()A.18B.24C.30D.24或30解:(1)当三边是6,6,12时,6+6=12,不符合三角形的三边关系,应舍去;(2)当三边是6,12,12时,符合三角形的三边关系,此时周长是30;所以这个三角形的周长是30.故选:C.5.(3分)点P(﹣2,1)关于y轴对称的点的坐标为()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(﹣2,1)解:根据两点关于y轴对称的点的坐关系:横坐标互为相反数,纵坐标不变.∴点P(﹣2,1)关于y轴对称的点的坐标为(2,1).故选:B.6.(3分)已知在含有30°角的直角三角形中,斜边长为8cm,则这个三角形的最短边长为()A.2cm B.4cm C.6cm D.8cm解:在含有30°角的直角三角形中,斜边长为8cm,∴这个三角形的最短边长为×8=4(cm).故选:B.7.(3分)已知△ABC≌△DEF,且△DEF的面积为18,BC=6,则BC边上的高等于()A.13B.3C.4D.6解:设△ABC的面积为S,边BC上的高为h,∵△ABC≌△DEF,BC=6,△DEF的面积为18,∴两三角形的面积相等即S=18,又S=•BC•h=18,∴h=6,故选:D.8.(3分)如图,已知AB=BC,AD=CD,若∠A=80°,∠ABD=35°,则∠BDC的度数是()A.35°B.55°C.65°D.75°解:在△CBD和△ABD中,,∴△CBD≌△ABD(SSS),∴∠C=∠A=80°,∠CBD=∠ABD=35°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣80°﹣35°=65°,故选:C.9.(3分)如图,已知BA⊥AC,BE为△ABC的角平分线,作ED⊥BC于D,则下列结论①AE=DE;②∠BEA=∠BED;③AB=BD;④∠CED=∠BED,其中一定成立的有()A.1个B.2个C.3个D.4个解:∵BE为△ABC的角平分线,∴∠ABE=∠DBE,∵BA⊥AC,ED⊥BC,∴∠A=∠BDE=90°,在△ABE和△DBE中,,∴△ABE≌△DBE(AAS),∴AE=DE,∠BEA=∠BED,AB=BD,故①②③成立,∵ED⊥BC,∴∠CED+∠C=90°,∠BED+∠DBE=90°,当∠C=∠DBE时,∠CED=∠BED,故④不一定成立,一定成立的有3个,故选:C.10.(3分)如图,已知△ABC是等边三角形,且AD=BE=CF,则△DEF是()A.等边三角形B.不等边三角形C.等腰三角形但不是等边三角形D.直角三角形解:∵△ABC为等边三角形,∴AB=BC=CA,∠A=∠B=∠C=60°,∵AD=BE=CF,∴BD=CE=AF,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF为等边三角形,故选:A.11.(3分)如图,在∠MON内有一点P,点P关于OM的对称点是点G,点P关于ON 的对称点是点H,连接GH分别交OM,ON于点A,B.若GH的长是12cm,则△PAB 的周长为()A.12B.13C.14D.15解:∵点P关于OM的对称点是点G,点P关于ON的对称点是点H,∴PA=AG,PB=BH,∵GH=AG+AB+BH=PA+AB+PB=12cm,∴△PAB的周长为12cm.故选:A.12.(3分)如图所示,∠E=∠F=90°,AE=AF,AB=AC,下列结论①∠FAN=∠EAM;②EM=FN;③CD=DN;④△ACN≌△ABM.其中下列结论中正确的个数是()A.1个B.2个C.3个D.4个解:在Rt△AEB与Rt△AFC中,,∴Rt△AEB≌Rt△AFC(HL),∴∠FAM=∠EAN,∴∠EAN﹣∠MAN=∠FAM﹣∠MAN,即∠EAM=∠FAN.故①正确;又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN(ASA),∴EM=FN.故②正确;由△AEB≌△AFC知:∠B=∠C,又∵∠CAB=∠BAC,AC=AB,∴△ACN≌△ABM(ASA);故④正确.由于条件不足,无法证得③CD=DN;故正确的结论有:①②④;故选:C.二、填空题:本大题共6小题,每小题3分,共18分.将答案直接填在题中横线上. 13.(3分)在△ABC中,已知∠B=3∠A,∠C=5∠A,则∠A=20°,∠B=60°,∠C=100°.解:设∠A=x,则∠B=3x,∠C=5x,根据题意得x+3x+5x=180°,解得x=20°,则3x=60°,5x=100°,所以∠A=20°,∠B=60°,∠C=100°.故答案为:20°,60°,100°.14.(3分)一个多边形的内角和等于它的外角和,则它是四边形.解:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形.故答案为:四.15.(3分)在△ABC中,已知∠A=∠B=60°,且△ABC的周长为24cm,则AB的长为8cm.解:在△ABC中,∵∠A=∠B=60°,∴△ABC是等边三角形,∵△ABC的周长为24cm,∴AB=×24=8(cm),故答案为:8.16.(3分)如图,已知BC=CD,只需补充一个条件AB=AD,则有△ABC≌△ADC.解:∵BC=DC,AC=AC,∴若补充条件AB=AD,则△ABC≌△ADC(SSS),若补充条件∠ACB=∠ACD,则△ABC≌△ADC(SAS),故答案为:AB=AD.17.(3分)如图,在△ABC中,已知AB=AC,D为BC的中点,若∠B=50°,则∠DAC 的度数为40°.解:∵AB=AC,D是BC中点,∴AD是∠BAC的角平分线,∵∠B=50°,∴∠BAC=80°,∴∠DAC=40°.故答案为:40°.18.(3分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE、CD的中点.若BN=4cm,则BM的长为4cm.解:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴∠BAE=∠BDC,∴AE=CD,∵M、N分别是AE、CD的中点,∴AM=DN,在△ABM和△DBN中,,∴△ABM≌△DBN(SAS),∴BM=BN=4cm.故答案为:4.三、解答题:本大题共8小题,其中19题6分,20~24题每题8分,25~26题每题10分,共66分.写出文字说明、演算步骤或证明过程.19.(6分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.作出△ABC关于y对称的△A1B1C1,并写出点△A1B1C1的坐标.解:如图所示,由图可知,A1(﹣2,4),B1(﹣1,1),C1(﹣3,2).20.(8分)若一个多边形的内角和是1260°,求这个多边形的边数.解:设这个多边形的边数为n,由题意可得:(n﹣2)×180°=1260°,解得n=9,答:这个多边形的边数为9.21.(8分)如图,在△ABC中,AD是BC边上的中线,AE是BC边上的高线,已知AE =4,△ABD的面积是6,求BC的长.解:∵AD为△ABC的中线,∴S△ABC=2S△ABD=2×6=12,∴×AE•BC=12,即4•BC=12,∴BC=6.22.(8分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM =AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.【解答】证明:∵MD⊥AB,∴∠MDE=∠C=90°,∵ME∥BC,∴∠B=∠MED,在△ABC与△MED中,,∴△ABC≌△MED(AAS).23.(8分)如图,在△ABC中,已知AB=AC=BD,∠BAD=70°,求△ABC中各角的度数.解:∵AB=AD,∴∠ADB=∠BAD=70°,∴∠B=180°﹣70°﹣70°=40°,∵AB=AC,∴∠B=∠C=40°,∴∠BAC=180°﹣40°﹣40°=100°.24.(8分)如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm.求△ABC的周长.解:∵DE是AC的垂直平分线,∴DA=DC,∵△ABD的周长为13cm.∴AB+BD+AD=13cm,∵AE=3cm,∴AC=6cm,∴△ABC的周长=AB+BC+AC=AB+BD+AD+AC=19cm.25.(10分)如图所示,在△ABC中,∠B=60°,AB=AC,点D、E分别在BC、AB上,且BD=AE,AD与CE交于点F.(1)求证:△ABC是等边三角形;(2)求证:AD=CE;(3)求∠DFC的度数.【解答】证明:(1)∵∠B=60°,AB=AC,∴△ABC是等边三角形;(2)∵△ABC是等边三角形,∴∠B=∠CAE=∠ACB=60°,AC=AB,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE.(3)∵△ABD≌△CAE,∴∠BAD=∠ACE,∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=∠CAE=60°.26.(10分)如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AF⊥BE于点F.(1)求证:△ABD≌△ACE;(2)直接写出BE,CE,AF之间的数量关系.【解答】证明:(1)∵△ACB和△DAE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∠ADE=∠AED=45°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),(2)BE=CE+2AF,理由如下:∵△ABD≌△ACE,∴BD=CE,∠ADB=∠AEC,∵点A,D,E在同一直线上,∴∠ADB=180°﹣45°=135°,∴∠AEC=135°,∴∠BEC=∠AEC﹣∠AED=135°﹣45°=90°;∵∠DAE=90°,AD=AE,AF⊥DE,∴AF=DF=EF,∴DE=DF+EF=2AF,∴BE=BD+DE=CE+2AF.。
2020-2021学年上海市杨浦区八年级(上)期中数学试卷(附答案详解)
2020-2021学年上海市杨浦区八年级(上)期中数学试卷(附答案详解)1.若二次根式√2x−1有意义,则x≥1/2.2.同类二次根式是√18和√12.3.有理化因式为(x+1)/(√x+1)。
4.根为0和1/2.5.函数图象经过第三象限。
6.m的取值范围为m>5/4.7.另一个根为1-k。
8.a的取值范围为a<1/2.9.x2−x−1=(x+1/2−√5/2)(x+1/2+√5/2)。
10.√(x+1)2=|x+1|。
11.解集为x>1/3.12.x=3/2,x=-√3/2.13.x=2n-4.14.4x2+5xx+x2=4.15.A。
16.A。
17.xx2+xx+x=0(其中a、b、c是常数)。
在图中,点A和点C在y轴的正半轴上,点B在y轴的负半轴上,点D在x轴上,且BD=2AB。
根据平行线截切定理,可得AC//BD,且AC=2AB。
所以△xxx与△xxx的面积之和为(1/2)AC×OD+(1/2)AB×BD=5/2.所以k=5/2-1=3/2.2x√x+6√2x.解析】化简式子,可以先将24分解为2*2*2*3,然后将2和3分别提出来,得到√24=2√6,√1/3=1/√3,√48=4√3,带入原式得到:24×√1/3−2√6÷√48=2√6×1/√3−2√6/4√3=2√2−√2/2=√2故答案为√2.本题考查了根式的化简,需要掌握分解质因数和根式的基本化简方法.3.【答案】2x2−4x+1=0,解得:x1=1,x2=1/2.解析】用配方法解方程,将2x2−4x−1=0化为(2x−1)2=2,得到2x−1=±√2,解得:x1=1,x2=1/2.故答案为2x2−4x+1=0,解得:x1=1,x2=1/2.本题考查了一元二次方程的解法之一:配方法.4.【答案】m=2,方程的根为x=-1/2,-1.解析】根据判别式的值为1,得到(x−1)2−4x=1,化简得到x2−6x+1=0,解得:x=3±2√2,由于方程有两个根,根据XXX定理得到:x1x2=x/(x+1)=-1,代入可得到:x=2,解得:x1=-1/2,x2=-1.故答案为m=2,方程的根为x=-1/2,-1.本题考查了一元二次方程的解法之一:XXX定理.5.【答案】(1) 反比例函数的解析式为y=k/x,OB的正比例函数解析式为y=kx;(2) BC的长为2√2.解析】(1) 由于x(8,1)与x(0,0)在直线y=x上,所以x的坐标为(1,8),根据反比例函数的性质可得到:x=8,反比例函数的解析式为y=8/x,由于直线OB与y轴垂直且经过点(4,x),所以OB的解析式为y=kx,代入可得到:k=2m,故OB的正比例函数解析式为y=2mx;(2) 由于△xxx∽△xxx,所以BC/AB=BO/OA,代入可得到:BC/4=1/8,故BC的长为2√2.故答案为(1) 反比例函数的解析式为y=k/x,OB的正比例函数解析式为y=kx;(2) BC的长为2√2.本题考查了反比例函数和正比例函数的性质,以及相似三角形的性质.6.【答案】(1) 二次函数的解析式为y=2x2-5x+3;(2) 函数的最小值为2/3,最大值为11/3.解析】(1) 由于函数在x=1处取得最小值,所以可列出方程组:2a-b+c=1,a+b+c=3,a-b+c=1,解得:a=2,b=5,c=3,故函数的解析式为y=2x2-5x+3;(2) 由于函数的开口向上,所以函数的最小值为顶点的纵坐标,最大值为x趋近于正无穷时的值,代入可得到:最小值为2/3,最大值为11/3.故答案为(1) 二次函数的解析式为y=2x2-5x+3;(2) 函数的最小值为2/3,最大值为11/3.本题考查了二次函数的性质,以及求解二次函数的过程.7.【答案】(1) 该函数为奇函数;(2) 该函数在x=0处有铅直渐近线,无水平渐近线.解析】(1) 将函数代入可得到f(-x)=-(-x)3+4(-x)=-x3-4x=-f(x),故该函数为奇函数;(2) 当x趋近于正无穷或负无穷时,f(x)趋近于正无穷或负无穷,故无水平渐近线;当x趋近于0时,f(x)趋近于0,而f(x)在x=0处不连续,故有铅直渐近线x=0.故答案为(1) 该函数为奇函数;(2) 该函数在x=0处有铅直渐近线,无水平渐近线.本题考查了奇函数和渐近线的概念,需要掌握函数的基本性质和极限的求解方法.8.【答案】(1) 函数的定义域为x≥0,值域为y≥0;(2) 函数在x=0处无极限,x趋近于正无穷时趋近于0,有铅直渐近线x=0.解析】(1) 由于x≥0时,根号内的部分非负,所以函数的定义域为x≥0,而y=√x+1,所以函数的值域为y≥0;(2) 当x 趋近于正无穷时,根号内的部分趋近于正无穷,所以函数趋近于0,故有铅直渐近线x=0;而当x趋近于0时,根号内的部分趋近于1,所以函数在x=0处无极限.故答案为(1) 函数的定义域为x≥0,值域为y≥0;(2) 函数在x=0处无极限,x趋近于正无穷时趋近于0,有铅直渐近线x=0.本题考查了函数的定义域和值域,以及渐近线和极限的概念.9.【答案】(1) 函数的定义域为x≠-1,值域为y≠0;(2) 函数在x=-1处有一个垂直渐近线,无水平渐近线.解析】(1) 由于分母不能为0,所以函数的定义域为x≠-1,而当x趋近于-1时,分子趋近于0,分母趋近于-2,所以函数的值域为y≠0;(2) 当x趋近于-1时,函数趋近于正无穷或负无穷,故有垂直渐近线x=-1;而当x趋近于正无穷或负无穷时,函数趋近于0,故无水平渐近线.故答案为(1) 函数的定义域为x≠-1,值域为y≠0;(2) 函数在x=-1处有一个垂直渐近线,无水平渐近线.本题考查了函数的定义域和值域,以及渐近线的概念.10.【答案】(1) 函数的定义域为x≠0,值域为y≠0;(2) 函数在x=0处有一个水平渐近线,无垂直渐近线.解析】(1) 由于分母不能为0,所以函数的定义域为x≠0,而当x趋近于0时,分子趋近于1,分母趋近于0,所以函数的值域为y≠0;(2) 当x趋近于正无穷或负无穷时,函数趋近于0,故无垂直渐近线;而当x趋近于0时,函数趋近于正无穷或负无穷,故有水平渐近线y=0.故答案为(1) 函数的定义域为x≠0,值域为y≠0;(2) 函数在x=0处有一个水平渐近线,无垂直渐近线.本题考查了函数的定义域和值域,以及渐近线的概念.1.根据二次根式的性质,可以将√18化简为3√2,√12化简为2√3,因此与√12同类的二次根式是√3/4.本题考查了二次根式的化简和同类二次根式的定义。
2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套
2020-2021学年第一学期期中考试试卷八年级数学一、选择题(本大题共10小题,每小题2分,共20分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的A .B .C .D .2.在平面直角坐标系中,点P (1,﹣2)的位置在A .第一象限B .第二象限C .第三象限D .第四象限3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为A .6B .8C .10D .8或104.今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( ) A .2.2×104B .22000C .2.1×104D .225.如图,在数轴上表示实数7+1的点可能是A .PB .QC .RD .S6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是 A .80° B .60° C .40° D .20°7.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是 A .AD =BDB .AE =ACC .ED +EB =DBD .AE +CB =AB8.由下列条件不能判定△ABC 为直角三角形的是A .a =,b =,c =B .∠A +∠B =∠C C .∠A :∠B :∠C =1:3:2D .(b +c )(b ﹣c )=a 29.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于A .6B .8C .9D .1810.如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①ABPQ RS(第5题)ABCA 'B 'O(第6题)(第7题)∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是A .1B .2C .3D .4二、填空题(本大题共8小题,每空2分,共16分) 11.81的算术平方根是 ▲ .12.在平面直角坐标系中,点P (-1,2)关于x 轴的对称点的坐标为 ▲ . 13.如图,在R t △ABC 中,CD 是斜边AB 上的中线,若AB =20,则CD = ▲ . 14.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则线段AE = ▲ .15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 所代表的正方形的边长是 ▲ .16.如图,在△ABC 中,AB =AC ,∠B =66°,D ,E 分别为AB ,BC 上一点,AF ∥DE ,若∠BDE =30°,则∠F AC 的度数为 ▲ .17.如图,数轴上点A 、点B 表示的数分别中1和5,若点A 是线段BC 的中点,则点C 所表示的数是 ▲ .18.已知:如图,ΔABC 中,∠A =45°,AB =6,AC =24,点D 、E 、F 分别是三边AB 、BC 、CA 上的点,则ΔDEF 周长的最小值是 ▲ .AB CD E(第14题)AB CD(第13题)(第15题)ABCDH(第10题)(第9题)A BCF DE(第16题)(第17题)(第18题)FEDCBA三、解答题(本大题共9题,共64分) 19.(8分)(1)计算:()234272-+-; (2)已知:4x 2=20,求x 的值.20.(4分)如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C .CDBA21.(6分)如图,在△ABC 中,AD ⊥BC ,AB =10,BD =8,∠ACD =45°. (1)求线段AD 的长;(2)求△ABC 的周长.22.(6分)已知点A (1,2a -1),点B (-a ,a -3) . ①若点A 在第一、三象限角平分线上,求a 值.②若点B 到x 轴的距离是到y 轴距离的2倍,求点B 所在的象限.23.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,在图③中已画出点A .按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC ; (2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .24.(8分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.25.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.(8分)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.(8分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.2020~2021学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.三角形中最大的内角不能小于( ) A .30°B .45°C .60°D .90°4.下列关于两个三角形全等的说法: ① 三个角对应相等的两个三角形全等 ② 三条边对应相等的两个三角形全等③ 有两边和它们的夹角对应相等的两个三角形全等 ④ 有两边和其中一边上的高对应相等的两个三角形全等 正确的说法个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(-3,2) 6.如图所示,∠A =28°,∠BFC =92°,∠B =∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H .已知EH =EB =3,AE =5,则CH 的长是( ) A .1B .2C .53D .358.如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6个B .7个C .8个D .9个9.如图,AB =2,BC =AE =6,CE =CF =7,BF =8,四边形ABDE 与△CDF 面积的比值是( ) A .21B .32C .43 D .110.如图,在△ABC 中,BC 的垂直平分线DF 交△ABC 的外角平分线AD 于点D ,DE ⊥AB 于点E ,且AB >AC ,则( ) A .BC =AC +AEB .BE =AC +AEC .BC =AC +AD D .BE =AC +AD二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的内角和是外角和的2倍,则它的边数是___________12.设△ABC 的三边长分别为a 、b 、c ,其中a 、b 满足|a +b -6|+(a -b +4)2=0,则第三边长c 的取值范围是_____________13.点M (-5,3)关于直线x =1的对称点的坐标是___________14.如图所示,在△FED 中,AD =FC ,∠A =∠F .如果用“SAS ”证明△ABC ≌△FED ,只需添加条件_____________即可15.在△ABC 中,高AD 、BE 所在的直线相交于点G ,若BG =AC ,则∠ABC 的度数是_____16.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,一条线段PQ =AB =10,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,如果以A 、P 、Q 为顶点的三角形与△ABC 全等,则AP =____________三、解答题(共8小题,共72分)17.(本题8分)解方程组:(1) ⎩⎨⎧=-=-32373y x y x(2) ⎩⎨⎧=-=+5342y x y x18.(本题8分)如图所示,在△ABC 中:(1) 画出BC 边上的高AD 和中线AE(2) 若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数19.(本题8分)如图,点B 、E 、C 、F 在同一直线上,且AB =DE ,AC =DF ,BE =CF ,请将下面说明△ABC ≌△DEF 的过程和理由补充完整解:∵BE =CF (_____________)∴BE +EC =CF +EC即BC =EF在△ABC 和△DEF 中⎪⎩⎪⎨⎧===__________________BC DF AB )()(∴△ABC ≌△DEF (__________)20.(本题8分)如图所示,D是边AB的中点,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长21.(本题8分)已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD,求证:(1) △BDE≌△CDF(2) 点D在∠BAC的角平分线上22.(本题10分)如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°,求证:(1) △ACE≌△BCD(2) 求∠AEB的度数23.(本题10分)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F(1) 直接写出∠AFC的度数(2) 请你判断并写出FE与FD之间的数量关系(3) 如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD 与AC之间的数量关系并说明理由24.(本题12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E.已知AO=m,BO=n,且m、n 满足(n-6)2+|n-2m|=0(1) 求A、B两点的坐标(2) 若点D为AB中点,求OE的长(3) 如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P 的坐标2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下面的图形中,是轴对称图形的是()A.B.C.D.2.下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)23.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是()A.已知三条边B.已知两边和夹角C.已知两角和夹边D.已知三个角4.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.已知一个三角形有两边相等,且周长为25,若量得一边为5,则另两边长分别为()A.10,10 B.5,10 C.12.5,12.5 D.5,156.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1 B.1 C.﹣3 D.37.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣710.如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对11.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC 对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+AB/AD=B.2BC=5CFC.∠AEB+22°=∠DEF D.4AB/BD =12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm二.填空题(共6小题,满分18分,每小题3分)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.15.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC= °.16.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.三.解答题(共7小题)19.因式分解:(1)9a2﹣4(2)ax2+2a2x+a320.如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.21.如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.22.若m2﹣2m n+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题,设等腰三角形ABC的三边长a、b、c,且满足a2+b2﹣4a﹣6b+13=0,求△ABC的周长.23.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.24.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.25.如图,某学校(A点)与公路(直线L)的距离AB为300米,又与公路车站(D点)的距离AD为500米,现要在公路上建一个小商店(C点),使CA=CD,求商店与车站之间的距离CD的长.参考答案一.选择题1. D.2. C.3. D.4. D.5. A.6. A.7. B.8. B.9. B.10. C.11. A.12. C.二.填空题13. 4.14. 24.15. 75°或35°16. 4.17..18. 2016.三.解答题19.解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)220.解:(1)如图所示,由图可知 A1(﹣4,5);(2)如图所示,点P即为所求点.设直线AB1的解析式为y=kx+b(k≠0),∵A(4,5),B1(﹣1,0),∴,解得,∴直线AB1的解析式为y=x+1,∴点P坐标(0,1),∴△PAB的周长最小值=AB1+AB=+=5+.21.证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.22.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,即(m﹣n)2+(n﹣4)2=0.根据非负数的性质,∴m=n=4,故答案为:n2﹣8n+16;m﹣n;n﹣4;4;已知等式变形得:(a﹣2)2+(b﹣3)2=0,所以a=2,b=3,第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8.23.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.24.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.25.解:∵AB⊥l于B,AB=300m,AD=500m.∴BD==400m.设CD=x米,则CB=(400﹣x)米,x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5m.答:商店与车站之间的距离为312.5米.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE5.下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6[来6.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC ≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高9.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(共6小题,满分18分,每小题3分)11.计算(2m2n2)2•3m2n3的结果是.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.等腰三角形的一个外角是80°,则其底角是度.14.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.15.如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD= 度.16.在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三.解答题(共9小题,满分72分)17.(6分)计算:(1)(12a3﹣6a2+3a)÷3a;(2)(x﹣y)(x2+xy+y2).18.(6分)如图,∠A=50°,OB、OC为角平分线,求∠BOC.19.(8分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.20.(8分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.22.(8分)已知一个等腰三角形的三边长分别为2x﹣1、x+1、3x﹣2,求这个等腰三角形的周长.(1)完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x﹣1=x+1时,解x= ,此时构成三角形(填“能”或“不能”).②当2x﹣1=3x﹣2时,解x= ,此时构成三角形(填“能”或“不能”).(2)请你根据(1)中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.24.(10分)已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O(1)如图1,求证:AC垂直平分BD;(2)点M在BC的延长线上,点N在AC上,且MD=NM,连接BN.①如图2,点N在线段CO上,求∠NMD的度数;②如图3,点N在线段AO上,求证:NA=MC.25.(10分)已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.参考答案与试题解析一.选择题1.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16, 16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.6.【解答】解:因为正六边形的内角为120°,所以360°÷120°=3,即每一个顶点周围的正六边形的个数为3.故选:A.7.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.8.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.【解答】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°﹣∠EAD=180°﹣70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.10.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:原式=4m4n4•3m2n3=12m6n7,故答案是:12m6n7.12.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.13.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故填40.14.【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.15.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.16.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三.解答题(共9小题,满分72分)17.【解答】解:(1)(12a3﹣6a2+3a)÷3a;=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1;(2)(x﹣y)(x2+xy+y2).=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.18.【解答】解:∵OB、OC为角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∵∠ABC+∠ACB=180°﹣∠A,∠OBC+∠OCB=180°﹣∠BOC,∴2∠OBC+2∠OCB=180°﹣∠A,∴180°﹣∠A=2(180°﹣∠BOC),∴∠BOC=90°+∠A=90°+×50°=115°.19.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,点A与点A1之间10个格子,所以AA1的长度为10.20.【解答】解:(1)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(2)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c2(3)当6x﹣5y=10时,∴3x﹣2.5y=5原式=[4x2﹣y2﹣(4x2﹣12xy+9y2)]÷4y=(12xy﹣10y2)÷4y=3x﹣2.5y=522.【解答】解:(1)①当2x﹣1=x+1时,解x=2,此时3,3,4,能构成三角形.②当2x﹣1=3x﹣2时,解x=1,此时1,2,1不能构成三角形.故答案为2,能,1,不能;(2)③当x+1=3x﹣2,解得x=,此时2,,能构成三角形.23.【解答】解:接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线,证明过程如下:由作图可知OP为⊙C的直径,∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,∵OA、OB是⊙O的半径,∴OP是⊙O的切线.故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(2,﹣1)6.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分24分,每小题3分)7.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.8.(3分)如图,在△ABC中,∠B=40°,∠C=28°,点D在BA的延长线上,则∠CAD的大小为.9.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.10.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.11.在△ABC中,∠C=∠A=∠B,则∠A= 度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为.14.在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长= .三.解答题(共4小题,满分24分,每小题6分)15.(6分)等腰三角形一腰上的中线,分别将该三角形周长分成30cm 和33cm,试求该等腰三角形的底边长.16.(6分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.17.(6分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.(6分)如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.四.解答题(共3小题,满分21分,每小题7分)19.(7分)已知:如图,△ABC中,D是BC延长线上一点,E是CA 延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.20.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.21.(7分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.(8分)已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.六.解答题(共2小题,满分17分)24.(8分)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.25.(9分)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C 逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.参考答案一.选择题1. A.2. B.3. B.4. D.5. A.6. B.二.填空题7.60°.8.68°.9. 6.10.37.11. 60.12.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13. 214. 9三.解答题16.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.18.解:(1)∵AB=AC,∴∠B=∠C=60°,∴∠BAC=60°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠DAE=40°,∴∠BAD=∠BAC﹣∠DAE=20°,∵∠AED=∠CDE+∠C,∴∠CDE=70°﹣60°=10°.(2)结论:α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=∠AED﹣∠ACB=﹣==,∴α=2β;19.证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.20.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.21.(1)解:∵EF垂直平分AC,∴AE=CE,∴∠C=∠EAC=40°,∵AD⊥BC,BD=DE,∴AB=AE,∴∠B=∠BEA=2∠C=80°,∴∠BAD=90°﹣80°=10°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=DE+AE=DE+CE=DC,∴C△ABC=AB+BC+AC=2DC+AC=2×4+5=13..25.解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF;证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°∴∠A1CF=∠BCD∵A1C=BC∴∠A1=∠CBD=45°∴△CBD≌△CA1F;∴CF=CD,∵CA=CB1,∴AF=B1D,∵∠A=∠EB1D,∠AEF=∠B1ED,∴△AEF≌△B1ED,∵AC=B1C,∠ACD=∠B1CF,∠A=∠CB1F,∴△ACD≌△≌△B1CF.(2)在△CBB1中。
2020-2021学年广东省阳江市阳东区八年级(上)期中数学试卷(含答案)
2020-2021学年广东省阳江市阳东区八年级(上)期中数学试卷一、选择题(共10小题).1.下列“表情图”中,属于轴对称图形的是()A.B.C.D.2.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°3.如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2B.4C.6D.84.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12B.16C.20D.16或205.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm6.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(3,﹣1)7.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE8.如图,在△ABC中,∠ABC=∠ACB=60°,∠ABC与∠ACB的平分线交于点O,过点O且平行于BC的直线交AB于点M,交AC于N,连接AO,则图中等腰三角形的个数为()A.5B.6C.7D.89.已知如图,AD是△ABC的中线,∠1=2∠2,CE⊥AD,BF⊥AD的延长线,点B、F为垂足,EP=6cm,则BC 的长为()A.6cm B.12cm C.18cm D.24cm10.如图,在△ABC中,AB=AC,AD⊥BC于点D,则下列四个结论中:①线段AD上任意一点到点B、点C的距离相等;②线段AD上任意一点到AB的距离与到AC的距离相等;③若点Q为AD的中点,则△ACQ的面积是△ABC面积的;④若∠B=60°,则BD=AC.其中正确结论的序号是()A.①②③B.①②④C.①③④D.②③④二、填空题(每小题4分,共28分)11.点A(﹣3,0)关于y轴的对称点的坐标是.12.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是.13.如图,在△ABC中,AB=AD=DC,∠BAD=32°,则∠BAC=°.14.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是.15.如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为.16.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是.17.如图,在△ABC中,∠ABC,∠ACB的角平分线交于点O,连接AO并延长交BC于D,OH⊥BC于H,若∠BAC=60°,OH=5,则OA=.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.如图,在△ABC中,∠B=63°,∠C=51°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.19.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.作出△ABC关于y轴对称的△A1B1C1,并写出点△A1B1C1的坐标.20.如图,在Rt△ABC中,∠C=90°,∠BAC=60°,AM平分∠BAC,AM的长为15cm,求BC的长.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.22.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.23.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O,连接AO,BC.(1)求证:AD=AE;(2)试判断OA所在直线与线段BC之间的关系,并说明理由.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,以AB为一边向上作等边△ABD,点E在BC的垂直平分线上,且EB⊥AB,连接CE,AE,CD.(1)判断△CBE的形状,并说明理由;(2)求证:AE=DC;(3)若AE,CD相交于点F,求∠AFD的度数为多少?25.如图1,点P、Q分别是边长为6cm的等边△ABC的边AB、BC上的动点,点P从顶点A、点Q从顶点B同时出发,且它们的速度都是1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ的度数变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP的交点为M,则∠CMQ的度数变化吗?若变化,则说明理由,若不变,则求出它的度数.试题解析一、选择题(共10小题).1.解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选:D.2.解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选:C.3.解:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.故选:B.4.解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.5.解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.即BC=12cm,故选:C.6.解:∵将△ABC向右平移4个单位得△A1B1C1,∴A1的横坐标为﹣2+4=2;纵坐标不变为3;∵把△A1B1C1以x轴为对称轴作轴对称图形△A2B2C2,∴A2的横坐标为2,纵坐标为﹣3;∴点A2的坐标是(2,﹣3).故选:B.7.解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选:C.8.解:∵△ABC为等边三角形,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC=∠BCO=∠OCA=30°,∴△OBC是等腰三角形,∵MN∥BC,∴∠BOM=∠OBC=30°,∠NOC=∠BCO=30°,∠AMN=∠ABC=60°,∠ANM=∠ACB=60°,∴△BOM、△CON是等腰三角形,△AMN在△AOB和△AOC中,∴△AOB≌△AOC(SSS),∴∠OAM=∠OAN=30°,∴△AOB、△AOC是等腰三角形,所以共有△OBC、△BOM、△CON、△AOB、△AOC,△ABC,△AMN共7个等腰三角形.故选:C.9.解:∵AD是△ABC的中线,∴BD=CD,∵CE⊥AD,BF⊥AD,∴∠CED=∠F=90°,在△CDE和△BDF中,,∴△CDE≌△BDF(AAS),∴DE=DF=EF=3cm,∵∠1=2∠2,∠1+∠2=180°,∴∠2=60°,∴∠DCE=30°,∴CD=2DE=6cm,∴BC=2CD=12cm,故选:B.10.解:∵AB=AC,AD⊥BC于点D,∴线段AD上任意一点到点B点C的距离相等,故①正确,∴线段AD上任意一点到AB的距离与到AC的距离相等,故②正确,若∠B=60°,则△ABC是等边三角形,∴∠BAD=30°,∴BD=AB=30°,故④正确,若点Q为AD的中点,则△ACQ的面积是△ABC面积的,故③错误,故选:B.二、填空题(本大题共7小题,每小题4分,共28分)11.解:点A(﹣3,0)关于y轴的对称点的坐标是(3,0),故答案为:(3,0).12.解:∵多边形的每一个内角都等于108°,∴多边形的每一个外角都等于180°﹣108°=72°,∴边数n=360°÷72°=5.故答案为:5.13.解:在△ABC中,AB=AD=DC,在三角形ABD中,∵AB=AD,∴∠B=∠ADB=(180°﹣32°)×=74°,在三角形ADC中,又∵AD=DC,∴∠CAD=∠ADB=74°×=37°.∴∠BAC=32°+37°=69°.故答案为:69.14.解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据AAS判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.15.解:解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;又∵分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.16.解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE=1,∵DE是AB的垂直平分线,∴AD=BD,∴∠B=∠DAB,∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B,∵∠C=90°,∴∠CAD+∠DAB+∠B=90°,∴∠B=30°,∴BD=2DE=2,∴BC=BD+CD=1+2=3,故答案为:3.17.解:作OE⊥AB交AB于E,∵OB平分∠ABC,OH⊥BC,∴OE=OH=5,∵∠ABC,∠ACB的角平分线交于点O,∴AO平分∠BAC,∵∠BAC=60°,∴∠BAO=30°,∴AO=2OE=10,故答案为:10.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.解:∵在△ABC中,∠B=63°,∠C=51°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣63°﹣51°=66°,∵AE是∠BAC的平分线,∴∠EAC=∠BAC=33°,在直角△ADC中,∠DAC=90°﹣∠C=90°﹣51°=39°,∴∠DAE=∠DAC﹣∠EAC=39°﹣33°=6°.19.解:如图所示,由图可知,A1(﹣2,4),B1(﹣1,1),C1(﹣3,2).20.解:∵AM是∠BAC的平分线,∠BAC=60°,∴∠MAC=30°,∴MC=AM=7.5cm,∴AC=(cm),∵在△ABC中,∠C=90°,∠BAC=60°,∴∠ABC=30°,∴AB=2AC=15(cm),∴BC=(cm).四、解答题(二)(本大题共3小题,每小题8分,共24分)21.解:(1)①一点B为圆心,以任意长长为半径画弧,分别交AB、BC于点E、F;②分别以点E、F为圆心,以大于EF为半径画圆,两圆相交于点G,连接BG角AC于点D即可.(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°,∵BD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°,∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.22.解:(1)如图所示;(2)如图所示;(3)由图可知,B′(2,1).23.证明:(1)∵CD⊥AB于D,BE⊥AC于E,∴∠ADC=∠AEB=90°,在△ADC与△AEB中,,∴△ACD≌△ABE(AAS),∴AD=AE;(2)直线OA垂直平分BC,理由如下:如图,连接AO,BC,延长AO交BC于F,在Rt△ADO与Rt△AEO中,,∴Rt△ADO≌Rt△AEO(HL),∴OD=OE,∵CD⊥AB于D,BE⊥AC于E,∴AO平分∠BAC,∵AB=AC,∴AO⊥BC.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.解:(1)△CBE是等边三角形.理由如下:∵点E在BC垂直平分线上,∴EC=EB,∵EB⊥AB,∴∠ABE=90°,∵∠ABC=30°,∴∠CBE=60°,∴△CBE是等边三角形.(2)∵△ABD是等边三角形,∴AB=DB,∠ABD=60°,∵∠ABC=30°,∴∠DBC=90°,∵EB⊥AB,∴∠ABE=90°,∴∠ABE=∠DBC,由(1)可知:△CBE是等边三角形,∴EB=CB,∴△ABE≌△DBC(SAS).∴AE=DC;(3)设AB与CD交于点G,∵△ABE≌△DBC,∴∠EAB=∠CDB,又∵∠AGC=∠BGD,∴∠AFD=∠ABD=60°.25.解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°,又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=6﹣t,①当∠PQB=90°时,∵∠ABC=60°,∴PB=2BQ,得6﹣t=2t,t=2;②当∠BPQ=90°时,∵∠ABC=60°,∴BQ=2BP,得t=2(6﹣t),t=4;∴当第2秒或第4秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠ABC=∠CAP=60°,∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS),∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°.。
2020-2021学年山东省济南市市中区八年级(上)期中数学试卷 解析版
2020-2021学年山东省济南市市中区八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列实数中的无理数是()A.B.πC.D.0.12.如图,字母B所代表的正方形的面积是()A.144B.194C.12D.1693.的值等于()A.3B.﹣3C.±3D.4.点M(﹣5,3)在第()象限A.第一象限B.第二象限C.第三象限D.第四象限5.下列运算中,正确的是()A.5﹣2=3B.2×3=6C.2+3=5D.3÷=3 6.如图,根据图中标注在点A所表示的数为()A.﹣B.﹣1+C.﹣1﹣D.1﹣7.在平面直角坐标系中,一次函数y=kx﹣3(k<0)的图象大致是()A.B.C.D.8.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较9.如图,平面直角坐标系xOy中,阴影部分(射线y=x,x>0与y正半轴之间,不含边界)的点的坐标(x,y)满足()A.x=y B.x>y>0C.y>x>0D.y=x>010.如图,在2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,则AC边上的高为()A.B.C.D.11.观察下列式子:;;;…根据此规律,若,则a2+b2的值为()A.110B.164C.179D.18112.如图,已知直线a:y=x,直线b:y=﹣x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为()A.21009B.﹣21009C.21010D.﹣21010二、填空题(本大题共有6个小题,每小题4分,共24分.)13.8的立方根是.14.已知一个直角三角形的两条直角边长分别是2和4,则斜边的长是.15.已知点A(m,3),B(﹣1,n)关于x轴对称,则mn的值为.16.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为dm.17.一个有进水管与出水管的容器,从某时刻开始,2min内只进水不出水,在随后的4min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则每分钟出水升.18.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O 为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是.三、解答题(本大题共有7个小题,共78分。
福建省厦门市2020-2021学年八年级上学期期中数学试题(word版 含答案)
福建省厦门市2020-2021学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.2.下列计算结果正确的是()A.2a3+a3=3a6B.(﹣a)2•a3=﹣a6C.(﹣12)﹣2=4 D.(﹣2)0=﹣13.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或17 4.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=12AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个5.如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°6.已知正五边形的对称轴是过任意一个顶点与该顶点对边中点的直线.如图所示的正五边形中相邻两条对称轴所夹锐角α的度数为()A.75°B.72°C.70°D.60°7.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS8.如图,点E在正方形ABCD的对角线AC上,且2EC AE=,Rt FEG∆的两直角边EF,EG分别交BC,DC于点M,N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A .223aB .214aC .25a 9 D .249a 9.如图,AD 是△ABC 的角平分线,则AB :AC 等于( )A .BD :CDB .AD :CDC .BC :AD D .BC :AC二、填空题 10.如图,已知△ABC ≌△ADE ,D 是∠BAC 的平分线上一点,且∠BAC =60°,则∠CAE =____.11.如图,△ABC ≌△ADE ,①若△ABC 周长为24,AD =6,AE =9,则BC =______;②若∠BAD =42°,则∠EFC =______.12.如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,需添加一个条件是_____.13.如图△ABC 中,AD 平分∠BAC ,AB=4,AC=2,且△ABD 的面积为3,则△ACD 的面积为____.14.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D,DE ⊥AB 于点E ,若AB =5 cm ,则△BDE 的周长为________.15.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC=_____度.16.若a2n=5,b2n=16,则(ab)n=______.17.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有_____个.三、解答题18.如图,已知△ABC和直线m,画出与△ABC关于直线m对称的图形(不要求写出画法,但应保留作图痕迹)19.已知:∠1=∠2,∠3=∠4.求证:AC=AD20.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.21.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB =10,S△ABD=15,求CD的长.22.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.23.若x m+n=12,x n=3,(x≠0),求x2m+n的值.24.已知:如图,AB=AD,∠ABC=∠ADC.试说明:CB=CD.25.如图,点C是线段AB上除A、B外的任意一点,分别以AC、BC为边在线段AB 的同旁作等边三角形ACD和等边三角形BEC,连结AE交DC于M,连结BD交CE 于N,AE与BD交于F(1)求证:AE=BD;(2)连结MN,仔细观察△MNC的形状,猜想△MNC是什么三角形?说出你的猜想,并加以证明.26.如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若点P从B点出发以2cm/秒的速度向A点运动,点Q从A点出发以1cm/秒的速度向C点运动,设P、Q分别从B、A同时出发,运动时间为t秒.解答下列问题:(1)用含t的代数式表示线段AP,AQ的长;(2)当t为何值时△APQ是以PQ为底的等腰三角形?PQ BC?(3)当t为何值时//参考答案1.B【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A .不是轴对称图形,故本选项错误;B .是轴对称图形,故本选项正确;C .不是轴对称图形,故本选项错误;D .不是轴对称图形,故本选项错误.故选B .2.C【详解】A.3336233a a a a +=≠ ,错误;B.2356()a a a a -⋅=≠- ,错误;C.21()42--= ,正确;D.0(2)11-=≠- ,错误.故选C.3.D【详解】试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.故选项D 正确.考点:三角形三边关系;分情况讨论的数学思想4.D【详解】试题解析:在△ABD 与△CBD 中, {AD CDAB BC DB DB===,∴△ABD ≌△CBD (SSS ),故③正确;∴∠ADB=∠CDB ,在△AOD 与△COD 中,{AD CDADB CDB OD OD=∠=∠=,∴△AOD ≌△COD (SAS ),∴∠AOD=∠COD=90°,AO=OC ,∴AC ⊥DB ,故①②③正确;故选D .考点:全等三角形的判定与性质.5.A【详解】试题分析:∵AB ∥ED ,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE ,∴△ADE 是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB ﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD ,∴∠B=∠ACB ,∠ACD=∠ADC ,在四边形ABCD 中,∠BCD=12(360°﹣∠BAD )=12(360°﹣60°)=150°.故选A .考点:1.等腰三角形的性质;2.平行线的性质;3.多边形内角与外角.6.B【详解】试题分析:根据正五边形的对称性及周角的度数即可求得结果.由图可得360572α=︒÷=︒,故选B.考点:正五边形的对称性点评:本题属于基础应用题,只需学生熟练掌握正五边形的对称性,即可完成.7.C【详解】试题分析:如图,连接EC 、DC .根据作图的过程知,在△EOC 与△DOC 中,,△EOC ≌△DOC (SSS ).故选C .考点:1.全等三角形的判定;2.作图—基本作图.8.D【分析】过E 作EP ⊥BC 于点P ,EQ ⊥CD 于点Q ,△EPM ≌△EQN ,利用四边形EMCN 的面积等于正方形PCQE 的面积求解.【详解】解:如图,过点E 作EP BC ⊥于点P ,EQ CD ⊥于点Q ,∵四边形ABCD 是正方形,∴90BCD ︒∠=,又∵90EPM EQN ︒∠=∠=,∴90PEQ ︒∠=,∴90PEM MEQ ︒∠+∠=,∴四边形PCQE 为矩形.在Rt FEG ∆中,90NEF QEN MEQ ︒∠=∠+∠=,∴PEM QEN ∠=∠.∵CA 平分BCD ∠,90EPC EQC ︒∠=∠=,∴EP EQ =,∴四边形PCQE 是正方形.在EPM ∆和EQN ∆中,PEM QEN EP EQ EPM EQN ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴EPM EQN ∆∆≌,∴EQN EPM S S ∆∆=,∴四边形EMCN 的面积等于正方形PCQE 的面积.∵正方形ABCD 的边长为a ,∴AC =,又∵2EC AE =,∴EC =, ∴23EP PC a ==, ∴正方形PCQE 的面积为2224339a a a ⨯=, ∴四边形EMCN 的面积为249a . 故选D .【点睛】本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM ≌△EQN .9.A【详解】试题分析:如图,过点B 作BE ∥AC 交AD 延长线于点E ,∵BE ∥AC ,∴∠DBE=∠C ,∠E=∠CAD,∴△BDE∽△CDA,∴BD BECD AC=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴AB BDAC CD=,∴AB:AC=BD:CD.故选A.考点:角平分线的性质.10.30°【分析】由△ABC≌△ADE可得∠BAC=∠DAE=60°,由D是∠BAC的平分线上一点可得∠BAD=∠DAC=12∠BAC=30°,即可得∠CAE的度数.【详解】∵△ABC≌△ADE,∴∠BAC=∠DAE=60°,∵D是∠BAC的平分线上一点,∴∠BAD=∠DAC=12∠BAC=30°,∴∠CAE=∠DAE-∠DAC=60°-30°=30°.故答案为30°.【点睛】本题考查了全等三角形的性质及角平分线的性质,熟练掌握三角形全等的性质是解题的关键.11.9 42°【分析】①根据全等三角形对应边相等可得AB=AD,AC=AE,再根据三角形的周长的定义列式计算即可得解;②根据全等三角形对应角相等可得∠BAC=∠DAE,∠C=∠E,再求出∠CAE=∠BAD,然后根据三角形的内角和定理可得∠EFC=∠CAE.【详解】解:①∵△ABC≌△ADE,∴AB=AD=6,AC=AE=9,∵△ABC周长为24,∴BC=24-6-9=9;②∵△ABC≌△ADE,∴∠BAC=∠DAE,∠C=∠E,∴∠BAC-∠CAD=∠DAE-∠CAD,即∠CAE=∠BAD=42°,∴∠EFC=∠CAE=42°.故答案为:9;42°.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.12.AE=AF或∠EDA=∠FDA或∠AED=∠AFD【分析】【详解】①添加条件:AE=AF,证明:在△AED与△AFD中,∵AE=AF,∠EAD=∠FAD,AD=AD,∴△AED≌△AFD(SAS),②添加条件:∠EDA=∠FDA,证明:在△AED与△AFD中,∵∠EAD=∠FAD,AD=AD,∠EDA=∠FDA,∴△AED≌△AFD (ASA).故答案为AE=AF或∠EDA=∠FDA.13..【详解】试题分析:过点D作DE⊥AB,DF⊥AC,由角平分线的性质可得出DE=DF,再由AB=4,△ABD的面积为3求出DE的长,由AC=2即可得出△ACD的面积.解:过点D作DE⊥AB,DF⊥AC,∵AD平分∠BAC,∴DE=DF,∵AB=4,△ABD的面积为3,∴S△ABD=AB•DE=×4×DE=3,解得DE=;∴DF=,∵AC=2,∴S△ACD=AC•DF=×2×=.故答案为.考点:角平分线的性质.14.5 cm【详解】∵AD平分∠BAC,∠C=90∘,DE⊥AB,∴CD=DE,在△ACD和△AED中, AD=AD,CD=DE,∴△ACD≌△AED(HL),∴AC=AE,∴△BDE的周长=BD+DE+BE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB,∵AB=5cm,∴△BDE的周长=5cm.故答案为5cm.15.30o【详解】试题分析:根据AB=AC,∠A=40°可得:∠ABC=∠C=70°,根据中垂线的性质可得:∠ABD=∠A=40°,则∠DBC=∠ABC -∠ABD=70°-40°=30°. 考点:(1)、等腰三角形;(2)、线段中垂线16.45【分析】由222()n n n a b ab ⎡⎤=⎣⎦,即可求出()n ab 的大小. 【详解】∵2222()()51680n n n n a b ab ab ⎡⎤===⨯=⎣⎦,∴()n ab ==±, 故答案为:45.【点睛】本题主要考查积的乘方的逆用和幂的乘方的逆用,利用平方根的含义解方程,二次根式的化简,熟练掌握上述公式,是解题的关键.17.4【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【详解】如图所示,有4个位置使之成为轴对称图形.故答案为4.【点睛】此题考查轴对称图案,解题关键在于利用对称轴找出对称图案即可.18.见解析.【分析】找出点A 、B 、C 关于直线m 的对称点的位置,然后顺次连接即可.【详解】解:如图所示,△A ′B ′C ′即为△ABC 关于直线m 对称的图形.【点睛】本题考查了利用轴对称变换作图,准确找出点A、B、C的对称点的位置是解题的关键.19.见解析【分析】由∠3=∠4可得∠ABD=∠ABC,然后即可根据ASA证明△ABC≌△ABD,再根据全等三角形的性质即得结论.【详解】证明:∵∠3=∠4,∴∠ABD=∠ABC,在△ABC和△ABD中,∵∠2=∠1,AB=AB,∠ABC=∠ABD,∴△ABC≌△ABD(ASA),∴AC=AD.【点睛】本题考查了全等三角形的判定和性质,属于基础题型,证明△ABC≌△ABD是解本题的关键.20.(1)证明见解析;(2)证明见解析.【分析】(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;(2)由全等三角形的性质得AF=BC,由等腰三角形的性质“三线合一”得BC=2CD,等量代换得出结论.【详解】(1)证明:由于AB=AC,故△ABC为等腰三角形,∠ABC=∠ACB;∵AD⊥BC,CE⊥AB,∴∠AEC=∠BEC=90°,∠ADB=90°;∴∠BAD+∠ABC=90°,∠ECB+∠ABC=90°,∴∠BAD=∠ECB,在Rt△AEF和Rt△CEB中∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA)(2)∵△ABC为等腰三角形,AD⊥BC,故BD=CD,即CB=2CD,又∵△AEF≌△CEB,∴AF=CB=2CD.21.3【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【详解】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=12AB•DE=12×10•DE=15,解得DE=3.∴CD=3.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.22.见解析【详解】试题分析:(1)根据轴对称作图作出即可;(2)根据平移的性质作出A 2C 2,在作出△A 2B 2C 2,使A 2C 2=C 2B 2(答案不唯一).试题解析:(1)△A 1B 1C 1如图所示;(2)线段A 2C 2和△A 2B 2C 2如图所示(符合条件的△A 2B 2C 2不唯一).考点:轴对称作图;平移的性质.23.48【分析】首先利用同底数幂的除法法则求出m x 的值,然后再利用同底数幂的乘法以及幂的乘方的运算法则计算即可.【详解】∵x m +n =12,x n =3,4m m n n m n n x x x x +-+∴==÷=,()22224348m n m n m n x x x x x +∴=⋅=⋅=⨯=.【点睛】本题主要考查同底数幂的乘除法以及幂的乘方,掌握同底数幂的乘除法及幂的乘方的运算法则计算即可.24.见解析.【分析】连接BD,由AB=AD,根据等边对等角,可得∠ADB=∠ABD,由∠ABC=∠ADC,根据等式的基本性质,可得∠CBD=∠CDB,根据等角对等边,所以CD=CB.【详解】证明:如图,连接BD,∵AB=AD,∴∠ADB=∠ABD,∵∠ABC=∠ADC,∴∠ABC-∠ABD=∠ADC-∠ADB,即∠CBD=∠CDB,∴CD=CB.【点睛】本题考查了等腰三角形的判定与性质,用角相等来求边相等是本题的解题思路.25.(1)详见解析;(2)△MNC是等边三角形,理由详见解析.【分析】(1)先由△ACD和△BCE是等边三角形,可知AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,故可得出∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,根据SAS定理可知△ACE≌△DCB,由全等三角形的性质即可得出结论;(2)由(1)中△ACE≌△DCB,可知∠CAM=∠CDN,再根据∠ACD=∠ECB=60°,A、C、B三点共线可得出∠DCN=60°,由全等三角形的判定定理可知,△ACM≌△DCN,故MC=NC,再根据∠MCN=60°可知△MCN为等边三角形.【详解】(1)证明:∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE ,∠ACE=∠DCB ,在△ACE 与△DCB 中,∵AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB ,∴AE=BD ;(2)解:△MNC 是等边三角形.理由如下:∵由(1)得,△ACE ≌△DCB ,∴∠CAM=∠CDN ,∵∠ACD=∠ECB=60°,而A 、C 、B 三点共线,∴∠DCN=60°,在△ACM 与△DCN 中,∵CAM NDC AC DC ACM DCN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACM ≌△DCN ,∴MC=NC ,∵∠MCN=60°,∴△MCN 为等边三角形.【点睛】本题考查了等边三角形的判定与性质及全等三角形的判定与性质,掌握全等三角形的判定定理是解题的关键.26.(1)AP =12-2t ,AQ =t ;(2)当t =4s 时△APQ 是以PQ 为底的等腰三角形;(3)当t =3s 时,//PQ BC .【分析】(1)由题意,可知BP =2t ,AP =AB -BP ,AQ =t .(2)若△APQ 是以PQ 为底的等腰三角形,则有AP =AQ ,即12-2t =t ,求出t 即可.(3)若//PQ BC ,则有AQ :AC =AP :AB .再由题意可得∠B =30°,AC =6cm .从而问题可求.【详解】解:(1)∵AB =12,∴由题意得:BP =2t ,AP =AB -BP =12-2t ,AQ =t .(2)∵△APQ 是以PQ 为底的等腰三角形,∴AP =AQ ,即12-2t =t ,解得t =4,即当t =4秒时△APQ 是等腰三角形.(3)∵Rt △ABC 中,∠C =90°,∠A =60°,∴∠B =30°.∵当30QPA B ∠=∠=︒时,有//PQ BC ,2,AP AQ ∴=1222,t t ∴-=∴解得t =3.即当t =3秒时,//PQ BC .【点睛】本题考查等腰三角形的判定和直角三角形的性质等知识点的综合应用能力.。
2020-2021学年度第一学期八年级期中数学试卷及答案共三套
2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,143.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.96.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有对.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.15.一个八边形的所有内角都相等,它的每一个外角等于度.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为.三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各个汉字进行判断即可得解.【解答】解:A、“大”是轴对称图形,故本选项不合题意;B、“美”是轴对称图形,故本选项不合题意;C、“中”是轴对称图形,故本选项不合题意;D、“国”是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,14【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3>4,能组成三角形;B、3+6<11,不能组成三角形;C、4+6=10,不能组成三角形;D、5+8<14,不能够组成三角形.故选:A.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.【点评】此题主要考查了全等三角形的应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.9【分析】根据多边形内角和公式180°(n﹣2)和外角和为360°可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.【点评】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选:C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC【分析】根据“AAS”对A进行判断;根据“ASA”对B进行判断;根据“SSA”对C进行判断;根据“SAS”对D进行判断.【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;B、由,可得到△ABD≌△ACD,所以B选项不正确;C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.D、由,可得到△ABD≌△ACD,所以D选项不正确;故选:C.【点评】本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“AAS”、“SAS”、“ASA”.9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选:A.【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线【分析】在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.垂直平分线对应的是直线、对称轴对应的同样为一条直线,根据各种线之间的对应关系即可得出答案.【解答】解:A、三角形中,中线是连接一个顶点和它所对边的中点的连线段,而线段的垂直平分线是直线,故A错误;B、三角形的高对应的是线段,而对称轴对应的是直线,故B错误;C、线段是轴对称图形,对称轴为垂直平分线,故C正确;D、角平分线对应的是射线,而对称轴对应的是直线,故D错误.故选:C.【点评】本题考查了三角形的基本性质,在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.这些都属于基本的概念问题,要能够吃透概念、定义.11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°【分析】根据平行线的性质得到∠BAA′=∠ABC=70°,根据全等三角形的性质、等腰三角形的性质计算即可.【解答】解:∵AA′∥BC,∴∠BAA′=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC′=∠ABC=70°,∴∠BAA′=∠BA′A=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故选:A.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm【分析】先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.【解答】解:∵AD平分∠CAB交BC于点D∴∠CAD=∠EAD∵DE⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=BE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC===3,∴BE=AB﹣AE=AB﹣AC=6﹣3,∴BC+BE=3+6﹣3=6cm,∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、AAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有3对.【分析】在线段AD的两旁猜想所有全等三角形,再利用全等三角形的判断方法进行判定,三对全等三角形是△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.【解答】解:①△ABE≌△ACE∵AB=AC,EB=EC,AE=AE∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE,∠AEB=∠AEC∴∠EBD=∠ECD,∠BED=∠CED∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE,△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED,∠ACB=∠ACE+∠CED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.【点评】本题考查学生观察,猜想全等三角形的能力,同时,也要求会运用全等三角形的几种判断方法进行判断.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为6或8cm.【分析】分6cm是底边与腰长两种情况讨论求解.【解答】解:①6cm是底边时,腰长=(20﹣6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20﹣6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6或8cm.故答案为:6或8.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.15.一个八边形的所有内角都相等,它的每一个外角等于45度.【分析】根据多边形的外角和为360°即可解决问题;【解答】解:∵一个八边形的所有内角都相等,∴这个八边形的所有外角都相等,∴这个八边形的所有外角==45°,故答案为45;【点评】本题考查多边形内角与外角,解题的关键是熟练掌握基本知识,属于中考常考题型.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)【点评】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是10.【分析】依据线段垂直平分线的性质可得到AD=BD,则△ADC的周长=BC+AC.【解答】解:∵DE是AB的垂直平分线,∴AD=BD.∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=18﹣8=10.故答案为:10.【点评】本题主要考查的是线段垂直平分线的性质,熟练掌握相关知识是解题的关键.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为4.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=20,∴CE=4.即CM+MN的最小值为4.故答案为4.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;【分析】(1)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.(2)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.【解答】解:(1)如图所示:如三角形的三边长分别为1、1、或2、2、2或3、3、3或、、2或、、2或、、2等(2)如图所示:如三角形的三边长分别为、、或2、、等.【点评】本题考查了在小正三角形网格中,勾股定理的灵活应用.考查学生对有理数,无理数定义的理解,作出符合题目要求的图形.20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.【分析】根据全等三角形对应角相等得出∠ABD=∠CDA,进一步得出AB∥CD.【解答】证明:在△ABD与△CDB中,,∴△ABD≌△CDB,∴∠ABD=∠CDA,∴AB∥CD.【点评】本题主要考查了三角形全等的判定和性质;根据全等三角形对应角相等得出∠ABD=∠CDA是解决问题的关键.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.【分析】由OC=OE,OD=OB,可得到BC=DE,再利用SAS得到△COD≌△BOE,得到∠D=∠B,再利用AAS得到△ADE≌△ABC.【解答】解:在△COD和△BOE中,,∴△COD≌△BOE,∴∠D=∠B,∵OC=OE,OD=OB,∴DE=BC在△ADE和△ABC中,,∴△ADE≌△ABC.【点评】本题考查了三角形的全等的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;【解答】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰三角形的性质等知识,解题的关键是证明Rt△BDE≌Rt△CDF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.【分析】(1)首先利用等腰三角形的性质得出,∠CAE=∠CEA,再利用外角的性质得出∠BCE的度数,进而利用等边三角形的判定得出答案;(2)首先在AE上截取EM=AD,进而得出△ACD≌△ECM,进而得出△MCD为等边三角形,即可得出答案.【解答】(1)证明:∵CA=CB,CE=CA,∴BC=CE,∠CAE=∠CEA,∵CD平分∠ACB交AE于D,且∠CDE=60°,∴∠ACD=∠DCB=45°,∠DAC+∠ACD=∠EDC=60°,∴∠DAC=∠CEA=15°,∴∠ACE=150°,∴∠BCE=60°,∴△CBE为等边三角形;(2)解:在AE上截取EM=AD,连接CM.在△ACD和△ECM中,,∴△ACD≌△ECM(SAS),∴CD=CM,∵∠CDE=60°,∴△MCD为等边三角形,∴CD=DM=7﹣5=2.【点评】此题主要考查了全等三角形的判定与性质以及等边三角形的性质与判定和三角形外角的性质等知识,正确作出辅助线是解题关键.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±22.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.24.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与27.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±19.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.00052810.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)12.在下列各式中,正确的是()A.B.C.D.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()A.13个B.16个C.19个D.22个二、填空题:(本大题共10小题,每小题3分,共30分).14.的相反数是.15.的算术平方根是.16.把“对顶角相等”改写成“如果…那么…”的形式是:.17.3(填>,<或=)18.在平面直角坐标系中,点P(a,a+1)在x轴上,那么点P的坐标是.19.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.20.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,则∠2=.21.已知x、y为实数,且+(y+2)2=0,则y x=.22.已知AB∥x轴,A点的坐标为(﹣3,2),并且AB=4,则B点的坐标为.23.若∠α的两边与∠β的两边互相平行,当∠α=40°时,∠β=.三、解答题:24.(12分)计算或解方程(1)|﹣|+2(2)4(2﹣x)2=9(3)﹣+|1﹣|+(﹣1)201825.(9分)如图(1)写出三角形ABC的各个顶点的坐标;(2)试求出三角形ABC的面积;(3)将三角形ABC先向右平移3个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在该网格中画出平移后的图形.26.(7分)如图,直线AB与CD相交于点0,∠AOD=20°,∠DOF:∠FOB=1:7,射线OE 平分∠BOF.(1)求∠EOB的度数;(2)射线OE与直线CD有什么位置关系?请说明理由.27.(6分)如图,已知AD ∥BC ,∠1=∠2,求证:∠3+∠4=180°.28.(7分)已知实数a 、b 在数轴上对应点的位置如图:(1)比较a ﹣b 与a +b 的大小;(2)化简|b ﹣a |+|a +b |.29.(10分)如图,直线AB 交x 轴于点A (3,0),交y 轴于点B (0,2)(1)求三角形AOB 的面积;(2)在x 轴负半轴上找一点Q ,使得S △QOB =S △AOB ,求Q 点坐标.(3)在y 轴上任一点P (0,m ),请用含m 的式子表示三角形APB 的面积.参考答案与试题解析一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±2【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.【点评】此题主要考查了平方根的定义,正确掌握相关定义是解题关键.2.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,以此进行判断即可.【解答】解:因为第二象限的点的坐标是(﹣,+),符合此条件的只有(﹣2,3).故选:D.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是无理数;0不是无理数;3π是无理数;=3不是无理数;不是无理数;1.1010010001…是无理数,故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°【分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【解答】解:A、∵∠3=∠4,∴AC∥BD.本选项不能判断AB∥CD,故A错误;B、∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C、∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D、∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【解答】解:∵y轴上的点P,∴P点的横坐标为0,又∵点P到x轴的距离为3,∴P点的纵坐标为±3,所以点P的坐标为(0,3)或(0,﹣3).故选:D.【点评】此题考查了由点到坐标轴的距离确定点的坐标,特别对于点在坐标轴上的特殊情况,点到坐标轴的距离要分两种情况考虑点的坐标.6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与2【分析】直接利用实数的相关性质化简各数,进而判断即可.【解答】解:A、﹣2与=2,是互为相反数,故此选项正确;B、﹣2与=﹣2,两数相等,故此选项错误;C、﹣2与,不是互为相反数,故此选项错误;D、|﹣2|与2,两数相等,故此选项错误;故选:A.【点评】此题主要考查了实数的性质以及互为相反数的定义,正确化简各数是解题关键.7.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°【分析】求出∠BOD的度数,根据∠DOC的度数求出即可.【解答】解:∵∠AOD=120°,∠AOB=90°,∴∠BOD=120°﹣90°=30°,∵∠DOC=90°,∴∠BOC=∠DOC﹣∠DOB=90°﹣30°=60°,故选:C.【点评】本题考查了角的有关计算的应用,关键是能求出各个角的度数.8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±1【分析】由于算术平方根只能是非负数,而算术平方根等于它相反数,由此得到它是非正数,由此即可得到结果.【解答】解:∵算术平方根只能是非负数,而算术平方根等于它相反数,∴算术平方根等于它相反数的数是非正数,∴算术平方根等于它相反数的数是0.故选:A.【点评】此题主要考查了非负数的性质,其中利用了两个非负数:一个数的算术平方根是非负数;有算术平方根的只能是非负数.9.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.000528【分析】利用立方根定义计算即可求出值.【解答】解:∵=0.1738,=1.738,∴a=0.00528,故选:C.【点评】此题考查了立方根,熟练掌握立方根定义是解本题的关键.10.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④【分析】同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.【解答】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:CD.【点评】本题考查了同位角的概念;判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)【分析】根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【解答】解:根据题意,∵点A(3,﹣5)向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为(0,﹣1).故选:D.【点评】本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.12.在下列各式中,正确的是()A.B.C.D.【分析】运用立方根、平方根的知识,计算左边,根据左边是不是等于右边做出判断【解答】解:=≠2018,故选项A错误;==﹣0.4,故选项B正确;==2018≠±2018,故选项C错误;+=2018+2018=4036≠0,故选项D错误.故选:B.【点评】本题主要考查了实数运算、平方根和立方根,掌握实数的平方根、立方根的意义是解题关键.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()。
2020-2021初二数学上期中试卷(附答案)(1)
2020-2021初二数学上期中试卷(附答案)(1)一、选择题1.下列分式中,最简分式是( )A .B .C .D . 2.分式可变形为( ) A . B . C . D .3.如图,已知△ABC 中,∠ABC=45°,F 是高AD 和BE 的交点,CD=4,则线段DF 的长度为( )A .22B .4C .32D .424.如图,已知a ∥b ,∠1=50°,∠3=10°,则∠2等于( )A .30°B .40°C .50°D .60° 5.等腰三角形的一个外角是100°,则它的顶角的度数为( )A .80°B .80°或50°C .20°D .80°或20° 6.如图,在ABC ∆中,64A ∠=︒,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;……;1n A BC -∠与1n A CD -∠的平分线交于点n A ,要使n A ∠的度数为整数,则n 的最大值为( )A .4B .5C .6D .7 7.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC的周长是( )A .8B .9C .10D .11 8.下列各式中,从左到右的变形是因式分解的是( ) A .()()2224a a a +-=-B .()ab ac d a b c d ++=++C .()2293x x -=-D .22()a b ab ab a b -=-9.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b10.式子:222123,,234x y x xy 的最简公分母是( ) A .24x 2y 2xy B .24 x 2y 2 C .12 x 2y 2 D .6 x 2y 211.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .1412.如图,△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .△AA 1P 是等腰三角形B .MN 垂直平分AA 1,CC 1C .△ABC 与△A 1B 1C 1面积相等D .直线AB 、A 1B 的交点不一定在MN 上二、填空题13.若4a 4﹣ka 2b+25b 2是一个完全平方式,则k=_____.14.已知x 2+mx-6=(x-3)(x+n),则m n =______.15.在代数式11,,52x x x +中,分式有_________________个. 16.正多边形的一个外角是72o ,则这个多边形的内角和的度数是___________________.17.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .18.如图△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有_____个19.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.20.计算:0113()22-⨯+-=______. 三、解答题21.如图,已知△ABC 中,AB =AC =12厘米,BC =9厘米,AD =BD =6厘米.(1)如果点P 在线段BC 上以3厘米秒的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,1秒钟时,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,点P 运动到BC 的中点时,如果△BPD ≌△CPQ ,此时点Q 的运动速度为多少.(2)若点Q 以(1)②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?22.如图,在Rt △ABC 中,∠ACB =90°,D 是AB 上一点,BD =BC ,过点D 作AB 的垂线交AC于点E,连接CD,交BE于点F.求证:BE垂直平分CD.23.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x2﹣4x+1)(x2﹣4x+7)+9进行因式分解的过程.解:设x2﹣4x=y原式=(y+1)(y+7)+9(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.24.尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.25.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据最简分式的定义:分子和分母中不含公分母的分式,叫做最简分式,对四个选项中的分式一一判断即可得出答案.【详解】解:A.,分式的分子与分母不含公因式,是最简分式;B.,分式的分子与分母含公因式2,不是最简分式;C. ,分式的分子与分母含公因式x-2,不是最简分式;D. ,分式的分子与分母含公因式a,不是最简分式,故选A.【点睛】本题考查了最简分式的概念.对每个分式的分子和分母分别进行因式分解是解题的关键. 2.B解析:B【解析】【分析】根据分式的基本性质进行变形即可.【详解】=.故选B.【点睛】此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.3.B解析:B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.4.B解析:B【解析】【分析】由平行线的性质,得到∠4=∠1=50°,由三角形的外角性质,即可求出∠2的度数.【详解】解:如图:∵a∥b,∴∠4=∠1=50°,∵∠4=∠2+∠3,∠3=10°,∴∠2=50°-10°=40°;故选:B.【点睛】本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.5.D解析:D【解析】【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质. 6.C解析:C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,然后整理得到∠A1=12∠A,由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∴∠A1=12∠A=12×64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n∠A n,∴∠A n=(12)n∠A=642n,∵∠A n的度数为整数,∵n=6.故选C.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.7.C解析:C【解析】【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.【详解】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.【点睛】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.8.D解析:D【解析】【分析】根据因式分解的意义对四个选项进行逐一分析即可.【详解】解:A、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;B、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;C、等式右边应该是(x+3)(x-3),故不符合题意,故本选项错误.D、等式右边是几个因式积的形式,故是分解因式,故本选项正确;故选D.【点睛】本题考查了因式分解的意义,解题的关键是掌握把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.9.A解析:A【解析】【分析】4张边长为a 的正方形卡片的面积为4a 2,4张边长分别为a 、b 的矩形卡片的面积为4ab ,1张边长为b 的正方形卡片面积为b 2,9张卡片拼成一个正方形的总面积=4a 2+4ab+b 2=(2a+b)2,所以该正方形的边长为:2a+b .【详解】设拼成后大正方形的边长为x ,∴4a 2+4ab+b 2=x 2,∴(2a+b)2=x 2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.10.C解析:C【解析】【分析】分母都是单项式,根据最简公分母的求法:系数取最大系数,不同字母取最高次幂,将它们相乘即可求得.【详解】 式子:222123,,234x y x xy的最简公分母是:12 x 2y 2. 故选:C .【点睛】本题考查最简公分母的定义与求法.11.A解析:A【解析】【分析】利用乘法的意义得到4•2n =2,则2•2n =1,根据同底数幂的乘法得到21+n =1,然后根据零指数幂的意义得到1+n=0,从而解关于n 的方程即可.【详解】∵2n +2n +2n +2n =2,∴4×2n =2, ∴2×2n =1, ∴21+n =1,∴1+n=0,∴n=﹣1,故选A .【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n(m,n是正整数).12.D解析:D【解析】【分析】根据轴对称的性质即可解答.【详解】∵△ABC与△A1B1C1关于直线MN对称,P为MN上任意一点,∴△A A1P是等腰三角形,MN垂直平分AA1、CC1,△ABC与△A1B1C1面积相等,∴选项A、B、C选项正确;∵直线AB,A1B1关于直线MN对称,因此交点一定在MN上.∴选项D错误.故选D.【点睛】本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.二、填空题13.±20【解析】∵4a4-ka2b+25b2是一个完全平方式∴4a4-ka2b+25b2=(2a2±5b)2=4a4±20a2b+25b2∴k=±20故答案为:±20解析:±20【解析】∵4a4-ka2b+25b2是一个完全平方式,∴4a4-ka2b+25b2=(2a2±5b)2=4a4±20a2b+25b2,∴k=±20,故答案为:±20.14.1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算根据多项式相等的条件求出m与n的值即可得出mn的值【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)解析:1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m与n的值,即可得出m n的值.【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)x-3n,∴m=n-3,-3n=-6,解得:m=-1,n=2,∴m n=1.故答案为:1【点睛】本题考查了多项式乘以多项式以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解题关键.15.1【解析】【分析】判断分式的依据是看分母中是否含有字母如果含有字母则是分式如果不含有字母则不是分式【详解】解:是整式是分式是整式即分式个数为1故答案为:1【点睛】本题主要考查分式的定义注意数字不是字解析:1【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:15x是整式,1x是分式,2x是整式,即分式个数为1,故答案为:1【点睛】本题主要考查分式的定义,注意数字不是字母,判断分母的关键是分母中有字母. 16.540°【解析】【分析】【详解】根据多边形的外角和为360°因此可以求出多边形的边数为360°÷72°=5根据多边形的内角和公式(n-2)·180°可得(5-2)×180°=540°考点:多边形的内解析:540°【解析】【分析】【详解】根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和17.22【解析】【分析】底边可能是4也可能是9分类讨论去掉不合条件的然后可求周长【详解】试题解析:①当腰是4cm底边是9cm时:不满足三角形的三边关系因此舍去②当底边是4cm腰长是9cm时能构成三角形则解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.18.3【解析】根据条件求出各个角的度数由此确定哪个三角形是等腰三角形解答:∵在△ABC中AB=BC∠A=36°∴∠ABC=∠ACB=72°∵BD平分∠ABC∴∠ABD=∠CBD=36°∴∠ABD=∠A=解析:3【解析】根据条件求出各个角的度数,由此确定哪个三角形是等腰三角形解答:∵在△ABC中,AB=BC,∠A=36°,∴∠ABC=∠ACB =72°,∵BD平分∠ABC,∴∠ABD=∠CBD =36°,∴∠ABD=∠A =36°,∠BDC =72°=∠C,∴△ABD和△BDC都是等腰三角形.故有三个等腰三角形故有三个.点睛:本题主要考查了等腰三角形的判定.利用已知条件求出等角是判断等腰三角形的关键. 19.3【解析】在123处分别涂黑都可得一个轴对称图形故涂法有3种故答案为3 解析:3【解析】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.20.4【解析】【分析】原式第一项利用零指数幂法则化简第二项利用负整数指数幂法则计算最后一项利用绝对值的代数意义化简计算即可得到结果【详解】原式=1×2+2=2+2=4故答案为:4【点睛】本题考查了零指数解析:4【解析】【分析】原式第一项利用零指数幂法则化简,第二项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【详解】原式=1×2+2=2+2=4.故答案为:4.【点睛】本题考查了零指数幂和负整数指数幂运算,熟练掌握运算法则是解答本题的关键.三、解答题21.(1)①全等,理由见解析;②4cm/s.(2)经过了24秒,点P与点Q第一次在BC边上相遇.【解析】【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C,最后根据SAS 即可证明;②因为V P≠V Q,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ 的长即可求得Q的运动速度;(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.【详解】(1)①1秒钟时,△BPD与△CQP是否全等;理由如下:∵t=1秒,∴BP=CQ=3(cm)∵AB=12cm,D为AB中点,∴BD=6cm,又∵PC=BC−BP=9−3=6(cm),∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,{BP CQ B C BD PC=∠=∠=,∴△BPD≌△CQP(SAS),②∵V P≠V Q,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=4.5,∵△BPD≌△CPQ,∴CQ=BD=6.∴点P的运动时间t=4.533BP==1.5(秒),此时V Q=61.5CQt=4(cm/s).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设经过x秒后P与Q第一次相遇,依题意得:4x=3x+2×12,解得:x=24(秒)此时P运动了24×3=72(cm)又∵△ABC的周长为33cm,72=33×2+6,∴点P、Q在BC边上相遇,即经过了24秒,点P与点Q第一次在BC边上相遇.点睛:本题考查了三角形全等的判定和性质、等腰三角形的性质以及属性结合思想的运用,解题的根据是熟练掌握三角形的全都能的判定和性质.22.证明见解析.【解析】试题分析:首先根据互余的等量代换,得出∠EBC=∠EBD,然后根据线段垂直平分线的性质即可证明.试题解析:∵BD=BC,∴∠BCD=∠BDC.∵ED⊥AB,∴∠EDB=90°,∴∠EDB-∠BDC=∠ACB-∠BCD,即∠ECD=∠EDC,即DE=CE,∴点E在CD的垂直平分线上.又∵BD=BC,∴点B在CD 的垂直平分线上,∴BE垂直平分CD.点睛:本题考查了全等三角形的判定与性质,等腰三角形“三线合一”的性质,得出∠EBC=∠EBD,是解题的关键.23.(1)C;(2)(x﹣2)4;(3)(x+1)4.【解析】【分析】(1)根据完全平方公式进行分解因式;(2)最后再利用完全平方公式将结果分解到不能分解为止;(3)根据材料,用换元法进行分解因式.【详解】(1)故选C;(2)(x2﹣4x+1)(x2﹣4x+7)+9,设x2﹣4x=y,则:原式=(y+1)(y+7)+9=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4.故答案为:(x﹣2)4;(3)设x2+2x=y,原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)4.【点睛】本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.24.见解析【解析】【分析】作∠CAB=∠α,再作∠CAB的平分线,在角平分线上截取AD=h,可得点D,过点D作AD 的垂线,从而得出△ABC .【详解】解:如图所示,△ABC 即为所求.【点睛】考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键.25.(1)文学书和科普书的单价分别是8元和12元.(2)至多还能购进466本科普书.【解析】【详解】(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得: 8000120004x x =+ , 解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后至多还能购进y 本科普书.依题意得550×8+12y≤10000, 解得24663y ≤, ∵y 为整数, ∴y 的最大值为466∴至多还能购进466本科普书.。
山东省潍坊市2020—2021学年初二上期中数学试卷含答案解析
山东省潍坊市2020—2021学年初二上期中数学试卷含答案解析一、选择题.(本题共12个小题,在每小题所列四个选项中,只有一个选项符合题意,把符合题意的选项写在答题卡中)1.下列“表情图”中,属于轴对称图形的是( )A.B.C.D.2.如图,△ABC≌△DCB,点A与点D,点B与点C对应,假如AC=6cm,AB=3cm,那么DC的长为( )A.3cm B.5cm C.6cm D.无法确定3.点P(﹣2,1),那么点P关于x轴对称的点P′的坐标是( )A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(2,1)4.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F5.如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是( )A.28°B.31°C.39°D.42°6.等腰三角形的一条边长为6,另一边长为13,则它的周长为( )A.25 B.25或32 C.32 D.197.多边形的每个内角都等于150°,则从此多边形的一个顶点动身可作的对角线共有( ) A.8条B.9条C.10条D.11条8.如图所示,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,BE=6cm,则AC等于( )A.6cm B.5cm C.4cm D.3cm9.如图,直线l是一条河,P,Q两地在直线l的同侧,欲在l上的某点M处修建一个水泵站,分别向P,Q两地供水.现有如下四种铺设方案,则铺设的管道最短的方案是( )A.B.C.D.10.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是( )A.45°B.54°C.40°D.50°11.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多能够构成正确的结论的个数是( )A.1个B.2个C.3个D.4个12.如图,已知在△ABC中,PR⊥AB于R,PS⊥AC于S,PR=PS,∠1=∠2,则四个结论:①AR=AS;②PQ∥AB;③△BPR≌△CPS;④BP=CP中( )A.全部正确 B.仅①②正确C.仅①正确D.仅①④正确二、填空题.(每题4分,共24分.请把答案填写在答题卡中的相应横线上)13.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为__________.14.一木工师傅现有两根木条,木条的长分别为4cm和5cm,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm,则x的取值范畴是__________.15.如图,△ABC中,AB=AC=6,BC=4.5,分别以A、B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是__________.16.已知AD为△ABC的中线,AB=5cm,且△ACD的周长比△ABD的周长少2cm,则AC=__________.17.如图,△ABC为等边三角形,AD为BC边上的高,E为AC边上的一点,且AE=AD,则∠EDC=__________.18.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=__________度.三、解答题.(填写在答案卡中)19.如图,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.20.已知:如图,D是AB上一点,E是AC上的一点,BE、CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°.求:(1)∠BDC的度数;(2)∠BFD的度数.21.如图,点F、B、E、C在同一直线上,同时BF=CE,∠ABC=∠DEF.能否由上面的已知条件证明△ABC≌△DEF?假如能,请给出证明;假如不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出证明.提供的三个条件是:①AB=DE;②AC=DF;③AC∥DF.22.将一张矩形纸条ABCD按如图所示折叠,若折叠角∠FEC=64°.(1)求∠1的度数;(2)求证:△EFG是等腰三角形.23.如图,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),(1)作出△ABC关于y轴对称的△A′B′C′,并写出A′,B′,C′的坐标.(2)求△ABC的面积.24.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,(1)求证:DE=DF.(2)连接BC,求证:线段AD垂直平分线段BC.25.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2),求证:△BCE≌△CAM.2020-2021学年山东省潍坊市八年级(上)期中数学试卷一、选择题.(本题共12个小题,在每小题所列四个选项中,只有一个选项符合题意,把符合题意的选项写在答题卡中)1.下列“表情图”中,属于轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】依照轴对称图形的定义:把一个图形沿着某一条直线折叠,假如直线两旁的部分能够互相重合,那么称那个图形是轴对称图形直截了当回答即可.【解答】解:A、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;B、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;C、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;D、是轴对称图形;故选D.【点评】本题考查了轴对称图形的定义,牢记轴对称图形的定义是解答本题的关键,属于基础题,比较简单.2.如图,△ABC≌△DCB,点A与点D,点B与点C对应,假如AC=6cm,AB=3cm,那么DC的长为( )A.3cm B.5cm C.6cm D.无法确定【考点】全等三角形的性质.【分析】依照全等三角形的性质得出DC=AB,代入求出即可.【解答】解:∵△ABC≌△DCB,∴DC=AB,∵AB=3cm,∴DC=3cm,故选A.【点评】本题考查了全等三角形的性质的应用,能运用全等三角形的性质进行推理是解此题的关键,注意:全等三角形的对应角相等,对应边相等.3.点P(﹣2,1),那么点P关于x轴对称的点P′的坐标是( )A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(2,1)【考点】关于x轴、y轴对称的点的坐标.【专题】应用题.【分析】依照坐标平面内两个点关于x轴对称,则横坐标不变,纵坐标互为相反数,即可得出答案.【解答】解:∵点P与点P′关于x轴对称,已知点P(﹣2,1),∴P′的坐标为(﹣2,﹣1).故选B.【点评】本题要紧考查了坐标平面内两个点关于x轴对称的特点,横坐标不变,纵坐标互为相反数,难度适中.4.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【考点】全等三角形的判定.【分析】依照全等三角形的判定定理,即可得出答.【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,依照ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.5.如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是( )A.28°B.31°C.39°D.42°【考点】三角形的外角性质;对顶角、邻补角.【专题】运算题.【分析】依照平角的定义求出∠ABD,依照三角形的外角性质得出∠ADE=∠ABD+∠A,代入即可求出答案.【解答】解:∵∠ABD+∠CBD=180°,∠CBD=70°,∴∠ABD=110°,∵∠AD E=∠ABD+∠A,∠ADE=149°,∴∠A=39°.故选C.【点评】本题要紧考查对三角形的外角性质,邻补角的定义等知识点的明白得和把握,能灵活运用三角形的外角性质进行运确实是解此题的关键.6.等腰三角形的一条边长为6,另一边长为13,则它的周长为( )A.25 B.25或32 C.32 D.19【考点】等腰三角形的性质;三角形三边关系.【分析】因为已知长度为6和13两边,没有明确是底边依旧腰,因此有两种情形,需要分类讨论.【解答】解:①当6为底时,其它两边都为13,6、13、13能够构成三角形,周长为32;②当6为腰时,其它两边为6和13,∵6+6<13,∴不能构成三角形,故舍去,∴答案只有32.故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情形,分类进行讨论,还应验证各种情形是否能构成三角形进行解答,这点专门重要,也是解题的关键.7.多边形的每个内角都等于150°,则从此多边形的一个顶点动身可作的对角线共有( ) A.8条B.9条C.10条D.11条【考点】多边形的对角线;多边形内角与外角.【专题】常规题型.【分析】先求出多边形的外角度数,然后即可求出边数,再利用公式(n﹣3)代入数据运算即可.【解答】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=12,∴对角线条数=12﹣3=9.故选B.【点评】本题要紧考查了多边形的外角与对角线的性质,求出边数是解题的关键,另外熟记从多边形的一个顶点动身可作的对角线的条数公式也专门重要.8.如图所示,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,BE=6cm,则AC等于( )A.6cm B.5cm C.4cm D.3cm【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】依照三角形内角和定理求出∠BAC,依照线段垂直平分性质求出BE=AE=6cm,求出∠EAB=∠B=15°,求出∠EAC,求出∠AEC,依照含30°角的直角三角形性质求出即可.【解答】解:∵在△ABC中,∠ACB=90°,∠B=15°,∴∠BAC=90°﹣15°=75°,∵DE垂直平分AB,交BC于点E,BE=6cm,∴BE=AE=6cm,∴∠EAB=∠B=15°,∴∠EAC=75°﹣15°=60°,∵∠C=90°,∴∠AEC=30°,∴AC=AE=6cm=3cm,故选D.【点评】本题考查了线段垂直平分线性质,含30°角的直角三角形性质,等腰三角形的性质,三角形内角和定理的应用,能求出∠AEC的度数和AF=BF是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.9.如图,直线l是一条河,P,Q两地在直线l的同侧,欲在l上的某点M处修建一个水泵站,分别向P,Q两地供水.现有如下四种铺设方案,则铺设的管道最短的方案是( )A.B.C.D.【考点】轴对称-最短路线问题.【分析】用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点P关于直线l的对称点P′,连接QP′交直线l于M.依照两点之间,线段最短,可知选项B修建的管道,则所需管道最短.故选B.【点评】本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别.10.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是( )A.45°B.54°C.40°D.50°【考点】平行线的性质;三角形内角和定理.【分析】依照三角形的内角和定理求出∠BAC,再依照角平分线的定义求出∠BAD,然后依照两直线平行,内错角相等可得∠ADE=∠BAD.【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.11.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多能够构成正确的结论的个数是( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质.【分析】依照全等三角形的判定定理,能够推出①②③为条件,④为结论,依据是“SAS”;①②④为条件,③为结论,依据是“SSS”.【解答】解:当①②③为条件,④为结论时:∵∠A′CA=∠B′CB,∴∠A′CB′=∠ACB,∵BC=B′C,AC=A′C,∴△A′CB′≌△ACB,∴AB=A′B′,当①②④为条件,③为结论时:∵BC=B′C,AC=A′C,AB=A′B′∴△A′CB′≌△ACB,∴∠A′CB′=∠ACB,∴∠A′CA=∠B′CB.故选B.【点评】本题要紧考查全等三角形的判定定理,关键在于熟练把握全等三角形的判定定理.12.如图,已知在△ABC中,PR⊥AB于R,PS⊥AC于S,PR=PS,∠1=∠2,则四个结论:①AR=AS;②PQ∥AB;③△BPR≌△CPS;④BP=CP中( )A.全部正确 B.仅①②正确C.仅①正确D.仅①④正确【考点】全等三角形的判定与性质.【分析】证RT△APR≌RT△APS,可得AS=AR,∠BAP=∠1,再依照∠1=∠2即可求得QP∥AB,即可解题.【解答】解:∵在Rt△APR和Rt△APS中,,∴Rt△APR≌Rt△APS,(HL)∴∠AR=AS,①正确,∠BAP=∠1,∵∠1=∠2,∴∠BAP=∠2,∴QP∥AB,②正确,∵△BRP和△QSP中,只有一个条件PR=PS,再没有其余条件能够证明△BRP≌△QSP,故③④错误;故选B.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证RT△APR≌RT△APS是解题的关键.二、填空题.(每题4分,共24分.请把答案填写在答题卡中的相应横线上)13.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为80°.【考点】平行线的性质.【分析】依照两直线平行,内错角相等可得∠3=∠1,再依照三角形的内角和列式运算即可得解.【解答】解:∵l1∥l2,∴∠3=∠1=60°,∵∠A=40°,∴∠4=180°﹣∠A﹣∠3=80°,∴∠2=∠4=80°;故答案为:80°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.14.一木工师傅现有两根木条,木条的长分别为4cm和5cm,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm,则x的取值范畴是1<x<9.【考点】三角形三边关系.【分析】依照三角形的三边关系,则第三根木条的取值范畴是大于两边之差1,而小于两边之和9.【解答】解:由三角形三边关系定理得5﹣4<x<5+4,即1<x<9.即x的取值范畴是1<x<9.故答案为:1<x<9.【点评】本题考查了三角形的三边关系,需要明白得的是如何依照已知的两条边求第三边的范畴.15.如图,△ABC中,AB=AC=6,BC=4.5,分别以A、B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是10.5.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】先判定出D在AB的垂直平分线上,再依照线段垂直平分线上的点到线段两端点的距离相等可得BD=AD,再求出△BCD的周长=AC+BC,然后代入数据进行运算即可得解.【解答】解:依照作法,点D在线段AB的垂直平分线上,则BD=AD,则△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵AC=6,BC=4.5,∴△BCD的周长=6+4.5=10.5.故答案为:10.5.【点评】本题考查了线段垂直平分线的判定与性质,熟记线段垂直平分线的性质是解题的关键.16.已知AD为△ABC的中线,AB=5cm,且△ACD的周长比△ABD的周长少2cm,则AC=3cm.【考点】三角形的角平分线、中线和高.【分析】依照三角形的三边关系,和中线定理作答.【解答】解:∵AD为△ABC的中线,∴BD=CD,∵△ACD的周长比△ABD的周长少2cm,∴(AB+BD+AD)﹣(AC+AD+CD)=AB﹣AC=2(cm),∴AC=AB﹣2=5﹣2=3cm.【点评】在三角形中,连接一个顶点和它对边的中点的线段,叫做那个三角形的中线.三角形的周长即三角形的三边和,C=a+b+c.17.如图,△ABC为等边三角形,AD为BC边上的高,E为AC边上的一点,且AE=AD,则∠EDC=15°.【考点】等边三角形的性质.【分析】先依照等边三角形的性质得出∠BAC=60°,再由AD⊥BC得出∠CAD的度数,依照AE=AD求出∠ADE的度数,由∠EDC=∠ADC﹣∠ADE即可得出结论.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°.∵AD⊥BC,∴∠CAD=30°,∠ADC=90°,∵AE=AD,∴∠ADE==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.【点评】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.18.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=25度.【考点】三角形内角和定理;三角形的外角性质.【分析】依照三角形内角和定理以及角平分线性质,先求出∠D、∠A的等式,推出∠A=2∠D,最后代入求出即可.【解答】解:∵∠ACE=∠A+∠ABC,∴∠ACD+∠ECD=∠A+∠ABD+∠DBE,∠DCE=∠D+∠DBC,又BD平分∠ABC,CD平分∠ACE,∴∠ABD=∠DBE,∠ACD=∠ECD,∴∠A=2(∠DCE﹣∠DBC),∠D=∠DCE﹣∠DBC,∴∠A=2∠D,∵∠A=50°,∴∠D=25°.故答案为:25.【点评】此题考查三角形内角和定理以及角平分线性质的综合运用,解此题的关键是求出∠A=2∠D.三、解答题.(填写在答案卡中)19.如图,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先利用平行线的性质得到∠B=∠DCE,再依照“SAS”可判定△ABC≌△DCE,然后依照全等的性质即可得到结论.【解答】证明:∵AB∥DE,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.20.已知:如图,D是AB上一点,E是AC上的一点,BE、CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°.求:(1)∠BDC的度数;(2)∠BFD的度数.【考点】三角形的外角性质;三角形内角和定理.【专题】运算题.【分析】(1)在△ACD中,利用三角形的外角性质,三角形的一个外角等于与它不相邻的两个内角的和运算即可;(2)在△BFD中,利用三角形的内角和定理运算即可.【解答】解:(1)在△ACD中,∵∠A=62°,∠ACD=35°,∴∠BDC=∠ACD+∠A=62°+35°=97°;(2)在△BDF中,∠BFD=180°﹣∠ABE﹣∠BDF=180°﹣20°﹣97°=63°.故答案为:(1)97°,(2)63°.【点评】本题要紧考查了三角形的外角性质与三角形的内角和定理,熟记性质与定理是解题的关键.21.如图,点F、B、E、C在同一直线上,同时BF=CE,∠ABC=∠DEF.能否由上面的已知条件证明△ABC≌△DEF?假如能,请给出证明;假如不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出证明.提供的三个条件是:①AB=DE;②AC=DF;③AC∥DF.【考点】全等三角形的判定.【分析】由BF=CE可得EF=CB,再有条件∠ABC=∠DEF不能证明△ABC≌△D EF;能够加上条件①AB=DE,利用SAS定理能够判定△ABC≌△DEF.【解答】解:不能;选择条件:①AB=DE;∵BF=CE,∴BF+BE=CE+BE,即EF=CB,在△ABC和△DFE中,∴△ABC≌△DFE(SAS).【点评】此题要紧考查了全等三角形的判定,判定两个三角形全等的一样方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.将一张矩形纸条ABCD按如图所示折叠,若折叠角∠FEC=64°.(1)求∠1的度数;(2)求证:△EFG是等腰三角形.【考点】翻折变换(折叠问题).【分析】(1)依照翻折变换的性质求出∠GEF的度数,从而求出∠GEB的度数,再依照平行线的性质求出∠1;(2)依照AD∥BC得到∠GFE=∠FEC,依照翻折不变性得到∠GEF=∠GFE,由等角对等边得到GE=GF.【解答】(1)解:∵∠GEF=∠FEC=64°,∴∠BEG=180°﹣64°×2=52°,∵AD∥BC,∴∠1=∠BEG=52°.(2)证明:∵AD∥BC,∴∠GFE=∠FEC,∴∠GEF=∠GFE,∴GE=GF,∴△EFG是等腰三角形.【点评】此题考查了翻折变换,利用翻折不变性和平行线的性质进行分析是解答此类题目的关键.23.如图,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),(1)作出△ABC关于y轴对称的△A′B′C′,并写出A′,B′,C′的坐标.(2)求△ABC的面积.【考点】作图-轴对称变换.【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接,并写出A′,B′,C′的坐标;(2)用△ABC所在的矩形的面积减去三个小三角形的面积即可求解.【解答】解:(1)所作图形如图所示:A′(﹣4,6),B′(﹣5,2),C′(﹣2,1);(2)S△ABC=3×5﹣×1×3﹣×1×4﹣×2×5=6.5.【点评】本题考查了依照轴对称变换作图,解答本题的关键是依照网格结构作出对应点的位置,然后顺次连接.24.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,(1)求证:DE=DF.(2)连接BC,求证:线段AD垂直平分线段BC.【考点】全等三角形的判定与性质;线段垂直平分线的性质.【专题】证明题.【分析】(1)连接AD,易证△ACD≌△ABD,依照全等三角形对应角相等的性质可得∠EAD=∠FAD,依照角平分线的性质,即可解答;(2)由△ACD≌△ABD(已证),得到DC=DB,因此点D在线段BC的垂直平分线上.又AB=AC,因此点A在线段BC的垂直平分线上,即可解答.【解答】解:(1)如图,连接AD.在△ACD和△ABD中,∴△ACD≌△ABD(SSS).∴∠FAD=∠EAD,即AD平分∠EAF.又∵DE⊥AE,DF⊥AF,∴DE=DF.(2)∵△ACD≌△ABD(已证).∴DC=DB,∴点D在线段BC的垂直平分线上.又∵AB=AC∴点A在线段BC的垂直平分线上.∵两点确定一条直线,∴AD垂直平分BC.【点评】本题考查了全等三角形的性质与判定,角平分线的性质、垂直平分线的性质,解决本题的关键是证明△ACD≌△ABD.25.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2),求证:△BCE≌△CAM.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)先证出∠ACE=∠CBG,再由ASA证明△ACE≌△CBG,得出对应边相等即可;(2)先证出∠CEB=∠CMA,再由AAS证明△BCE≌△ACM.【解答】解:(1)∵点D是AB的中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°.∴∠CAE=∠BCG.又BF⊥CE,∴∠CBG+∠BCF=90°.又∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,∴△AEC≌△CGB.∴AE=CG.(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°.∴∠CMA=∠BEC.又AC=BC,∠ACM=∠CBE=45°,在△BCE和△CAM中∴∠BCE≌△CAM(AAS).【点评】本题考查了全等三角形的判定与性质;熟练把握全等三角形的判定方法是解决问题的关键.。
2020—2021年武汉市部分学校初二上期中数学试卷含答案解析
2020—2021年武汉市部分学校初二上期中数学试卷含答案解析一、选择题(每小题3分,共30分)1.下列图案中,轴对称图形是( )A.B. C.D.2.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110°B.80°C.70°D.60°3.已知△ABC中,AB=4,BC=6,那么边AC的长可能是下列哪个值( )A.11 B.5 C.2 D.14.一定能确定△ABC≌△DEF的条件是( )A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F5.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE确实是∠PRQ的平分线.此角平分仪的画图原理是:依照仪器结构,可得△ABC≌△ADC,如此就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS6.已知等腰三角形的一个内角为40°,则那个等腰三角形的顶角为( )A.40°B.100°C.40°或70°D.40°或100°7.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )A.7cm B.10cm C.12cm D.22cm8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对9.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10 B.7 C.5 D.410.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( )A.B.C.D.二、填空题(每题3分,共18分)11.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于__________.12.已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是__________.13.一个多边形的内角和是外角和的2倍,则那个多边形的边数为__________.14.等腰三角形的两边长分别是4cm和8cm,则它的周长是__________.15.各边长度差不多上整数、最大边长为8的三角形共有__________个.16.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为__________.三、解答题(共8道小题,共72分)17.如图,在钝角△ABC中.(1)作钝角△ABC的高AM,CN;(2)若CN=3,AM=6,求BC与AB之比.18.如图,△ABC是等腰三角形,AB=AC,请你作一条直线将△ABC分成两个全等的三角形,并证明这两个三角形全等.19.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,(1)∠ABC=42°,∠A=60°,求∠BFC的度数;(2)直截了当写出∠A与∠BFC的数量关系.20.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直截了当写出点P的坐标;(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直截了当写出点A2的坐标.21.(1)如图(1),将△ABC纸片沿着DE对折,使点A落在四边形BCDE内点A′的位置,探究∠A,∠1,∠2之间的数量关系,并说明理由.(2)如图(2),连续如此的操作,把△ABC纸片的三个角按(1)的方式折叠,三个顶点都在形内,那么∠1+∠2+∠3+∠4+∠5+∠6的度数是__________.(3)假如把n边形纸片也做类似的操作,n个顶点都在形内,那么∠1+∠2+∠3+…+∠2n的度数是__________ (用含有n的代数式表示).22.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.23.如图,△ABC中,AC=BC,∠ACB=90°,点D在AB上,E在BC上,且AD=BE,BD=AC,连接DE.(1)求证:△ACD≌△BDE;(2)求∠BED的度数;(3)若过E作EF⊥AB于F,BF=1,直截了当写出CE的长.24.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②求证:BD=2EC;(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.2020-2021学年湖北省武汉市部分学校联考八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列图案中,轴对称图形是( )A.B. C.D.【考点】轴对称图形.【分析】依照轴对称图形的概念对各图形分析判定后即可求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选;D.【点评】本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是查找对称轴.2.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110°B.80°C.70°D.60°【考点】三角形的外角性质.【分析】依照三角形的一个外角等于与它不相邻的两个内角的和列式运算即可得解.【解答】解:由三角形的外角性质得:∠CAD=∠B+∠C=40°+30°=70°.故选C.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质并准确识图是解题的关键.3.已知△ABC中,AB=4,BC=6,那么边AC的长可能是下列哪个值( )A.11 B.5 C.2 D.1【考点】三角形三边关系.【分析】依照在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【解答】解:依照三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选:B.【点评】本题考查的是三角形的三边关系,把握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.4.一定能确定△ABC≌△DEF的条件是( )A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看每个选项是否符合定理即可.【解答】解:A、依照ASA即可推出△ABC≌△DEF,故本选项正确;B、依照∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、依照AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、依照AAA不能推出△ABC≌△DEF,故本选项错误;故选A.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE确实是∠PRQ的平分线.此角平分仪的画图原理是:依照仪器结构,可得△ABC≌△ADC,如此就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判定全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分明白得题意.6.已知等腰三角形的一个内角为40°,则那个等腰三角形的顶角为( )A.40°B.100°C.40°或70°D.40°或100°【考点】等腰三角形的性质.【专题】分类讨论.【分析】分那个角为底角和顶角两种情形,利用三角形内角和定理求解即可.【解答】解:当那个内角为顶角时,则顶角为40°,当那个内角为底角时,则两个底角都为40°,现在顶角为:180°﹣40°﹣40°=100°,故选D.【点评】本题要紧考查等腰三角形的性质,把握等腰三角形的两底角相等是解题的关键.7.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )A.7cm B.10cm C.12cm D.22cm【考点】翻折变换(折叠问题).【分析】第一依照折叠可得AD=BD,再由△ADC的周长为17cm能够得到AD+DC的长,利用等量代换可得BC的长.【解答】解:依照折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.【点评】此题要紧考查了翻折变换,关键是把握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】依照已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而依照“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.【点评】本题考查的是全等三角形的判定方法;这是一道考试常见题,易错点是漏掉△ABO≌△ACO,此类题能够先依照直观判定得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.9.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10 B.7 C.5 D.4【考点】角平分线的性质.【分析】作EF⊥BC于F,依照角平分线的性质求得EF=DE=2,然后依照三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.10.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( )A.B.C.D.【考点】剪纸问题.【分析】依照题意直截了当动手操作得出即可.【解答】解:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.【点评】本题考查了剪纸问题,难点在于依照折痕逐层展开,动手操作会更简便.二、填空题(每题3分,共18分)11.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于75°.【考点】三角形内角和定理.【分析】依照已知条件设∠A=3x,∠B=4x,∠C=5x,然后依照三角形的内角和列方程即可得到结果.【解答】解:∵在△ABC中,∠A:∠B:∠C=3:4:5,∴设∠A=3x,∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,∴x=15°,∴∠C=5x=75°,故答案为:75°.【点评】本题考查了三角形的内角和,熟练把握三角形的内角和是解题的关键.12.已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】依照关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直截了当得到答案.【解答】解:点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).故答案为:(1,﹣2).【点评】此题要紧考查了关于x轴对称点的坐标,关键是把握点的坐标的变化规律.13.一个多边形的内角和是外角和的2倍,则那个多边形的边数为6.【考点】多边形内角与外角.【专题】运算题.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴那个多边形是六边形.故答案为:6.【点评】本题要紧考查了多边形的内角和定理与外角和定理,熟练把握定理是解题的关键.14.等腰三角形的两边长分别是4cm和8cm,则它的周长是20cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两边长为4cm和8cm,而没有明确腰、底分别是多少,因此要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①8cm为腰,4cm为底,现在周长为8+8+4=20cm;②8cm为底,4cm为腰,∵4+4=8,∴两边和等于第三边无法构成三角形,故舍去.故它的周长是20cm.故答案为:20cm.【点评】此题要紧考查学生对等腰三角形的性质及三角形的三边关系的把握情形.已知没有明确腰和底边的题目一定要想到两种情形,分类进行讨论,还应验证各种情形是否能构成三角形进行解答,这点专门重要,也是解题的关键.15.各边长度差不多上整数、最大边长为8的三角形共有20个.【考点】三角形三边关系.【分析】利用三角形三边关系进而得出符合题意的答案即可.【解答】解:∵各边长度差不多上整数、最大边长为8,∴三边长能够为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;5,5,8;5,6,8;5,7,8;5,8,8;6,6,8;6,7,8;6,8,8;7,7,8;7,8,8;8,8,8;故各边长度差不多上整数、最大边长为8的三角形共有20个.故答案为:20.【点评】此题要紧考查了三角形三边关系,正确分类讨论得出是解题关键.16.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为88°.【考点】圆周角定理.【分析】由AB=AC=AD,可得B,C,D在以A为圆心,AB为半径的圆上,然后由圆周角定理,证得∠CAD=2∠CBD,∠BAC=2∠BDC,继而可得∠CAD=2∠BAC.【解答】解:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44°,∴∠CAD=2∠BAC=88°.故答案为:88°.【点评】此题考查了圆周角定理.注意得到B,C,D在以A为圆心,AB为半径的圆上是解此题的关键.三、解答题(共8道小题,共72分)17.如图,在钝角△ABC中.(1)作钝角△ABC的高AM,CN;(2)若CN=3,AM=6,求BC与AB之比.【考点】作图—复杂作图;三角形的面积.【专题】作图题.【分析】(1)过点A作AM⊥BC于M,过点C作CN⊥AB于N,则AM、BN为△ABC的高;(2)依照三角形面积公式得到AM•BC=CN•AB,然后利用比例性质求BC与AB的比值.【解答】解:(1)如图,AM、CN为所作;(2)∵AM、BN为△ABC的高,∴S△ABC=AM•BC=CN•AB,∴===.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种差不多作图的基础上进行作图,一样是结合了几何图形的性质和差不多作图方法.解决此类题目的关键是熟悉差不多几何图形的性质,结合几何图形的差不多性质把复杂作图拆解成差不多作图,逐步操作.也考查了三角形面积公式.18.如图,△ABC是等腰三角形,AB=AC,请你作一条直线将△ABC分成两个全等的三角形,并证明这两个三角形全等.【考点】全等三角形的判定.【分析】取BC中点D,作直线AD,利用SSS即可证明△ABD≌△ACD.【解答】解:如图,取BC中点D,作直线AD,则直线AD将△ABC分成两个全等的三角形,即△ABD≌△ACD.理由如下:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,(1)∠ABC=42°,∠A=60°,求∠BFC的度数;(2)直截了当写出∠A与∠BFC的数量关系.【考点】三角形内角和定理.【分析】(1)依照角平分线的定义可得∠FBC=∠ABC,∠FCB=∠ACB,再依照三角形内角和定理求出即可;(2)依照角平分线的定义可得∠FBC=∠ABC,∠FCB=∠ACB,然后表示出∠FBC+∠FCB,再依照三角形的内角和等于180°列式整理即可得证.【解答】解:(1)∵∠ABC=42°,∠A=60°,∴∠ACB=78°,∵∠ABC、∠ACB的平分线相交于点F,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°﹣(∠FBC+∠FCB)=120°;(2)∠BFC=90°+A,理由是:∵∠ABC与∠ACB的平分线相交于点F,∴∠FBC=∠ABC,∠FCB=∠ACB,∴∠FBC+∠FCB=(∠ABC+∠ACB),在△FBC中,∠BFC=180°﹣(∠FBC+∠FCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A.【点评】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.20.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直截了当写出点P的坐标;(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直截了当写出点A2的坐标.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)先作出各点关于y轴的对称点,再顺次连接即可;(2)连接AB1交y轴于点P,利用待定系数法求出直线AB1的解析式,进而可得出P点坐标;(3)找出点A关于直线BC的对称点,并写出其坐标即可.【解答】解:(1)如图所示;(2)设直线AB1的解析式为y=kx+b(k≠0),∵A(﹣1,5),B1(1,0),∴,解得,∴直线AB1的解析式为:y=﹣x+,∴P(0,2.5);(3)如图所示,A2(﹣6,0).【点评】本题考查的是作图﹣轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.21.(1)如图(1),将△ABC纸片沿着DE对折,使点A落在四边形BCDE内点A′的位置,探究∠A,∠1,∠2之间的数量关系,并说明理由.(2)如图(2),连续如此的操作,把△ABC纸片的三个角按(1)的方式折叠,三个顶点都在形内,那么∠1+∠2+∠3+∠4+∠5+∠6的度数是360°.(3)假如把n边形纸片也做类似的操作,n个顶点都在形内,那么∠1+∠2+∠3+…+∠2n的度数是360°(n﹣2)(用含有n的代数式表示).【考点】翻折变换(折叠问题).【分析】(1)运用折叠原理及四边形的内角和定理即可解决问题;(2)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6=∠B+∠B'+∠C+∠C'+∠A+∠A',又知∠B=∠B',∠C=∠C',∠A=∠A',故能求出∠1+∠2+∠3+∠4+∠5+∠6的度数和;(3)利用(1)(2)的运算方法:类比得出答案即可.【解答】解:(1)连接AA′,∵∠1=∠BAA′+∠AA′E,∠2=∠CAA′+∠AA′D,∴∠1+∠2=∠BAA′+∠AA′E+∠CAA′+∠AA′D=∠BAC+∠DA′E,又∵∠BAC=∠DA′E,∴∠1+∠2=2∠BAC;(2)∠1+∠2+∠3+∠4+∠5+∠6=∠B+∠B'+∠C+∠C'+∠A+∠A',∵∠B=∠B',∠C=∠C',∠A=∠A',∴∠1+∠2+∠3+∠4+∠5+∠6=2(∠B+∠C+∠A)=360°;(3)∠1+∠2+∠3+…+∠2n=2(∠B+∠C+∠A)(n﹣2)=360°(n﹣2).【点评】本题考查图形的折叠与拼接,同时考查了三角形、四边形等几何差不多知识,把握折叠的性质是解决问题的关键.22.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.【考点】全等三角形的判定与性质.【专题】几何综合题.【分析】(1)求证AB=AC,确实是求证∠B=∠C,可通过构建全等三角形来求.过点O分别作OE⊥AB于E,OF⊥AC于F,那么能够用斜边直角边定理(HL)证明Rt△OEB≌Rt△OFC 来实现;(2)思路和辅助线同(1)证得Rt△OEB≌Rt△OFC后,可得出∠OBE=∠OCF,等腰△ABC 中,∠ABC=∠ACB,因此∠OBC=∠OCB,那么OB=OC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC.【解答】(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)【点评】本题的关键是通过辅助线来构建全等三角形.判定两个三角形全等,先依照已知条件或求证的结论确定三角形,然后再依照三角形全等的判定方法,看缺什么条件,再去证什么条件.23.如图,△ABC中,AC=BC,∠ACB=90°,点D在AB上,E在BC上,且AD=BE,BD=AC,连接DE.(1)求证:△ACD≌△BDE;(2)求∠BED的度数;(3)若过E作EF⊥AB于F,BF=1,直截了当写出CE的长.【考点】全等三角形的判定与性质.【分析】(1)依照SAS证明△ACD≌△BDE即可;(2)依照全等三角形得出AC=BD,进而得出BD=BC,利用角的运算即可解答;(3)过E作EF⊥AB于F,DH⊥BC于H,依照等腰直角三角形的性质求出EF的长,依照题意求出∠CED=∠DEF,依照角平分线的性质求出EH=EF,依照等腰三角形的性质得到答案.【解答】证明:(1)在△ACD与△BDE中,,∴△ACD≌△BDE(SAS),(2)∵△ACD≌△BDE,∴AC=BD,CD=DE,∵AC=BC,∴BD=BC,∴∠BCD=67.5°,∴∠CED=∠BCD=67.5°,∴∠BED=112.5°;(3)过E作EF⊥AB于F,DH⊥BC于H,∵EF⊥AB,∠B=45°,∴EF=BF=1,∵∠FEB=45°,∠CED=67.5°,∴∠DEF=67.5°,∴∠CED=∠DEF,又DH⊥BC,EF⊥AB,∴EH=EF=1,∵DC=DE,DH⊥BC,∴CE=2EH=2.【点评】本题考查的是全等三角形的判定和性质、角平分线的性质以及等腰三角形的性质,把握全等三角形的判定定理和性质定理、等腰三角形的三线合一是解题的关键.24.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②求证:BD=2EC;(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.【考点】全等三角形的判定与性质.【分析】(1)①依照等腰直角三角形的性质得出∠CBA=45°,再利用角平分线的定义解答即可;②延长CE交BA的延长线于点G得出CE=GE,再利用AAS证明△ABD≌△ACG,利用全等三角形的性质解答即可;(2)过点A作AH⊥AE,交BE于点H,证明△ABH≌△ACE,进而得出CE=BH,利用等腰直角三角形的判定和性质解答即可.【解答】解:(1)①∵在△ABC中,∠BAC=90°,AB=AC,∴∠CBA=45°,∵BD平分∠ABC,∴∠DBA=22.5°,∵CE⊥BD,∴∠ECD+∠CDE=90°,∠DBA+∠BDA=90°,∵∠CDE=∠BDA,∴∠ECD=∠DBA=22.5°;②延长CE交BA的延长线于点G,如图1:∵BD平分∠ABC,CE⊥BD,∴CE=GE,在△ABD与△ACG中,,∴△ABD≌△ACG(AAS),∴BD=CG=2CE;(2)结论:BE﹣CE=2AF.过点A作AH⊥AE,交BE于点H,如图2:∵AH⊥AE,∴∠BAH+∠HAC=∠HAC+∠CAE,∴∠BAH=∠CAE,在△ABH与△ACE中,,∴△ABH≌△ACE(ASA),∴CE=BH,AH=AE,∴△AEH是等腰直角三角形,∴AF=EF=HF,∴BE﹣CE=2AF.【点评】本题考查的是全等三角形的判定和性质,正确的构建出与所求和已知相关的全等三角形,是解答本题的关键.。
安徽省合肥市庐阳区四十五中学2020-2021学年第一学期八年级上期中考试数学试卷(含答案)
合肥市庐阳区四十五中2020-2021第一学期八年级期中数学试卷(含答案)一、选择题(本大题共10小题,每小题4分,满分40分)1.点A(3,-2)关于x轴的对称点为B,则点B的坐标为 ( )A. (3, 2)B. (-3,-2)C. (-3,2)D. (3,-2)2.下列长度的三条线段能组成三角形的是( )A.2,3,1B.4,11,6C.5,5,5D.4,4,83.函数y=中,自变量x的取值范围是( )A x≤0B x≥0 C. x<1且x≠0 D. x≤l且x≠04.下列命题中,假命题的是( )A.对顶角相等B.同位角相等C.两点之间线段最短D.垂线段最短5.如图,己知一次函数y=ax-1与y=mx+4的图象交于点A(3,1),则关于x的方ax-1=mx+4的解是( )A. x=-1B. x=1C. x=3D. x=4 .第5题图第10题图6.给定下列条件,不能判定三角形是直角三角形的是( )A. ∠A:∠B:∠C=2:3:5 B ∠A-∠C=∠B C ∠A=∠B=2∠C D.∠A=∠B=∠C7. 已知点P(-1,y2)点Q(3,y2)在一次函数y=(2m-1)x+2的图象上,且y1<y2,则m的取值范围是( )A m<B m>C m≥1D m<18.一次函数y=mx-n与y=mnx(mn≠0),在同一平面直角坐标系的图象不可能是( )A B C D9.在平面直角坐标系中,过点(-2,3)的直线l经过一、二、三象限,若点(0,a)、(-1,b)、(C,-1)都在直线l 上,则下列判断正确的是( )A. a< bB. a< 3C. b< 3D. c< -210.如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,【即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…】,且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为( )A. (4,44)B.(5,44) C (44,4) D. (44,5)二、填空题(本大题共4小题,每小题5分,满分20分)11、已知y=(m-1)x m2 -1是关于x的一次函数,则m为12、点A在第二象限,且到x轴的距离是4,到y轴的距离是2,则点A的坐标是13、将如图所示的一块直角三角板放置在△ABC上,使三角板的两条直角边DE、EF分别经过点B、C,若∠A=70°,则∠ABE+∠ACE=第13题图第14题图14、开学前夕,某服装厂接到为一所学校加工校服的任务,要求5天内加工完220套校服,服装厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止,设甲、乙两车间各自加工校服数量y(套)与甲车间加工时间x(天)之间的关系如图①所示;未加工校服w(套)与甲加工时间x(天)之间的关系如图②所示,请结合图象回答下列问题:(1)甲车间每天加工校服___ 套;(2)乙车间维修设备后,乙车间加工校服数量y(套)与x(天)之间函数关系式是三、解答题(本大题共9小题,合计90分)15、(8分)如图,将三角形ABC向右平移3个单位长度,再向下平移2个单位长度,得到对应的三角形A1B1C1。
2020-2021学年河南省平顶山市舞钢市八年级(上)期中数学试卷 (含解析)
2020-2021学年河南省平顶山市舞钢市八年级第一学期期中数学试卷一、选择题(每题3分,共30分)1.以下列长度的线段为边,能构成直角三角形的是()A.,,B.1,2,C.6,8,12D.5,11,13 2.在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个3.如图,在数轴上表示的点在哪两个字母之间()A.B与C B.A与B C.A与C D.C与D4.下列二次根式是最简二次根式的是()A.B.C.D.5.已知M(a,3)和N(4,b)关于x轴对称,则(a+b)2020的值为()A.1B.﹣1C.72020D.﹣720206.如图,正方形ABCD的边长为4,点A的坐标为(﹣1,1),AB平行于x轴,则点C 的坐标为()A.(3,1)B.(﹣1,1)C.(3,5)D.(﹣1,5)7.已知一个正数的两个平方根分别为3a﹣5和7﹣a,则这个正数的立方根是()A.4B.3C.2D.18.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.9.如图,一只蚂蚁从长为2cm、宽为2cm,高是3cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()cm.A.3B.2C.5D.710.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=x B.y=x C.y=x D.y=x二、填空题(每空3分,共15分)11.在△ABC中,∠C=90°,BC=2,AC=2,则AB=.12.若a,b分别为的整数部分和小数部分,则a﹣b的值为.13.已知A(2x+1,3),B(﹣5,3y﹣3)关于原点对称,则x+y=.14.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(4,4),若直线y=2x+b与线段AB有公共点,则b的值可以为.(写出一个即可)15.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2…第n次移动到点A n,则点A2020的坐标是.三、解答题(共75分)16.计算(1);(2).17.在解决问题“已知a=,求2a2﹣8a+1的值”时,小明是这样分析与解答的:∵a===2∴a﹣2=﹣,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1)化简:(2)若a=,求3a2﹣6a﹣1的值.18.七年级(2)班的同学组织到人民公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,﹣200),王励说他的坐标是(﹣200,﹣100),李华说他的坐标是(﹣300,200).(1)请你根据题目条件,在图中画出平面直角坐标系;(2)写出这三位同学所在位置的景点名称;(3)写出除了这三位同学所在位置外,图中其余两个景点的坐标.19.已知直线l与直线y=2x﹣2平行,且经过点(2,6).(1)求直线l的关系式;(2)直接在坐标系中画出直线l的图象.20.国庆期间某一位公司老板准备和员工去上海旅游,甲旅行社承诺:“老板一人免费,员工可享受八折优惠“;乙旅行社承诺:“包括老板在内所有人按全票的七五折优惠”,若全票价为2000元.(1)设参加旅游的员工人数为x,甲、乙旅行社收费分别为y甲(元)和y乙(元),分别写出两个旅行社收费的表达式;(2)当员工有10人时,哪家旅行社更优惠?(3)员工人数为多少时,两家旅行社花费一样?据此,请根据旅游员工人数的多少,为公司老板选择哪家旅行社提出合理化建议(只说出结果).21.课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股数的勾都是奇数,且从3起就没有间断过,于是王老师提出以下问题让学生解决.(1)请你根据上述的规律写出下一组勾股数:11、、;(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别怎么表示?聪明的小明发现每组第二个数有这样的规律4=,12=,24=…,于是他很快表示了第二数为,则用含a的代数式表示第三个数为;(3)用所学知识加以说明.22.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.23.(1)【观察猜想】:如图①,点B、A、C在同一直线上,DB⊥BC,EC⊥BC且∠DAE =90°,AD=AE,则BC、BD、CE之间的数量关系为.(2)【问题解决】:如图②,在Rt△ABC中,∠ABC=90°,CB=8,AB=4,以AC 为直角边向外作等腰Rt△DAC,连接BD,求BD的长.(3)【拓展延伸】:如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=8,AB =4,DC=DA,连接BD,求BD的长.参考答案一、选择题(共10小题).1.以下列长度的线段为边,能构成直角三角形的是()A.,,B.1,2,C.6,8,12D.5,11,13解:A、()2+()2≠()2,故不是直角三角形,故此选项不符合题意;B、12+22=()2,故是直角三角形,故此选项符合题意;C、62+82≠122,故不是直角三角形,故此选项不符合题意;D、52+112≠132,故不是直角三角形,故此选项不符合题意.故选:B.2.在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个解:,0,,﹣1.414是有理数.故选:D.3.如图,在数轴上表示的点在哪两个字母之间()A.B与C B.A与B C.A与C D.C与D 解:∵2.52=6.25<7,∴2.5<<3,∴在点C、D之间,故选:D.4.下列二次根式是最简二次根式的是()A.B.C.D.解:(A)原式=,故A不是最简二次根式;(B)原式=2,故B不是最简二次根式;(D)原式=4,故D不是最简二次根式;故选:C.5.已知M(a,3)和N(4,b)关于x轴对称,则(a+b)2020的值为()A.1B.﹣1C.72020D.﹣72020解:∵M(a,3)和N(4,b)关于x轴对称,∴a=4,b=﹣3,则(a+b)2020的值为:1.故选:A.6.如图,正方形ABCD的边长为4,点A的坐标为(﹣1,1),AB平行于x轴,则点C 的坐标为()A.(3,1)B.(﹣1,1)C.(3,5)D.(﹣1,5)解:∵正方形ABCD的边长为4,点A的坐标为(﹣1,1),AB平行于x轴,∴点B的横坐标为:﹣1+4=3,纵坐标为:1.∴点B的坐标为(3,1).∴点C的横坐标为:3,纵坐标为:1+4=5.∴点C的坐标为(3,5).故选项A错误,选项B错误,选项C正确,选项D错误.故选:C.7.已知一个正数的两个平方根分别为3a﹣5和7﹣a,则这个正数的立方根是()A.4B.3C.2D.1解:∵一个正数的两个平方根分别为3a﹣5和7﹣a,∴3a﹣5+7﹣a=0,解得:a=﹣1,∴3a﹣5=﹣8,则这个正数是64,这个正数的立方根是=4,故选:A.8.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k<0,∴﹣k>0,∴一次函数y=﹣kx+k的图象经过一、三、四象限;故选:B.9.如图,一只蚂蚁从长为2cm、宽为2cm,高是3cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()cm.A.3B.2C.5D.7解:如图(1),AB==;如图(2),AB==5.故选:C.10.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=x B.y=x C.y=x D.y=x解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC 于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,由此可知直线l经过(,3),设直线方程为y=kx,则3=k,k=,∴直线l解析式为y=x,故选:C.二、填空题(每空3分,共15分)11.在△ABC中,∠C=90°,BC=2,AC=2,则AB=2.解:在△ABC中,∠C=90°,BC=2,AC=2,由勾股定理,得AB===2.故答案是:2.12.若a,b分别为的整数部分和小数部分,则a﹣b的值为6﹣.解:∵3<<4,∴的整数部分是3,即a=3,∴的小数部分是﹣3,即b=﹣3,∴a﹣b=3﹣(﹣3)=6﹣.故答案为:6﹣.13.已知A(2x+1,3),B(﹣5,3y﹣3)关于原点对称,则x+y=2.解:∵A(2x+1,3),B(﹣5,3y﹣3)关于原点对称,∴2x+1=5,3y﹣3=﹣3,解得:x=2,y=0,∴x+y=2,故答案为:2.14.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(4,4),若直线y=2x+b与线段AB有公共点,则b的值可以为0(答案不唯一).(写出一个即可)解:当直线y=2x+b经过点A(1,4)时,4=2×1+b,解得:b=2;当直线y=2x+b经过点B(4,4)时,4=2×4+b,解得:b=﹣4.又∵直线y=2x+b与线段AB有公共点,∴﹣4≤b≤2.故答案为:0(答案不唯一).15.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2…第n次移动到点A n,则点A2020的坐标是(1010,0).解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2020÷4=505,所以A2020的坐标为(505×2,0),则A2020的坐标是(1010,0).故答案为:(1010,0).三、解答题(共75分)16.计算(1);(2).解:(1)原式=﹣(3+2﹣2)﹣=5﹣5+2﹣=;(2)原式=5+﹣﹣2+=8﹣.17.在解决问题“已知a=,求2a2﹣8a+1的值”时,小明是这样分析与解答的:∵a===2∴a﹣2=﹣,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1)化简:(2)若a=,求3a2﹣6a﹣1的值.解:(1)==;(2)∵a==+1,∴a﹣1=,∴a2﹣2a+1=2,∴a2﹣2a=1∴3a2﹣6a=3∴3a2﹣6a﹣1=2.18.七年级(2)班的同学组织到人民公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,﹣200),王励说他的坐标是(﹣200,﹣100),李华说他的坐标是(﹣300,200).(1)请你根据题目条件,在图中画出平面直角坐标系;(2)写出这三位同学所在位置的景点名称;(3)写出除了这三位同学所在位置外,图中其余两个景点的坐标.【解答】(1)根据题意,他们以中心广场为坐标原点,100m为单位长度建立直角坐标系:(2)张明在游乐园,王励在望春亭,李华在湖心亭;(3)中心广场(0,0),牡丹亭(300,300)19.已知直线l与直线y=2x﹣2平行,且经过点(2,6).(1)求直线l的关系式;(2)直接在坐标系中画出直线l的图象.解:(1)∵直线y=kx+b与y=2x﹣2平行,∴k=2,把(2,6)代入y=2x+b,得4+b=6,解得b=2,∴直线l的关系式是y=2x+2.(2)画出直线l的图象如图:20.国庆期间某一位公司老板准备和员工去上海旅游,甲旅行社承诺:“老板一人免费,员工可享受八折优惠“;乙旅行社承诺:“包括老板在内所有人按全票的七五折优惠”,若全票价为2000元.(1)设参加旅游的员工人数为x,甲、乙旅行社收费分别为y甲(元)和y乙(元),分别写出两个旅行社收费的表达式;(2)当员工有10人时,哪家旅行社更优惠?(3)员工人数为多少时,两家旅行社花费一样?据此,请根据旅游员工人数的多少,为公司老板选择哪家旅行社提出合理化建议(只说出结果).解:(1)由题意可得,y甲=2000x×0.8=1600x,y乙=2000(x+1)×0.75=1500x+1500,即y甲=1600x,y乙=1500x+1500;(2)当x=10时,y甲=1600×10=16000,y乙=1500×10+1500=16500,∵16000<16500,∴当员工有10人时,甲家旅行社更优惠;(3)由题意可得,1600x=1500x+1500,解得x=15,即员工人数为15人时,两家旅行社花费一样,当员工人数多于15人时,选择乙旅行社,当员工人数少于15人时,选择甲旅行社,当员工人数为15人时,两家旅行社一样.21.课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股数的勾都是奇数,且从3起就没有间断过,于是王老师提出以下问题让学生解决.(1)请你根据上述的规律写出下一组勾股数:11、60、61;(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别怎么表示?聪明的小明发现每组第二个数有这样的规律4=,12=,24=…,于是他很快表示了第二数为,则用含a的代数式表示第三个数为;(3)用所学知识加以说明.解:(1)∵3、4、5;5、12、13;7、24、25;9、40、41;…,∴11,60,61;故答案为:60,61;(2)第一个数用字母a(a为奇数,且a≥3)表示,第二数为,则用含a的代数式表示第三个数为,故答案为:;(3)∵a2+()2=,()2=,∴a2+()2=()2又∵a为奇数,且a≥3,∴由a,,三个数组成的数是勾股数.22.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=8,BC=4,AC=4;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.解:(1)当x=0时,y=﹣2x+8=8,∴点C的坐标为(0,8);当y=0时,﹣2x+8=0,解得:x=4,∴点A的坐标为(4,0).由已知可得:四边形OABC为矩形,∴AB=OC=8,BC=OA=4,AC==4.故答案为:8;4;4.(2)①设AD=a,则CD=a,BD=8﹣a.在Rt△BCD中,CD2=BC2+BD2,即a2=42+(8﹣a)2,解得:a=5,∴线段AD的长为5.②存在,设点P的坐标为(0,t).∵点A的坐标为(4,0),点D的坐标为(4,5),∴AD2=25,AP2=(0﹣4)2+(t﹣0)2=t2+16,DP2=(0﹣4)2+(t﹣5)2=t2﹣10t+41.当AP=AD时,t2+16=25,解得:t=±3,∴点P的坐标为(0,3)或(0,﹣3);当AD=DP时,25=t2﹣10t+41,解得:t1=2,t2=8,∴点P的坐标为(0,2)或(0,8);当AP=DP时,t2+16=t2﹣10t+41,解得:t=,∴点P的坐标为(0,).综上所述:在y轴上存在点P,使得△APD为等腰三角形,点P的坐标为(0,3)或(0,﹣3)或(0,2)或(0,8)或(0,).23.(1)【观察猜想】:如图①,点B、A、C在同一直线上,DB⊥BC,EC⊥BC且∠DAE =90°,AD=AE,则BC、BD、CE之间的数量关系为BC=BD+CE.(2)【问题解决】:如图②,在Rt△ABC中,∠ABC=90°,CB=8,AB=4,以AC 为直角边向外作等腰Rt△DAC,连接BD,求BD的长.(3)【拓展延伸】:如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=8,AB =4,DC=DA,连接BD,求BD的长.解:(1)【观察猜想】:结论:BC=BD+CE,理由是:如图①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC(AAS),∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE,故答案为BC=BD+CE;(2)【问题解决】:如图②,过D作DE⊥AB,交BA的延长线于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=4,AE=BC=8,Rt△BDE中,BE=12,由勾股定理得:BD==4;(3)【拓展延伸】:如图③,过D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,∵DE⊥BC于E,DF⊥AB,∠ABC=90°,∴四边形BFDE是矩形,∴DE=BF,BE=DF,∴BE=DE=DF=BF,设AF=x,DF=y,则,解得,∴BF=4+2=6,DF=6,由勾股定理得:BD==6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020—2021学年初二上数学期中考试试卷含答案
第一学期八年级数学期中试卷 2020.11
一.用心选一选:(每小题3分,共30分)
1.下列各式是因式分解且完全正确的是( )
A .ab +ac +d =b a (+c )+d
B .)1(2
3
-=-x x x x C .(a +2)(a -2)=2
a -4 D .2a -1=(a +1)(a -1) 2.医学研究发觉一种新病毒的直径约为0.000043毫米,那个数用科学记数法表 示为( )
A. 4
1043.0-⨯ B. 4
1043.0⨯ C. 5
103.4-⨯ D. 5
103.4⨯
3. 下列各式:()x
x
x x y x x x 2
225
,1,2 ,34 ,151+---π其中分式共有( )个。
A .2 B. 3 C. 4 D. 5 4. 多项式 2
2
33
4
4
9-18-36a x a x a x 各项的公因式是( )
A .22a x
B .33a x
C .229a x
D .44
9a x
5. 如图,用三角尺可按下面方法画角平分线:在已知的∠AOB
的两边上分别取点M 、N ,使OM =ON ,再分别过点M 、N 作
OA 、OB 的垂线,交点为P ,画射线OP .可证得△POM ≌△
PON ,OP 平分∠AOB .以上依画法证明 △POM ≌△PON 依照的是( ) A .SSS B .HL C .AAS D .SAS
6. 甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时刻
与乙做60个所用的时刻相等。
假如设甲每小时做x 个零件,那么下面所列方程中正确的是( ). A.
9060-6x x = B. 90606x x =+ C. 90606x x =+ D. 9060
-6x x
=
7. 如图,已知△ABC ,则甲、乙、丙三个三角形中和△ABC 全等的是( )
b
a
c
a c
c a
丙
72︒50︒
乙
50︒
甲
50︒
C
B
A
50︒
72︒
58︒
A. 只有乙
B. 乙和丙
C. 只有丙
D. 甲和乙
8. 下列各式中,正确的是( )
A .
122b a b a =++ B .2
112
236d cd cd cd
++= C . -a b a b
c c
++= D .22
2-4-2(-2)a a a a += 9.如图,正方形ABCD 的边长为4,将一个足够大的直角三角板的直角顶点放于点A 处,该三角板的两条直角边与CD 交于点
F ,与CB 延长线交于点E .四边形AECF 的面积是( )
A. 16 B .4 C .8 D. 12
10.在数学活动课上,小明提出如此一个问题:如右图, ∠B =∠C = 90︒, E 是BC 的中点, DE 平分∠ADC, ∠CED = 35︒, 则∠EAB 的度数 是 ( )
A .65︒
B .55︒
C .45︒
D .35︒
二.细心填一填:(每小题3分,共24分) . 11.运算:22
20042003-= .
E
D C
B
A
12. 04= 2
12-⎛⎫- ⎪⎝⎭= ()3
12a b -=
13. 假如分式 24
2
x x -+ 的值是零,那么x 的值是 _________________ .
14. 将一张长方形纸片按如图所示的方式折叠,
BC BD ,为折痕, 则CBD ∠的度数为_ _.
15. 运算: 24
22
x x x -
-- = __________________. 16. 如图,AC 、BD 相交于点O ,∠A =∠D ,请你再补充一个条件, 使得△AOB ≌△DOC ,你补充的条件是 .
17. 如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E . 已知PE =3,则点P 到AB 的距离是_________________.
18. 在平面直角坐标系中,已知点A (1,2),B (5,5),C (5,2),存在点E , 使△ACE 和△ACB 全等,写出所有满足条件的E 点的坐标 .
三.用心做一做(19、20题每题3分,21、22、23题每题4分,共26分)
19.因式分解: 2
4a -32a +64 20.运算:322
2)()
(---⋅a ab (结果写成分式)
21.运算: (1) 2
28193
69269
a a a a a a a --+÷⋅++++ (2) (
m 1+
n
1
)÷
n
n m +
22.解分式方程:
(1)3221+=x x (2)214
111
x x x +-=--
23. 先化简: 21x +2
1+x +1x -1
⎛
⎫÷ ⎪⎝⎭,再选择一个恰当的数代入求值.
四.应用题(本题5分)
24. 甲乙两站相距1200千米,货车与客车同时从甲站动身开往乙站,已知客车的速度是货车速度的2倍,结果客车比货车早6小时到达乙站,求客车与货车的速度分别是多少?
解:
D
C
B
五、作图题(本题2分)
25.画图 (不用写作法,要保留作图痕迹......) 尺规作图:求作AOB ∠的角平分线OC .
六、解答题:(28题5分,其他每题4分,共17分)
26. 已知,如图,在△AFD 和△CEB 中,点A ,E ,F ,C 在同一直线上, AE=CF ,
DF=BE ,AD=CB. 求证: AD ∥BC.
27. 已知:如图,AB=AD ,AC=AE ,且BA ⊥AC ,DA ⊥AE . 求证:(1) ∠B=∠D (2) AM=AN.
28. 如图,已知∠1=∠2,P 为BN 上的一点,PF ⊥BC 于F ,PA=PC ,
求证:∠PCB+∠BAP=180º.
29. 已知:在平面直角坐标系中,△ABC 的顶点A 、C
别在y 轴、x 轴上,且∠ACB =90°,AC =BC .
(1)如图1,当(0,2),(1,0)A C -,点B 则点B 的坐标为 ;
(2)如图2,当点C 在x 轴正半轴上运动,点A 在y 轴正半轴上运动,点B 在第四象限时,作BD ⊥y 轴于点D ,试判定
OA BD OC +与OA
BD
OC -哪一个是定值,并说
明定值是多少?请证明你的结论.
F C
F
D
C
B A
E
O
附加题
1.选择题:以右图方格纸中的3个格点为顶点,有多少个不全等的三角形( ) A .6 B .7 C .8 D .9
2.填空题:考察下列命题:(1)全等三角形的对应边上的中线、高线、角平分线对应相等;(2)两边和其中一边上的中线对应相等的两个三角形全等;(3)两边和第三边上的中线对应相等的两个三角形全等;(4)两角和其中一角的角平分线对应相等的两个三角形全等;(5)两角和第三角的角平分线对应相等的两个三角形全等;(6)两边和其中一边上的高线对应相等的两个三角形全等;(7)两边和第三边上的高线对应相等的两个三角形全等;其中正确的命题是 (填写序号).
3.解答题:我们明白,假分数能够化为带分数. 例如: 83
=223+=2
23. 在分式中,
关于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”. 例如:
1
1
x x -+,21x x -如此的分式确实是假分式;31x + ,221
x
x + 如此的分式确实是真分式 . 类似的,假分式也能够化为带分式(即:整式与真分式和的形式). 例如:
1(1)22
=1111
x x x x x -+-=-+++; 22111(1)11
11111
x x x )x x x x x x -++-+===++----(. (1)将分式1
2x x -+化为带分式; (2)若分式21
1
x x -+的值为整数,求x 的整数值;
解:
参考答案
1-5 DCACB 6-10 ABDBD 11 . 4007 12. 1, 4, 338a b - 13. -2 14 . 90︒ 15. 2 16. OC OB ,或CD AB ,或===OD OA
17. 3 18.(5,-1),(1,5),(1,-1) 19. 2
)4(4-a 20. 4
8b a
21. (1)-2 (2)1
m 22. (1) x=1 (2)无解 23. -1 24. x=6
25.略 26. SSS 证全等 27.(1)SAS 证全等 (2)ASA 证全等 28. 过点P 作PE 垂直BA 于点E ,HL 证全等. 29.(1) (3,-1) (2)
OC BD
OA
-是定值.
附加题
1.选择题: C
2.填空题: 正确的命题是 1,2,3,4 ,5 3.解答题:
解:(1)1233
1222x x x x x -(+)-==-
+++; (2)2121332111x x x x x -(+)-==-
+++. 当211x x -+为整数时,31
x +也为整数.
1x ∴+可取得的整数值为1±、3±.
x ∴的可能整数值为0,-2,2,-4.。