最全的高等数学公式大全

合集下载

全部高等数学计算公式

全部高等数学计算公式

全部高等数学计算公式高等数学是数学的一个分支,包括微积分、线性代数、数理方程、概率论、复分析等多个内容。

每个分支都有大量的计算公式,下面将分别介绍这些分支中一些经典的计算公式。

一、微积分公式1.极限公式:(1)函数极限公式:$lim(f(x)±g(x))=limf(x)±limg(x)$$lim(f(x)g(x))=limf(x)·limg(x)$$lim\frac{{f(x)}}{{g(x)}}=\frac{{limf(x)}}{{limg(x)}}$(2)常见函数极限:$lim\frac{{sinx}}{{x}}=1$$lim(1+\frac{1}{{n}})^n=e$$lim(1+\frac{1}{{n}})^{n(p-q)}=e^{(p-q)}$2.导数公式:(1)基本导数公式:$(c)'=0$$(x^n)'=nx^{n-1}$$(e^x)'=e^x$$(a^x)'=a^xlna$$(lnx)'=\frac{1}{{x}}$$(sinx)'=cosx$$(cosx)'=-sinx$$(tanx)'=sec^2x$(2)导数的四则运算:$(f(x)\pm g(x))'=f'(x)\pm g'(x)$$(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)$$(\frac{{f(x)}}{{g(x)}})'=\frac{{f'(x)g(x)-f(x)g'(x)}}{{g^2(x)}}$(3)链式法则:$(f(g(x)))'=f'(g(x))g'(x)$3.积分公式:(1)基本积分公式:$\int{cx^n}dx=\frac{{cx^{n+1}}}{{n+1}}+C$$\int{e^x}dx=e^x+C$$\int{a^x}dx=\frac{{a^x}}{{lna}}+C$$\int{\frac{{1}}{{x}}}dx=ln,x,+C$$\int{sinx}dx=-cosx+C$$\int{cosx}dx=sinx+C$$\int{sec^2x}dx=tanx+C$(2)常用积分公式:$\int{u}dv=uv-\int{v}du$$\int{sin^2x}dx=\frac{{x}}{2}-\frac{{sin2x}}{4}+C$$\int{cos^2x}dx=\frac{{x}}{2}+\frac{{sin2x}}{4}+C$4.泰勒展开公式:$f(x)=f(a)+f'(a)(x-a)+\frac{{f''(a)}}{{2!}}(x-a)^2+...+\frac{{f^{(n)}}}{{n!}}(x-a)^n+R_n(x)$二、线性代数公式1.行列式公式:(1)二阶行列式:$D=\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc$(2)三阶行列式:$D=\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}=aei+bfg+c dh-ceg-afh-bdi$2.矩阵运算公式:(1)两个矩阵的和:$A+B=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix }+\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{bmatrix}a_{11}+b_{11}&a_{12}+b_{12}\\a_{21}+b_{21}&a_{22}+b_{2 2}\end{bmatrix}$(2)两个矩阵的乘积:$AB=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} \begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{ bmatrix}a_{11}b_{11}+a_{12}b_{21}&a_{11}b_{12}+a_{12}b_{22}\\a_{ 21}b_{11}+a_{22}b_{21}&a_{21}b_{12}+a_{22}b_{22}\end{bmatrix}$3.特征值与特征向量公式:$A-\lambda I=0$其中,A为矩阵,$\lambda$为特征值,I为单位矩阵。

高等数学公式大全(几乎包含了所有)

高等数学公式大全(几乎包含了所有)

高等数学公式大全1、导数公式:2、基本积分表:3、三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:函数sin cos tg ctg角A-α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-c tgα180°+α-sinα-cosαtgαctgα270°-α-cosα-sinαctgαtgα270°+α-cosαsinα-ctgα-tgα360°-α-sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式:·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程。

大学高数公式大全

大学高数公式大全

向量在轴上的投影:Pr ju AB = AB cos,是AB与u轴的夹角。
Pr a
bju=(aa1
+
a2
)
=
Pr
ja1
+
b cos = axbx
Pr ja2 + ayby
+
azbz
,是一个数量,
两向量之间的夹角:cos =
axbx + ayby + azbz
ax 2 + ay 2 + az 2 bx 2 + by 2 + bz 2
1 tg tg ctg( ) = ctg ctg 1
ctg ctg
·和差化积公式:
sin + sin = 2sin + cos −
2
2
sin − sin = 2 cos + sin −
2
2
cos + cos = 2 cos + cos −
2
2
cos − cos = 2sin + sin −
i c = ab = ax
j ay
k az
,
c
=
a
b
sin .例:线速度:v
=
w r.
bx by bz
向量的混合积:[abc]
=
(a
b)
c
=
ax bx
ay by
az bz
=
a
b
c
cos
,为锐角时,
cx cy cz
代表平行六面体的体积。
4 / 12
高等数学公式
平面的方程: 1、点法式:A(x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0,其中n = {A, B,C}, M 0 (x0 , y0 , z0 )

高等数学公式大全

高等数学公式大全

高等数学宝典(上篇)——公式大全(含微分方程、复变函数)一. 初等数学1. 三角函数 (1) 相互联系,1cos sin 22=+x x ,sec 1tan 22x x =+ .csc 1cot 22x x =+ ,1csc sin =⋅x x ,1sec cos =⋅x x .1cot tan =⋅x x ,tan cos sin x x x = .cot sin cos x xx= 奇变偶不变, 符号看象限:⎩⎨⎧±±=±±±=±=+,3 ,1 ,0 )(,4 ,2 ,0 )()2(n cof n f nf αααπ其中“±”号由角)2(απ+n 所处的象限确定. (2) 和角公式,sin cos cos sin )sin(βαβαβα±=±,sin sin cos cos )cos(βαβαβα∓=±tan tan 1tan tan )tan(βαβαβα∓±=±(3) 积化和差)],sin()[sin(21cos sin βαβαβα−++= )],cos()[cos(21cos cos βαβαβα−++=)].cos()[cos(21sin sin βαβαβα−−+−=(4) 和差化积2cos2sin2sin sin βαβαβα−+=+ 2sin2cos2sin sin βαβαβα−+=−,2cos 2cos 2cos cos βαβαβα−+=+ .2sin 2sin 2cos cos βαβαβα−+−=−(5) 降幂公式22cos 1sin 2αα−=.22cos 1cos 2αα+= (6) 半角公式, ,1cos sin tansin 1cos αααα−==+, 1cos sin cot sin 1cos αααα+==−.2. 复数(1) 代数表示 z = a +b i(2) 三角表示 z = r (cos θ +i sin θ), 其中r = |a + b i| = , a = r cos θ, b = r sin θ. (3) 指数表示 a + b i = re i θ (欧拉公式: e i θ = cos θ +i sin θ ).3. 一些常见的曲线(1) 圆222a y x =+的参数方程为⎩⎨⎧==,sin ,cos θθa y a x极坐标方程为ρ = a (θ∈[0, 2π) );(2) 圆222)(a a y x =−+的参数方程为⎩⎨⎧+==,sin ,cos t a a y t a x (t ∈[0, 2π) ) 极坐标方程为ρ = 2a sin θ (θ∈[0, π) ) ;(3)圆222)(a y a x =+−的参数方程为⎩⎨⎧=+=,sin ,cos t a y t a a x (t ∈[0, 2π) )极坐标方程为ρ = 2a cos θ )]2,2((ππθ−∈ ;(4) 圆222)(a y a x =++的参数方程为⎩⎨⎧=+−=,sin ,cos t a y t a a x (t ∈[0, 2π) ) 极坐标方程为ρ = -2a cos θ ))23,2[(ππθ∈;(5) 圆222)(a a y x =++的参数方程为⎩⎨⎧+−==,sin ,cos t a a y t a x (t ∈[0, 2π) ) 极坐标方程为ρ = -2a sin θ (θ∈[π, 2π) );(6) 椭圆12222=+b y a x 的参数方程为⎩⎨⎧==,sin ,cos t b y t a x (t ∈[0, 2π) );(7) 空间螺线⎪⎩⎪⎨⎧===,,sin ,cos bt z t a y t a x (t;(8) 笛卡儿叶线x 3+y 3=3axy的参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=3231313t at y t at x ;(9) 星形线x 2/3+y 2/3=a 2/3的参数方程为⎪⎩⎪⎨⎧==θθ33sin cos a y a x ; (10) 摆线(圆滚线) 22)1arcsin(y ay aya x −−−=的参数方程为⎩⎨⎧−=−=)cos 1()sin (t a y tt ax;(11) 心形线)(2222x y x a y x −+=+的极坐标方程为ρ = a (1-cos θ);(12) 心形线)(2222x y x a y x ++=+的极坐标方程为ρ = a (1+cos θ);(13) 双纽线(x 2+y 2)2=a 2(x 2-y 2)的极坐标方程为ρ2 = a 2cos2θ ;(14) 双纽线(x 2+y 2)2=2a 2xy的极坐标方程为ρ2 = a 2sin2θ ;(15) 阿基米德螺线xya y x arctan 22=+的极坐标方程为ρ = a θ(16) 不经过原点的直线ax + by + c = 0 (a 2 + b 2 ≠ 0)⇒ a ρcos θ + b ρsin θ + c = 0⇒.sin cos θθρb a c+=例如: x = a (a > 0) ⇒2,2(cos ππθθρ−∈=ax = a (a <0) ⇒23,2(cos ππθθρ∈=a y = a (a >0) ⇒);,0(sin πθθρ∈=ay = a (a <0) ⇒);2,(sin ππθθρ∈=ay = x − a (a > 0) ⇒43,4(sin cos ππθθθρ−∈+=a 二. 极限1. |q |<1, nn q ∞→lim = 0. 2. n n n ∞→lim =1.3. 设数列{a n }与{b n }都收敛, a a n n =∞→lim , b b n n =∞→lim , 则n n n n n n n b a b a ∞→∞→∞→±=±lim lim )(lim = a ±b ; )lim )(lim ()(lim n n n n n n n b a b a ∞→∞→∞→== ab ;n n n n n n n b a b a ∞→∞→∞→=lim lim lim =b a (b ≠0). 4. 设x n =m m ll n b n b b n a n a a ++++++ 1010, 其中a l ≠0, b m ≠0, l ≤m , 则∞→n lim x n =⎩⎨⎧<=m l m l a m l 0. 5. ∞→n lim (p 1+22p+…+n p n ) =2)1(−p p , 其中p >1. 6. ()nn n 11lim +∞→= e. 7. 设)(lim 0x f x x →=A , )(lim 0x g x x →=B . 则)(lim )(lim )()([lim 0x g x f x g x f x x x x x x →→→±=±= A ±B;)](lim )][(lim [)]()([lim 0x g x f x g x f n n x x ∞→∞→→== AB ; )(lim )(lim )()(lim 000x g x f x g x f x x x x x x →→→==B A(B ≠0).8. 设y = f (u )与u = g (x )的复合函数f [g (x )]在x 0的某去心邻域)(0x N内有定义.若)(lim 0x g x x →=u 0, )(lim 0u f u u →=A , 且∀x ∈)(0x N, 有g (x )≠u 0, 其中x 0, u 0为有限值.则复合函数f [g (x )]当x →x 0时也有极限, 且)]([lim 0x g f x x →=)(lim 0u f u u →=A .9. x x x sin lim 0→=1. xx x ⎟⎠⎞⎜⎝⎛+∞→11lim = e.10. 常用的等价无穷小:sin x ~tan x ~arcsin x ~arctan x ~ x (x →0); (1- cos x )~221x (x →0) ln(1+x )~x (x →0) (e x -1)~x (x →0) (n x +1-1)~nx (x →0); [α)1(x +-1]~αx (x →0). 三. 导数与微分1. 导数定义: 0000000)()(lim )()(lim lim)(0x x x f x f x x f x x f x yx f x x x x −−=∆−∆+=∆∆=′→→∆→∆.2. 函数四则运算的求导法则).()(])()([x v x u x v x u ′±′=′± ).()()()(])()([x v x u x v x u x v x u ′+′=′⋅.)()()()()()()(2x v x v x u x v x u x v x u ′−′=⎥⎦⎤⎢⎣⎡/3. 反函数的求导法则设定义在区间I 上的严格单调连续函数x = f ( y )在点y 处可导, 且0)(≠′y f , 则其反函数y = f -1(x )在对应的点x 处可导, 且)(1)()(1y f x f′=′−即yx x y d d 1d d =. 4. 复合函数的求导法则设函数)(x u ϕ=在点x 处可导, 函数y = f (u )在对应的点)(x u ϕ=处可导, 则复合函数))((x f y ϕ=在点x 处可导, 且),()(d d x u f xyϕ′′=即x u u y x y d d d d d d ⋅=. 5. 设函数y = f (x )由参数方程⎩⎨⎧==)()(t y t x ψϕ确定. ),(t x ϕ= )(t y ψ=在区间],[βα上可导, 函数)(t x ϕ= 具有连续的严格单调的反函数),(1x t −=ϕ且,0)(≠′t ϕ则)).(()(1x t y −==ϕψψ函数y = f (x )的导函数由参数方程⎪⎩⎪⎨⎧′′=′=)()()(t x t y y t x ϕ确定.6. 基本求导公式(1) (x α)′ = αx α−1. (2)(a x )′ = a x ln a . (3) (e x )′ = e x . (4) (log a x )′ =1ln x a . (5) (ln x )′ =1x. (6) (sin x )′ = cos x . (7) (cos x )′ = −sin x . (8) (tan x )′ = sec 2x . (9)(cot x )′ = −csc 2x . (10) (sec x )′ = sec x ⋅tan x . (11) (csc x )′ = −csc x ⋅cot x . (12) (arcsin x )′=(arccos x )′ =(14) (arctan x )′ =211x +. (15) (arccot x )′ = −211x +. 7. 一些简单函数的高阶导数(n , k 为正整数) (1)⎪⎩⎪⎨⎧>=<+−−⋅=−,0,!,)1()1()()(n k n k n n k x k n n n x k n k n(2) ,)1()1()1()()(k n k k n x k n n n x −−−−++⋅−= (3) ,)1()1(])1[()(k k x k x −+−−⋅=+ααααα (4) ),(ln )()(a a a k x k x = 特别的, ,)()(x k x e e =(5) ,)!1()1()(ln 1)(kk k x k x −−=− (6) )1()!1()1()]1[ln(1)(k k k x k x +−−=+−(7)),2sin()(sin )(πk x x k += (8) 2cos()(cos )(πk x x k +=(9) ()()()0()nn k n k k n k uv C u v −==∑ ()(1)(2)()()()(1)(1)(1)2!!n n n n k k n n n n n n k u v nu v u v u v uv k −−−−−−+′′′=++++++8. 微分四则运算法则: ,d d )(d v u v u ±=± ,d d )(d v u u v uv += ).0(d d d 2≠−=⎟⎠⎞⎜⎝⎛v v vu u v v u 9. 微分复合运算法则(一阶微分形式不变性)设函数y = f [g(x )]由可微函数y = f (u )与u = g (x )复合而成, 则有,d )(d u u f y ′= ,d )(d x x g u ′= 另一方面, d y =().d )(d )()(d )]([u u f x x g u f x x g f ′=′′=′10. 拉格朗日中值定理:设函数f (x )满足下列条件: (1) f (x )∈C [a , b ], (2) f (x )在(a , b )内可导. 则至少存在一点ξ∈(a , b ), 使得f (b ) − f (a ) = f ′(ξ)(b −a ). 11. 柯西中值定理:设函数f (x ), g (x )满足下列条件:(1) f , g ∈C [a , b ], (2) f , g 在(a , b )内可导, (3) g ′(x )≠0 ∀x ∈(a , b ).则至少存在一点ξ∈(a , b ), 使得)()()()()()(ξξg f a g b g a f b f ′′=−−13. 洛必达法则设函数f (x )在区间(x 0, x 0+δ)(δ>0)内满足下列条件: (1) ,0)(lim )(lim 0==++→→x g x f x x x x (2) f , g 在(x 0, x 0+δ)内可导, 且,0)(≠′x g (3) A x g x f x x =′′+→)()(lim 0(A 为有限数或∞). 则.)()(lim )()(lim 00A x g x f x g x f x x x x =′′=++→→ 设函数f (x )在区间(x 0, x 0+δ)(δ>0)内满足下列条件: (1) ,)(lim )(lim 0∞==++→→x g x f x x x x (2) f , g 在(x 0, x 0+δ)内可导, 且,0)(≠′x g (3)A x g x f x x =′′+→)()(lim 0(A 为有限数或∞). 则.)()(lim )()(lim 00A x g x f x g x f x x x x =′′=++→→ 不可用洛必达法则的情形.(1) 21lim 1++→x x x , (2) xx x x sin lim +∞→, (3) x x xx x e e e e −−+∞→+−lim .事实上, 21lim 1++→x x x =32, xx x x sin lim +∞→=sin 1(lim x xx +∞→=1, x x x x x e e e e −−+∞→+−lim =x x x e e 2211lim −−+∞→+−=1. 14. 带皮亚诺余项的泰勒公式设函数f (x )在x 0处n 阶可导, 则f (x )=k nk k x x k x f )!)(000)(−∑=+ o((x -x 0)n ). 15. 几个初等函数的麦克劳林公式(1) e x =1+x +21x 2+61x 3+…+!1n x n+ o(x n ).(2) sin x = x -!31x 3+!51x 5-…+(-1)n )!12(1+n x 2n +1 + o(x 2n +1). (3) cos x = 1-!21x 2+!41x 4-…+(-1)n )!2(1n x 2n + o(x 2n ).(4) ln(1+x ) = x -21x 2+31x 3-…+(-1)n -1n 1x n + o(x n ).(5) α)1(x +=n x n n x x !)1()1(!2)1(12+−−++−++αααααα + o(x n ).(6) sin 2x =22cos 1x −=()⎥⎦⎤⎢⎣⎡+−+−+−−n nn x n x x x 2242)2(o )!2()2()1(!4)2(!2)2(12121=)(o !)!12(!2)1(3221142n n n n x x n n x x +−−++−−+ .(7) cos 2x =1- sin 2x = 1-)(o !)!12(!2)1(322142n n n nx x n n x x +−−+−+− .16. 带拉格朗日余项的泰勒公式设函数)(],[)(n b a C x f ∈, 且)1(),()(+∈n b a C x f , 则],[,0b a x x ∈∀, 有 f (x )=knk k x x k x f )!)(000)(−∑=+10)1()()!1()(++−+n n x x n f ξ, 其中ξ介于x 与x 0之间. 17. 几个初等函数的带拉格朗日余项的麦克劳林公式(1) e x=1+x +21x 2+61x 3+…+!1n x n+1)!1(++n x x n e θ (x ∈R , 0<θ<1).(2) sin x = x -!31x 3+!51x 5-…+(-1)n -1)!12(1−n x 2n -1 +12)!12(cos )1(++−n n x n x θ (x ∈R , 0<θ<1). (3) cos x = 1-!21x 2+!41x 4-…+(-1)n )!2(1n x 2n +221)!22(cos )1(+++−n n x n x θ (x ∈R , 0<θ<1). (4) ln(1+x ) = x -21x 2+31x 3-…+(-1)n -1n 1x n+)1(1)1)(1()1(++++−n n n x n x θ (x ∈R , 0<θ<1). (5) α)1(x +=n x n n x x !)1()1(!2)1(12+−−++−++αααααα +11)1)!1()()1(+−−++−−n n x x n n αθααα (x ∈R , 0<θ<1). 18. 曲率(1) 设曲线C 在直角坐标系中的方程为y = y (x )且y (x )具有二阶导数. 则K =232])(1[y y ′+′′.(2) 设曲线C 的参数方程为⎩⎨⎧==)()(t y y t x x , 则K =2322])()[(t t t t t t y x y x y x ′+′′′′−′′′. 四. 一元积分1. 定积分的性质(1) 若f , g 在[a , b ]上可积, k 1, k 2∈R , 则∫+bax x g k x f k )]d ()([21.)d (d )(21∫∫+=babax x g k x x f k(2) 若f 在某区间I 上可积, 则f 在I 的任一子区间上可积, 且∀a , b , c ∈I ,∫bax x f d )(.)d (d )(∫∫+=bcc ax x f x x f(3) 若f , g 在[a , b ]上可积, 且∀x ∈[a , b ], f (x )≤g (x ), 则∫bax x f d )(≤.d )(∫bax x g(4) 若f 在[a , b ]上可积, 且∀x ∈[a , b ], f (x )≥0, 则∫bax x f d )(≥0.(5) 若f 在[a , b ]上可积, 则∫bax x f d )(≤.d )(∫bax x f(6) 若f 在[a , b ]上可积, 且∀x ∈[a , b ], m ≤f (x )≤M , 则m (b -a )≤∫bax x f d )(≤M (b -a ).(7) 若f ∈C [a , b ], 则至少存在一点ξ∈[a , b ]使∫bax x f d )(= f (ξ)(b -a ).2. 变上限积分所定义的函数的性质设f (x )∈C[a , b ], 则函数∫=Φxat t f x d )()(在区间[a , x ]上可导, 且Φ′(x )= f (x ).3. 微积分学基本公式若f (x )∈C[a , b ], F (x )为f (x )在区间[a , b ]上的一个原函数, 则∫bax x f d )(= F (b )-F (a ).4. 不定积分的性质(1) ),(]d )([x f x x f =′∫,d )(]d )([d x x f x x f =∫,)(d )(C x f x x f +=′∫ .)()(d C x f x f +=∫(2) 设f (x ), g (x )有原函数, k 1, k 2∈R , 则.d )(d )(d )]()([2121∫∫∫+=+x x g k x x f k x x g k x f k5. 基本积分表(1) d k x kx C =+∫ (k 是常数). (2) 1d 1x x x C ααα+=++∫ (α ≠−1)(3) 1d ln ||x x C x =+∫. (4) 21d arctan 1x x C x =++∫.(5)arcsin x x C =+. (6) cos d sin x x x C =+∫. (7) sin d cos x x x C =−+∫. (8) 221d sec d tan cos x x x x C x==+∫∫. (9) 221d csc d cot sin x x x x C x==−+∫∫. (10) sec tan d sec x x x x C =+∫. (11) csc cot d csc x x x x C =−+∫. (12) d x xe x e C =+∫.(13) d ln xxa a x C a=+∫. (14) sh d ch x x x C =+∫. (15)ch d sh x x x C =+∫. (16) tan d ln |cos |x x x C =−+∫.(17) cot d ln |sin |x x x C =+∫ (18) sec d ln |sec tan |x x x x C =++∫.(19)csc d ln |csc cot |x x x x C =−+∫ (20)2211d arctan xx C a x a a=++∫. (21) 2211d ln 2x a x C x a a x a −=+−+∫. (22) 2211d ln 2a x x C a x a a x −=+−−∫.(23)C +∫. (24) ln(x x C =++∫.(25) 2ln ||2a x x C =±+∫.(26) 2arcsin 2a x x C a =+∫. (27) /20sin d n n I x x π=∫=/20cos d nx x π∫=21n n I n−−.6. 换元积分法(1) 第一类换元积分法: 设函数u =ϕ (x )可微, F (u )为f (u )的一个原函数. 则∫′x x x f d )()]([ϕϕ∫=u u f d )(C u F +=)(.)]([C x F +=ϕ(2) 常见的凑微分法①)(d 1d b ax ax +=(a , b 为常数且a ≠0) ②)(d )1(1d 1b ax an x x n n++=+(a , b 为常数且a ≠0, n ≠-1)③),(ln d 1x x x= ④),(d d xx e x e = ⑤),(cos d d sin x x x −= ⑥),(tan d d sec 2x x x = ⑦),(arctan d d 112x x x =+ ⑧∫+x x a 122∫+++++=x x a x a x x a x d )(222222∫++++=)(d 12222x a x x a x , ⑨∫−x a x d 122∫−−+−+=x a x a x x a x x d )(222222∫−+−+=)(d 12222a x x a x x ,⑩∫−+x x x d 112=∫−x x 112∫−+x x x d 12∫−−−=)1(d 1121arcsin 22x x x .(3) 第二类换元积分法: 设函数f (x ) 连续, 函数x = ϕ (u )有连续的导数, ϕ '(u )≠0, 且∫′u u u f d )()]([ϕϕ.)(C u F +=则∫x x f d )(∫′=u u u f d )()]([ϕϕC u F +=)(.)]([1C x F +=−ϕ (4) 常见的第二类换元法①令u b ax n =+(a , b 为常数且a ≠0) ②令nd cx bax ++= t (其中ac ≠0, b , d 不同时为零) ③令,1u x =④令u = tan 2x , 则sin x =221u u +, cos x =2211u u −+, d x =22d 1uu +.⑤令x = a sin t , = a cos x , d x = a cos t d t , 其中a > 0, t ∈ [0, π/2].⑥令x = a sec t , a tan x , d x = a sec t tan t d t , 其中a > 0, t ∈ (0, π/2).⑦令x = a tan t , a sec x , d x = a sec 2x d t , 其中a > 0, t ∈ (0, π/2).7. 分部积分法(1) 不定积分的分部积分法∫u (x )d v (x ) = u (x )v (x ) - ∫v (x )d u (x )(2) 分部积分法中u (x ), v (x )的常见选取方法① P (x )sin x d x = -P (x )d(cos x ), P (x )cos x d x = P (x )d(sin x ). ② P (x )e x d x = P (x )d(e x ).③ P (x ) ln x d x = ln x d(∫P (x )d x ).④ e ax cos(bx )d x =a 1cos(bx )d(e ax ) =b 1e ax d(sin(bx )), e ax sin(bx )d x =a 1sin(bx )d(e ax ) =b1−e ax d(cos(bx )).(3) 定积分的分部积分法∫′bax x v x u d )()(∫=bax v x u )(d )(.)(d )()()(∫−=babax u x v x v x u8. 平面曲线的弧长(1) 在直角坐标系中: y = f (x ), x ∈[a , b ], 其中,C )()1(],[b a x f ∈取d s =,)d ()d (22y x +则∆s -d s = o(∆x ) (∆x →0), 于是.d )(12∫′+=bax y s(2) 参数方程⎩⎨⎧==)()(t y t x ψϕ t ∈[α, β], 其中,C )(),()1(],[βαψϕ∈t td s =22)d ()d (y x+,t =于是.d )]([])([22∫′+′=βαψϕt t t s(3) 极坐标系中: ρ = ρ (θ), θ∈[α, β], 则⎩⎨⎧==θθρθθρsin )(cos )(y x , .d )]([)(22∫′+=βαθθρθρs 9. 空间曲线的弧长设空间曲线L 的参数方程为()()()x x t y y t z z t =⎧⎪=⎨⎪=⎩ t ∈[α, β], 其中(1)[,](),(),()C ,x t y t z t αβ∈则d s,t = 于是L的长度为.s t βα=∫10. 平面图形的面积(1) 直角坐标系中① y = f (x ) 与 y = g (x )以及x = a , x = b 所围成的图形的面积(其中f (x )≥ g (x )).d )]()([∫−=bax x g x f A② x = ϕ(y ) 与 x = ψ(y )以及y = c , y = d 所围成的图形的面积(其中ψ(y )≥ ϕ(y )).d )]()([∫−=dcy y y A ϕψ(2) 极坐标系中ρ = a θ, θ∈[α, β], ,d )(21d 2θθρ=A .d )(212∫=βαθθρA 11. 空间立体的体积(1) 平行截面面积A (x )已知的立体(a ≤ x ≤ b ): d V = A (x )d x , .d )(∫=bax x A V(2) 旋转体的体积① y = f (x ) (x ∈[a , b ])绕x 轴旋转一周(其中f (x )≥0), A (x ) = π f 2(x ), 故.d )(2∫=b a x x f V π② x = g (y ) (y ∈[c , d ])绕y 轴旋转一周(其中g (y )≥0), A (y ) = πg 2(y ), 故.d )(2∫=dcy y g V π五. 微分方程1. 一阶可分离变量的微分方程:),()(d d y g x f xy=其中f (x ), g (y )连续. )()(d d y g x f x y =x x f y g y d )()(d =⇒∫∫=⇒x x f y g yd )()(d .)()(C x F y G +=⇒ (其中g (y )≠0, )(1)(y g y G =′ F ′ (x ) = f (x ), C 为任意常数) 2. 一阶线性微分方程: ),()(d d x q y x p xy=+其中p (x ), q (x )连续.(1) 对于,0)(d d =+y x p x y分离变量得:,d )(d x x p yy −= ∫=−x x p Ce y d )(( C 为任意常数). (2) 对于),()(d d x q y x p xy=+ ∫=−x x p e x C y d )()(得].d )([d )(d )(C x e x q e y x x p x x p +∫∫=∫− 3. 可经变量代换化为已知类型的几类一阶微分方程 (1) 齐次方程:),,(d d y x f xy= 其中f (tx , ty ) = f (x , y ), .0≠∀t①将原方程化为),(d d x yx y ϕ= ②令x y u =得,ux y = 从而d d d d x u x u x y +=代入原方程并整理得,)(d d u u xux −=ϕ③分离变量, 得,d )(d xxu u u =−ϕ ④两边积分,⑤以xy代替u . (2) 伯努里方程: ,)()(d d αy x q y x p x y=+其中.1,0≠α①两边同除以αy 得),()(d d 1x q y x p xy y =+−−αα②令,1α−=y z 则,d d )1(d d x y y xz αα−−= 原方程化为),()1()()1(d d x q z x p x z αα−=−+ ③解上述关于z 的一阶线性非齐次微分方程,④ 以α−1y 代替z .4. 可降阶的高阶微分方程 (1) )()(x f yn =型(2) 不显含未知函数y 的方程:).,(y x f y ′=′′令,z y =′ 则).,(d d z x f xz= 若解之得),,(1C x z ϕ= 则.d ),(21∫+=C x C x y ϕ (3) 不显含自变量x 的方程: ).,(y y f y ′=′′改取y 为自变量, 令),(y z y z =′= 则.d d d d d d d d yz z x y y z x z y ⋅=⋅==′′ 于是原方程化为).,(d d z y f y zz= 这是关于z (y )的一阶微分方程, 若解之得: ),,(1C y z ϕ= 即),,(d d 1C y x y ϕ= 则.),(d 21∫+=C C y yx ϕ5. 设a 1(x ), a 2(x ) f (x ) ∈ C I , 则∀x ∈I 及任给的初始条件y (x 0) = y 0, y ′(x 0) = y 1, 初值问题⎩⎨⎧=′==+′+′′,)(,)(),()()(100021y x y y x y x f y x a y x a y 存在定义于区间I 上的唯一解y = y (x ).6. 设y 1(x ), y 2(x )是线性齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = 0的两个解, 1212()()()()()y x y x W x y x y x =′′, 则(1) y 1(x ), y 2(x )在区间I 上线性相关 ⇔ ∃x 0∈I 使它们的Wronski 行列式W (x 0) = 0.(2) y 1(x ), y 2(x )在区间I 上线性无关⇔∀x ∈I , 它们的Wronski 行列式W (x ) ≠ 0. 7. 线性齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = 0必存在两个线性无关的解.8. 设y 1(x ), y 2(x )是线性齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = 0的两个线性无关的解, 则该线性齐次方程的解集S 是y 1(x ), y 2(x )生成的一个二维线性空间{}112212|,.y c y c y c c =+为任意常数9. 设y *(x )是二阶线性非齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = f (x ) ①的一个特解, y 1(x ), y 2(x )是对应的齐次方程 y ″ + a 1(x )y ′ + a 2(x ) y = 0 ②的两个线性无关的解, 则y = c 1y 1(x ) + c 2y 2(x ) + y *(x )为非齐次方程①的通解. 10. 设)(*x y i 是方程y ″ + a 1(x )y ′ + a 2(x ) y = f i (x ) (i = 1, 2, …, n )的特解,则)()(**1x y x y n ++ 是方程y ″ + a 1(x )y ′ + a 2(x ) y = f 1(x ) + … + f n (x )的特解. 11. 二阶线性常系数齐次方程的解法(1) 特征方程ar 2+br +c = 0有两个相异实根r 1, r 2, 则通解.2121xr xr e c e c y += (2) 特征方程有两个相等实根r 1 = r 2 = r , 则通解.)(21rx e x c c y +=(3) 特征方程有一对共轭复根r = α ± i β, 则通解).sin cos (21x c x c e y xββα+= 12. 二阶线性常系数非齐次方程的解法(1) 待定系数法求ay ″+by ′+cy = f (x ) (a ≠0, b , c 为常数)的特解.① f (x ) = P n (x )e α x .若α不是ar 2+br +c = 0的根, 则令y * = (b 0x n +b 1x n -1 +…+ b n -1x + b n )e α x . 若α是ar 2+br +c =0的单根, 则令y * = x (b 0x n +b 1x n -1 +…+ b n -1x + b n )e α x . 若α是ar 2+br +c =0的重根, 则令y * = x 2(b 0x n +b 1x n -1 +…+ b n -1x + b n )e α x . 再代入原方程, 通过比较系数确定b 0, b 1, …, b n . ② f (x ) = P n (x )e α x cos βx 或f (x ) = P n (x )e α x sin βx .先求ay ″+by ′+cy = P n (x )e α x [cos βx + isin βx ] = P n (x )e (α+i β)x 的特解Y *.则原方程的特解互取为⎪⎩⎪⎨⎧===xe x P xf Y xe x P xf Y y xn xn ββααsin )()( *,Im cos )()( *,Re * (2) 常数变易法13. n 阶Euler 方程: a 0x n y (n ) + a 1x n -1y (n -1) +…+ a n -1xy ′ + a n y = f (x ) (其中a 0, a 1, …, a n 为常数). 14. 二阶Euler 方程的解法.令x = e t, 则ax 2y ′′ + bxy ′ + cy = f (x )化为).(d d )(d d 22te f cy ty a b t y a =+−+这是一个线性常系数微分方程, 求出其通解后将t 换为ln x 即得原方程的解.六. 多元函数微分学1. 偏导数定义00(,)x y zx ∂∂ = z x (x 0, y 0) = f x (x 0, y 0) = x y x f y x x f x ∆−∆+→∆),(),(lim 00000.00(,)x y zy ∂∂ = z y (x 0, y 0) = f y (x 0, y 0) = y y x f y y x f y ∆−∆+→∆),(),(lim 00000.),,()(2222y x f xfx z x z x xx =∂∂=∂∂=∂∂∂∂ ),,()(22y x f y x f y x z x z y xy =∂∂∂=∂∂∂=∂∂∂∂),,()(22y x f x y fx y z y z x yx =∂∂∂=∂∂∂=∂∂∂∂ ),,()(2222y x f y f y z y z y yy =∂∂=∂∂=∂∂∂∂2. 可微的必要条件:若函数f (x , y )在点M 0(x 0, y 0)处可微, 则 ① f (x , y )在点M 0(x 0, y 0)处连续;② f (x , y )在点M 0(x 0, y 0)处存在偏导数, 且.d ),(d ),(d 0000),(00y y x f x y x f z y x y x+=3. 全微分的运算法则d[f (x , y ) ± g (x , y )] = d f (x , y ) ± d g (x , y );d[f (x , y )g (x , y )] = g (x , y )d f (x , y ) + f (x , y )d g (x , y );),(),(d ),(),(d ),(),(),(d2y x g y x g y x f y x f y x g y x g y x f −= (g (x , y ) ≠ 0). 4. 方向导数(1) z = f (x , y )在点M 0(x 0, y 0)处沿着向量l 的方向导数00(,)x y z ∂∂lty x f t y t x f t ),()cos ,cos (lim00000−++→βα,其中向量l 的方向余弦为cos α, cos β.(2) 若函数f (x , y )在点M 0(x 0, y 0)处可微, 则f (x , y )在点M 0(x 0, y 0)处沿任一方向l 的方向导数都存在,且有.cos ),(cos ),(0000),(00βαy x f y x f zy x y x +=∂∂l5. 梯度grad f (x 0, y 0)j.),(i ),(0000y x f y x f y x +=6. 复合函数微分法(1) 设函数u = ϕ(x ), v = ψ(x )在点x 处可导, 而z = f (u , v )在对应的点(u , v )处可微,则复合函数z = f (ϕ(x ), ψ(x ))在点处可导, 且x vv z x u u z x z d d d d d d ∂∂+∂∂=d d grad {,}.d d u v z x x=⋅ (2) 设函数u = ϕ(x , y ), v = ψ(x , y )在点(x , y )处可偏导, 而z = f (u , v )在对应的点(u , v )处可微,则复合函数z = f (ϕ(x , y ), ψ(x , y ))在点(x , y )处存在偏导数, 且xvv z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂},,{grad x v x u z ∂∂∂∂⋅= y v v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂},,{grad yv y u z ∂∂∂∂⋅= 7. 隐函数微分法(1) 设二元函数F (x , y )满足下列条件:①F x (x , y ), F y (x , y )在点(x 0, y 0)的某邻域内连续. ②F (x 0, y 0) = 0, ③F y (x 0, y 0) ≠ 0.则存在点x 0的一个邻域N (x 0, δ )以及在N (x 0, δ )内定义的唯一的函数y = y (x )满足: (i) y 0 = y (x 0), F (x , y (x )) ≡ 0, ∀x ∈N (x 0, δ ).(ii) 在N (x 0, δ )中, 函数y = y (x )有连续的导数, 且yxF F y −=′ (2) 设n +1元函数F (x 1, x 2, …, x n , y )满足下列条件:①),,,,(21y x x x F n x i (i = 1, 2, …, n ), F y (x 1, x 2, …, x n , y )在点M 0的某邻域内连续. ②F (M 0, y 0) = 0, ③F y (M 0, y 0) ≠ 0.则存在点M 0的一个邻域N (M 0, δ )以及在N (M 0, δ )内定义的唯一的一个n 元函数 y = y (x 1, x 2, …, x n )满足: (i) y 0 = y (M 0),且F (x 1, x 2, …, x n , y (x 1, x 2, …, x n )) ≡ 0, ∀( x 1, x 2, …, x n )∈N (M 0, δ ). (ii) y = y (x 1, x 2, …, x n )在N (M 0, δ )中有一阶连续偏导数, 且y x iF F x yi −=∂∂(i = 1, 2, …, n ).(3) 设三元函数F (x , y , z ), G (x , y , z )满足下列条件:①F x , F y , F z , G x , G y , G z 在点M 0(x 0, y 0, z 0)的某邻域内连续.②F (x 0, y 0, z 0) = 0, G (x 0, y 0, z 0) = 0, ③.00≠M zy z y G G F F则存在点x 0的一个邻域N (x 0, δ )以及在N (x 0, δ )内定义的唯一的一组函数⎩⎨⎧==)()(x z z x y y 满足:(i) y 0 = y (x 0), z 0 = z (x 0), 且⎩⎨⎧≡≡0))(),(,(0))(),(,(x z x y x F x z x y x F ∀x ∈N (x 0, δ ).(ii) y = y (x ), z = z (x )在N (x 0, δ )中均有连续的导数,且,),(),(),(),(d d z y G F x z G F x y ∂∂∂∂=,),(),(),(),(d d z y G F y x G F x z ∂∂∂∂=其中,),(),(x z x z G G F F x z G F =∂∂,),(),(zy zy G G F F z y G F =∂∂.),(),(yx yx G G F F y x G F =∂∂8. 切线方程与法平面方程(1) 设曲线Γ的参数方程为(),(),(),x x t y y t z z t =⎧⎪=⎨⎪=⎩ M 0, M 的坐标分别为(x (t 0), y (t 0), z (t 0)), 则切线方程为)()()(000000t z z z t y y y t x x x ′−=′−=′− 故切向量为a = {x ′(t 0), y ′(t 0), z ′(t 0)}, 法平面的方程为x ′(t 0)(x -x 0) + y ′(t 0) (y -y 0) + z ′(t 0)(z -z 0) = 0. (2) 设曲线Γ的方程为⎩⎨⎧==),(),(x z z x y y 则点))(),(,(0000x z x y x M 处的切线方程为)()()()(100000x z x z z x y x y y x x ′−=′−=− 法平面方程为:(x -x 0) + y ′(x 0) (y -y (x 0)) + z ′(t 0)(z -z (x 0)) = 0.(3) 设曲线Γ的方程为⎩⎨⎧==,0),,(,0),,(z y x G z y x F 它确定⎩⎨⎧==),(),(x z z x y y 则点M 0处的切线方程为:00),(),(),(),(),(),(000M M M y x G F z z x z G F y y z y G F x x ∂∂−=∂∂−=∂∂−法平面方程为:.0)(),(),()(),(),()(),(),(000000=−∂∂+−∂∂+−∂∂z z y x G F y y x z G F x x z y G F M M M9. 切平面方程与法线方程(1) Σ: F (x , y , z ) = 0在点M 0(x 0, y 0, z 0)处的切平面方程为,0))(())(())((000000=−+−+−z z M F y y M F x x M F z y x法线方程为)()()(000000M F z z M F y y M F x x z y x −=−=−(2) Σ: z = f (x , y )在点M 0(x 0, y 0, z 0)处的切平面方程为,0)())(,())(,(0000000=−−−+−z z y y y x f x x y x f y x法线方程为1),(),(0000000−−=−=−z z y x f y y y x f x x y x10. 多元函数的Taylor 公式设二元函数f (x , y )在点M 0(x 0, y 0)的某邻域N (M 0)内有n +1阶连续偏导数. 则 ∀M (x 0+∆x , y 0+∆y )∈N (M 0), 有),(00y y x x f ∆+∆+),()(),(0000y x f y y x x y x f ∂∂⋅∆+∂∂⋅∆+= +∂∂⋅∆+∂∂⋅∆+),((!21002y x f yy x x),()(!100y x f y y xx n n ∂∂⋅∆+∂∂⋅∆+),()()!1(1001y y x x f y y x x n n ∆+∆+∂∂⋅∆+∂∂⋅∆+++θθ 其中0<θ <1.上式称为二元函数f (x , y )在点M 0处带有Lagrange 型余项的n 阶Taylor 公式. 特殊情形 (1) 中值公式),(00y y x x f ∆+∆+y y y x x f x y y x x f y x f y x ∆∆+∆++∆∆+∆++=),(),(),(000000θθθθ其中0<θ <1.(2) 一阶Taylor 公式),(00y y x x f ∆+∆+),((),(0000y x f y y xx y x f ∂∂⋅∆+∂∂⋅∆+=),()(21002y y x x f yy x x ∆+∆+∂∂⋅∆+∂∂⋅∆+θθ0],[),(00M y x f f y x y x f ⎥⎦⎤⎢⎣⎡∆∆+=⎥⎦⎤⎢⎣⎡∆∆∆∆+y x M H y x f )(],[21*其中M *(x 0+θ∆x , y 0+θ∆y ), 0<θ <1, H f (M )为f 在点M (x , y )处的Hessian 矩阵.⎥⎥⎦⎤⎢⎢⎣⎡yy xy xy xx f f f f(3) Maclaurin 公式f (x , y ) = f (0, 0)∑=∂∂+∂∂⋅+nk k f y y x x k 1)0,0()(!1),(()!1(11y x f y y x x n n ∆∆∂∂⋅+∂∂⋅+++θθ, 其中0<θ <1.七. 数量函数积分1. 数量函数积分的定义 ∫Ω f (M )d Ω = 01lim()nkk d k f M→=∆Ω∑.2. 数量函数积分的性质(1) ∫Ω [a f (M ) + b g (M )]d Ω = a ∫Ω f (M )d Ω + b ∫Ω g (M )d Ω, 其中a , b 为常数.(2) ∫Ω f (M )d Ω = ∫Ω1 f (M )d Ω + ∫Ω2 f (M )d Ω, 其中Ω = Ω1∪Ω2, 且Ω1与Ω2无公共内点. (3) f (M ) ≤ g (M ) (∀M ∈Ω) ⇒ ∫Ω f (M )d Ω ≤ ∫Ω g (M )d Ω. (4) |∫Ω f (M ) d Ω| ≤ ∫Ω | f (M )|d Ω.(5) a ≤ f (M ) ≤ b (∀M ∈Ω) ⇒ aV ≤ ∫Ω f (M )d Ω ≤ bV , 其中V 为Ω的度量. (6) f (M ) ∈ C Ω ⇒ ∃M ∗∈Ω s.t. ∫Ω f (M )d Ω = f (M ∗)V , 其中V 为Ω的度量. 3. 直角坐标系下的二重积分的计算(1) D = {(x , y ) | a ≤ x ≤ b , ϕ1(x ) ≤ y ≤ ϕ2(x )}, 则∫∫D f (x , y )d σ =21()()d (,)d bx ax x f x y y ϕϕ∫∫.(2) D = {(x , y ) | c ≤ y ≤ d , ψ1(y ) ≤ x ≤ ψ2(y )}, 则∫∫D f (x , y )d σ =21()()d (,)d dy cy y f x y x ψψ∫∫.4. 二重积分换元法设函数f (x , y )在有界闭区域D 上连续, x = ϕ(u , v ) 和 y = ψ(u , v )有一阶连续偏导数, 且Jacobi 行列式J (u , v ) =(,)(,)x y u v ∂∂=u vu vϕϕψψ≠ 0,则 ∫∫D f (x , y )d x d y = ∫∫D f (ϕ(u , v ), ψ(u , v ))|J (u , v )|d u d v .5. 极坐标系下二重积分的计算令x = ρcos ϕ, y = ρsin ϕ, 则∫∫D f (x , y )d x d y = ∫∫D f (ρcos ϕ, ρsin ϕ)ρd ρd ϕ. (1) 极点O 在D 的外部D = {(ϕ, ρ) | α ≤ ϕ ≤ β, ρ1(ϕ) ≤ ρ ≤ ρ2(ϕ)}, 则∫∫D f (x , y )d x d y =21()()d (cos ,sin )d f βρϕαρϕϕρϕρϕρρ∫∫.(2) 极点O 在D 的边界曲线上D = {(ϕ, ρ) | α ≤ ϕ ≤ β, 0 ≤ ρ ≤ ρ(ϕ)}, 则∫∫D f (x , y )d x d y =()d (cos ,sin )d f βρϕαρϕρϕρϕρ∫∫.(3) 极点O 在D 的内部D = {(ϕ, ρ) | 0 ≤ ϕ ≤ 2π, 0 ≤ ρ ≤ ρ(ϕ)}, 则∫∫D f (x , y )d x d y =2()d (cos ,sin )d f πρϕϕρϕρρρϕ∫∫.6. 广义极坐标变换令x = a ρcos ϕ, y = b ρsin ϕ, 则∫∫D f (x , y )d x d y = ∫∫D f (a ρcos ϕ, b ρsin ϕ)ab ρd ρd ϕ. 7. 直角坐标系下三重积分的计算(1) Ω = {(x , y , z ) | (x , y ) ∈ D xy , z 1(x , y ) ≤ z ≤ z 2(x , y )}, 则∫∫∫Ω f (x , y , z )d v =21(,)(,)[(,,)d ]d d xyz x y z x y D f x y z z x y ∫∫∫. (2) Ω = {(x , y , z ) | (y , z ) ∈ D yz , x 1(y , z ) ≤ x ≤ x 2(y , z )}, 则∫∫∫Ω f (x , y , z )d v =21(,)(,)[(,,)d ]d d yzx y z x y z D f x y z x y z ∫∫∫.(3) Ω = {(x , y , z ) | (z , x ) ∈ D zx , y 1(z , x ) ≤ y ≤ y 2(z , x )}, 则∫∫∫Ω f (x , y , z )d v =21(,)(,)[(,,)d ]d d zxy z x y z x D f x y z y z x ∫∫∫.(4) Ω = {(x , y , z ) | (x , y ) ∈ D (z ), p ≤ z ≤ q }, 则∫∫∫Ω f (x , y , z )d v =()[(,,)d d ]d qpD z f x y z x y z ∫∫∫. (5) Ω = {(x , y , z ) | (y , z ) ∈ D (x ), a ≤ x ≤ b }, 则∫∫∫Ω f (x , y , z )d v =()[(,,)d d ]d ba D x f x y z y z x ∫∫∫. (6) Ω = {(x , y , z ) | (z , x ) ∈ D (y ), c ≤ y ≤ d }, 则∫∫∫Ω f (x , y , z )d v =()[(,,)d d ]d d cD y f x y z z x y ∫∫∫.8. 柱面坐标系下三重积分的计算令x = ρcos ϕ, y = ρsin ϕ, z = z , 则∫∫∫Ω f (x , y , z )d v = ∫∫∫Ω f (ρcos ϕ, ρsin ϕ, z )ρd ϕd ρd z . 9. 球面坐标系下三重积分的计算令x = r sin θcos ϕ, y = r sin θsin ϕ, z = r cos θ,则∫∫∫Ω f (x , y , z )d v = ∫∫∫Ω f (r sin θcos ϕ, r sin θsin ϕ, r cos θ)r 2sin θd r d θd ϕ. 10. 广义球坐标系下三重积分的计算令x = ar sin θcos ϕ, y = br sin θsin ϕ, z = cr cos θ,则∫∫∫Ω f (x , y , z )d v = ∫∫∫Ω f (ar sin θcos ϕ, br sin θsin ϕ, cr cos θ)abcr 2sin θd r d θd ϕ.11. 第一型曲线积分的计算(1) L : y = y (x ) ∈(1)[,]C,a b 则 ∫L f (x , y )d s=(,(baf x y x x ∫.(2) L : x = x (y ) ∈(1)[,]C ,c d 则 ∫L f (x , y )d s=((),dcf x y y y ∫.(3) L : x = x (t ), y = y (t ) ∈(1)[,]C ,αβ 则 ∫L f (x , y )d s=((),(f x t y t t βα∫.(4) L : ρ = ρ(ϕ) ∈(1)[,]C,αβ 则 ∫L f (x , y )d s=(()sin ,()cos f βαρϕϕρϕϕϕ∫.(5) L : x = x (t ), y = y (t ), z = z (t ) ∈(1)[,]C ,αβ 则∫L f (x , y , z )d s=((),(),(.f x t y t z t t βα∫12. 第一型曲面积分的计算(1) 设Σ: z = z (x , y )分片光滑, f 在Σ上连续, Σ在xOy 平面上的投影区域为D xy ,则∫∫Σ f (x , y , z )d A=(,,(,d xyD f x y z x y x y ∫∫.(2) 设Σ: y = y (z , x )分片光滑, f 在Σ上连续, Σ在zOx 平面上的投影区域为D zx ,则∫∫Σ f (x , y , z )d A=(,(,),d zxD f x y z x z z x ∫∫.(3) 设Σ: x = x (y , z )分片光滑, f 在Σ上连续, Σ在yOz 平面上的投影区域为D yz ,则∫∫Σ f (x , y , z )d A=((,),,d yzD f x y z y z y z ∫∫.13. 线密度为µ(x , y )的平面曲线段L 的质心坐标(x ,y )(,)d (,)d LLx x y s x x y s µµ=∫∫,(,)d (,)d LLy x y s y x y sµµ=∫∫.14. 面密度为µ(x , y )的平面薄片D 的质心坐标(x ,y )(,)d d (,)d d DDx y x y x x y x y x µµ=∫∫∫∫,(,)d d (,)d d DDx y x y y x y x yy µµ=∫∫∫∫. 15. 密度为µ(x , y , z )的空间立体Ω的质心坐标(x ,y ,z )(,,)d d d (,,)d d d x y z x y z x x y z x y x z µµΩΩ=∫∫∫∫∫∫,(,,)d d d (,,)d d d x y z x y z y x y z x y y z µµΩΩ=∫∫∫∫∫∫, (,,)d d d (,,)d d d x y z x y z z x y z x y z zµµΩΩ=∫∫∫∫∫∫.16. 线密度为µ(x , y )的平面曲线段L 对x 轴的转动惯量I x = ∫L y 2µd s , 对y 轴的转动惯量I y = ∫L x 2µd s . 17. 面密度为µ(x , y )的平面薄片D 对x 轴的转动惯量I x = ∫∫D y 2µd σ, 对y 轴的转动惯量I y = ∫∫D x 2µd σ. 18. 密度为µ(x , y , z )的空间立体Ω关于x 轴, y 轴, z 轴的转动惯量I x , I y , I z .I x = ∫∫∫Ω (y 2+ z 2)µd x d y d z , I y = ∫∫∫Ω (z 2+ x 2)µd x d y d z , I z = ∫∫∫Ω (x 2+ y 2)µd x d y d z .19. 线密度为µ(x , y )的平面曲线段 L 对位于L 外的点M 0(x 0, y 0)处的单位质点的引力F 的两个分量F x =03()(,)d L k x x x y s r µ−∫, F y =03()(,)d L k y y x y s rµ−∫, 其中k 为引力常数, r20. 面密度为µ(x , y , z )的曲面块Σ对Σ外的一点M 0(x 0, y 0, z 0)处单位质点的引力F 的三个分量F x =03()d k x x A r µΣ−∫∫, F y =03()d k y y A r µΣ−∫∫, F z =03()d k z z A rµΣ−∫∫,。

大学高等数学所有公式大全.

大学高等数学所有公式大全.

大学高等数学公式·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·平方关系:sin^2(α+cos^2(α=1tan^2(α+1=sec^2(αcot^2(α+1=csc^2(α·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β=cosα·cosβ-sinα·sinβcos(α-β=cosα·cosβ+sinα·sinβsin(α±β=sinα·cosβ±cosα·sinβtan(α+β=(tanα+tanβ/(1-tanα·tanβtan(α-β=(tanα-tanβ/(1+tanα·tanβ·三角和的三角函数:sin(α+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ=(tanα+tanβ+tanγ-tanα·tanβ·tanγ/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα·辅助角公式:Asinα+Bcosα=(A^2+B^2^(1/2sin(α+t,其中sint=B/(A^2+B^2^(1/2cost=A/(A^2+B^2^(1/2tant=B/AAsinα+Bcosα=(A^2+B^2^(1/2cos(α-t,tant=A/B·倍角公式:sin(2α=2sinα·cosα=2/(tanα+cotαcos(2α=cos^2(α-sin^2(α=2cos^2(α-1=1-2sin^2(αtan(2α=2tanα/[1-tan^2(α]·三倍角公式:sin(3α=3sinα-4sin^3(αcos(3α=4cos^3(α-3cosα·半角公式:sin(α/2=±√((1-cosα/2cos(α/2=±√((1+cosα/2tan(α/2=±√((1-cosα/(1+cosα=sinα/(1+cosα=(1-cosα/sinα·降幂公式sin^2(α=(1-cos(2α/2=versin(2α/2cos^2(α=(1+cos(2α/2=covers(2α/2 tan^2(α=(1-cos(2α/(1+cos(2α·万能公式:sinα=2tan(α/2/[1+tan^2(α/2] cosα=[1-tan^2(α/2]/[1+tan^2(α/2] tanα=2tan(α/2/[1-tan^2(α/2]·积化和差公式:sinα·cosβ=(1/2[sin(α+β+sin(α-β] cosα·sinβ=(1/2[sin(α+β-sin(α-β] cosα·cosβ=(1/2[cos(α+β+cos(α-β] sinα·sinβ=-(1/2[cos(α+β-cos(α-β]·和差化积公式:sinα+sinβ=2sin[(α+β/2]cos[(α-β/2] sinα-sinβ=2cos[(α+β/2]sin[(α-β/2] cosα+cosβ=2cos[(α+β/2]cos[(α-β/2] cosα-cosβ=-2sin[(α+β/2]sin[(α-β/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2^2·其他:sinα+sin(α+2π/n+sin(α+2π*2/n+sin(α+2π*3/n+……+sin[α+2π*(n-1/n]=0cosα+cos(α+2π/n+cos(α+2π*2/n+cos(α+2π*3/n+……+cos[α+2π*(n-1/n]=0 以及sin^2(α+sin^2(α-2π/3+sin^2(α+2π/3=3/2tanAtanBtan(A+B+tanA+tanB-tan(A+B=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得:sinx=[e^(ix-e^(-ix]/(2i cosx=[e^(ix+e^(-ix]/2 tanx=[e^(ix-e^(-ix]/[ie^(ix+ie^(-ix]泰勒展开有无穷级数,e^z=exp(z=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

(完整版)高数公式大全(费了好大的劲),推荐文档

(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C

高等数学公式大全

高等数学公式大全

高等数学公式大全一、方程1.一元一次方程一元一次方程是指由一个未知数及其平方项和一次项所组成的方程,它的标准形式为:ax + b = 0, 其解为: x = -b/a2.一元二次方程一元二次方程是指由一个未知数的二次项、一次项和常数项组成的方程,它的标准形式为:ax² + bx + c = 0,其解为:x1,2 = [-b ±√(b²-4ac)]/2a3.不定方程不定方程是指方程右端没有任何量,且没有可以代求解的未知数,它的标准形式为:ax + b = 0,其解为:任何实数x即为解4.幂指数方程幂指数方程是指指数函数方程经过变形后所得的方程,它的标准形式为:ax^m+bx^n=c,其解为:x=(c-b)/a5.二元一次方程二元一次方程是指有两个未知数,右端只有一次项的方程,它的标准形式为:ax + by = c,其解为:x = (c-b)/a, y = (c-a)/b6.二元二次方程二元二次方程是指有两个未知数,右端有两次项的方程,它的标准形式为:ax² + by² + cxy + dx + ey + f = 0,其解为: x=-ey/2c+【(ey/2c)² - (d+bx/c) 】^½ / (d+bx/c) 、 y=-dx/2c+【(dx/2c)² - (e+ax/c) 】^½ / (e+ax/c)二、椭圆方程1.一般形式一般形式是指将椭圆方程转化为一般形式来求解的方法,它的标准形式为:Ax²+By²+Cxy+Dx+Ey+F=0,其解为:X=-2CX0/(B-A)±b^½*[(CX0/(B-A))²-(2BX0²/B-A)];。

高数公式大全

高数公式大全

高等数学公式汇总第一章一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=± 和差角公式:sin sin 2sincos 22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin 22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式:1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos )cos()]21sin sin )cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin cos cos 22cos 112sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式:::ln(2::ln(211::ln21x x x xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x -----==++==±+-+===+-双曲正弦双曲余弦;反双曲余弦双曲正切3322()()()a b a b a ab b ±=±+ ,222(1)(21)126n n n n +++++= 22333(1)124n n n ++++=2、极限常用极限:1,lim 0n n q q →∞<=;1,lim 1n a >=;lim 1n →∞=ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan ;1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x na x a e x x ax x x--++++3、连续:定义:00lim 0;lim ()()x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或第二章导数与微分1、基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (co t )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ) (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====-222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n xn x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)![ln()](1)[ln()]()(1)()n n n n n n nn n a x x a x x x -----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑ 3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。

高等数学常用公式大全

高等数学常用公式大全

高等数学常用公式大全1.微分学公式:- 导数的定义:若函数y=f(x)在点x0处可导,则其导数为f'(x0)=lim(x→x0)⁡(f(x)-f(x0))/(x-x0)-基本导数公式:- (1) 常数函数的导数:d(C)/dx = 0,其中C为常数- (2) 幂函数的导数:d(x^n)/dx = n*x^(n-1),其中n为实数- (3) 指数函数的导数:d(e^x)/dx = e^x- (4) 对数函数的导数:d(ln(x))/dx = 1/x- (5) 三角函数的导数:d(sin(x))/dx = cos(x),d(cos(x))/dx = -sin(x),d(tan(x))/dx = sec^2(x),d(cot(x))/dx = -csc^2(x),d(sec(x))/dx = sec(x)*tan(x),d(csc(x))/dx = -csc(x)* cot(x)2.积分学公式:- 不定积分的性质:∫(f(x)+g(x))dx = ∫f(x)dx + ∫g(x)dx,∫k*f(x)dx = k*∫f(x)dx,其中f(x)和g(x)是可积函数,k是常数-基本积分公式:- (1) 幂函数的不定积分:∫x^n dx = (1/(n+1))*x^(n+1) + C,其中n不等于-1- (2) 指数函数的不定积分:∫e^x dx = e^x + C,其中C为常数- (3) 对数函数的不定积分:∫1/x dx = ln,x, + C- (4) 三角函数的不定积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,∫tan(x) dx = -ln,cos(x), + C,∫cot(x) dx = ln,sin(x), + C,∫sec(x) dx = ln,sec(x)+tan(x), + C,∫csc(x) dx = ln,csc(x)-cot(x), + C3.微分方程公式:- 一阶线性微分方程:dy/dx + p(x)y = q(x),其中p(x)和q(x)是已知函数,分别称为系数函数和非齐次项函数。

关于高等数学公式大全几乎包含了所有

关于高等数学公式大全几乎包含了所有

关于高等数学公式大全几乎包含了所有一、微分学公式1. 线性函数的导数:(kx)' = k2. 幂函数的导数:(x^n)' = nx^(n-1)3.e^x的导数:(e^x)'=e^x4. sinx 的导数:(sinx)' = cosx5. cosx 的导数:(cosx)' = -sinx6. tanx 的导数:(tanx)' = sec^2x7. cotx 的导数:(cotx)' = -csc^2x8. ln(x) 的导数:(ln(x))' = 1/x9. a^x 的导数:(a^x)' = ln(a) * a^x二、积分学公式1. 线性函数的积分:∫(kx)dx = (k/2)x^2 + C2. 幂函数的积分:∫(x^n)dx = (1/(n+1))x^(n+1) + C, (n≠-1)3. e^x 的积分:∫e^xdx = e^x + C4. sinx 的积分:∫sinxdx = -cosx + C5. cosx 的积分:∫cosxdx = sinx + C6. tanx 的积分:∫tanxdx = -ln,cosx, + C7. cotx 的积分:∫cotxdx = l n,sinx, + C8. 1/(x+a) 的积分:∫(1/(x+a))dx = ln,x+a, + C9. 1/(x^2+a^2) 的积分:∫(1/(x^2+a^2))dx = (1/a)arctan(x/a) + C三、级数和序列的公式1.等差数列的前n项和:Sn = n(a1+an)/22.等比数列的前n项和:Sn=a1(1-q^n)/(1-q)3.等差级数的和:S = (n/2)(a1+an)4.等比级数的和:S=a1/(1-q),,q,<15.幂级数的和:S=a/(1-r),,r,<16.泰勒级数:f(x)=f(a)+(x-a)f'(a)/1!+(x-a)^2f''(a)/2!+...四、微分方程的公式1. 一阶常微分方程:dy/dx + P(x)y = Q(x), y = C∫(e^(-∫P(x)dx))Q(x)dx2. 二阶常系数非齐次线性微分方程:ay''+by'+cy=g(x),其中非齐次解为 y = yc + yp3. 欧拉方程:x^n*d^n(y)/dx^n + a_(n-1)*x^(n-1)*d^(n-1)(y)/dx^(n-1) +...+ a_1*x*d(y)/dx + a_0*y = 0以上只是高等数学公式的一部分,包括微分学、积分学、级数和序列以及微分方程等方面的公式。

高等数学必背公式大全

高等数学必背公式大全

高等数学必背公式大全1、勾股定理:a2+b2=c22、椭圆方程:(x-x0)2/a2+(y-y0)2/b2=13、两点公式:,P1P2,=√((x2-x1)2+(y2-y1)2)4、双曲线方程:a2(x2/b2)-(y2/c2)=15、圆的方程:(x-x0)2+(y-y0)2=r26、三角形公式:a2+b2=c27、直线方程:y = kx + b (斜率k和截距b)8、斜率定理:m1*m2=-1/K29、余弦定理:a2 = b2 + c2 - 2bc*cosA10、正弦定理:a * sinA = b * sinB = c * sinC11、贝塞尔曲线方程:(x-x0)4+(y-y0)4=r412、三角函数公式:sin2A + cos2A = 113、极坐标方程:r = a * e(acosθ + bsinθ)14、反正弦定理:y = arcsin(x/a) + c15、偏微分公式:dy/dx = (dy/du) * (du/dx)16、平面四边形公式:a2+b2=c2+d217、反余弦定理:y = arccos(x/a) + c18、三角形面积公式:S = 1/2 * a * b * sinC19、多边形内角和公式:(n-2)*π=∑(内角弧度)20、抛物线公式:y=ax2+bx+c21、多项式求导公式:f'(x) = an-1 * xn-1 + an-2 * xn-2 + …… + a1 * x + a022、函数变换公式:f(x+h) = f(x) + hf'(x)23、矩阵乘法公式:(AB)ij = ∑k=1n(Aik*Bkj)24、求和公式:∑(a1+an)*n/225、模除法:a / b = a mod b + b * (a div b)26、几何平均数公式:(a1*a2*a3*……*an)^(1/n)27、距离公式:L=(x2-x1)^2+(y2-y1)^228、几何中点公式:(x1+x2)/2,(y1+y2)/229、坐标转换公式:x = x0 + (x-x0)cosα - (y-y0)sinα。

高等数学公式所有大全

高等数学公式所有大全
1、导数公式:
高等数学公式大全
(tgx)′ = sec2 x
(ctgx)′ = −csc2 x
(sec x)′ = sec x ⋅tgx
(csc x)′ = −csc x ⋅ ctgx
(a x )′ = a x ln a
(log x)′ = 1
a
x ln a
(arcsin x)′ = 1 1− x2
tg

±
β
)
=
tgα ± 1µ tgα
tgβ ⋅ tgβ
ctg

±
β
)
=
ctgα ⋅ ctgβ
ctgβ µ1 ± ctgα
·和差化积公式:
sinα + sin β = 2sin α + β cos α − β
2
2
sinα − sin β = 2cos α + β sin α − β
2
2
cosα + cos β = 2cos α + β cos α − β
=
−ctgx
+
C
∫sec x ⋅tgxdx = sec x + C
∫ csc x ⋅ctgxdx = −csc x + C
∫ a xdx = a x + C ln a
∫ shxdx = chx + C
∫ chxdx = shx + C
∫ dx = ln(x + x2 ± a2 ) + C x2 ± a2
引力:F
=
k
m1m2 r2
, k为引力系数
函数的平均值:y =
1
b
∫ f (x)dx

高等数学公式大全

高等数学公式大全

曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M s tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从其中弧微分公式:ααααα多元函数微分法及应用zyz x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy yvdx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(2),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx yx x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。

高等数学公式大全

高等数学公式大全

高等数学公式导数公式:基本积分表:三角函数的有理式积分:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

最完整高数公式大全,赶紧收藏了,以后用

最完整高数公式大全,赶紧收藏了,以后用

高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cos β·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cos β·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tan α·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cos α)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

高等数学公式汇总

高等数学公式汇总

高等数学公式汇总高等数学公式汇总如下:1. 幂函数:指数函数:f(x) = cos(x) + i*sin(x)f(x) = exp(x) - 1/(2*exp(2x))f(x) = frac{1}{1-x^2}f(x) = sqrt(x)/x2. 三角函数:正弦函数:s(x) = sin(x)/cos(x)s(x) = frac{1}{sqrt{1-x^2}}s(x) = frac{cos(x) - x*sin(x)}{sqrt{1-x^2}}s(x) = frac{2*cos(x)/2}{sqrt{1-x^2}}3. 余弦函数:c(x) = cos(x)c(x) = cos(x)/s(x)c(x) = frac{1}{sqrt{1-x^2}}c(x) = frac{2*cos(x) - x*sin(x)}{sqrt{1-x^2}}4. 正切函数:tan(x) = sin(x)/cos(x)tan(x) = frac{sin(x) + cos(x)}{2*cos(x)/sin(x) -sin(x)/cos(x)}tan(x) = frac{1}{sqrt{1-sin^2(x)/cos^2(x)}}5. 指数函数和三角函数的组合:e^x = cos(x) + i*sin(x)e^x = exp(x) - 1/(2*exp(2x))e^x = frac{1}{1-x^2}e^x = sqrt(x)/x6. 对数函数:log(x) = ln(x/e) + i*π/2log(x) = ln(x) - ln(2*sqrt(x))log(x) = ln(1+x)7. 微积分中的基本公式:导数:f"(x) = lim(Δx->0)*frac{f(x+Δx) - f(x)}{Δx}f"(x) = lim(Δx->0)*frac{f(x+Δx) + f(x-Δx)}{2Δx}f"(x) = lim(Δx->0)*frac{f(x)/(x+Δx) - f(x)/(x-Δx)}{Δx/(x+Δx) + Δx/(x-Δx)}f"(x) = lim(Δx->0)*frac{f(x)/x}{1 + frac{f(x)}{x/2}} 微分中的基本公式:d/dx (a^x) = a^x*ln(a)d/dx (e^x) = e^x*ln(e)d/dx (1/x) = 1/x*ln(x)d/dx (a^x) * a^(-x) = e^xd/dx (x^n) = nx^(n-1)d/dx (sin(x)) = cos(x)d/dx (cos(x)) = -sin(x)d/dx (tan(x)) = sin(x)/cos(x)8. 积分基本公式:积分一:∫dx = x + C∫dx = 1/2*ln(|x| + 1) + C∫dx = 1/(2*sqrt(x^2 + 1)) + C∫dx = 1/(2*sqrt(x)) + C积分二:∫dx/dx = 1/x∫dx/(2x) = 1/(2*x^2)∫dx/(x^2 + z) = -1/(x^3 + z^2) + C积分三:∫e^x dx = e^x + C∫e^x dx = 1/(2*sqrt(e)*ln(e)) + C∫e^x dx = 1/(2*sqrt(e)*sin(x)) + C积分四:∫a^x dx = a^x + C∫a^x dx = 1/(2*sqrt(a^2 + 1)) + C∫a^x dx = 1/(2*sqrt(a)) + C9. 链式法则:链式法则:∫[(x+a)^2 - (x-a)^2] dx = x^3 + 3x^2*a + 3x*a^2 - (a^3 + a^2*a + a*a^2)= x^3 + 3x^2*a + 3x*a^2 - a^3 - a^2*a + a*a^2= (x-a)(x^2 + 3x*a + 3a^2) - a^310. 微积分中的常数和极限:常数:C = lim(n->无穷大)*sum(1/n)C = lim(n->无穷大)*sqrt(1+4n^2)C = lim(n->无穷大)*frac{1}{2*(1-2n^2) }C = lim(x->正无穷大)*log(1+x)C = lim(x->负无穷大)*log(1-x)极限:趋于1:s(n) = frac{1}{n} + 1/(n^2 + 2)趋于0:s(n) = frac{1}{n} + 1/(n^2)趋于正无穷:s(n) = frac{1}{n} + O(1/n^3)趋于负无穷:s(n) = frac{1}{n} + O(1/n^2)。

高等数学公式大全,全力帮助你复习高等数学,很费力的

高等数学公式大全,全力帮助你复习高等数学,很费力的

高等 数学 公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

最高数公式大全,赶紧收藏了,以后用

最高数公式大全,赶紧收藏了,以后用

高等数学公式cost=A/(A A 2+B A 2)A (1/2) tant=B/AAsin a +Bcos a =(A A 2+B A 2)A (1/2)cos( -t) ,tant=A/B倍角公式:sin(2 a )=2sin a ・ cos a =2/(tan a +cot a ) cos(2 a )=cos A 2( -a)2( a )=2cos A 2( -0=) 2sin A 2( a ) tan(2 a )=2tan a -tan A 2( a )]三倍角公式:sin(3 a )=3sin-4&in A 3( a) cos(3 a )=4cos A 3( -3Cos aSin( a /2)= 土匕o(1a )/2) cos( a /2)= ±V ((1+COS a )/2)tan( a /2)= ±v 6((SI a )/(1+cos a ))=sin a /(1+cos-GoS=(1/sin a直角三角形ABC 中,角A 的正弦值就等于角A 的对边比斜边 余弦等于角A 的邻边比斜边 正切等于对边比邻边,降幕公式sin A 2( a )=-Cos(2 a ))/2=versin(2a )/2cos A 2( a )=(1+cos(2 a ))/2=covers(2 a )/2 tan A 2( a )=(tos(2 a ))/(1+cos(2 a ))三角函数恒等变形公式两角和与差的三角函数:cos( a + B )=cos a ,-sos (&• sin B cos( a B )=cos a , cos B +sin a , sin B sin( a±B )=sin a , cos B± cos a , sin B tan( a + B )=(tan a +tan-B n (a ・ tan B ) tan( aB )=(tan -tan B )/(1+tan a ,tan B )三角和的三角函数: sin a =2tan( a /2)/[1+tan A 2( a/2)]cos a =[1tan A 2( a /2)]/[1+tan A 2( a /2)]tan a =2tan( a /2)/tan A 2( a /2)]积化和差公式:sin a* cos B =(1/2)[sin( a +B B +S in( a cos a* sin B =(1/2)[sin( -sin(埔) cos a* cos B =(1/2)[cos( a + B 涉慄(asin a* sin ■(矽=[cos( a)+os( a B )]a ,cos B ,cos Y +cos a ,sin B‘ cos YS +TOS a sincos B ,sin Y和差化积公式:辅助角公式:Asin a +Bcos a =(A A 2+B A 2)A (1/2)sin( ,其中sin t=B/(A A 2+B A 2)A (1/2)倒数关系:半角公式:cos( a + B + Y )=cos a ,cos B cosaosysin B -sSin aY' cos B -sSin aY' sin B-cos Y tan( a + B + Y )=(tan a +tan B-tatar a 丫 tan B ,tartan )/(1' taba B B‘ tan Y an Y ,tan a )sin a +sin B =2sin[( a + B )/2]cos[/2] a sina sin B =2cos[( a + B )/2]sin B )/2] a cos a+cos B =2cos[( a + B )/2]cos R )/2] a cos a -cos B=2sin[( a + B )/2]sin{(B )/2]x平方关系:sin A 2( a )+cos A 2( a )=1 tan A 2( a )+1= sec A 2( a ) C0t A 2( a )+1= CSC A 2( a )积的关系:sin a =tan a *COS a COS a =cot a *Sin a tan a =sin a *sec a cot a =COS a *CSC asec a =tan a *CSC a CSC a =sec a *COt atan a ,cot a =1 sin a ,CSC a =1cos a* sec a =1万能公式:sin( a + B + Y )=sin B ,sin Y推导公式tan a +cot a =2/sin2 a tan a -cot a =cot2 a公式三:任意角a 与-a 的三角函数值之间的关系:sin (— a ) =— si n a cos (— a) = cos a tan (— a ) =— tan a cot (— a ) = — cot a公式四:利用公式二和公式三可以得到 na 与a 的三角函数值之间的关系: 高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e A (ix)-e A (-ix)]/(2i)cosx=[e A (ix)+e A (-ix)]/2tanx=[e A (ix)-e A (-ix)]/[ie A (ix)+ie A (-ix)]泰勒展开有无穷级数,e"=exp(z) = 1 + z/1 ! + z A 2/2 ! + z A 3/3 ! + z A 4/4 ! + …+ z A n/n !+ —此时三角函数定义域已推广至整个复数集。

(完整版)高等数学公式汇总(大全)

(完整版)高等数学公式汇总(大全)

高等数学公式汇总(大全)一 导数公式:二 基本积分表:三 三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 四 一些初等函数:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ五 两个重要极限:六 三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ七 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑八 中值定理与导数应用:拉格朗日中值定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学微分和积分数学公式(集锦)(精心总结)一、0101101lim 0n n n m m x m a n m b a x a x a n m b x b x b n m--→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩(系数不为0的情况)二、重要公式(1)0sin lim 1x xx→= (2)()10lim 1x x x e →+= (3))1n a o >=(4)1n = (5)limarctan 2x x π→∞=(6)lim tan 2x arc x π→-∞=-(7)limarccot 0x x →∞= (8)lim arccot x x π→-∞= (9)lim 0xx e →-∞=(10)lim x x e →+∞=∞ (11)0lim 1xx x +→=三、下列常用等价无穷小关系(0x →)sin xx tan x x arcsin x x arctan xx 211cos 2xx -()ln 1x x + 1x e x - 1ln x a x a - ()11x x ∂+-∂四、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭五、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa'= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=六、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑七、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(5) ()()cos cos 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+八、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xx d ee dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x=⑿()1log ln xad dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+九、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫=⎪⎝⎭十、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾arcsin x c =+十一、下列常用凑微分公式 积分型换元公式()()()1f ax b dx f ax b d ax b a+=++⎰⎰ u ax b =+()()()11f x x dx f x d x μμμμμ-=⎰⎰u x μ=()()()1ln ln ln f x dx f x d x x⋅=⎰⎰ln u x =()()()x x x x f e e dx f e d e ⋅=⎰⎰ x u e =()()()1ln x x x x f a a dx f a d a a⋅=⎰⎰ x u a =()()()sin cos sin sin f x xdx f x d x ⋅=⎰⎰ sin u x =()()()cos sin cos cos f x xdx f x d x ⋅=-⎰⎰ cos u x =()()()2tan sec tan tan f x xdx f x d x ⋅=⎰⎰ tan u x =()()()2cot csc cot cot f x xdx f x d x ⋅=⎰⎰ cot u x =()()()21arctan arc n arc n 1f x dx f ta x d ta x x⋅=+⎰⎰arctan u x = ()()()arcsin arcsin arcsin f x f x d x =⎰⎰arcsin u x =十二、补充下面几个积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+十三、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

十四、第二换元积分法中的三角换元公式sin x a t = (2) tan x a t = sec x a t =【特殊角的三角函数值】(1)sin00= (2)1sin62π=(3)sin 3π= (4)sin 12π=) (5)sin 0π=(1)cos01= (2)cos62π=(3)1cos 32π= (4)cos 02π=) (5)cos 1π=-(1)tan 00= (2)tan63π=(3)tan 3π=(4)tan 2π不存在 (5)tan 0π=(1)cot 0不存在 (2)cot 6π= (3)cot33π=(4)cot 02π=(5)cot π不存在十五、三角函数公式1.两角和公式sin()sin cos cos sin A B A B A B +=+ sin()sin cos cos sin A B A B A B -=- cos()cos cos sin sin A B A B A B +=- cos()cos cos sin sin A B A B A B -=+tan tan tan()1tan tan A B A B A B ++=- tan tan tan()1tan tan A BA B A B --=+cot cot 1cot()cot cot A B A B B A ⋅-+=+ cot cot 1cot()cot cot A B A B B A ⋅+-=-2.二倍角公式sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=- 22tan tan 21tan AA A=-3.半角公式sin2A = cos 2A =sin tan21cos A A A ==+ sin cot 21cos A A A==-4.和差化积公式sin sin 2sincos 22a b a b a b +-+=⋅ sin sin 2cos sin22a b a ba b +--=⋅ cos cos 2cos cos 22a b a b a b +-+=⋅ cos cos 2sin sin22a b a ba b +--=-⋅ ()sin tan tan cos cos a b a b a b++=⋅5.积化和差公式()()1sin sin cos cos 2a b a b a b =-+--⎡⎤⎣⎦ ()()1cos cos cos cos 2a b a b a b =++-⎡⎤⎣⎦()()1sin cos sin sin 2a b a b a b =++-⎡⎤⎣⎦ ()()1cos sin sin sin 2a b a b a b =+--⎡⎤⎣⎦6.万能公式22tan2sin 1tan 2aa a=+ 221tan 2cos 1tan 2a a a -=+ 22tan2tan 1tan 2aa a=-7.平方关系22sin cos 1x x += 22sec n 1x ta x -= 22csc cot 1x x -=8.倒数关系tan cot 1x x ⋅= sec cos 1x x ⋅= c sin 1cs x x ⋅=9.商数关系sin tan cos x x x =cos cot sin xx x=十六、几种常见的微分方程 1.可分离变量的微分方程:()()dyf xg y dx= , ()()()()11220f x g y dx f x g y dy += 2.齐次微分方程:dy y f dx x ⎛⎫= ⎪⎝⎭3.一阶线性非齐次微分方程:()()dyp x y Q x dx+= 解为: ()()()p x dx p x dx y e Q x e dx c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰。

相关文档
最新文档