建筑学毕业设计的外文文献及译文

合集下载

建筑设计中英文对照外文翻译文献

建筑设计中英文对照外文翻译文献

建筑设计中英文对照外文翻译文献On the other hand, there is a significant amount ofliterature in the field of architecture design that is writtenin foreign languages. While it may not be as readily accessible for non-native speakers, there are many benefits to exploring literature in other languages. For example, architects who are fluent in multiple languages can have a broader understanding of different cultural approaches to architecture. By reading literature in foreign languages, architects can gain insights into design concepts and practices that may not be covered in English-language sources. This can lead to a more diverse and innovative approach to design.However, one challenge with accessing literature in foreign languages is the accuracy of translations. Architecture is a technical field with specific terminology, and it is important to ensure that translations accurately convey the intended meaning. In some cases, the translation of technical terms and concepts may not accurately convey their full meaning, which can lead to misunderstandings or confusion. Architects who rely on translated literature should be cautious and ensure they verify the accuracy of the translations with experts in the field.Despite these challenges, it is essential for architects to explore literature in multiple languages to stay informed and to gain a global perspective on architecture design. By consideringboth English and foreign language translated literature, architects can access a wider range of resources and insights. Additionally, architects should consider collaborating with colleagues who are fluent in different languages to ensure accurate translation and interpretation of foreign language sources.In conclusion, architecture design is a field that benefits from accessing literature in multiple languages. English provides a wealth of resources and is the global language of academia. However, architects who can access and read literature in foreign languages can gain new perspectives and insights into different cultural approaches to design. While caution should be taken to verify the accuracy of translations, architects should explore literature in multiple languages to broaden their understanding and enhance their creative problem-solving skills.。

(完整版)建筑学本科外文翻译毕业设计论文

(完整版)建筑学本科外文翻译毕业设计论文

本科毕业设计外文翻译题目:德黑兰城市发展学院: 城市建设学院专业: 建筑学学号:学生姓名:指导教师:日期: 二零一一年六月First Chapter:Development of the city of TehranAli MadanipourTehran :the making of a metropolis,First Chapter:Development New York John Wiley,1998,page five to page eleven。

第一章:德黑兰市的发展阿里.马丹妮普尔德黑兰:一个大都市的建造,第一章:德黑兰市的发展,阿1998,第五页到第十一页。

德黑兰市的发展全市已长成了一定的规模性和复杂性,以这样的程度,空间管理需要另外的手段来处理城市组织和不断发展的复杂性,并为城市总体规划做准备。

第二次世界大战后,在盟军占领国家的期间,有一个时期的民主化,在冷战时开始的政治紧张局势之后,它们互相斗争对石油的控制权。

这个时期已经结束于1953年,结果是由政变产生了伊朗王,那个后来担任了25年的行政君主的人。

随着高出生率和农村向城市迁移,德黑兰和其他大城市增长加剧甚至比以前更快地。

到1956年,德黑兰的人口上升到150万,到了1966至300万, 1976至450万,其规模也从1934年46平方公里到1976年的250平方公里。

从石油行业的收入增长创造的盈余资源,需要流通和经济的吸收。

50年代中期,特别是在工业化的驱动下德黑兰许多大城市有了新工作。

20世纪60年代的土地改革释放了大量来自农业的农村人口,这是不能吸收的指数人口增长。

这种新的劳动力被吸引到城市:到新的产业,到似乎始终蓬勃发展建筑界,去服务不断增长公共部门和官僚机构。

德黑兰的角色是国家的行政,经济,文化中心,它坚定而巩固地通往外面的世界。

德黑兰战后的城市扩张,是在管制、私营部门的推动,投机性的发展下进行的。

房屋一直供不应求,并有大量可用的富余劳动力和资本,因此在德黑兰建筑行业蓬勃发展,土地和财产的价格不断上涨。

建筑学毕业外文翻译

建筑学毕业外文翻译

(2016届)毕业设计文献翻译题目:姓名:学院:专业:建筑学班级:学号:指导教师:导师学科:导师职称:教务处制年月日嘉兴学院外文文献翻译译文1外文题目:Analysis of and Study on the Difficulties in the Fire ProtectionDesign of Large Commercial Complex专业班级:学生姓名:学号:一、外文原文AbstractFire properties of the large commercial complex has been summarized. Based on the fact that there are contradictions between what is required for the large commercial complex in the fire code and the real application in practice, difficulties in fire protection of designing large commercial complex have been analyzed.Key words:large commercial complex; fire protection design; difficulty; research status 1. IntroductionIn recent years, more and more large commercial complexes have appeared in China. These complexes integrate different businesses into on large building, where customers can do shopping, eat or enjoy themselves. According to the statistics, nearly 200 large complexes in China now have indoor walking street, with different kinds of shops standing along both sides. And what’s more, the indoor walking street shares the large space with the atrium.Generally speaking, the large commercial complex is multi-functional with high fire load and large assembly of people. The mechanism of the occurrence of fire is different from that of the ordinary buildings and the fire loss is also heavier. As a result, this kind of commercial complex needs higher fire safety. However, the current national fire code only gives the minimum requirements. No specific fire safety objectives are provided. Therefore, it is quite important to understand the design and research status of the large commercial complex and to provide safe, reasonable and economical fire design method.2.Characteristics of large commercial complex fire2.1 High fire occurrenceThere are heavy fire loads inside the large commercial complex, which include merchandises like clothes, shoes, hats and combustible decorations. It is widely recognized that electricity is the important factor to cause fire hazard. Therefore, to provide electricity among these combustibles is very dangerous. However, in the large commercial complex, electric systems and equipment are installed to provide electricity for lighting, ventilating and air conditioning. If there is short circuit, spark, poor contact or long time electrifying of the lights or electric heater, fire may be caused. In addition, other factors like improper welding, lighted cigarette ends or arson can cause fire too. 2.2 Quick spread of fire and smokeIf fire occurs in a large commercial complex, it can spread very quickly and grow into a large fire in a short time, while the shelter of the rack usually decrease the sensitivity of the fire detection system and cause delay. As a result, fire can’t be detected and controlled timely. The other reason for quick fire spreading is that the vertical space formed by the atrium and escalators in the complex may help fire and smoke to spread to the whole building.2.3 Large casualties and property lossThe large commercial complex usually accommodates valuable merchandises and facilities. Once there is a fire, big property loss is inevitable. And what’s more fatal is that there are usually large assemblies present. The heavy smoke with CO, CO2, NOx, HCN not only affects the safe and quick evacuation of the people, but also put them in danger. According to the statistics of Japan and UK, the percentage of deaths caused by suffocation in the fire can be as high as 78.9%. As a result of a complicated layout, large assembly of people, long time to evacuate, the large commercial complex is susceptible to fatal fire accidents which usually suffer heavy casualties. For example, on Sept. 30, 1997, a fire occurred in a supermarket on the third floor of a shopping mall in Changchun, Jilin province. It caused 11 deaths and 2 injuries. The burning area reached 4500m2 andmost of the commodities inside the supermarket were burnt. The direct property loss was RMB 14,611,000 Yuan.3.Analysis of difficulties in fire protection design of large commercial complexComparing with the ordinary building, the commercial complex is large and usually multi-functional. During the construction, new materials, technologies and structures are employed, which often bring about difficulties in its fire protection design.3.1 There are no applicable requirements for the fire protection design of the complex in the current national fire codeFor the fire protection design of a large commercial complex, the current national standard has covered the following points:(1)the building style and the distribution of business operations inside the complex; (2 )the style of the indoor walking street;(3 )how to determine the fire load of the complex;(4)if the walking street inside the complex can be used as a safe evacuation area? If yes, what kind of conditions should be provided;(5)the occupancy density, fire fighting equipment, smoke control pattern as well as other important design parameters;(6)the size and separation of the shops along the both sides of the walking street.3.2 There are limitations in the fire code for the fire designing of the large commercial complexHere just gives an example to illustrate the limitation. The requirements for the evacuation of the people in “Code for design of shop buildings”JGJ48-88 can’t meet the need of the evacuation system of the large commercial complex. Personnel convert quantity in JGJ48-88 is based on the business area and the area of the storage, which is totally unfit for the new layout of a complex with modern ideas and novelties. The evacuation width calculated according to the method given in JGJ48-88 is usually too big. As a result, more staircases will be required, which not only brings great difficulties in the designing of the evacuation system, but also create enormous waste. At the sametime, the layout, structure as well as the aesthetic quality of the complex will be affected too.[68~70] Therefore, it is improper to determine the evacuation width or other parameters according to the calculation method given in the current standard.3.3 Some of the requirements in the current code can’t be implemented easily in the fire protection design of large commercial complex(1)Fire compartmenttion.It is required in the current fire code that the fire compartment of the commercial buildings shall not be larger than 5000m2. However, the building area of a large commercial complex is usually as big as hundreds of thousands of square meters. If the fire compartment is divided strictly according to the requirements of the fire code, many many fire compartments, staircases and exits will be provided. The result of this is that the arrangements of the business area will be greatly affected and the function of the complex will be completely limited.(2)Fire separation.The typical problem for the fire protection design of large commercial complex is that its travel distance and evacuatio n width can’t meet the requirements of the code.“Code for design of building fire protection and prevention” GB 50016-2006 requires that the linear distance between any point in the shopping areas inside the Class A and Class B buildings and the nearest exit should not be larger than 30m; when the building is protected completely by sprinkler system, the maximum safe travel distance shall be 37.5m; the end of the staircase on the first floor shall be provided with exit directly leading to outdoor or shall be enlarged. When the building is not more than 4 stories, the exit directly leading to outdoor can be located at the place that is not more than 15m away from the staircase. But in practice, it is not enough for large commercial complex to provide emergency staircases only at the periphery of the building because the complex is usually quite long and deep. Therefore, more staircases shall be provided in the middle. According to the requirements of the fire code, these staircases in the middle part of the building must have exits directly leading to the outdoor, which is completely out of the question.“Code for fire protection design of tall buildings” GB 50045-95(2005 edition) requires that the linear distance between any point in the shopping areas and the nearest exit should not be larger than 30m. In practice, the emergency staircases of the high-rise commercial buildings are also provided at the periphery of the building. The linear distance between the least favorable point to the nearest staircase is often larger than 30m. But in order to meet the requirement of the tall building code, staircases in the middle of the building must be provided. However, the staircases in the middle of the building can’t directly lead to outside.(3)Fire fighting.Both “Code for design of building fire protection and prevention” and “Code for fire protection design of tall buildings” require that where the length of the building along the street is more that 150m or the total length of the building is more than 220m, a well situated fire vehicle access shall be provided to cross the building. For large commercial complex, it is quite difficult to provide fire vehicle access to cut the building apart. Therefore, in practice, many designers propose to use the walking street as the fire vehicle access, but it can’t meet the fire fighting need of the fire vehicles.4.Current research status at home and abroadCurrently in China, the researches on the fire protection design of large commercial complex mainly focus on the analysis of some fire protection system.Zhao Hualiang analyzed the commonly used index and parameters of evacuation design. Parameters used for design of evacuation system of large commercial complex such as number of people, evacuation width, travel distance as well as emergency lighting have been discussed.Aim at the difficulties in designing of the fire partition in commercial construction, Zheng Yanqiu analyzed the general requirements for the design of the sunk plaza, fire compartment, protected evacuation passage and atrium. The application of cesium and kalium fire protection glass and toughened glass protected by water sprinkler as the fire partition was also studied.Guo Jinjun and Zhao Lijun introduced the difficulties in the designing of water based fire fighting systems as well as the solution.Guo Xiaolong and Wang Lingjian introduced a method to solve the problem of fire separation of a large commercial complex as well as atrium smoke extraction by separating inner atrium and horizontal sliding skylight.“Code for fire protection design of large commercial complex in Chongqing” provides a method to calculate the width of exit and series of parameters that are applicable for Chongqing city. In the code, the concept of calculating the width of the exit based on the fire compartment was put forward for the first time. The requirements that the exit can be borrowed or shared by the adjoining fire compartments are provided and the calculation method to calculate this kind of exit is given. For the shopping malls with quite many stories above ground, this local code of Chongqing introduces the concept of “refuge space”, which provides favorable conditions for the emergent evacuation of the people.Aiming at the problems in the requirement of the fire code-“if the building area of an underground shopping mall is larger than 20000m2, fire wall shall be used to separate it and there shall be no openings in the fire wall”, Kang Dasheng and Wang Jinling suggested to provide a so-called “open fire isolating area” (sunk space) and “closed fire isolating area” . They also suggested to provide an emergency passageway less than 55m long on the first underground floor to directly lead to the outside of the building. For those large space areas like the atrium and indoor walking street, they suggested to install intelligent sprinkler system especially for large space areas.The above mentioned researches mainly focus on the problems in the design of the commercial buildings. Solutions from the experiences during design, review and construction have been proposed, but they are not complete and thorough. The results can’t be generalized.Some foreign building and fire codes have some requirements for the fire protection of commercial buildings. For example, building code of Canada, fire code of Singapore, building code of New Zealand and the “Uniform Building Code” of NFPA etc. However,these requirements are mainly applicable to ordinary shops, not the large commercial complexes in China.5.ConclusionIn order to solve so many practical problems encountered in the fire protection design of the large commercial complex, to evaluate the fire safety performance of this kind of building scientifically, and to define the scientific, reasonable and economic fire safety system, it is necessary to study the key technology of fire protection based on the practical fire loads and occupant density in the large commercial complex in China. Through this research, the related technical requirements of fire protection design were determined, and the scientific, reasonable and economical method of fire protection design was proposed. It is very important to understand the method and to prevent the occurrence of fire so as to safeguard the life safety and reduce property loss.References[1]Fire Bureau of MPS. Anthology of disastrous fire cases of China,2008.[2]LI Yin-qing. Performance Design for Building Fire Protection. Beijing: Chemical Industry Press.2005.141~171.[3]LI Yu. Study on Performance-based Fire Protection Design of Large Sho pping Centre. MA thesis of Xi’an University of Architecture & Technology,2005.[4]ZOU He. The key technology research for performance-based design of underground commercial building. Engineering Master Degree Dissertation of Chongqing University,2007.[5]LI Xin, GU Yu. Discussion on the problems in the evacuation design of large commercial complex.. Fire Technology and Products Information,2007,12,31~33.[6]Chongqing Construction Committee. DBJ 50-054-2006 Code for fire protection design of large-scale commercial buildings of Chongqing,2006.[7]HUO Ran, YUAN Hong-yong. Performance-based Fire Protection Design and Analysis.Hefei:Anhui Science & Technology Publishing House, 2003.[8]ZHAO Wei. Evaluation of performance-based design on giant commercial building.Fire Science and Technology, 2009,28(11),817~819.[9]The Ministry of Public Security of the People’s Republic of China. GB50016-2006 Code of Design on Building Fire Protection and Prevention. Beijing: China Planning Press,2006.[10]The Ministry of Public Security of the People’s Republic of China. GB50045-95 Code for fire protection design of tall buildings(2005Edition).Beijing: China Planning Press,2005.[11]Civil Air Defence Office of China, The Ministry of Public Security of the People’s Republic of Chi na. GB 50098-2009 Code for fire protection design of civil air defense works. Beijing:China Planning Press,2009.[12]Central-south Architectural Design Institute. Code for Design of Shop Buildings(draft) JGJ 48-88. Beijing:China Architecture & Building Press,1988.[13]LIN Feng. Studies on the Fire Safe of Large-scale Commercial Buildings. MA thesis of Xi’an University of Architecture & Technology,2009.[14]ZHAO Hua-liang. Discussion on Safe Evacuation from Commercial Buildings.Fire Technology and roducts Information,2005,2,9~11.[15]JING Jian-sheng, NI Zhao-peng, ZHUANG Jing-yi. Calculation method of the number of safe egress occupants in commercial building.Fire Science and Technology,2003,22(5),351~353.[16]ZHANG Shu-ping, JING Ya-jie. Research of evacuation crowd in the business hall of large department stores. Fire Science and Technology,2004,23(2),133~136.[17]QI Xiao-xia, PAN Jing. Research of evacuation crowd in the large specialized stores. Fire Science and Technology,2005,24(1),60~64.[18]YAN Xiao-long,WANG Ling-jian. Fire protection design of large-scale commercial building. Fire Science and Technology,2007.26(5),523~525.[19]ZHENG Yan-qiu. Analysis of fire protection separate design in commercial construction [J]. Fire Science and Technology,2009,28(1),43~46.[20]GUO Jin-jun, ZHAO Li-jun. Design difficulties and solutions for water fire-extinguishing system in the mall [J]. Water & Wastewater Engineering,2008,7(34),86~88.[21]GUO Sheng-you, LIU Mei-mei. Idea and characteristic of code for the fire prevention design of large-scale commercial buildings of Chongqing [J]. Fire Science and Technology, 2007, 26(1), 49~51.[22]KANG Da-sheng, WANG Jin-ling. The Measures of Large-Scale Shop Fire Prevention Designing [J]. Journal of Chinese People's Armed Police Force Academy,2008,24(10),15~17.[23]National Research Council of Canada.National Building Code of Canada[S].2005ˈVolume 1.[24]Singapore Civil Defence Force.Singapore Fire Code[S].[25]NFPA. NFPA1 Fire Code 2009 Edition[S],2009.[26]R.L.P. Custer & B. J. Meacham. Introduction To Performance based Fire Safety. National Fire Protection Association, Quincy, MA, 1997.[27]SFPE engineering guide to performance–based fire protection:analysis and design of buildings.First Edition,National Fire Protection Association,Society of Fire Protection Engineers,USA,2000.[28]British Standards Institution. Draft British standard BSDD240 fire safety engineering in building,Part l: Guide to the application office safety engineering Principles,1997.[29]Building Code of Australia, Australia Building Code Board, October 1996.[30]Hadjisophocleous GV,Benichou N.Development of performance-based codes, performance criteria and fire safety engineering methods.International Journal on Engineering Performance-based Fire Code, 2000, 2(4), 127~142.二、翻译结果分析与研究大型商业综合体中消防难点的设计摘要总结了大型商业综合体的火灾特性。

建筑外文文献及翻译(参考模板)

建筑外文文献及翻译(参考模板)

外文原文Study on Human Resource Allocation in Multi-Project Based on the Priority and the Cost of ProjectsLin Jingjing , Zhou GuohuaSchoolofEconomics and management, Southwest Jiao tong University ,610031 ,China Abstract----This paper put forward the a ffecting factors of project’s priority. which is introduced into a multi-objective optimization model for human resource allocation in multi-project environment . The objectives of the model were the minimum cost loss due to the delay of the time limit of the projects and the minimum delay of the project with the highest priority .Then a Genetic Algorithm to solve the model was introduced. Finally, a numerical example was used to testify the feasibility of the model and the algorithm.Index Terms—Genetic Algorithm, Human Resource Allocation, Multi-project’s project’s priority .1.INTRODUCTIONMore and more enterprises are facing the challenge of multi-project management, which has been the focus among researches on project management. In multi-project environment ,the share are competition of resources such as capital , time and human resources often occur .Therefore , it’s critical to schedule projects in order to satisfy the different resource demands and to shorten the projects’ duration time with resources constrained ,as in [1].For many enterprises ,the human resources are the most precious asset .So enterprises should reasonably and effectively allocate each resource , especially the human resource ,in order to shorten the time and cost of projects and to increase the benefits .Some literatures have discussed the resource allocation problem in multi-project environment with resources constrained. Reference [1] designed an iterative algorithm and proposeda mathematical model of the resource-constrained multi-project scheduling .Basedon work breakdown structure (WBS) and Dantzig-Wolfe decomposition method ,a feasible multi-project planning method was illustrated , as in [2] . References [3,4]discussed the resource-constrained project scheduling based on Branch Delimitation method .Reference [5] put forward the framework of human resource allocation in multi-project in Long-term ,medium-term and short-term as well as research and development(R&D) environment .Basedon GPSS language, simulation model of resources allocation was built to get the project’s duration time and resources distribution, as in [6]. Reference [7] solved the engineering project’s resources optimization problem using Genetic Algorithms. These literatures reasonably optimized resources allocation in multi-project, but all had the same prerequisite that the project’s importance is the same to each other .This paper will analyze the effects of project’s priority on human resource allocation ,which is to be introduced into a mathematical model ;finally ,a Genetic Algorithm is used to solve the model.2.EFFECTS OF PROJECTS PRIORITY ON HUMAN RESOUCE ALLOCATIONAND THE AFFECTING FACTORS OF PROJECT’S PRIORITYResource sharing is one of the main characteristics of multi-project management .The allocation of shared resources relates to the efficiency and rationality of the use of resources .When resource conflict occurs ,the resource demand of the project with highest priority should be satisfied first. Only after that, can the projects with lower priority be considered.Based on the idea of project classification management ,this paper classifies the affecting factors of project’s priority into three categories ,as the project’s benefits ,the complexity of project management and technology , and the strategic influence on the enterprise’s future development . The priority weight of the project is the function of the above three categories, as shown in (1).W=f(I,c,s…) (1)Where w refers to project’s priority weight; I refers to the benefits of th e project; c refers to the complexity of the project, including the technology and management; s refers to the influence of the project on enterprise .The bigger the values of the three categories, the higher the priority is.3.HUMAN RESOURCE ALLOCATION MODEL IN MULTI-PROJECTENVIRONMENT3.1Problem DescriptionAccording to the constraint theory, the enterprise should strictly differentiate the bottleneck resources and the non-bottleneck resources to solve the constraint problem of bottleneck resources .This paper will stress on the limited critical human resources being allocated to multi-project with definite duration times and priority.To simplify the problem, we suppose that that three exist several parallel projects and a shared resources storehouse, and the enterprise’s operation only involves one kind of critical human resources. The supply of the critical human resource is limited, which cannot be obtained by hiring or any other ways during a certain period .when resource conflict among parallel projects occurs, we may allocate the human resource to multi-project according to project’s priorities .The allocation of non-critical independent human resources is not considered in this paper, which supposes that the independent resources that each project needs can be satisfied.Engineering projects usually need massive critical skilled human resources in some critical chain ,which cannot be substituted by the other kind of human resources .When the critical chains of projects at the same time during some period, there occur resource conflict and competition .The paper also supposes that the corresponding network planning of various projects have already been established ,and the peaks of each project’s resources demand have been optimized .The delay of the critical chain will affect the whole project’s duration time .3.2 Model HypothesesThe following hypotheses help us to establish a mathematical model:(1)The number of mutually independent projects involved in resourceallocation problem in multi-project is N. Each project is indicated withQ i,while i=1,2, … N.(2)The priority weights of multi-project have been determined ,which arerespectively w1,w 2…w n .(3) The total number of the critical human resources is R ,with r k standingfor each person ,while k=1,2, …,R(4) Δk i = ⎩⎨⎧others toprojectQ rcer humanresou i k 01(5) Resources capturing by several projects begins on time. t E i is theexpected duration time of project I that needs the critical resources tofinish some task after time t ,on the premise that the human resourcesdemand can be satisfied .tAi is the real duration time of project I thatneeds the critical resource to finish some task after time t .(6) According to the contract ,if the delay of the project happens the dailycost loss due to the delay is △c i for pro ject I .According to the project’simportance ,the delay of a project will not only cause the cost loss ,butwill also damage the prestige and status of the enterprise .(while thelatent cost is difficult to quantify ,it isn’t considered in this articletemporarily.)(7) From the hypothesis (5) ,we can know that after time t ,the time-gapbetween the real and expected duration time of project I that needs thecritical resources to finish some task is △t i ,( △t i =t A i -t E i ). For thereexists resources competition, the time –gap is necessarily a positivenumber.(8) According to hypotheses (6) and (7), the total cost loss of project I is C i(C i = △t i * △C i ).(9) The duration time of activities can be expressed by the workload ofactivities divided by the quantity of resources ,which can be indicatedwith following expression of t A i =ηi / R i * ,.In the expression , ηi refersto the workload of projects I during some period ,which is supposed tobe fixed and pre-determined by the project managers on project planningphase ; R i * refers to the number of the critical human resources beingallocated to projects I actually, with the equation Ri * =∑=Rk ki 1δ existing. Due to the resource competition the resourcedemands of projects with higherPriorities may be guarantee, while those projects with lower prioritiesmay not be fully guaranteed. In this situation, the decrease of theresource supply will lead to the increase of the duration time of activitiesand the project, while the workload is fixed.3.3 Optimization ModelBased on the above hypotheses, the resource allocation model inmulti-project environment can be established .Here, the optimizationmodel is :F i =min Z i = min∑∑==Ni i N i Ci 11ω =min i i Ni i N i c t ∆∆∑∑==11ω (2) =min ∑∑==N i i N i 11ω )E i R i ki i t - ⎝⎛∑=1δη i c ∆ 2F =min Z 2=min ()i t ∆=min )E i R i ki i t -⎝⎛∑=1δη (3) Where wj=max(wi) ,(N j i 3,2,1,=∀) (4)Subject to : 0∑∑==≤R k ki N i 11δ=R (5)The model is a multi-objective one .The two objective functions arerespectively to minimize the total cost loss ,which is to conform to theeconomic target ,and to shorten the time delay of the project with highestpriority .The first objective function can only optimize the apparenteconomic cost ;therefore the second objective function will help to makeup this limitation .For the project with highest priority ,time delay will damage not only the economic benefits ,but also the strategy and the prestige of the enterprise .Therefore we should guarantee that the most important project be finished on time or ahead of schedule .4.SOLUTION TO THE MULTI-OBJECTIVE MODEL USING GENETICALGORITHM4.1The multi-objective optimization problem is quite common .Generally ,eachobjective should be optimized in order to get the comprehensive objective optimized .Therefore the weight of each sub-objective should be considered .Reference [8] proposed an improved ant colony algorithm to solve this problem .Supposed that the weights of the two optimizing objectives are αand β ,where α+β=1 .Then the comprehensive goal is F* ,where F*=αF1+βF2.4.2The Principle of Genetic AlgorithmGenetic Algorithm roots from the concepts of natural selection and genetics .It’s a random search technique for global optimization in a complex search space .Because of the parallel nature and less restrictions ,it has the key features of great currency ,fast convergence and easy calculation .Meanwhile ,its search scope is not limited ,so it’s an effective method to solve the resource balancing problem ,as in [9].The main steps of GA in this paper are as follow:(1)EncodingAn integer string is short, direct and efficient .According to thecharacteristics of the model, the human resource can be assigned to be acode object .The string length equals to the total number of humanresources allocated.(2)Choosing the fitness functionThis paper choose the objective function as the foundation of fitnessfunction .To rate the values of the objective function ,the fitness of then-th individual is 1/n。

毕设外文文献+翻译1

毕设外文文献+翻译1

毕设外文文献+翻译1外文翻译外文原文CHANGING ROLES OF THE CLIENTS、ARCHITECTSAND CONTRACTORS THROUGH BIMAbstract:Purpose –This paper aims to present a general review of the practical implications of building information modelling (BIM) based on literature and case studies. It seeks to address the necessity for applying BIM and re-organising the processes and roles in hospital building projects. This type of project is complex due to complicated functional and technical requirements, decision making involving a large number of stakeholders, and long-term development processes.Design/methodology/approach–Through desk research and referring to the ongoing European research project InPro, the framework for integrated collaboration and the use of BIM are analysed.Findings –One of the main findings is the identification of the main factors for a successful collaboration using BIM, which can be recognised as “POWER”: product information sharing (P),organisational roles synergy (O), work processes coordination (W), environment for teamwork (E), and reference data consolidation (R).Originality/value –This paper contributes to the actual discussion in science and practice on the changing roles and processes that are required to develop and operate sustainable buildings with the support of integrated ICT frameworks and tools. It presents the state-of-the-art of European research projects and some of the first real cases of BIM application inhospital building projects.Keywords:Europe, Hospitals, The Netherlands, Construction works, Response flexibility, Project planningPaper type :General review1. IntroductionHospital building projects, are of key importance, and involve significant investment, and usually take a long-term development period. Hospital building projects are also very complex due to the complicated requirements regarding hygiene, safety, special equipments, and handling of a large amount of data. The building process is very dynamic and comprises iterative phases and intermediate changes. Many actors with shifting agendas, roles and responsibilities are actively involved, such as: the healthcare institutions, national and local governments, project developers, financial institutions, architects, contractors, advisors, facility managers, and equipment manufacturers and suppliers. Such building projects are very much influenced, by the healthcare policy, which changes rapidly in response to the medical, societal and technological developments, and varies greatly between countries (World Health Organization, 2000). In The Netherlands, for example, the way a building project in the healthcare sector is organised is undergoing a major reform due to a fundamental change in the Dutch health policy that was introduced in 2008.The rapidly changing context posts a need for a building with flexibility over its lifecycle. In order to incorporate life-cycle considerations in the building design, construction technique, and facility management strategy, a multidisciplinary collaboration is required. Despite the attempt for establishing integrated collaboration, healthcare building projects still facesserious problems in practice, such as: budget overrun, delay, and sub-optimal quality in terms of flexibility, end-user?s dissatisfaction, and energy inefficiency. It is evident that the lack of communication and coordination between the actors involved in the different phases of a building project is among the most important reasons behind these problems. The communication between different stakeholders becomes critical, as each stakeholder possesses different setof skills. As a result, the processes for extraction, interpretation, and communication of complex design information from drawings and documents are often time-consuming and difficult. Advanced visualisation technologies, like 4D planning have tremendous potential to increase the communication efficiency and interpretation ability of the project team members. However, their use as an effective communication tool is still limited and not fully explored. There are also other barriers in the information transfer and integration, for instance: many existing ICT systems do not support the openness of the data and structure that is prerequisite for an effective collaboration between different building actors or disciplines.Building information modelling (BIM) offers an integrated solution to the previously mentioned problems. Therefore, BIM is increasingly used as an ICT support in complex building projects. An effective multidisciplinary collaboration supported by an optimal use of BIM require changing roles of the clients, architects, and contractors; new contractual relationships; and re-organised collaborative processes. Unfortunately, there are still gaps in the practical knowledge on how to manage the building actors to collaborate effectively in their changing roles, and todevelop and utilise BIM as an optimal ICT support of the collaboration.This paper presents a general review of the practical implications of building information modelling (BIM) based on literature review and case studies. In the next sections, based on literature and recent findings from European research project InPro, the framework for integrated collaboration and the use of BIM are analysed. Subsequently, through the observation of two ongoing pilot projects in The Netherlands, the changing roles of clients, architects, and contractors through BIM application are investigated. In conclusion, the critical success factors as well as the main barriers of a successful integrated collaboration using BIM are identified.2. Changing roles through integrated collaboration and life-cycle design approachesA hospital building project involves various actors, roles, and knowledge domains. In The Netherlands, the changing roles of clients, architects, and contractors in hospital building projects are inevitable due the new healthcare policy. Previously under the Healthcare Institutions Act (WTZi), healthcare institutions were required to obtain both a license and a building permit for new construction projects and major renovations. The permit was issued by the Dutch Ministry of Health. The healthcare institutions were then eligible to receive financial support from the government. Since 2008, new legislation on the management of hospital building projects and real estate has come into force. In this new legislation, a permit for hospital building project under the WTZi is no longer obligatory, nor obtainable (Dutch Ministry of Health, Welfare and Sport, 2008). This change allows more freedom from the state-directed policy, and respectively,allocates more responsibilities to the healthcare organisations to deal with the financing and management of their real estate. The new policy implies that the healthcare institutions are fully responsible to man age and finance their building projects and real estate. The government?s support for the costs of healthcare facilities will no longer be given separately, but will be included in the fee for healthcare services. This means that healthcare institutions must earn back their investment on real estate through their services. This new policy intends to stimulate sustainable innovations in the design, procurement and management of healthcare buildings, which will contribute to effective and efficient primary healthcare services.The new strategy for building projects and real estate management endorses an integrated collaboration approach. In order to assure the sustainability during construction, use, and maintenance, the end-users, facility managers, contractors and specialist contractors need to be involved in the planning and design processes. The implications of the new strategy are reflected in the changing roles of the building actors and in the new procurement method.In the traditional procurement method, the design, and its details, are developed by the architect, and design engineers. Then, the client (the healthcare institution) sends an application to the Ministry of Healthto obtain an approval on the building permit and the financial support from the government. Following this, a contractor is selected through a tender process that emphasises the search for the lowest-price bidder. During the construction period, changes often take place due to constructability problems of the design and new requirements from the client.Because of the high level of technical complexity, and moreover, decision-making complexities, the whole process from initiation until delivery of a hospital building project can take up to ten years time. After the delivery, the healthcare institution is fully in charge of the operation of the facilities. Redesigns and changes also take place in the use phase to cope with new functions and developments in the medical world.The integrated procurement pictures a new contractual relationship between the parties involved in a building project. Instead of a relationship between the client and architect for design, and the client and contractor for construction, in an integrated procurement the client only holds a contractual relationship with the main party that is responsible for both design and construction. The traditional borders between tasks and occupational groups become blurred since architects, consulting firms, contractors, subcontractors, and suppliers all stand on the supply side in the building process while the client on the demand side. Such configuration puts the architect, engineer and contractor in a very different position that influences not only their roles, but also their responsibilities, tasks and communication with the client, the users, the team and other stakeholders.The transition from traditional to integrated procurement method requires a shift of mindset of the parties on both the demand and supply sides. It is essential for the client and contractor to have a fair and open collaboration in which both can optimally use their competencies. The effectiveness of integrated collaboration is also determined by the client?s capacity and strategy to organize innovative tendering procedures.A new challenge emerges in case of positioning an architect in a partnership with the contractor instead of with the client. In case of the architect enters a partnership with the contractor, an important issues is how to ensure the realisation of the architectural values as well as innovative engineering through an efficient construction process. In another case, the architect can stand at the client?s side in a strategic advisory role instead of being the designer. In this case, the architect?s responsibility is translating client?s requirements and wishes into the architectural values to be included in the design specification, and evaluating the contractor?s proposal against this. In any of this new role, the architect holds the responsibilities as stakeholder interest facilitator, custodian of customer value and custodian of design models.The transition from traditional to integrated procurement method also brings consequences in the payment schemes. In the traditional building process, the honorarium for the architect is usually based on a percentage of the project costs; this may simply mean that the more expensive the building is, the higher the honorarium will be. The engineer receives the honorarium based on the complexity of the design and the intensity of the assignment. A highly complex building, which takes a number of redesigns, is usually favourable for the engineers in terms of honorarium. A traditional contractor usually receives the commission based on the tender to construct the building at the lowest price by meeting the minimum specifications given by the client. Extra work due to modifications is charged separately to the client. After the delivery, the contractor is no longer responsible for the long-term use of the building. In the traditional procurement method, all risks are placed with theclient.In integrated procurement method, the payment is based on the achieved building performance; thus, the payment is non-adversarial. Since the architect, engineer and contractor have a wider responsibility on the quality of the design and the building, the payment is linked to a measurement system of the functional and technical performance of the building over a certain period of time. The honorarium becomes an incentive to achieve the optimal quality. If the building actors succeed to deliver a higher added-value thatexceed the minimum client?s requirements, they will receive a bonus in accordance to the client?s extra gain. The level of transparency is also improved. Open book accounting is an excellent instrument provided that the stakeholders agree on the information to be shared and to its level of detail (InPro, 2009).Next to the adoption of integrated procurement method, the new real estate strategy for hospital building projects addresses an innovative product development and life-cycle design approaches. A sustainable business case for the investment and exploitation of hospital buildings relies on dynamic life-cycle management that includes considerations and analysis of the market development over time next to the building life-cycle costs (investment/initial cost, operational cost, and logistic cost). Compared to the conventional life-cycle costing method, the dynamic life-cycle management encompasses a shift from focusing only on minimizing the costs to focusing on maximizing the total benefit that can be gained. One of the determining factors for a successful implementation of dynamic life-cycle management is the sustainable design of the building and building components, which means that the design carriessufficient flexibility to accommodate possible changes in the long term (Prins, 1992).Designing based on the principles of life-cycle management affects the role of the architect, as he needs to be well informed about the usage scenarios and related financial arrangements, the changing social and physical environments, and new technologies. Design needs to integrate people activities and business strategies over time. In this context, the architect is required to align the design strategies with the organisational, local and global policies on finance, business operations, health and safety, environment, etc.The combination of process and product innovation, and the changing roles of the building actors can be accommodated by integrated project delivery or IPD (AIA California Council, 2007). IPD is an approach that integrates people, systems, business structures and practices into a process that collaboratively harnesses the talents and insights of all participants to reduce waste and optimize efficiency through all phases of design, fabrication and construction. IPD principles can be applied to a variety of contractual arrangements. IPD teams will usually include members well beyond the basic triad of client, architect, and contractor. At a minimum, though, an Integrated Project should include a tight collaboration between the client, the architect, and the main contractor ultimately responsible for construction of the project, from the early design until the project handover. The key to a successful IPD is assembling a team that is committed to collaborative processes and is capable of working together effectively. IPD is built on collaboration. As a result, it can only be successful if the participants share and apply common values and goals.3. Changing roles through BIM applicationBuilding information model (BIM) comprises ICT frameworks and tools that can support the integrated collaboration based on life-cycle design approach. BIM is a digital representation of physical and functional characteristics of a facility. As such it serves as a shared knowledge resource for information about a facility forming a reliable basis for decisions during its lifecycle from inception onward (National Institute of Building Sciences NIBS, 2007). BIM facilitates time and place independent collaborative working. A basic premise of BIM is collaboration by different stakeholders at different phases of the life cycle of a facility to insert, extract, update or modify information in the BIM to support and reflect the roles of that stakeholder. BIM in its ultimate form, as a shared digital representation founded on open standards for interoperability, can become a virtual information model to be handed from the design team to the contractor and subcontractors and then to the client.BIM is not the same as the earlier known computer aided design (CAD). BIM goes further than an application to generate digital (2D or 3D) drawings. BIM is an integrated model in which all process and product information is combined, stored, elaborated, and interactively distributed to all relevant building actors. As a central model for all involved actors throughout the project lifecycle, BIM develops andevolves as the project progresses. Using BIM, the proposed design and engineering solutions can be measured against the client?s requirements and expected building performance. The functionalities of BIM to support the design process extend to multidimensional (nD), including: three-dimensional visualisation and detailing, clash detection, material schedule, planning, costestimate, production and logistic information, and as-built documents. During the construction process, BIM can support the communication between the building site, the factory and the design office– which is crucial for an effective and efficient prefabrication and assembly processes as well as to prevent or solve problems related to unforeseen errors or modifications. When the building is in use, BIM can be used in combination with the intelligent building systems to provide and maintain up-to-date information of the building performance, including the life-cycle cost.To unleash the full potential of more efficient information exchange in the AEC/FM industry in collaborative working using BIM, both high quality open international standards and high quality implementations of these standards must be in place. The IFC open standard is generally agreed to be of high quality and is widely implemented in software. Unfortunately, the certification process allows poor quality implementations to be certified and essentially renders the certified software useless for any practical usage with IFC. IFC compliant BIM is actually used less than manual drafting for architects and contractors, and show about the same usage for engineers. A recent survey shows that CAD (as a closed-system) is still the major form of technique used in design work (over 60 per cent) while BIM is used in around 20 percent of projects for architects and in around 10 per cent of projects for engineers and contractors.The application of BIM to support an optimal cross-disciplinary and cross-phase collaboration opens a new dimension in the roles and relationships between the building actors. Several most relevant issues are: the new role of a model manager; the agreement on the access right and IntellectualProperty Right (IPR); the liability and payment arrangement according to the type of contract and in relation to the integrated procurement; and the use of open international standards.Collaborative working using BIM demands a new expert role of a model manager who possesses ICT as well as construction process know-how (InPro, 2009). The model manager deals with the system as well as with the actors. He provides and maintains technological solutions required for BIM functionalities, manages the information flow, and improves the ICT skills of the stakeholders. The model manager does not take decisions on design and engineering solutions, nor the organisational processes, but his roles in the chain of decision making are focused on:the development of BIM, the definition of the structure and detail level of the model, and the deployment of relevant BIM tools, such as for models checking, merging, and clash detections;the contribution to collaboration methods, especially decision making and communication protocols, task planning, and risk management;and the management of information, in terms of data flow and storage, identification of communication errors, and decision or process (re-)tracking.Regarding the legal and organisational issues, one of the actual questions is: “In what way does the intellectual property right (IPR) in collaborative working using BIM differ from the IPR in a traditional teamwork?”. In terms of combine d work, the IPR of each element is at tached to its creator. Although it seems to be a fully integrated design, BIM actually resulted from a combination of works/elements; for instance: the outline of the building design, is created by the architect, the design for theelectrical system, is created by the electrical contractor, etc. Thus, in case of BIM as a combined work, the IPR is similar to traditional teamwork. Working with BIM with authorship registration functionalities may actually make it easier to keep track of the IPR.How does collaborative working, using BIM, effect the contractual relationship? On the one hand,collaborative working using BIM does not necessarily change the liability position in the contract nor does it obligate an alliance contract. The General Principles of BIM A ddendum confirms: …This does not effectuate or require a restructuring of contractual relationships or shifting of risks between or among the Project Participants other than as specifically required per the Protocol Addendum and its Attachments? (ConsensusDOCS, 2008). On the other hand, changes in terms of payment schemes can be anticipated. Collaborative processes using BIM will lead to the shifting of activities from to the early design phase. Much, if not all, activities in the detailed engineering and specification phase will be done in the earlier phases. It means that significant payment for the engineering phase, which may count up to 40 per cent of the design cost, can no longer be expected. As engineering work is done concurrently with the design, a new proportion of the payment in the early design phase is necessary.4. Review of ongoing hospital building projects using BIMIn The Netherlands, the changing roles in hospital building projects are part of the strategy, which aims at achieving a sustainable real estate in response to the changing healthcare policy. Referring to literature and previous research, the main factors that influence the success of the changing roles can be concluded as: the implementation of an integrated procurementmethod and a life-cycle design approach for a sustainable collaborative process; the agreement on the BIM structure and the intellectual rights; and the integration of the role of a model manager. The preceding sections have discussed the conceptual thinking on how to deal with these factors effectively. This current section observes two actual projects and compares the actual practice with the conceptual view respectively.The main issues, which are observed in the case studies, are: the selected procurement method and the roles of the involved parties within this method;the implementation of the life-cycle design approach;the type, structure, and functionalities of BIM used in the project;the openness in data sharing and transfer of the model, and the intended use of BIM in the future; and the roles and tasks of the model manager.The pilot experience of hospital building projects using BIM in the Netherlands can be observed at University Medical Centre St Radboud (further referred as UMC) and Maxima Medical Centre (further referred as MMC). At UMC, the new building project for the Faculty of Dentistry in the city of Nijmegen has been dedicated as a BIM pilot project. At MMC, BIM is used in designing new buildings for Medical Simulation and Mother-and-Child Centre in the city of Veldhoven.The first case is a project at the University Medical Centre (UMC) St Radboud. UMC is more than just a hospital. UMC combines medical services, education and research. More than 8500 staff and 3000 students work at UMC. As a part of the innovative real estate strategy, UMC has considered to use BIM for its building projects. The new development of the Faculty ofDentistry and the surrounding buildings on the Kapittelweg in Nijmegen has been chosen as a pilot project to gather practical knowledge and experience on collaborative processes with BIM support.The main ambition to be achieved through the use of BIM in the building projects at UMC can be summarised as follows: using 3D visualisation to enhance the coordination and communication among the building actors, and the user participation in design;integrating the architectural design with structural analysis, energy analysis, cost estimation, and planning;interactively evaluating the design solutions against the programme of requirements and specifications;reducing redesign/remake costs through clash detection during the design process; andoptimising the management of the facility through the registration of medical installations andequipments, fixed and flexible furniture, product and output specifications, and operational data.The second case is a project at the Maxima Medical Centre (MMC). MMC is a large hospital resulted from a merger between the Diaconessenhuis in Eindhoven and St Joseph Hospital in Veldhoven. Annually the 3,400 staff of MMC provides medical services to more than 450,000 visitors and patients. A large-scaled extension project of the hospital in Veldhoven is a part of its real estate strategy. A medical simulation centre and a women-and-children medical centre are among the most important new facilities within this extension project. The design has been developed using 3D modelling with several functionalities of BIM.The findings from both cases and the analysis are as follows.Both UMC and MMC opted for a traditional procurement method in which the client directly contracted an architect, a structural engineer, and a mechanical, electrical and plumbing (MEP) consultant in the design team. Once the design and detailed specifications are finished, a tender procedure will follow to select a contractor. Despite the choice for this traditional method, many attempts have been made for a closer and more effective multidisciplinary collaboration. UMC dedicated a relatively long preparation phase with the architect, structural engineer and MEP consultant before the design commenced. This preparation phase was aimed at creating a common vision on the optimal way for collaboration using BIM as an ICT support. Some results of this preparation phase are: a document that defines the common ambition for the project and the collaborative working process and a semi-formal agreement that states the commitment of the building actors for collaboration. Other than UMC, MMC selected an architecture firm with an in-house engineering department. Thus, the collaboration between the architect and structural engineer can take place within the same firm using the same software application.Regarding the life-cycle design approach, the main attention is given on life-cycle costs, maintenance needs, and facility management. Using BIM, both hospitals intend to get a much better insight in these aspects over the life-cycle period. The life-cycle sustainability criteria are included in the assignments for the design teams. Multidisciplinary designers and engineers are asked to collaborate more closely and to interact with the end-users to address life-cycle requirements. However, ensuring the building actors to engage in an integrated collaboration to generate sustainable design solutions that meet the life-cycle。

建筑设计毕业论文中英文资料外文翻译文献

建筑设计毕业论文中英文资料外文翻译文献

毕业论文中英文资料外文翻译文献Architecture StructureWe have and the architects must deal with the spatial aspect of activity, physical, and symbolic needs in such a way that overall performance integrity is assured. Hence, he or she well wants to think of evolving a building environment as a total system of interacting and space forming subsystems. Is represents a complex challenge, and to meet it the architect will need a hierarchic design process that provides at least three levels of feedback thinking: schematic, preliminary, and final.Such a hierarchy is necessary if he or she is to avoid being confused , at conceptual stages of design thinking ,by the myriad detail issues that can distract attention from more basic consideration s .In fact , we can say that an architect’s ability to distinguish the more basic form the more detailed issues is essential to his success as a designer .The object of the schematic feed back level is to generate and evaluate overall site-plan, activity-interaction, and building-configuration options .To do so the architect must be able to focus on the interaction of the basic attributes of the site context, the spatial organization, and the symbolism as determinants of physical form. This means that ,in schematic terms ,the architect may first conceive and model a building design as an organizational abstraction of essential performance-space in teractions.Then he or she may explore the overall space-form implications of the abstraction. As an actual building configuration option begins to emerge, it will be modified to include consideration for basic site conditions.At the schematic stage, it would also be helpful if the designer could visualize his or her options for achieving overall structural integrity and consider the constructive feasibility and economic of his or her scheme .But this will require that the architect and/or a consultant be able to conceptualize total-system structural options in terms of elemental detail .Such overall thinking can be easily fed back to improve the space-form scheme.At the preliminary level, the architect’s emphasis will shift to the elaboration of his or her more promising schematic design options .Here the architect’s structural needs will shift toapproximate design of specific subsystem options. At this stage the total structural scheme is developed to a middle level of specificity by focusing on identification and design of major subsystems to the extent that their key geometric, component, and interactive properties are established .Basic subsystem interaction and design conflicts can thus be identified and resolved in the context of total-system objectives. Consultants can play a significant part in this effort; these preliminary-level decisions may also result in feedback that calls for refinement or even major change in schematic concepts.When the designer and the client are satisfied with the feasibility of a design proposal at the preliminary level, it means that the basic problems of overall design are solved and details are not likely to produce major change .The focus shifts again ,and the design process moves into the final level .At this stage the emphasis will be on the detailed development of all subsystem specifics . Here the role of specialists from various fields, including structural engineering, is much larger, since all detail of the preliminary design must be worked out. Decisions made at this level may produce feedback into Level II that will result in changes. However, if Levels I and II are handled with insight, the relationship between the overall decisions, made at the schematic and preliminary levels, and the specifics of the final level should be such that gross redesign is not in question, Rather, the entire process should be one of moving in an evolutionary fashion from creation and refinement (or modification) of the more general properties of a total-system design concept, to the fleshing out of requisite elements and details.To summarize: At Level I, the architect must first establish, in conceptual terms, the overall space-form feasibility of basic schematic options. At this stage, collaboration with specialists can be helpful, but only if in the form of overall thinking. At Level II, the architect must be able to identify the major subsystem requirements implied by the scheme and substantial their interactive feasibility by approximating key component properties .That is, the properties of major subsystems need be worked out only in sufficient depth to very the inherent compatibility of their basic form-related and behavioral interaction . This will mean a somewhat more specific form of collaboration with specialists then that in level I .At level III ,the architect and the specific form of collaboration with specialists then that providing for all of the elemental design specifics required to produce biddable construction documents .Of course this success comes from the development of the Structural Material.1.Reinforced ConcretePlain concrete is formed from a hardened mixture of cement ,water ,fine aggregate, coarse aggregate (crushed stone or gravel),air, and often other admixtures. The plastic mix is placed and consolidated in the formwork, then cured to facilitate the acceleration of the chemical hydration reaction lf the cement/water mix, resulting in hardened concrete. The finished product has high compressive strength, and low resistance to tension, such that its tensile strength is approximately one tenth lf its compressive strength. Consequently, tensile and shear reinforcement in the tensile regions of sections has to be provided to compensate for the weak tension regions in the reinforced concrete element.It is this deviation in the composition of a reinforces concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design. The two components of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved. This is possible because concrete can easily be given any desired shape by placing and compacting the wet mixture of the constituent ingredients are properly proportioned, the finished product becomes strong, durable, and, in combination with the reinforcing bars, adaptable for use as main members of any structural system.The techniques necessary for placing concrete depend on the type of member to be cast: that is, whether it is a column, a bean, a wall, a slab, a foundation. a mass columns, or an extension of previously placed and hardened concrete. For beams, columns, and walls, the forms should be well oiled after cleaning them, and the reinforcement should be cleared of rust and other harmful materials. In foundations, the earth should be compacted and thoroughly moistened to about 6 in. in depth to avoid absorption of the moisture present in the wet concrete. Concrete should always be placed in horizontal layers which are compacted by means of high frequency power-driven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concrete.Hydration of the cement takes place in the presence of moisture at temperatures above 50°F. It is necessary to maintain such a condition in order that the chemical hydration reaction can take place. If drying is too rapid, surface cracking takes place. This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydration.It is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element, such as geometrical width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so on. Consequently, trial and adjustment is necessary in the choice ofconcrete sections, with assumptions based on conditions at site, availability of the constituent materials, particular demands of the owners, architectural and headroom requirements, the applicable codes, and environmental reinforced concrete is often a site-constructed composite, in contrast to the standard mill-fabricated beam and column sections in steel structures.A trial section has to be chosen for each critical location in a structural system. The trial section has to be analyzed to determine if its nominal resisting strength is adequate to carry the applied factored load. Since more than one trial is often necessary to arrive at the required section, the first design input step generates into a series of trial-and-adjustment analyses.The trial-and –adjustment procedures for the choice of a concrete section lead to the convergence of analysis and design. Hence every design is an analysis once a trial section is chosen. The availability of handbooks, charts, and personal computers and programs supports this approach as a more efficient, compact, and speedy instructional method compared with the traditional approach of treating the analysis of reinforced concrete separately from pure design.2. EarthworkBecause earthmoving methods and costs change more quickly than those in any other branch of civil engineering, this is a field where there are real opportunities for the enthusiast. In 1935 most of the methods now in use for carrying and excavating earth with rubber-tyred equipment did not exist. Most earth was moved by narrow rail track, now relatively rare, and the main methods of excavation, with face shovel, backacter, or dragline or grab, though they are still widely used are only a few of the many current methods. To keep his knowledge of earthmoving equipment up to date an engineer must therefore spend tine studying modern machines. Generally the only reliable up-to-date information on excavators, loaders and transport is obtainable from the makers.Earthworks or earthmoving means cutting into ground where its surface is too high ( cuts ), and dumping the earth in other places where the surface is too low ( fills). Toreduce earthwork costs, the volume of the fills should be equal to the volume of the cuts and wherever possible the cuts should be placednear to fills of equal volume so as to reduce transport and double handlingof the fill. This work of earthwork design falls on the engineer who lays out the road since it is the layout of the earthwork more than anything else which decides its cheapness. From the available maps ahd levels, the engineering must try to reach as many decisions as possible in the drawing office by drawing cross sections of the earthwork. On the site when further information becomes available he can make changes in jis sections and layout,but the drawing lffice work will not have been lost. It will have helped him to reach the best solution in the shortest time.The cheapest way of moving earth is to take it directly out of the cut and drop it as fill with the same machine. This is not always possible, but when it canbe done it is ideal, being both quick and cheap. Draglines, bulldozers and face shovels an do this. The largest radius is obtained with thedragline,and the largest tonnage of earth is moved by the bulldozer, though only over short distances.The disadvantages of the dragline are that it must dig below itself, it cannot dig with force into compacted material, it cannot dig on steep slopws, and its dumping and digging are not accurate.Face shovels are between bulldozers and draglines, having a larger radius of action than bulldozers but less than draglines. They are anle to dig into a vertical cliff face in a way which would be dangerous tor a bulldozer operator and impossible for a dragline. Each piece of equipment should be level of their tracks and for deep digs in compact material a backacter is most useful, but its dumping radius is considerably less than that of the same escavator fitted with a face shovel.Rubber-tyred bowl scrapers are indispensable for fairly level digging where the distance of transport is too much tor a dragline or face shovel. They can dig the material deeply ( but only below themselves ) to a fairly flat surface, carry it hundreds of meters if need be, then drop it and level it roughly during the dumping. For hard digging it is often found economical to keep a pusher tractor ( wheeled or tracked ) on the digging site, to push each scraper as it returns to dig. As soon as the scraper is full,the pusher tractor returns to the beginning of the dig to heop to help the nest scraper.Bowl scrapers are often extremely powerful machines;many makers build scrapers of 8 cubic meters struck capacity, which carry 10 m ³ heaped. The largest self-propelled scrapers are of 19 m ³struck capacity ( 25 m ³ heaped )and they are driven by a tractor engine of 430 horse-powers.Dumpers are probably the commonest rubber-tyred transport since they can also conveniently be used for carrying concrete or other building materials. Dumpers have the earth container over the front axle on large rubber-tyred wheels, and the container tips forwards on most types, though in articulated dumpers the direction of tip can be widely varied. The smallest dumpers have a capacity of about 0.5 m ³, and the largest standard types are of about 4.5 m ³. Special types include the self-loading dumper of up to 4 m ³ and the articulated type of about 0.5 m ³. The distinction between dumpers and dump trucks must be remembered .dumpers tip forwards and the driver sits behind the load. Dump trucks are heavy, strengthened tipping lorries, the driver travels in front lf the load and the load is dumped behind him, so they are sometimes called rear-dump trucks.3.Safety of StructuresThe principal scope of specifications is to provide general principles and computational methods in order to verify safety of structures. The “ safety factor ”, which according to modern trends is independent of the nature and combination of the materials used, can usually be defined as the ratio between the conditions. This ratio is also proportional to the inverse of the probability ( risk ) of failure of the structure.Failure has to be considered not only as overall collapse of the structure but also asunserviceability or, according to a more precise. Common definition. As the reaching of a “ limit state ” which causes the construction not to accomplish the task it was designed for. Ther e are two categories of limit state :(1)Ultimate limit sate, which corresponds to the highest value of the load-bearing capacity. Examples include local buckling or global instability of the structure; failure of some sections and subsequent transformation of the structure into a mechanism; failure by fatigue; elastic or plastic deformation or creep that cause a substantial change of the geometry of the structure; and sensitivity of the structure to alternating loads, to fire and to explosions.(2)Service limit states, which are functions of the use and durability of the structure. Examples include excessive deformations and displacements without instability; early or excessive cracks; large vibrations; and corrosion.Computational methods used to verify structures with respect to the different safety conditions can be separated into:(1)Deterministic methods, in which the main parameters are considered as nonrandom parameters.(2)Probabilistic methods, in which the main parameters are considered as random parameters.Alternatively, with respect to the different use of factors of safety, computational methods can be separated into:(1)Allowable stress method, in which the stresses computed under maximum loads are compared with the strength of the material reduced by given safety factors.(2)Limit states method, in which the structure may be proportioned on the basis of its maximum strength. This strength, as determined by rational analysis, shall not be less than that required to support a factored load equal to the sum of the factored live load and dead load ( ultimate state ).The stresses corresponding to working ( service ) conditions with unfactored live and dead loads are compared with prescribed values ( service limit state ) . From the four possible combinations of the first two and second two methods, we can obtain some useful computational methods. Generally, two combinations prevail:(1)deterministic methods, which make use of allowable stresses.(2)Probabilistic methods, which make use of limit states.The main advantage of probabilistic approaches is that, at least in theory, it is possible to scientifically take into account all random factors of safety, which are then combined to define the safety factor. probabilistic approaches depend upon :(1) Random distribution of strength of materials with respect to the conditions of fabrication and erection ( scatter of the values of mechanical properties through out the structure );(2) Uncertainty of the geometry of the cross-section sand of the structure ( faults andimperfections due to fabrication and erection of the structure );(3) Uncertainty of the predicted live loads and dead loads acting on the structure;(4)Uncertainty related to the approximation of the computational method used ( deviation of the actual stresses from computed stresses ).Furthermore, probabilistic theories mean that the allowable risk can be based on several factors, such as :(1) Importance of the construction and gravity of the damage by its failure;(2)Number of human lives which can be threatened by this failure;(3)Possibility and/or likelihood of repairing the structure;(4) Predicted life of the structure.All these factors are related to economic and social considerations such as:(1) Initial cost of the construction;(2) Amortization funds for the duration of the construction;(3) Cost of physical and material damage due to the failure of the construction;(4) Adverse impact on society;(5) Moral and psychological views.The definition of all these parameters, for a given safety factor, allows construction at the optimum cost. However, the difficulty of carrying out a complete probabilistic analysis has to be taken into account. For such an analysis the laws of the distribution of the live load and its induced stresses, of the scatter of mechanical properties of materials, and of the geometry of the cross-sections and the structure have to be known. Furthermore, it is difficult to interpret the interaction between the law of distribution of strength and that of stresses because both depend upon the nature of the material, on the cross-sections and upon the load acting on the structure. These practical difficulties can be overcome in two ways. The first is to apply different safety factors to the material and to the loads, without necessarily adopting the probabilistic criterion. The second is an approximate probabilistic method which introduces some simplifying assumptions ( semi-probabilistic methods ) .文献翻译建筑师必须从一种全局的角度出发去处理建筑设计中应该考虑到的实用活动,物质及象征性的需求。

毕业设计(论文)外文参考资料及译文 建筑类型和设计

毕业设计(论文)外文参考资料及译文 建筑类型和设计

毕业设计(论文)外文参考资料及译文译文题目:建筑类型和设计Building types and designAbstract: As classified by their use ,buildings are mainly of two types :industrial buildings and civil buildings .industrial buildings are used by various factories or industrial production while civil buildings are those that are used by people for dwelling, employment ,education and other social activities .Key words: industrial buildings; civil buildings; social activitiesA building is closely bound up with people,for it provides with the necessary space to work and live in .As classified by their use ,buildings are mainly of two types :industrial buildings and civil buildings .industrial buildings are used by various factories or industrial production while civil buildings are those that are used by people for dwelling ,employment ,education and other social activities .Industrial buildings are factory buildings that are available for processing and manufacturing of various kinds ,in such fields as the mining industry ,themetallurgical industry ,machine building ,the chemical industry and the textile industry . factory buildings can be classified into two types single-story ones and multi-story ones .the construction of industrial buildings is the same as that of civil buildings .however ,industrial and civil buildings differ in the materials used and in the way they are used .Civil buildings are divided into two broad categories: residential buildings and public buildings .residential buildings should suit family life .each flat should consist of at least three necessary rooms : a living room ,a kitchen and a toilet .public buildings can be used in politics ,cultural activities ,administration work and other services,suchasschools,officebuildings,parks ,hospitals ,shops ,stations ,theatres ,gym nasiums ,hotels ,exhibition halls ,bath pools ,and so on .all of them have different functions ,which in turn require different design types as well.Housing is the living quarters for human beings .the basic function of housing is to provide shelter from the elements ,but people today require much more that of their housing .a family moving into a new neighborhood will to know if the available housing meets its standards of safety ,health ,and comfort .a family will also ask how near the housing is to grain shops ,food markets ,schools ,stores ,the library ,a movie theater ,and the community center .In the mid-1960’s a most important value in housing was sufficient space both inside and out .a majority of families preferred single-family homes on about half an acre of land ,which would provide space for spare-time activities .in highly industrialized countries ,many families preferred to live as far out as possible from the center of a metropolitan area ,even if the wage earners had to travel some distance to their work .quite a large number of families preferred country housing to suburban housing because their chief aim was to get far away from noise ,crowding ,and confusion .the accessibility of public transportation had ceased to be a decisive factor in housing because most workers drove their cars to work .people we’re chiefly interested in the arrangement and size of rooms and the number of bedrooms .Before any of the building can begin ,plans have to be drawn to show what the building will be like ,the exact place in which it is to go and how everything is to be done.An important point in building design is the layout of rooms ,which should provide the greatest possible convenience in relation to the purposes for which they are intended .in a dwelling house ,the layout may be considered under three categories : “day”, “night” ,and “services” .attention must be paid to the provision of easy communication between these areas .the “day”rooms generally include a dining-room ,sitting-room and kitchen ,but other rooms ,such as a study ,may be added ,and there may be a hall .the living-room ,which is generally the largest ,often serves as a dining-room ,too ,or the kitchen may have a d ining alcove .the “night” rooms consist the roost.t he “services” comprise the kitchen ,bathrooms ,larder ,and water-closets .the kitchen and larder connect the services with the day rooms .It is also essential to consider the question of outlook from the various rooms ,and those most in use should preferably face south as possible .it is ,however ,often very difficult to meet the optimum requirements ,both on account of the surroundings and the location of the roads .in resolving these complex problems ,it is also necessary to follow the local town-planning regulations which are concerned with public amenities ,density of population ,height of buildings ,proportion of green space to dwellings ,building lines ,the general appearance of new properties in relation to the neighbourhood ,and so on .There is little standardization in industrial buildings although such buildings still need to comply with local town-planning regulations .the modern trend is towards light ,airy factory buildings .generally of reinforced concrete or metal construction ,a factory can be given a “shed ”type ridge roof ,incorporating windows facing north so as to give evenly distributed natural lighting without sun-glare .Architectural design development so far, is no longer content merely to live and businesses use natural resources are becoming scarce in today's society, energy saving, environmentally friendly building construction to become the development trend of the future. Market has been as energy conservation, green building the driving force,the recent century represented a harmonious environment, real estate sellingenergy-saving also proves this point. This also means that ordinary people had alienated the energy saving type of real estate, gradually unfold the mystery, to the public.Water reuse and efficient use of water resources technologyReflections Harmony century urban life, the introduction of green, energy-saving building construction concept, the full use of geographical terrain and climate, natural advantages, according to human comfort requirements and weather conditions for construction planning and design, Kunming bring a “non-green , uncooperative”, the life of the proposal, environmental protection into a harmonious way of life.Deep sense of crisis of water scarcity, water conservation harmony century by water reuse treatment systems. “Water”, also known as “recycled water” or “back water”, water reuse is the main form of eff icient use of water resources. “Harmony Century” water reuse treatment systems throughout the real estate sub-quality implementation of all water emissions, returning after a biological focus, depth filtration UV disinfection treatment process, used for toilet flushing, car washing, cleaning, and to meet the landscape and a huge pool green eco-system needs, efficient use of water resources, water cost savings of more households.Impermeable layer of drainage technique with noise“Harmony Century” the introduction of the same layer emission technologies, to achieve the same floor of the main drainage branch pipe and branch pipes are not across the floor drain in the floor within the same established connection to the main drainage pipe.The traditional approach, there are a number of drainage construction, it is hard to solve the problem: noise can interfere with the drainage upstairs downstairs; floor are many holes, the downstairs when the fire could spread to the upstairs; maintenance, when renovation of damage to the downstairs ceilings; sewage poured into the trap as a result of health problems; leaks, clogged affect the downstairs tenants, disputes.“Harmony Century” using the same drainage system, installed only in the civil riser, interior designers can be free of the bathroom layout, drainage branch pipe inthe renovation by interior design drawings for installation. As a result, not only solved the problem of traditional drainage patterns to achieve the clarity of property rights, each household has a fully independent health space, tenants will not be the upper interference, while still meeting the personalized decoration, personalized decoration . Solar energy saving lamp“Harmony Century” will be back in two years ago, solar lighting in the planning, is the first application of solar lighting in Kunming than real estate, energy-saving environmental protection played a role model.Solar energy street lights, without power because of their influence, without ditching embedding, not consumption of conventional energy, as long as the sunny spot to be installed and so on. Harmony century, the first to use solar lights, charging at night during the day, no external power supply, safety and energy conservation pollution; the process of charging and switching lights from the microcomputer intelligent control, automatic lights dark, dawn, turn off the lights automatically, without manual operation, stable and reliable , long life, full of energy saving; solar power supply systems over ad hoc charge, discharge, anti-reverse and lightning, etc., more secure and reliable operation.Thermal insulation of aerated concrete brick insulation, noise, radiation Aerated concrete is a new type of light porous materials, it is light weight, good insulation properties, high strength, shock resistance, sound insulation performance, high temperature and so on.Since only the weight of aerated concrete brick and sand-lime brick is equivalent to 1 / 3 of ordinary concrete, 1 / 5, greatly reducing the weight of body building, built to improve the seismic performance of buildings.We can see from the structure, the internal structure of aerated concrete, like bread, like a large number of evenly distributed closed pores, so in general do not have the sound-absorbing building materials performance。

建筑大学毕业设计外文文献及译文超高层建筑幕墙系统的结构与性能

建筑大学毕业设计外文文献及译文超高层建筑幕墙系统的结构与性能

中文4553字毕业设计外文文献及译文文献、资料题目:Construction and Performance ofCurtain Wall Systems for Super Highrise Buildings 文献、资料来源:网络文献、资料发表(出版)日期:2007.4.5院(部):机电工程学院专业:机械制造与自动化班级:机械1121姓名:学号:指导教师:翻译日期:2014 年4 月20 日外文文献:Construction and Performance of Curtain WallSystems for Super Highrise BuildingsRaymond WM WongINTRODUCTIONThe construction of super highrise buildings has been very active in Hong Kong for decades. Recent renowned projects like the 50-storey Manulife Tower, the 62-storey Cheung Kong Center, the 80-storey “Center”,the 88-storey International Financial Center, and a number of recent residential buildings exceeding 60-storey tall, are without exception, using curtain wall as their external envelope.Using thin wall as external envelope for tall buildings has always been a challenge to designers and builders, in particular in terms of cost, energy, water-tightness, installation, dimensional and structural stability, interfacing arrangement with other building components and maintenance etc. Making use of the Hong Kong’s experience, the writer wish to highlight some local practices and summarize how such thin wall systems are designed and installed.USING CURTAIN WALL IN BUILDIGNS OF HONG KONGHigh-rise buildings started to spring up in the skyline of Hong Kong since the 1970’s in parallel with her economic take-off from a traditional manufacturing-based industrial economy and transforming herself into an world-renowned international financial centre. High-rise buildings by that time were concentrated in the commercial districts like Central in the Hong Kong Island and Tsim Sha Tsui on the Kowloon Peninsula side.The first generation of buildings using what-so-called a curtain wall system can hardly be described as a full system which is usually of proprietary design. The pioneer systems were just external façade/walling designed by local architects and with materials supplied by localmanufacturers. The common systems used by that time were in majority stick-type, spandrel and cover, or unit-in-frame systems, constructed of aluminum sections, sometimes incorporated with large areas of stone slabs to cover up solid walls. They were popular due to their highly adaptability, low cost, easy to design-and-install nature.More deluxe commercial buildings were built in the late 70’s as the economy of Hong Kong growing hotter and hotter. Developers tended to request for systems with higher performance as the external envelop for their buildings, in terms both of appearance, material, construction and maintenance concerns.Due to the relative lack of experience at that stage, the performance of these second generation curtain wall systems (from late 70’s to mid 80’s)could still hardly described as satisfactory. Problems like seepage, staining, deformation, deterioration and rapid aging of the jointing materials, were very common to many walling cases, often to a condition that made repair and maintenance almost impossible. The replacement of these walling systems not only costly, but also created great disruption to the normal utilization of the building users, and at the same time badly lowered the property value of the entire premises.The third generation of curtain wall systems roughly started in the mid/late 80’s, by the time Hong Kong was experiencing her economic climax before the handing over of her sovereignty backto China in 1997. Accommodated experience in the application of curtain wall systems in high-performance buildings contributed solidly in the process of perfecting these systems. Throughout the period, the design and production teams, as well as the manufacturers and the engineering supporting teams, were growing more mature in the mastering of the local situation and market. Most problems appeared in the previous cases have been much effectively taken care of. Systems of this generation are in general much more satisfactorily received by most users.WHAT IS A CURTAIN WALLMetal and glass curtain wall systems have found growing favour in modern architecture. They are easily distinguished from other types of claddings by their thin mullions of horizontal and vertical metallic bars surrounding an all glass or metal panel. The curtain wall system has evolved rapidly over the last two decades, especially with respect to weather control performance. The early systems presented frequent rain penetration problems; water stain patches would form on the outside or condensation on the inside mullion surfaces; glazing seals were sometimes pumped out of the rabbet of sealed double glazing window units. However, most of these difficulties were eventually overcome with improved detail design of the system components. Today, most curtain wall manufacturers offer a quality product line of components which can be used to create one of the best overall exterior wall systems.A curtain wall system is a lightweight exterior cladding which is hung on the building structure, usually from floor to floor. It can provide a variety of exterior appearances but is characterized by narrowly spaced vertical and horizontal caps with glass or metal infill panels. These systems provide a finished exterior appearance and most often a semi-finished interior as well. They are also designed to accommodate structural deflections, control wind-driven rain and air leakage, minimize the effects of solar radiation and provide for maintenance-free long term performance. Most of today's metal curtain wall systems are constructed of lightweight aluminum or its alloys, althoughsome may be of steel.COMMON TYPES OF CURTAIN WALL SYSTEMSExternal wall with large area of glazed portion that carries no superimposed load except wind load is usually termed as curtain wall. Traditionally curtain wall consists of a metal frame system infill with vision or opaque panels, that serves to provide glazing for window openings as well as to cover-up structures like columns, slabs and beams, or sometimes even sections of solid wall.There are many ways to serve the purpose, depending on a number of factors such as the design and budget for the project, layout and shape of the building structure, as well as other architectural or structural requirements. According to the American Architectural Manufacturers Association, curtain wall systems can be classified in five types, namely, the stick system, unit system, unit and mullion system, panel system, and the column-cover-and-spandrel system. However, due to the introduction of high-performance framing/articulation products and high-strength structural glass, some newer forms of curtain wall systems such as large-area glazed wall using spider clips, bow mullions, hangers or cable stiffeners as supports and connections, are new systems that cannot easily be classified using traditional concepts.Stick systemCurtain wall in stick system is a cladding and exterior wall system which is hung on the building structure from floor to floor. It is assembled from various components to include steel or aluminum anchors, mullions (vertical load taking member), rails vision glass, spandrel panels, insulation and metal backing pans. For the fixing of the system, there are various hardware components such as anchors, connectors, brackets, cramps, setting blocks, corner blocks, gaskets and sealants etc.This system has the following merits/demerits:Merits-Low cost, components can be made in standard design and stocked as proprietary product for use in bulk quantity.-Shorter time for design and fabrication.-Fairly easy to fit the shape and form of a building.-Require relatively simple sections to form the mullions and the backing frame.-The design of the infilling panels can be very flexible and form various combination using different materials to provide the appearance or fulfill other functional requirements.-With the provision of the spandrel panel (the opaque portion) in the design, more colour or design options can be achieved.-Installation of the system only requires simple tool like a manually operated pulley set-up.-Easier to carry out replacement, alteration and maintenance. Demerits-System is designed on a job-by-job basis-More labour-intensive in the fixing and installation process-Higher risk of leaking due to the existence of large amount of in-situ joints between mullion and panels.-Involvement of large number of framing members coming from the mullion, transom or other framing parts that make the fixing at spot quite troublesome and inconsistent.-Less fashionable for the design limited basically to monotonous grid without the elegance that other systems may achieve.Unit SystemUnit systems are composed of modulated panels that are fabricated in factory and delivered to site in one-piece for installation. The panels are fully provided with all the glazing and/or the spandrel panels, incorporated with the required insulation and other architectural features, thus requiring very limited second-fixed installation works on site. The panels are usually spanned in a floor-to-floor arrangement and may be designed in a number of standard/optional panels such as fully glazed, glazed with opaque panels, fully opaque in metal or stone slab, louvered panels, or other special modules like the corner or bayed units. In order to get the best benefit of using this system, units are often produced to an optimistic large size so as to minimize the number of units used.This system has the following merits/demerits:Merits-Easy to install merely by securing the modulated panels onto the building exterior using fixing/connection devices which are usually very dimensionally flexible.-Saving up a lot of manpower due to ease of installation.-Higher performance units can be produced to meet stringent requirements due to bettercontrol under factory environment.-Preferably to be used in buildings with large walling area for the economy of scale in production as well as the elimination of countless assembly of minor components on site. Demerits-It takes longer lead time to carry out the coordination, design and fabrication of the system/units.-Require higher dimensional accuracy in the building structure for the fixing of the units.-Lifting appliances may be required to assist the hoisting and installation of the large-sized walling units-Difficult to carry out replacement or maintenance due to the interlocking nature of the modulated units.Unit and mullion systemThis is a combination of the stick system and the unit system and may be regarded as a compromise of the two. It is more suitable for use in medium-sized projects so as to balance the factors of lead time, ease of installation and economy of scale.Panel systemA panel curtain wall system is similar to a unit system, the difference being that a panel system has homogeneous sheet or cast panel with few joints and may not have separate mullions. Unit systems are made up of smaller components fabricated together to form much complex panels that capable to perform heavier duties or other more specific requirements. However, due to the relative simplicity of the system, curtain wall of panel system design may not be able to fulfill the usual requirements most high-rise buildings required under Hong Kong’s environment. Its use is therefore more limited to certain kinds of buildings like those of standardized design for low-income classes or for buildings of industrial purposes. In this case, the panels can be constructed of sheet materials and manufactured in large quantity in very low cost.Column-cover-and-spandrel systemColumn-cover-and-spandrel system consists of column covers, which are usually made of alloyed aluminum, metal sheet or other laminated/fibre-reinforced sheet, and with glazing components and spandrel panels that fit between them. It resembles certain similarity to a unit-and-mullion system except that the structure of the building is exemplified by the column covers.With the exception of the stick system and the unit system, other curtain wall systems are seldom used in Hong Kong.Structural glazing systemThe merit of using structural glazing system as external wall is to minimize the unglazed elements as much as possible, leaving glass panel almost as the only glazed surface on the wall. This can be done by providing larger mullion supports which span outward away frm the structural floor of a building. Special clamping devices such as a spider bracket can be used to hold the glazing panel in position. Structural sealant is used to seal up the gap between the glazing panels.DESIGN PRINCIPLES FOR EXTERNAL WALLA building enclosure may be broadly defined as a set of interconnecting elements which separate the outside from the inside. These elements would include exterior walls, a roof, other components such as windows and doors, and sometimes exposed floors. The function of a building enclosure is to control the penetration of snow, wind, rain and sun to the inside and to contain the desired indoor climate. The enclosure must meet many individual requirments but for the purpose of this paper they are limited to the following six:control of air flow,control of heat flow,control over the entry of rain and snow,control of sunlight and other forms of radiant energy,control of water vapour diffusion,accommodation of building movements.The requirement for air tightness and consequently air leakage control is met by most curtain wall systems because the air barrier of the wall is inherent in the structural properties of glass and aluminum or steel tubes that comprise the system. The continuity of the air barrier (Figure 1) is achieved by the continuity of the glass panel through the air seal at the shoulder flanges of the tubular mullion, and through the aluminum section to the other flange surface. The air seal between the lower shoulder flange of the curtain wall mullion and the metal pan of the spandrel panel provides continuity of air tightness to the air barrier metal pan and on to the next mullion connection. Such assemblies are regularly tested using air pressure to determine the structural properties of the glass, metal, and seals and to determine the equivalent leakage area (ELA) that remains. In addition, the Architectural Aluminium Manufacturers Association imposes upon its members many other requirements including a specification that the system must not leak more than.30L/sperm2 of wall at a pressure difference equivalent to a 40 km/h wind.Thermal Insulation (Control of heat flow)The control of heat flow is generally achieved through the use of insulation. Although it is not apparent from the exterior, the curtain wall system uses considerable insulation usually behind spandrel glass or any opaque panels. Because of the materials used in the structure, i.e., glass and metal, which are highly conductive, the system must also contend with potential condensation on the interior surfaces. To curtail this effect, most curtain wall systems incorporate two distinct features: first, a sealed double glazed window or an insulated metal pan and second, a thermally broken mullion, usually with a PVC plastic insert and more recently, a foamed-in-place polyurethane connection. A sealed double glazed window unit can accommodate an indoor humidity up to about 35% at an outdoor temperature of -25 ° C with little condensation appearing on the glass. Similarly, the thermal break in the aluminum or steel mullion ensures that the surfacetemperature of the structural mullion will remain well above the dew point temperature of the air for most building types, except for high humidity indoor environments such as in swimming pools or computer centers. The thermal break also ensures that the structural mullion is thermally stable, that is, not subject to extremes of expansion and contraction.MAINTENANCE CONSIDERATIONMaintenance for curtain wall is a long-term consideration involving both the quality of design, control during construction and adequate maintenance throughout the life span. Once failure occurs in the curtain wall it will be very expensive to have the defects rectified and at the same time causing great disturbance to the building users. Below are some common problem sources where failures usually occur.1.D esign failure – selection and appropriateness of the system, non-compliance to design and performance standards, imperfection in the jointing design and detailing, improper use of materials etc.2.C onstruction and structural failure –wrong location or method of fixing, improper anchorage and connection provision (including failure in welding), failure in the walling components, unpredicted deflection or deformation appears in the background structure, poor supervision and workmanship.3.A ging and deterioration –discolouring and surface damaging due to weather action; corrosion due to air pollution, acid rain, or electro-chemical effect to dissimilar metals; aging and hardening of the glazing compound or sealing gasket, deteriorating of the insulating materials that lead to further dampening of the walling materials/components, disfiguring or loosening of the fixing and connections, loosening or broken-off of the glazing or other fitting items.Curtain wall systems should be inspected regularly after they have been installed in buildings. Proper maintenance and repair are essential to keep them in a safe condition. Inspectionarrangement should be made in particularly before and after typhoons. The below signs are recommended to observe closely during each inspection.-Sign of distress and deterioration of the entire wall system,-cracked, loose or missing glass panels,-bulging, bowing, separation, delamination, rotation, displacement of panels,-marks of water, staining and rust,-damaged and missing parts, corrosion, loosening or other defects,-extrusion, wrinkle, split, missing or other signs of deterioration of the sealing materials.-moisture appears around or behind the curtain wall.CONCLUSIONThe application of curtain wall systems in super-highrise buildings is a big topic. Within the scope of this paper it can only cover a very little of the key issues. Having witnessed the evolution of using curtain wall in Hong Kong for the past 2 to 3 decades, a general trend, as summarized below, can be observed.-Starting from low-cost, local-design and manufactured walling products in the early systems to the imported, deluxe, tailor-designed proprietary systems in recent years.-Starting from simple requirements fulfilling just very basic functional needs of buildings to very specialized products or systems that can meet any stringent requirements as set by designer, engineers or environmental experts.-The old systems were mainly stick systems due to more simple in design and production. Though labour-intensive, the relatively much cheaper labour cost at that time still made it worked acceptably. Contemporary systems are using mainly unit systems that make installation very easy and labour saving, though the design quality and coordination with other building activities are much more demanding.-The old systems that have been used in the first and second generations often inherited with quite a lot of design imperfections and latent defects; while new systems are more reliable, some can be regarded as almost maintenance-free.Traditional external walling methods using applied-onto products such as tile or spray-on coating are still dominating in Hong Kong. However, it is notable that the use of curtain wall is gaining its popularity quite rapidly among designers and developers due to its unreplaceable attractiveness as well as slim and fashionable appearance.Further development and improvement in the use of curtain wall systems is an ongoing process in Hong Kong. The areas of improvement may be aiming at the development of more specific functioned, more reliable and long-life systems. Such targets may be achieved by the use of more advanced glass products, sealing compounds, gaskets or in the development of more sophisticated connecting systems; as well as the introduction of other additional functions that curtain wall may take up like the incorporation of photo-cell onto panels of wall, the providing of automatic/robotic machine in the system for external wall cleansing, or curtain wall capable to perform light show at night. Meanwhile, the continual improvement of workmanship and refinement of work detailing in particular to the areas directly in touch with the building structure or other building finishes, is a prime concern to the ensurance of a good curtain wall system, that sometimes project executives may easily overlooked.中文译文:超高层建筑幕墙系统的结构与性能香港城市大学,建筑科学与技术部Raymond WM Wong引言几十年来超高层建筑的建设在香港一直非常活跃。

建筑设计中英文对照外文翻译文献

建筑设计中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:Housing Problems and Options for the Elderly 1. IntroductionHousing is a critical element in the lives of older persons. The affordability of housing affects the ability of the elderly to afford other necessities of life such as food and medical care. Housing that is located near hospitals and doctors, shopping, transportation, and recreational facilities can facilitate access to services that can enhance the quality of life. Housing can also be a place of memories of the past and a connection to friends and neighbors. Housing with supportive features and access to services can also make it possible for persons to age in place. In this session, we will be examining housing problems andoptions for the elderly. Along the way, we will be testing your housing IQ with a series of questions and exercises.2. Housing Situation of Older PersonsHow typical is the housing situation of the olders?We will begin by examining five areas :(1)Prevalence of home ownership (2)Length of stay in current residence (3)Living arrangements (4)Attachments of older persons to where they live (5)Moving behavior.With whom older persons live can influence housing affordability, space needs, and the ability to age in place. About 54% of older persons live with their spouses, 31% live alone, almost 13% live with related persons other than their spouse and about 2% live with unrelated persons. With increasing age, older persons (primarily women) are more likely to live alone or with a relative other than a spouse. Frail older women living alone are the persons most likely to reside in homes with ‘extra’ rooms and to need both physically supportive housing features and services to "age in place". This segment of the population is also the group most likely to move to more supportive housing settings such as assisted living.Many older persons have strong psychological attachments to their homes related to length of residence. The home often represents the place where they raised their children and a lifetime of memories. It is also a connection to an array of familiar persons such as neighbors and shopkeepers as well as near by places including houses of worship, libraries and community services. For manyolder persons, the home is an extension of their own personalities which is found in the furnishings . In addition, the home can represent a sense of economic security for the future, especially for homeowners who have paid off their mortgages. For owners, the home is usually their most valuable financial asset. The home also symbolizes a sense of independence in that the resident is able to live on his or her own. For these types of reasons, it is understandable that in response to a question about housing preferences, AARP surveys of older persons continue to find that approximately 80% of older persons report that what they want is to "stay in their own homes and never move." This phenomena has been termed the preference to "age in place."Although most older persons move near their current communities, some seek retirement communities in places with warmer weather in the southwest, far west and the south.3. The Federal Government's Housing Programs for the ElderlyThe federal government has had two basic housing strategies to address housing problems of the elderly. One strategy, termed the "supply side" approach, seeks to build new housing complexes such as public housing and Section 202 housing for older persons. Public housing is administered by quasi-governmental local public housing authorities. Section 202 Housing for the elderly and disabled is sponsored by non-profit organizations including religious and non-sectarian organizations. Approximately 1.5 million olderpersons or 3% of the elderly population live in federally assisted housing, with about 387,000 living in Section 202 housing. Over time, the government has shifted away from such new construction programs because of the cost of such housing, the problems that a number of non-elderly housing programs have experienced, and a philosophy that the government should no longer be directly involved with the building of housing. Section 202 housing, a very popular and successful program, is one of the few supply-side programs funded by the federal government, although the budget allocation during the last ten years has allowed for the construction of only about 6,000 units per year compared to a high of almost 20,000 units in the late 1970s. Instead of funding new construction, federal housing initiatives over the last decade have emphasized ‘demand side’ subsidies that provide low-income renters with a certificate or a voucher that they can use in a variety of multiunit settings, including apartments in the private sector that meet rental and condition guidelines. These vouchers and certificates are aimed at reducing excessive housing costs. Some certificates are termed ‘project based’ subsidies and are tied to federally subsidized housing such as Section 202. Because housing programs are not an entitlement, however, supply-side and demand side programs together are only able to meet the needs of about 1/3 of elderly renters who qualify on the basis of income.While advocates for housing have been trying to hold on to the existing programs in the face of huge budget cuts at HUD, much of the attention has been shifting towards meeting the shelter and service needs of the frail elderly. This emphasis reflects the increasing number of older persons in their eightiesand nineties who need a physically supportive environment linked with services. This group of older persons includes a high percentage of older residents of public and Section 202 housing. Initially built for independent older persons who were initially in the late sixties and early seventies, this type of housing now includes older persons in their eighties and nineties, many of whom have aged in place. Consequently, the government is faced with creating strategies to bring services into these buildings and retrofit them to better suit the needs of frail older persons. A major initiative of the early 1990s, which may be stalled by current budget problems at HUD, has been for the federal government to pay for service coordinators to assess the needs of residents of government assisted housing complexes and link them with services. As of 1998, there were approximately 1,000 service coordinators attached to government assisted housing complexes across the country.4. The Housing Continuum: A Range of Options for ElderlyA long-standing assumption in the field of housing has been that as persons become more frail, they will have to move along a housing continuum from one setting to another. As the figure on housing options suggests, along this continuum are found a range of housing options including single family homes, apartments, congregate living, assisted living, and board and care homes (Kendig & Pynoos, 1996). The end point of the housing continuum has been thenursing home. These options vary considerably in terms of their availability, affordability, and ability to meet the needs of very frail older persons.The concept of a continuum of supportive care is based on the assumption that housing options can be differentiated by the amount and types of services offered; the supportiveness of the physical setting in terms of accessibility, features, and design; and the competency level of the persons to whom the housing is targeted. The figure on housing options indicates how such options generally meet the needs of older persons who are categorized,as independent, semi-dependent and dependent. Semi-dependent older persons can be thought of as needing some assistance from other persons with instrumental activities of daily living (IADLs) such as cooking, cleaning, and shopping. In addition to needing assistance with some IADLs, dependent older persons may require assistance with more basic activities such as toileting, eating and bathing. Although semi-dependent and dependent older persons can be found throughout the housing continuum, independent older persons are very unlikely to reside in housing types such as assisted living specifically designed and equipped to meet the needs of frail older persons unless their spouses require these needs.Although the continuum of housing identifies a range of housing types, there is increasing recognition that frail older persons do not necessarily have to move from one setting to another if they need assistance. Semi-dependent or dependent older persons can live in a variety of settings, including their own homes and apartments, if the physical environment is made more supportive, caregivers are available to provide assistance and affordable services areaccessible.5. ConclusionsHousing plays a critical role in the lives of older persons. Most older homeowners who function independently express a high level of satisfaction with their dwelling units. However, high housing costs, especially for renters, remain a financial burden for many older persons and problems associated with housing condition persist especially for low- income renters and persons living in rural areas. Federal housing programs such as public housing, Section 202 housing, and Section 8 housing certificates have only been able to address the basic housing problems of only about one-third of eligible older persons because of limited budgets. Moreover, a shortage of viable residential options exists for frail older persons. Up until the last decade, housing for the elderly was conceived of primarily as shelter. It has become increasingly recognized that frail older persons who needed services and physically supportive features often had to move from their homes or apartments to settings such as board and care or nursing homes to receive assistance. Over time, however, the concept of a variety of housing types that can be linked has replaced the original idea of the continuum of housing. It is possible for frail older persons to live in a variety of existing residential settings, including their own homes and apartments with the addition of services and home modifications. Consequently, the last decade has seen a number of efforts to modify homes, add service coordinators to multi-unit housing and create options such as accessory and ECHO units. Although thesestrategies have been enhanced by a somewhat greater availability of home care services, Medicaid policy still provides incentives to house frail older persons in nursing homes. The most visible development in the field of housing for frail older persons has been the growth of private sector assisted living which is now viewed by many state governments as a residential alternative to nursing homes. The AL movement itself has raised a number of regulatory and financing issues that cross-cut housing and long term care such as what constitutes a residential environment, insuring that residents can age in place, accommodating resident preferences, protecting the rights of individuals and insuring quality of care. Nevertheless, the emergence of AL along with a wider range of other housing options holds out the promise that older persons will have a larger range of choices among living arrangements.译文:老年人的住宅问题与选择一、简介住宅在老年人生活的极为重要。

建筑学外文翻译

建筑学外文翻译

建筑学外文翻译-CAL-FENGHAI.-(YICAI)-Company One1淮阴工学院毕业设计外文资料翻译学院:建筑工程学院专业:建筑学姓名:张宇成学号:19外文出处:Procedia Engineering 165( 2016 ) 315 – 325附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文通过开发公共地下空间为德黑兰市提供所需的绿色空间与宏大的建筑穆罕默德·迈赫迪Safaee马里安Ghafoori伊朗伊斯兰阿扎德大学(IAU),伊朗南德黑兰分部摘要:德黑兰市是曾经被花园和农场包围的小城市;现在一天已经变成了巨大的高度与其他建筑相比,建筑结构不合理,几乎失去了绿色。

自德黑兰市成为伊朗首都以来,人口增长迅速,汽车不断增长,以及改变了城市特点的建设项目已经过去了200多年。

这使得德黑兰面临很多短缺,如绿色空间,安静和灿烂的气氛,可能已经建立了人们之间的社会关系。

这个城市现在严重面临缺乏绿色空间,导致缺乏足够的氧气,空气污染和生活质量下降和缺乏城市生活,这些不利的结果可以在灵魂,头脑和身体上看到的公民。

在本文中强调的是对地下空间发展的社会因素,技术和结构条件。

这一案例表明,在德黑兰一个人口稠密的老区域开发绿地。

因此,我们不仅要维持该区所需的许多公共空间,例如商业场所,大厅,电影院,停车场,人行道等服务处所;我们还可以在儿童游乐场,人行道,有氧运动的地面空间上免费,并且还形成许多景观。

此后,可以在这些开放空间周围形成许多住宅空间,享有美丽的景色和景观。

因此,这将导致更多的社会关系,动态,可持续的城市生活和辉煌的建筑。

在城市不同距离的这些中心的发展可以减少我们已经提到的消极方面。

关键词:地下空间,精致的建筑,辉煌的建筑,绿地,空气污染,免费场地,德黑兰市。

1.简介德黑兰的综合计划缺乏一些非常重要的组件和细节在其设计和法规。

根据德黑兰市政府的建筑规则和法规,住宅建筑的面积比(FAR)要求为60%-70%,只有在确认和保留邻居权利的情况下才允许向北延伸。

建筑结构设计中英文对照外文翻译文献

建筑结构设计中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)Create and comprehensive technology in the structure globaldesign of the buildingThe 21st century will be the era that many kinds of disciplines technology coexists , it will form the enormous motive force of promoting the development of building , the building is more and more important too in global design, the architect must seize the opportunity , give full play to the architect's leading role, preside over every building engineering design well. Building there is the global design concept not new of architectural design,characteristic of it for in an all-round way each element not correlated with building- there aren't external environment condition, building , technical equipment,etc. work in coordination with, and create the premium building with the comprehensive new technology to combine together.The premium building is created, must consider sustainable development , namely future requirement , in other words, how save natural resources as much as possible, how about protect the environment that the mankind depends on for existence, how construct through high-quality between architectural design and building, in order to reduce building equipment use quantity andreduce whole expenses of project.The comprehensive new technology is to give full play to the technological specialty of every discipline , create and use the new technology, and with outside space , dimension of the building , working in coordination with in an all-round way the building component, thus reduce equipment investment and operate the expenses.Each success , building of engineering construction condense collective intelligence and strength; It is intelligence and expectation that an architect pays that the building is created; The engineering design of the building is that architecture , structure , equipment speciality compose hardships and strength happenning; It is the diligent and sweat paid in design and operation , installation , management that the construction work is built up .The initial stage of the 1990s, our understanding that the concept of global design is a bit elementary , conscientious to with making some jobs in engineering design unconsciously , make some harvest. This text Hangzhou city industrial and commercial bank financial comprehensive building and Hangzhou city Bank of Communications financial building two building , group of " scientific and technological progress second prize " speak of from person who obtain emphatically, expound the fact global design - comprehensive technology that building create its , for reach global design outstanding architect in two engineering design, have served as the creator and persons who cooperate while every stage design and even building are built completely.Two projects come into operation for more than 4 years formally , run and coordinate , good wholly , reach the anticipated result, accepted and appreciated by the masses, obtain various kinds of honor .outstanding to design award , progress prize in science and technology , project quality bonus , local top ten view , best model image award ,etc., the ones that do not give to the architect and engineers without one are gratified and proud. The building is created Emphasizing the era for global design of the building, the architects' creation idea and design method should be broken through to some extent, creation inspirations is it set up in analysis , building of global design , synthesize more to burst out and at the foundation that appraise, learn and improve the integration capability exactly designed in building , possess the new knowledge system and thinking method , merge multi-disciplinary technology. We have used the new design idea in above-mentioned projects, have emphasized the globality created in building .Is it is it act as so as to explain to conceive to create two design overview and building of construction work these now.1) The financial comprehensive building of industrial and commercial bank of HangZhou,belong to the comprehensive building, with the whole construction area of 39,000 square meters, main building total height 84, 22, skirt 4 of room, some 6 storeys, 2 storeys of basements.Design overall thinking break through of our country bank building traditional design mode - seal , deep and serious , stern , form first-class function, create of multi-functional type , the style of opening , architecture integrated with the mode of the international commercial bank.The model of the building is free and easy, opened, physique was made up by the hyperboloid, the main building presented " the curved surface surrounded southwards ", skirt room presents " the curved surface surrounded northwards ", the two surround but become intension of " gathering the treasure ".Building flourishing upwards, elevation is it adopt large area solid granite wall to design, the belt aluminium alloy curtain wall of the large area and some glass curtain walls, and interweave the three into powerful and vigorous whole , chase through model and entity wall layer bring together , form concise , tall and straight , upward tendency of working up successively, have distinct and unique distinctions.Building level and indoor space are designed into a multi-functional type and style of opening, opening, negotiate , the official working , meeting , receiving , be healthy and blissful , visit combining together. Spacious and bright two storeys open in the hall unifiedly in the Italian marble pale yellow tone , in addition, the escalator , fountain , light set off, make the space seem very magnificent , graceful and sincere. Intelligent computer network center, getting open and intelligent to handle official business space and all related house distribute in all floor reasonably. Top floor round visit layer, lift all of Room visit layer , can have a panoramic view of the scenery of the West Lake , fully enjoy the warmth of the nature. 2) The financial building of Bank of Communications of Hangzhou, belong to the purely financial office block, with the whole construction area of 19,000 square meters, the total height of the building is 39.9 meters, 13 storeys on the ground, the 2nd Floor. Live in building degree high than it around location , designer have unique architectural appearance of style architectural design this specially, its elevation is designed into a new classical form , the building base adopts the rough granite, show rich capability , top is it burn granite and verticality bar and some form aluminum windows make up as the veneer to adopt, represent the building noble and refined , serious personality of the bank.While creating in above-mentioned two items, besides portraying the shape of the building and indoor space and outside environment minister and blending meticulously, in order to achieve the outstanding purpose of global design of the building , the architect , still according to the region and project characteristic, put forward the following requirement to every speciality:(1) Control the total height of the building strictly;(2) It favorable to the intelligent comfortable height of clearances to create; (3) Meet thefloor area of owner's demand;(4)Protect the environment , save the energy , reduce and make the investment;(5) Design meticulously, use and popularize the new technology; (6)Cooperate closely in every speciality, optimization design.Comprehensive technologyThe building should have strong vitality, there must be sustainable development space, there should be abundant intension and comprehensive new technology. Among above-mentioned construction work , have popularized and used the intelligent technology of the building , has not glued and formed the flat roof beam of prestressing force - dull and stereotyped structure technology and flat roof beam structure technology, baseplate temperature mix hole , technology of muscle and base of basement enclose new technology of protecting, computer control STL ice hold cold air conditioner technology, compounding type keeps warm and insulates against heat the technology of the wall , such new technologies as the sectional electricity distribution room ,etc., give architecture global design to add the new vitality of note undoubtedly.1, the intelligent technology of the buildingIn initial stage of the 1990s, the intelligent building was introduced from foreign countries to China only as a kind of concept , computer network standard is it soon , make information communication skeleton of intelligent building to pursue in the world- comprehensive wiring system becomes a kind of trend because of 10BASE-T. In order to make the bank building adapt to the development of the times, the designer does one's utmost to recommend and design the comprehensive wiring system with the leading eyes , this may well be termed the first modernized building which adopted this technical design at that time.(1) Comprehensive wiring system one communication transmission network, it make between speech and data communication apparatus , exchange equipment and other administrative systems link to each other, make the equipment and outside communication network link to each other too. It include external telecommunication connection piece and inside information speech all cable and relevant wiring position of data terminal of workspace of network. The comprehensive wiring system adopts the products of American AT&T Corp.. Connected up the subsystem among the subsystem , management subsystem , arterial subsystem and equipment to make up by workspace subsystem , level.(2) Automated systems of security personnel The monitoring systems of security personnel of the building divide into the public place and control and control two pieces of systemequipment with the national treasury special-purposly synthetically.The special-purpose monitoring systems of security personnel of national treasury are in the national treasury , manage the storehouse on behalf of another , transporting the paper money garage to control strictly, the track record that personnel come in and go out, have and shake the warning sensor to every wall of national treasury , the camera, infrared microwave detector in every relevant rooms, set up the automation of controlling to control.In order to realize building intellectuality, the architect has finished complete indoor environment design, has created the comfortable , high-efficient working environment , having opened up the room internal and external recreation space not of uniform size, namely the green one hits the front yard and roofing, have offered the world had a rest and regulated to people working before automation is equipped all day , hang a design adopt the special building to construct the node in concrete ground , wall at the same time.2, has not glued and formed the flat roof beam of prestressing force- dull and stereotyped structure technology and flat roof beam structure technologyIn order to meet the requirement with high assurance that the architect puts forward , try to reduce the height of structure component in structure speciality, did not glue and form the flat roof beam of prestressing force concrete - dull and stereotyped structure technology and flat roof beam structure technology after adopting.(1) Adopt prestressing force concrete roof beam board structure save than ordinary roof beam board concrete consumption 15%, steel consumption saves 27%, the roof beam reduces 300mm high.(2) Adopt flat roof beam structure save concrete about 10% consumption than ordinary roof beam board, steel consumption saves 6.6%, the roof beam reduces 200mm high.Under building total situation that height does not change , adopt above-mentioned structure can make the whole building increase floor area of a layer , have good economic benefits and social benefit.3, the temperature of the baseplate matches muscle technologyIn basement design , is it is it is it after calculating , take the perimeter to keep the construction technology measure warm to split to resist to go on to baseplate, arrange temperature stress reinforcing bar the middle cancelling , dispose 2 row receives the strength reinforcing bar up and down only, this has not only save the fabrication cost of the project but also met the basement baseplate impervious and resisting the requirement that splits.4, the foundation of the basement encloses and protects the new technology of design and operationAdopt two technological measures in enclosing and protecting a design:(1) Cantilever is it is it hole strength is it adopt form strengthen and mix muscle technology to design to protect to enclose, save the steel and invite 60t, it invests about 280,000 to save.(2) Is it is it protect of of elevation and keep roof beam technology to enclose , is it protect long to reduce 1.5m to enclose all to reduce, keep roof beam mark level on natural ground 1.5m , is it is it protect of lateral pressure receive strength some height to enclose to change, saving 137.9 cubic meters of concrete, steel 16.08t, reduces and invests 304,000 yuan directly through calculating.5, ice hold cold air conditioner technologyIce hold cold air conditioner technology belong to new technology still in our country , it heavy advantage that the electricity moves the peak and operates the expenses sparingly most. In design, is it ice mode adopt some (weight ) hold mode of icing , is it ice refrigeration to be plane utilization ratio high to hold partly to hold, hold cold capacity little , refrigeration plane capacity 30%-45% little than routine air conditioner equipment, one economic effective operational mode.Hold the implementation of the technology of the cold air conditioner in order to cooperate with the ice , has used intelligent technology, having adopted the computer to control in holding and icing the air conditioner system, the main task has five following respects:(1) According to the demand for user's cold load , according to the characteristic of the structure of the electric rate , set up the ice and hold the best operation way of the cold system automatically, reduce the operation expenses of the whole system;(2) Fully utilize and hold the capacity of the cold device, should try one's best to use up all the cold quantity held basically on the same day;(3) Automatic operation state of detection system, ensure ice hold cold system capital equipment normal , safe operation;(4) Automatic record parameter that system operate, display system operate flow chart and type systematic operation parameter report form;(5) Predict future cooling load, confirm the future optimization operation scheme.Ice hold cold air conditioner system test run for some time, indicate control system to be steady , reliable , easy to operate, the system operates the energy-conserving result remarkably.6, the compounding type keeps in the wall warm and insulates against heat To the area of Hangzhou , want heating , climate characteristic of lowering the temperature in summer in winter, is it protect building this structural design person who compound is it insulate against heat the wall to keep warm to enclose specially, namely: Fit up , keep warm , insulate against heat the three not to equal to the body , realize building energy-conservation better.Person who compound is it insulate against heat wall to combine elevation model characteristic , design aluminium board elevation renovation material to keep warm, its structure is: Fill out and build hollow brick in the frame structure, do to hang the American Fluorine carbon coating inferior mere aluminium board outside the hollow brick wall.Aluminium board spoke hot to have high-efficient adiabatic performance to the sun, under the same hot function of solar radiation, because the nature , color of the surface material are different from coarse degree, whether can absorb heat have great difference very , between surface and solar radiation hot absorption system (α ) and material radiation system (Cλ ) is it say to come beyond the difference this. Adopt α and Cλ value little surface material have remarkable result , board α、Cλ value little aluminium have, its α =0.26, Cλ =0.4, light gray face brick α =0.56, Cλ =4.3.Aluminium board for is it hang with having layer under air by hollow brick to do, because aluminium board is it have better radiation transfer to hot terms to put in layer among the atmosphere and air, this structure is playing high-efficient adiabatic function on indoor heating too in winter, so, no matter or can well realize building energy-conservation in winter in summer.7, popularize the technology of sectional electricity distribution roomConsider one layer paves Taxi " gold " value , the total distribution of the building locates the east, set up voltage transformer and low-voltage distribution in the same room in first try in the design, make up sectional electricity distribution room , save transformer substation area greatly , adopt layer assign up and down, mixing the switchyard system entirely after building up and putting into operation, the function is clear , the overall arrangement compactness is rational , the systematic dispatcher is flexible . The technology have to go to to use and already become the model extensively of the design afterwards.ConclusionThe whole mode designed of the building synthetically can raise the adaptability of the building , it will be the inevitable trend , environmental consciousness and awareness of saving energy especially after strengthening are even more important. Developing with the economy , science and technology constantly in our country, more advanced technology and scientific and technical result will be applied to the building , believe firmly that in the near future , more outstanding building global design will appear on the building stage of our country. We will be summarizing, progressing constantly constantly, this is that history gives the great responsibility of architect and engineer.译文:建筑结构整体设计-建筑创作和综合技术21世纪将是多种学科技术并存的时代,它必将形成推动建筑发展的巨大动力,建筑结构整体设计也就越来越重要,建筑师必须把握时机,充分发挥建筑师的主导作用,主持好各项建筑工程设计。

建筑学毕业设计的外文文献及译文

建筑学毕业设计的外文文献及译文

建筑学毕业设计的外文文献及译文文献、资料题目:《Advanced Encryption Standard》文献、资料发表(出版)日期:2004.10.25系(部):建筑工程系生:陆总LYY外文文献:Modern ArchitectureModern architecture, not to be confused with Contemporary architecture1, is a term given to a number of building styles with similar characteristics, primarily the simplification of form and the elimination of ornament. While the style was conceived early in the 20th century and heavily promoted by a few architects, architectural educators and exhibits, very few Modern buildings were built in the first half of the century. For three decades after the Second World War, however, it became the dominant architectural style for institutional and corporate building.1. OriginsSome historians see the evolution of Modern architecture as a social matter, closely tied to the project of Modernity and hence to the Enlightenment, a result of social and political revolutions.Others see Modern architecture as primarily driven by technological and engineering developments, and it is true that the availability of new building materials such as iron, steel, concrete and glass drove the invention of new building techniques as part of the Industrial Revolution. In 1796, Shrewsbury mill owner Charles Bage first used his "fireproof design, which relied on cast iron and brick with flag stone floors. Such construction greatly strengthened the structure of mills, which enabled them to accommodate much bigger machines. Due to poor knowledge of iron's properties as a construction material, a number of early mills collapsed. It was not until the early 1830s that Eaton Hodgkinson introduced the section beam, leading to widespread use of iron construction, this kind of austere industrial architecture utterly transformed the landscape of northern Britain, leading to the description, πDark satanic millsπof places like Manchester and parts of West Yorkshire. The Crystal Palace by Joseph Paxton at the Great Exhibition of 1851 was an early example of iron and glass construction; possibly the best example is the development of the tall steel skyscraper in Chicago around 1890 by William Le Baron Jenney and Louis Sullivan∙ Early structures to employ concrete as the chief means of architectural expression (rather than for purely utilitarian structure) include Frank Lloyd Wright,s Unity Temple, built in 1906 near Chicago, and Rudolf Steiner,s Second Goetheanum, built from1926 near Basel, Switzerland.Other historians regard Modernism as a matter of taste, a reaction against eclecticism and the lavish stylistic excesses of Victorian Era and Edwardian Art Nouveau.Whatever the cause, around 1900 a number of architects around the world began developing new architectural solutions to integrate traditional precedents (Gothic, for instance) with new technological possibilities- The work of Louis Sullivan and Frank Lloyd Wright in Chicago, Victor Horta in Brussels, Antoni Gaudi in Barcelona, Otto Wagner in Vienna and Charles Rennie Mackintosh in Glasgow, among many others, can be seen as a common struggle between old and new.2. Modernism as Dominant StyleBy the 1920s the most important figures in Modern architecture had established their reputations. The big three are commonly recognized as Le Corbusier in France, and Ludwig Mies van der Rohe and Walter Gropius in Germany. Mies van der Rohe and Gropius were both directors of the Bauhaus, one of a number of European schools and associations concerned with reconciling craft tradition and industrial technology.Frank Lloyd Wright r s career parallels and influences the work of the European modernists, particularly via the Wasmuth Portfolio, but he refused to be categorized with them. Wright was a major influence on both Gropius and van der Rohe, however, as well as on the whole of organic architecture.In 1932 came the important MOMA exhibition, the International Exhibition of Modem Architecture, curated by Philip Johnson. Johnson and collaborator Henry-Russell Hitchcock drew together many distinct threads and trends, identified them as stylistically similar and having a common purpose, and consolidated them into the International Style.This was an important turning point. With World War II the important figures of the Bauhaus fled to the United States, to Chicago, to the Harvard Graduate School of Design, and to Black Mountain College. While Modern architectural design never became a dominant style in single-dwelling residential buildings, in institutional and commercial architecture Modernism became the pre-eminent, and in the schools (for leaders of the profession) the only acceptable, design solution from about 1932 to about 1984.Architects who worked in the international style wanted to break with architectural tradition and design simple, unornamented buildings. The most commonly used materials are glass for the facade, steel for exterior support, and concrete for the floors and interior supports; floor plans were functional and logical. The style became most evident in the design of skyscrapers. Perhaps its most famous manifestations include the United Nations headquarters (Le Corbusier, Oscar Niemeyer, Sir Howard Robertson), the Seagram Building (Ludwig Mies van der Rohe), and Lever House (Skidmore, Owings, and Merrill), all in New York. A prominent residential example is the Lovell House (Richard Neutra) in Los Angeles.Detractors of the international style claim that its stark, uncompromisingly rectangular geometry is dehumanising. Le Corbusier once described buildings as πmachines for living,∖but people are not machines and it was suggested that they do not want to live in machines- Even Philip Johnson admitted he was πbored with the box∕,Since the early 1980s many architects have deliberately sought to move away from rectilinear designs, towards more eclectic styles. During the middle of the century, some architects began experimenting in organic forms that they felt were more human and accessible. Mid-century modernism, or organic modernism, was very popular, due to its democratic and playful nature. Alvar Aalto and Eero Saarinen were two of the most prolific architects and designers in this movement, which has influenced contemporary modernism.Although there is debate as to when and why the decline of the modern movement occurred, criticism of Modern architecture began in the 1960s on the grounds that it was universal, sterile, elitist and lacked meaning. Its approach had become ossified in a πstyleπthat threatened to degenerate into a set of mannerisms. Siegfried Giedion in the 1961 introduction to his evolving text, Space, Time and Architecture (first written in 1941), could begin ,,At the moment a certain confusion exists in contemporary architecture, as in painting; a kind of pause, even a kind of exhaustion/1At the Metropolitan Museum of Art, a 1961 symposium discussed the question πModern Architecture: Death or Metamorphosis?11In New York, the coup d r etat appeared to materialize in controversy around the Pan Am Building that loomed over Grand Central Station, taking advantage of the modernist real estate concept of πair rights,∖[l] In criticism by Ada Louise Huxtable and Douglas Haskell it was seen to ,,severπthe Park Avenue streetscape and πtarnishπthe reputations of its consortium of architects: Walter Gropius, Pietro Belluschi and thebuilders Emery Roth & Sons. The rise of postmodernism was attributed to disenchantment with Modern architecture. By the 1980s, postmodern architecture appeared triumphant over modernism, including the temple of the Light of the World, a futuristic design for its time Guadalajara Jalisco La Luz del Mundo Sede International; however, postmodern aesthetics lacked traction and by the mid-1990s, a neo-modern (or hypermodern) architecture had once again established international pre-eminence. As part of this revival, much of the criticism of the modernists has been revisited, refuted, and re-evaluated; and a modernistic idiom once again dominates in institutional and commercial contemporary practice, but must now compete with the revival of traditional architectural design in commercial and institutional architecture; residential design continues to be dominated by a traditional aesthetic.中文译文:现代建筑现代建筑,不被混淆与‘当代建筑’,是一个词给了一些建筑风格有类似的特点,主要的简化形式,消除装饰等.虽然风格的设想早在20世纪,并大量造就了一些建筑师、建筑教育家和展品,很少有现代的建筑物,建于20世纪上半叶.第二次大战后的三十年,但最终却成为主导建筑风格的机构和公司建设.1起源一些历史学家认为进化的现代建筑作为一个社会问题,息息相关的工程中的现代性, 从而影响了启蒙运动,导致社会和政治革命.另一些人认为现代建筑主要是靠技术和工程学的发展,那就是获得新的建筑材料,如钢铁,混凝土和玻璃驱车发明新的建筑技术,它作为工业革命的一部分.1796年,Shrewsbury查尔斯bage首先用他的‘火’的设计,后者则依靠铸铁及砖与石材地板.这些建设大大加强了结构,使它们能够容纳更大的机器.由于作为建筑材料特性知识缺乏,一些早期建筑失败.直到1830年初,伊顿Hodgkinson预计推出了型钢梁,导致广泛使用钢架建设,工业结构完全改变了这种窘迫的面貌,英国北部领导的描述,〃黑暗魔鬼作坊〃的地方如曼彻斯特和西约克郡.水晶宫由约瑟夫paxton的重大展览,1851年,是一个早期的例子, 钢铁及玻璃施工;可能是一个最好的例子,就是1890年由William乐男爵延长和路易沙利文在芝加哥附近发展的高层钢结构摩天楼.早期结构采用混凝土作为行政手段的建筑表达(而非纯粹功利结构),包括建于1906年在芝加哥附近,劳埃德赖特的统一宫,建于1926 年瑞士巴塞尔附近的鲁道夫斯坦纳的第二哥特堂,.但无论原因为何,约有1900多位建筑师,在世界各地开始制定新的建筑方法,将传统的先例(比如哥特式)与新的技术相结合的可能性.路易沙利文和赖特在芝加哥工作,维克多奥尔塔在布鲁塞尔,安东尼高迪在巴塞罗那,奥托瓦格纳和查尔斯景mackintosh格拉斯哥在维也纳,其中之一可以看作是一个新与旧的共同斗争.2现代主义风格由1920年代的最重要人物,在现代建筑里确立了自己的名声.三个是公认的柯布西耶在法国,密斯范德尔德罗和瓦尔特格罗皮乌斯在德国.密斯范德尔德罗和格罗皮乌斯为董事的包豪斯,其中欧洲有不少学校和有关团体学习调和工艺和传统工业技术.赖特的建筑生涯中,也影响了欧洲建筑的现代艺术,特别是通过瓦斯穆特组合但他拒绝被归类与他们.赖特与格罗皮乌斯和Van der德罗对整个有机体系有重大的影响.在1932年来到的重要moma展览,是现代建筑艺术的国际展览,艺术家菲利普约翰逊. 约翰逊和合作者亨利-罗素阁纠集许多鲜明的线索和趋势,内容相似,有一个共同的目的, 巩固了他们融入国际化风格这是一个重要的转折点.在二战的时间包豪斯的代表人物逃到美国,芝加哥,到哈佛大学设计黑山书院.当现代建筑设计从未成为主导风格单一的住宅楼,在成为现代卓越的体制和商业建筑,是学校(专业领导)的唯一可接受的,设计解决方案,从约1932年至约1984 年.那些从事国际风格的建筑师想要打破传统建筑和简单的没有装饰的建筑物。

毕业设计外文资料翻译——翻译译文

毕业设计外文资料翻译——翻译译文

毕业设计外文资料翻译(二)外文出处:Jules Houde 《Sustainable development slowed down by bad construction practices and natural and technological disasters》2、外文资料翻译译文混凝土结构的耐久性即使是工程师认为的最耐久和最合理的混凝土材料,在一定的条件下,混凝土也会由于开裂、钢筋锈蚀、化学侵蚀等一系列不利因素的影响而易受伤害。

近年来报道了各种关于混凝土结构耐久性不合格的例子。

尤其令人震惊的是混凝土的结构过早恶化的迹象越来越多。

每年为了维护混凝土的耐久性,其成本不断增加。

根据最近在国内和国际中的调查揭示,这些成本在八十年代间翻了一番,并将会在九十年代变成三倍。

越来越多的混凝土结构耐久性不合格的案例使从事混凝土行业的商家措手不及。

混凝土结构不仅代表了社会的巨大投资,也代表了如果耐久性问题不及时解决可能遇到的成本,更代表着,混凝土作为主要建筑材料,其耐久性问题可能导致的全球不公平竞争以及行业信誉等等问题。

因此,国际混凝土行业受到了强烈要求制定和实施合理的措施以解决当前耐久性问题的双重的挑战,即:找到有效措施来解决现有结构剩余寿命过早恶化的威胁。

纳入新的结构知识、经验和新的研究结果,以便监测结构耐久性,从而确保未来混凝土结构所需的服务性能。

所有参与规划、设计和施工过程的人,应该具有获得对可能恶化的过程和决定性影响参数的最低理解的可能性。

这种基本知识能力是要在正确的时间做出正确的决定,以确保混凝土结构耐久性要求的前提。

加固保护混凝土中的钢筋受到碱性的钝化层(pH值大于12.5)保护而阻止了锈蚀。

这种钝化层阻碍钢溶解。

因此,即使所有其它条件都满足(主要是氧气和水分),钢筋受到锈蚀也都是不可能的。

混凝土的碳化作用或是氯离子的活动可以降低局部面积或更大面积的pH值。

当加固层的pH值低于9或是氯化物含量超过一个临界值时,钝化层和防腐保护层就会失效,钢筋受腐蚀是可能的。

建筑设计论文外文翻译-(2)

建筑设计论文外文翻译-(2)

实用文档设计(论文)外文参考资料及译文译文题目:Discussion on The Planning and Designof Commercial Buildings学生姓名:XXX学号:09******83专业:建筑学所在学院:XX学院指导教师: XX职称:副教授201X年XX月XX日实用文档原文:Discussion on The Planning and Designof Commercial BuildingsAbstract: the commercial building in residential buildings has become, most attract sb.'s attention, the largest building is influenced by the type of energy and landscape of the city planning, design of commercial buildings will face more problems. This paper discusses how to carry on planning and design of commercial buildings, the construction of a rational, reasonable, appropriate business building, so as to create a good social and economic benefits. Keywords: construction planning; commercial buildings; architectural designPrefaceComprehensive is the development trend of modern commercial buildings, architects in the design of commercial buildings and functions are changing, different positioning of planning, business characteristics and local cultural influence commercial building mode, which requires us to continuously improve our project products, create more in line with the business needs of the best plan and design works, and finally let investors and consumers feel a constant value, so that they feel superior combination of spatial continuous operation, let the customer feel shopping pleasure, feel the beauty of life and the world.mercial architectural schemeCommercial buildings are generally large investment, high risk, long cycle, the successful operation of returns, different commercial patterns determine different commercial building form, and commercial pattern is determined and market positioning, the positioning accuracy of the architect, to commercial building various functions, property, facilities should have full understanding and effective organization, and different commercial construction planning ideas to produce commercial architectural design works are different, economic benefits of investment has great difference. Good architectural planning has decided the success or failure of architectural design.1.Market survey of commercial building design must be based on the market survey results. Based on the characteristics and trend of foreign consumption, economic conditions, traffic conditions, the surrounding commercial pattern, city infrastructure, city development planning, full market research business situation, on the project itself, choose format, format portfolio, the distribution of industrial chain and area proportion, industry selection, distribution and area ratio to the shops, division, architectural form, area and the floor function, people oriented system, project environment and supporting facilities are set in advance. Provide design basis for the architect to design.2.Mode demand regardless of commercial building is rental, sale or rental run combination, the most important is to determine the main format, for commercial buildings,different types of decision model is different, its business scale, function flow, and so on are designed by itself to determine, different formats have different functional requirements, and design the use is required by the business decisions rather than the developer to advocate. The lack of directional design basis, the design appears to be universal, but shoot at random. Once the function with the shop owner conflict, the design must be from the beginning. Language planning can increase the early unnecessary cost and later investment difficulty. Therefore, architects should design according to different formats of different architectural space mode analysis and recommendations.3.In commercial buildings in the process of planning, commercial real estate is the key to grasp the global experts and architects. Commercial real estate planner requires multidisciplinary personnel coordination ability of organization, according to the project of regional history and culture characteristic, according to local consumer preferences, in particular, the design project of the overall concept, culture orientation and market orientation is determined. At present, the commercial real estate projects generally organized by developers to overall planning, the investment in the project needs and business management experts, business format store managers and retail marketing planner, planner, communication landscape planners, architects, etc. In the implementation of construction plan, still need to urban planner, computer talented person to participate, to form a complete construction plans. Neither side may be arranged to replace, the architectural design is inclusive and absorbing these opinions, solutions and professional values of materialized labor and can form a complete architectural planning and design.4.Sustainable development and the characteristics of commercial building is a public place, with the development of business, commercial buildings in 5-6 years will be to do a decoration, simple and durable quality, less as far as possible need to repair and maintenance, and at the same time, according to the different project environment and commercial content is flexible to adapt and ultimately the value of investors and consumers are continuous. Complete function, rich forms, and space is varied, characteristic, design must be the contemporary tendency of time again at the same time, in all sorts of culture and the differences between s resonate.mercial building designCommercial building design is for the purpose of the construction project to produce a good and lasting economic benefits, the architect in commercial building design is to realize project to achieve a dynamic model of investment return, is to complete a final acceptance by consumers and continuous use of building products. Prophase planning orientation, investment, operation and management, each situation is very complex, has brought great influence, architecture design is an important link. And architects for commercial architecture design is inclusive and absorbing these opinions, solutions and professional values of materialized labor and can form a complete works of architectural design.(1)Formats combination designThe composition of commercial complex is decided by the business itself industry value chain, what kind of business combination is better for business. Architects should accordingto the preliminary planning and positioning, the first investment, operation and management of the planning scheme, starting from the basic function and practical application of building, clear the relationship between the function, space, environment, in line with The Times to design not only requires a new breath, also requires a reasonable and clear arrangement of the whole space functional requirements, and actively guide the passenger flow, manufacturing flow, different articles require different forms of space and location, reasonable distribution area, the partition of floor paving segmentation and supporting facilities design can avoid all kinds of goods mixed Chen, mixed traffic situation, the architect should create rich, flexible, comply with the appropriate space to contain different aspects of business combination technology needs. Must do to make it a complex, the industrial chain, industrial chain out after the value chain came out, can produce all kinds of benefits.(2)Pattern designPlanning, design of commercial building in different commercial real estate development mode, have completely different results. Rent is not only sales, emphasizing on management and value-added shops, if considering concurrently, also consider the preferences and requirements of the buyer shops. Commercial buildings due to the different requirements for merchants function layout is different, also different brands to the layout of the same forms are different. By the limit of commercial buildings, or different development cycle, or running effect is different. Those who do not conform to the business law of commercial building design, although space modeling is rich, has implied the bad management of hidden trouble. Therefore, meet the demand of merchants, digest the negative influence of all kinds of changes, architects in the design of the flexible space combination, providing different pattern design, to the use of a variety of forms do fully consider function of balance and coordination. Commercial building itself the function of the combination is very complex, for commercial, residential, office each mixed complex project, the process will be more difficult. Commercial and apartment part often deployed in a low-end, office and hotel in the high-end. The advantages of this design can facilitate the building line layout; Low-end flat layer in the core tube location is advantageous to the toilet set up; High-end part of the landscape advantage is more advantageous to project high value products. But in the concrete project, but should also fully consider building itself the vertical transportation efficiency of the impact on business. In the design of architectural plane layout, space efficiency will approach combined with architectural form and structure. For example, many senior project adopted the practice of Angle, when the design according to the economy, it can increase economic returns of about 30%, but in the specific project be careful not to damage to the corner form.(3)The guidance system designStream of people, logistics, decision function layout reasonable guidance system is the key to the success of commercial building design. Make sure people line, logistics, inward and outward, channel form, to make the layout of the commercial function, consumer groups have a wide range of interest and today free time, thus providing rich architectural space, integrating shopping, entertainment, leisure and so on need comprehensive shopping mall is their needs. Rich function as much as possible to meet the requirements of the customers, but also satisfy the buyers (pavement investors, business investors) needs to provide convenient logistics channel. And express more interest in the construction details. And then to createnew business environment. Let the consumer feel the pleasure shopping consumption, feel the beauty of life and the world at the same time, create more economic benefits for store operators.(4)Green building and characteristicGreen building on the one hand can save energy, on the other hand the sustainable of benefits will far outweigh the prophase investment so as to achieve the value of overall implementation, green buildings gives the possibility of ability of sustainable development and alteration, when architects in the design of commercial buildings so there is no need to do best, do it right, and not have to do much more luxurious style reflected is the commercial buildings, stronger in proper. Commercial buildings tend to be the center of the city commercial culture, different cities have different style, therefore, the architects in the use of his style and technique, need deep understanding urban commercial culture characteristics, extract the essence of the regional culture, architectural design make commercial buildings should have cultural features, local feature, more want to highlight the characteristics of the formats, spatial characteristics, cultural characteristics used in commercial buildings, not only can sense the material shell, are showing strong commercial buildings.3.ConclusionModern commercial architecture planning and design major programs, including the investment purpose and the understanding of the business environment for investors, commercial content on the project, the location of the business environment of consumer behavior, commercial buildings, the understanding of the business concept research, commercial building project planning, design process and method of design, for project construction total plane design and auxiliary space design professional design, space form and form design, the project design space and form of management main body,property requirements,facilities and equipment requirements,architectural engineering and construction of the professional requirement.中文译文:浅谈商业建筑规划设计摘要:商业建筑现已成为除居住建筑以外,最引人注目的,对城市活力和景观影响最大的建筑类型,商业建筑规划设计将面临更广泛的问题。

建筑学Modern-Architecture现代建筑大学毕业论文外文文献翻译及原文

建筑学Modern-Architecture现代建筑大学毕业论文外文文献翻译及原文

毕业设计(论文)外文文献翻译文献、资料中文题目:现代建筑文献、资料英文题目:Modern Architecture文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14建筑学毕业设计的外文文献及译文文献、资料题目:《Advanced Encryption Standard》文献、资料发表(出版)日期:2004.10.25外文文献:Modern ArchitectureModern architecture, not to be confused with 'contemporary architecture', is a term given to a number of building styles with similar characteristics, primarily the simplification of form and the elimination of ornament. While the style was conceived early in the 20th century and heavily promoted by a few architects, architectural educators and exhibits, very few Modern buildings were built in the first half of the century. For three decades after the Second World War, however, it became the dominant architectural style for institutional and corporate building.1. OriginsSome historians see the evolution of Modern architecture as a social matter, closely tied to the project of Modernity and hence to the Enlightenment, a result of social and political revolutions.Others see Modern architecture as primarily driven by technological and engineering developments, and it is true that the availability of new building materials such as iron, steel, concrete and glass drove the invention of new building techniques as part of the Industrial Revolution. In 1796, Shrewsbury mill owner Charles Bage first used his ‘fireproof’ design, which relied on cast iron and brick with flag stone floors. Such construction greatly strengthened the structure of mills, which enabled them to accommodate much bigger machines. Due to poor knowledge of iron's properties as a construction material, a number of early mills collapsed. It was not until the early 1830s that Eaton Hodgkinson introduced the section beam, leading to widespread use of iron construction, this kind of austere industrial architecture utterly transformed the landscape of northern Britain, leading to the description, "Dark satanic mills" of places like Manchester and parts of West Yorkshire. The Crystal Palace by Joseph Paxton at the Great Exhibition of 1851 was an early example of iron and glass construction; possibly the best example is the development of the tall steel skyscraper in Chicago around 1890 by William Le Baron Jenney and Louis Sullivan. Early structures to employ concrete as the chief means of architectural expression (rather than for purely utilitarian structure) include Frank Lloyd Wright's Unity Temple, built in 1906 near Chicago, and Rudolf Steiner's Second Goetheanum, built from1926 near Basel, Switzerland.Other historians regard Modernism as a matter of taste, a reaction against eclecticism and the lavish stylistic excesses of Victorian Era and Edwardian Art Nouveau.Whatever the cause, around 1900 a number of architects around the world began developing new architectural solutions to integrate traditional precedents (Gothic, for instance) with new technological possibilities. The work of Louis Sullivan and Frank Lloyd Wright in Chicago, Victor Horta in Brussels, Antoni Gaudi in Barcelona, Otto Wagner in Vienna and Charles Rennie Mackintosh in Glasgow, among many others, can be seen as a common struggle between old and new.2. Modernism as Dominant StyleBy the 1920s the most important figures in Modern architecture had established their reputations. The big three are commonly recognized as Le Corbusier in France, and Ludwig Mies van der Rohe and Walter Gropius in Germany. Mies van der Rohe and Gropius were both directors of the Bauhaus, one of a number of European schools and associations concerned with reconciling craft tradition and industrial technology.Frank Lloyd Wright's career parallels and influences the work of the European modernists, particularly via the Wasmuth Portfolio, but he refused to be categorized with them. Wright was a major influence on both Gropius and van der Rohe, however, as well as on the whole of organic architecture.In 1932 came the important MOMA exhibition, the International Exhibition of Modern Architecture, curated by Philip Johnson. Johnson and collaborator Henry-Russell Hitchcock drew together many distinct threads and trends, identified them as stylistically similar and having a common purpose, and consolidated them into the International Style.This was an important turning point. With World War II the important figures of the Bauhaus fled to the United States, to Chicago, to the Harvard Graduate School of Design, and to Black Mountain College. While Modern architectural design never became a dominant style in single-dwelling residential buildings, in institutional and commercial architecture Modernism became the pre-eminent, and in the schools (for leaders of the profession) the only acceptable, design solution from about 1932 to about 1984.Architects who worked in the international style wanted to break with architectural tradition and design simple, unornamented buildings. The most commonly used materials are glass for the facade, steel for exterior support, and concrete for the floors and interior supports; floor plans were functional and logical. The style became most evident in the design of skyscrapers. Perhaps its most famous manifestations include the United Nations headquarters (Le Corbusier, Oscar Niemeyer, Sir Howard Robertson), the Seagram Building (Ludwig Mies van der Rohe), and Lever House (Skidmore, Owings, and Merrill), all in New York. A prominent residential example is the Lovell House (Richard Neutra) in Los Angeles.Detractors of the international style claim that its stark, uncompromisingly rectangular geometry is dehumanising. Le Corbusier once described buildings as "machines for living", but people are not machines and it was suggested that they do not want to live in machines. Even Philip Johnson admitted he was "bored with the box." Since the early 1980s many architects have deliberately sought to move away from rectilinear designs, towards more eclectic styles. During the middle of the century, some architects began experimenting in organic forms that they felt were more human and accessible. Mid-century modernism, or organic modernism, was very popular, due to its democratic and playful nature. Alvar Aalto and Eero Saarinen were two of the most prolific architects and designers in this movement, which has influenced contemporary modernism.Although there is debate as to when and why the decline of the modern movement occurred, criticism of Modern architecture began in the 1960s on the grounds that it was universal, sterile, elitist and lacked meaning. Its approach had become ossified in a "style" that threatened to degenerate into a set of mannerisms. Siegfried Giedion in the 1961 introduction to his evolving text, Space, Time and Architecture (first written in 1941), could begin "At the moment a certain confusion exists in contemporary architecture, as in painting; a kind of pause, even a kind of exhaustion." At the Metropolitan Museum of Art, a 1961 symposium discussed the question "Modern Architecture: Death or Metamorphosis?" In New York, the coup d'état appeared to materialize in controversy around the Pan Am Building that loomed over Grand Central Station, taking advantage of the modernist real estate concept of "air rights",[1] In criticism by Ada Louise Huxtable and Douglas Haskell it was seen to "sever" the Park Avenue streetscape and "tarnish" the reputations of its consortium of architects: Walter Gropius, Pietro Belluschi and thebuilders Emery Roth & Sons. The rise of postmodernism was attributed to disenchantment with Modern architecture. By the 1980s, postmodern architecture appeared triumphant over modernism, including the temple of the Light of the World, a futuristic design for its time Guadalajara Jalisco La Luz del Mundo Sede International; however, postmodern aesthetics lacked traction and by the mid-1990s, a neo-modern (or hypermodern) architecture had once again established international pre-eminence. As part of this revival, much of the criticism of the modernists has been revisited, refuted, and re-evaluated; and a modernistic idiom once again dominates in institutional and commercial contemporary practice, but must now compete with the revival of traditional architectural design in commercial and institutional architecture; residential design continues to be dominated by a traditional aesthetic.中文译文:现代建筑现代建筑,不被混淆与'当代建筑' , 是一个词给了一些建筑风格有类似的特点, 主要的简化形式,消除装饰等. 虽然风格的设想早在20世纪,并大量造就了一些建筑师、建筑教育家和展品,很少有现代的建筑物,建于20世纪上半叶. 第二次大战后的三十年, 但最终却成为主导建筑风格的机构和公司建设.1起源一些历史学家认为进化的现代建筑作为一个社会问题, 息息相关的工程中的现代性,从而影响了启蒙运动,导致社会和政治革命.另一些人认为现代建筑主要是靠技术和工程学的发展, 那就是获得新的建筑材料,如钢铁, 混凝土和玻璃驱车发明新的建筑技术,它作为工业革命的一部分. 1796年, shrewsbury查尔斯bage首先用他的'火'的设计, 后者则依靠铸铁及砖与石材地板. 这些建设大大加强了结构,使它们能够容纳更大的机器. 由于作为建筑材料特性知识缺乏,一些早期建筑失败. 直到1830年初,伊顿Hodgkinson预计推出了型钢梁, 导致广泛使用钢架建设,工业结构完全改变了这种窘迫的面貌,英国北部领导的描述, "黑暗魔鬼作坊"的地方如曼彻斯特和西约克郡. 水晶宫由约瑟夫paxton的重大展览, 1851年,是一个早期的例子,钢铁及玻璃施工; 可能是一个最好的例子,就是1890年由William乐男爵延长和路易沙利文在芝加哥附近发展的高层钢结构摩天楼. 早期结构采用混凝土作为行政手段的建筑表达(而非纯粹功利结构) ,包括建于1906年在芝加哥附近,劳埃德赖特的统一宫, 建于1926年瑞士巴塞尔附近的鲁道夫斯坦纳的第二哥特堂,.但无论原因为何, 约有1900多位建筑师,在世界各地开始制定新的建筑方法,将传统的先例(比如哥特式)与新的技术相结合的可能性.路易沙利文和赖特在芝加哥工作,维克多奥尔塔在布鲁塞尔,安东尼高迪在巴塞罗那, 奥托瓦格纳和查尔斯景mackintosh格拉斯哥在维也纳,其中之一可以看作是一个新与旧的共同斗争.2现代主义风格由1920年代的最重要人物,在现代建筑里确立了自己的名声. 三个是公认的柯布西耶在法国, 密斯范德尔德罗和瓦尔特格罗皮乌斯在德国. 密斯范德尔德罗和格罗皮乌斯为董事的包豪斯, 其中欧洲有不少学校和有关团体学习调和工艺和传统工业技术.赖特的建筑生涯中,也影响了欧洲建筑的现代艺术,特别是通过瓦斯穆特组合但他拒绝被归类与他们. 赖特与格罗皮乌斯和Van der德罗对整个有机体系有重大的影响.在1932年来到的重要moma展览,是现代建筑艺术的国际展览,艺术家菲利普约翰逊. 约翰逊和合作者亨利-罗素阁纠集许多鲜明的线索和趋势, 内容相似,有一个共同的目的,巩固了他们融入国际化风格这是一个重要的转折点. 在二战的时间包豪斯的代表人物逃到美国,芝加哥,到哈佛大学设计黑山书院. 当现代建筑设计从未成为主导风格单一的住宅楼,在成为现代卓越的体制和商业建筑, 是学校(专业领导)的唯一可接受的, 设计解决方案,从约1932年至约1984年.那些从事国际风格的建筑师想要打破传统建筑和简单的没有装饰的建筑物。

高层建筑设计中英文对照外文翻译文献

高层建筑设计中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)Structural Systems to resist lateral loadsmonly Used structural SystemsWith loads measured in tens of thousands kips, there is little room in the design of high-rise buildings for excessively complex thoughts. Indeed, the better high-rise buildings carry the universal traits of simplicity of thought and clarity of expression.It does not follow that there is no room for grand thoughts. Indeed, it is with such grand thoughts that the new family of high-rise buildings has evolved. Perhaps more important, the new concepts of but a few years ago have become commonplace in today’ s technology.Omitting some concepts that are related strictly to the materials of construction, the most commonly used structural systems used in high-rise buildings can be categorized as follows:1.Moment-resisting frames.2.Braced frames, including eccentrically braced frames.3.Shear walls, including steel plate shear walls.4.Tube-in-tube structures.5.Tube-in-tube structures.6.Core-interactive structures.7.Cellular or bundled-tube systems.Particularly with the recent trend toward more complex forms, but in response also to the need for increased stiffness to resist the forces from wind and earthquake, most high-rise buildings have structural systems built up of combinations of frames, braced bents, shear walls, and related systems. Further, for the taller buildings, the majorities are composed of interactive elements in three-dimensional arrays.The method of combining these elements is the very essence of the design process for high-rise buildings. These combinations need evolve in response to environmental, functional, and cost considerations so as to provide efficient structures that provoke the architectural development to new heights. This is not to say that imaginative structural design can create great architecture. To the contrary, many examples of fine architecture have been created with only moderate support from the structural engineer, while only fine structure, not great architecture, can be developed without the genius and the leadership of a talented architect. In any event, the best of both is needed to formulate a truly extraordinary design of a high-rise building.While comprehensive discussions of these seven systems are generally available in the literature, further discussion is warranted here .The essence of the design process is distributed throughout the discussion.2.Moment-Resisting FramesPerhaps the most commonly used system in low-to medium-rise buildings, the moment-resisting frame, is characterized by linear horizontal and vertical members connected essentially rigidly at their joints. Such frames are used as a stand-alone system or in combination with other systems so as to provide the needed resistance to horizontal loads. In the taller of high-rise buildings, the system is likely to be found inappropriate for a stand-alone system, this because of the difficulty in mobilizing sufficient stiffness under lateral forces.Analysis can be accomplished by STRESS, STRUDL, or a host of other appropriatecomputer programs; analysis by the so-called portal method of the cantilever method has no place in today’s technology.Because of the intrinsic flexibility of the column/girder intersection, and because preliminary designs should aim to highlight weaknesses of systems, it is not unusual to use center-to-center dimensions for the frame in the preliminary analysis. Of course, in the latter phases of design, a realistic appraisal in-joint deformation is essential.3.Braced FramesThe braced frame, intrinsically stiffer than the moment –resisting frame, finds also greater application to higher-rise buildings. The system is characterized by linear horizontal, vertical, and diagonal members, connected simply or rigidly at their joints. It is used commonly in conjunction with other systems for taller buildings and as a stand-alone system in low-to medium-rise buildings.While the use of structural steel in braced frames is common, concrete frames are more likely to be of the larger-scale variety.Of special interest in areas of high seismicity is the use of the eccentric braced frame.Again, analysis can be by STRESS, STRUDL, or any one of a series of two –or three dimensional analysis computer programs. And again, center-to-center dimensions are used commonly in the preliminary analysis.4.Shear wallsThe shear wall is yet another step forward along a progression of ever-stiffer structural systems. The system is characterized by relatively thin, generally (but not always) concrete elements that provide both structural strength and separation between building functions.In high-rise buildings, shear wall systems tend to have a relatively high aspect ratio, that is, their height tends to be large compared to their width. Lacking tension in the foundation system, any structural element is limited in its ability to resist overturning moment by the width of the system and by the gravity load supported by the element. Limited to a narrow overturning, One obvious use of the system, which does have the needed width, is in the exterior walls of building, where the requirement for windows is kept small.Structural steel shear walls, generally stiffened against buckling by a concrete overlay, have found application where shear loads are high. The system, intrinsically more economicalthan steel bracing, is particularly effective in carrying shear loads down through the taller floors in the areas immediately above grade. The sys tem has the further advantage of having high ductility a feature of particular importance in areas of high seismicity.The analysis of shear wall systems is made complex because of the inevitable presence of large openings through these walls. Preliminary analysis can be by truss-analogy, by the finite element method, or by making use of a proprietary computer program designed to consider the interaction, or coupling, of shear walls.5.Framed or Braced TubesThe concept of the framed or braced or braced tube erupted into the technology with the IBM Building in Pittsburgh, but was followed immediately with the twin 110-story towers of the World Trade Center, New York and a number of other buildings .The system is characterized by three –dimensional frames, braced frames, or shear walls, forming a closed surface more or less cylindrical in nature, but of nearly any plan configuration. Because those columns that resist lateral forces are placed as far as possible from the cancroids of the system, the overall moment of inertia is increased and stiffness is very high.The analysis of tubular structures is done using three-dimensional concepts, or by two- dimensional analogy, where possible, whichever method is used, it must be capable of accounting for the effects of shear lag.The presence of shear lag, detected first in aircraft structures, is a serious limitation in the stiffness of framed tubes. The concept has limited recent applications of framed tubes to the shear of 60 stories. Designers have developed various techniques for reducing the effects of shear lag, most noticeably the use of belt trusses. This system finds application in buildings perhaps 40stories and higher. However, except for possible aesthetic considerations, belt trusses interfere with nearly every building function associated with the outside wall; the trusses are placed often at mechanical floors, mush to the disapproval of the designers of the mechanical systems. Nevertheless, as a cost-effective structural system, the belt truss works well and will likely find continued approval from designers. Numerous studies have sought to optimize the location of these trusses, with the optimum location very dependent on the number of trusses provided. Experience would indicate, however, that the location of these trusses is provided by the optimization of mechanical systems and by aesthetic considerations,as the economics of the structural system is not highly sensitive to belt truss location.6.Tube-in-Tube StructuresThe tubular framing system mobilizes every column in the exterior wall in resisting over-turning and shearing forces. The term‘tube-in-tube’is largely self-explanatory in that a second ring of columns, the ring surrounding the central service core of the building, is used as an inner framed or braced tube. The purpose of the second tube is to increase resistance to over turning and to increase lateral stiffness. The tubes need not be of the same character; that is, one tube could be framed, while the other could be braced.In considering this system, is important to understand clearly the difference between the shear and the flexural components of deflection, the terms being taken from beam analogy. In a framed tube, the shear component of deflection is associated with the bending deformation of columns and girders (i.e, the webs of the framed tube) while the flexural component is associated with the axial shortening and lengthening of columns (i.e, the flanges of the framed tube). In a braced tube, the shear component of deflection is associated with the axial deformation of diagonals while the flexural component of deflection is associated with the axial shortening and lengthening of columns.Following beam analogy, if plane surfaces remain plane (i.e, the floor slabs),then axial stresses in the columns of the outer tube, being farther form the neutral axis, will be substantially larger than the axial stresses in the inner tube. However, in the tube-in-tube design, when optimized, the axial stresses in the inner ring of columns may be as high, or even higher, than the axial stresses in the outer ring. This seeming anomaly is associated with differences in the shearing component of stiffness between the two systems. This is easiest to under-stand where the inner tube is conceived as a braced (i.e, shear-stiff) tube while the outer tube is conceived as a framed (i.e, shear-flexible) tube.7.Core Interactive StructuresCore interactive structures are a special case of a tube-in-tube wherein the two tubes are coupled together with some form of three-dimensional space frame. Indeed, the system is used often wherein the shear stiffness of the outer tube is zero. The United States Steel Building, Pittsburgh, illustrates the system very well. Here, the inner tube is a braced frame, the outer tube has no shear stiffness, and the two systems are coupled if they were considered as systemspassing in a straight line from the “hat” structure. Note that the exterior columns would be improperly modeled if they were considered as systems passing in a straight line from the “hat” to the foundations; these columns are perhaps 15% stiffer as they follow the elastic curve of the braced core. Note also that the axial forces associated with the lateral forces in the inner columns change from tension to compression over the height of the tube, with the inflection point at about 5/8 of the height of the tube. The outer columns, of course, carry the same axial force under lateral load for the full height of the columns because the columns because the shear stiffness of the system is close to zero.The space structures of outrigger girders or trusses, that connect the inner tube to the outer tube, are located often at several levels in the building. The AT&T headquarters is an example of an astonishing array of interactive elements:1.The structural system is 94 ft (28.6m) wide, 196ft(59.7m) long, and 601ft (183.3m)high.2.Two inner tubes are provided, each 31ft(9.4m) by 40 ft (12.2m), centered 90 ft (27.4m)apart in the long direction of the building.3.The inner tubes are braced in the short direction, but with zero shear stiffness in the longdirection.4. A single outer tube is supplied, which encircles the building perimeter.5.The outer tube is a moment-resisting frame, but with zero shear stiffness for thecenter50ft (15.2m) of each of the long sides.6. A space-truss hat structure is provided at the top of the building.7. A similar space truss is located near the bottom of the building8.The entire assembly is laterally supported at the base on twin steel-plate tubes, becausethe shear stiffness of the outer tube goes to zero at the base of the building.8.Cellular structuresA classic example of a cellular structure is the Sears Tower, Chicago, a bundled tube structure of nine separate tubes. While the Sears Tower contains nine nearly identical tubes, the basic structural system has special application for buildings of irregular shape, as the several tubes need not be similar in plan shape, It is not uncommon that some of the individual tubes one of the strengths and one of the weaknesses of the system.This special weakness of this system, particularly in framed tubes, has to do with the concept of differential column shortening. The shortening of a column under load is given by the expression△=ΣfL/EFor buildings of 12 ft (3.66m) floor-to-floor distances and an average compressive stress of 15 ksi (138MPa), the shortening of a column under load is 15 (12)(12)/29,000 or 0.074in (1.9mm) per story. At 50 stories, the column will have shortened to 3.7 in. (94mm) less than its unstressed length. Where one cell of a bundled tube system is, say, 50stories high and an adjacent cell is, say, 100stories high, those columns near the boundary between .the two systems need to have this differential deflection reconciled.Major structural work has been found to be needed at such locations. In at least one building, the Rialto Project, Melbourne, the structural engineer found it necessary to vertically pre-stress the lower height columns so as to reconcile the differential deflections of columns in close proximity with the post-tensioning of the shorter column simulating the weight to be added on to adjacent, higher columns.抗侧向荷载的结构体系1.常用的结构体系若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。

建筑工程毕业设计外文翻译英文原文

建筑工程毕业设计外文翻译英文原文

建筑工程毕业设计外文翻译英文原文The effects of surface preparation on the fracture behavior ofECC/concrete repair systemToshiro Kamada a,*, Victor C. Li ba Department of Civil Engineering, Gifu University, Yanagido, Gifu 501-1193, Japanb Advanced Civil Engineering Materials Research Laboratory, Department of Civil and Environmental Engineering,University of Michigan, Ann Arbor, Michigan, MI 48109-2125, USAReceived 7 July 1999; accepted 15 May 2000AbstractThis paper presents the influence of surface preparation on thekink-crack trapping mechanism of engineered cementitious composite (ECC)/concrete repair system. In general,surfacepreparation of the substrate concrete is considered essential to achieve a durable repair. In thisexperiment, the ``smooth sur face’’ system showed more desirable behavior in the crack pattern and the crack widths than the ``rough surface’’ system. This demonstrates that the smooth surface system is preferable to the rough surface system, from the view point of obtaining durable repair structure. The special phenomenon of kink-crack trapping which prevents the typical failuremodes of delamination or spalling in repaired systems is best revealed when the substrate concrete is prepared to have a smooth surface prior to repair. This is in contrast to the standard approach when the substrate concrete is deliberately roughened to create better bonding to the new concrete. Ó 2000 Elsevier Science Ltd. All rights reserved.Keywords: ECC repair system; Kink-crack trapping mechanism; Surface preparation; Durable repair1. IntroductionEngineered cementitious composites (ECCs) [1,2] are high performance fiber-reinforced cement based composite materials designed with micromechanical principles. Micromechanicalparameters associated with fiber, matrix and interface are combined to satisfy a pair of criteria, the first crack stress criterion and steady state cracking criterion [3] to achieve the strain hardening behavior. Micromechanics allows optimization of the composite for high performance while minimizing the amount of reinforcing fibers (generally less than 2-3%). ECC has a tensile strain capacity of up to 6% and exhibits pseudo-strain hardening behavior accompanied by multiple cracking. It also has high ultimate tensile strength (5-10 MPa), modulus of rupture (8-25 MPa), fracture toughness (25-30 kJ/m2) and compressive strength (up to 80 MPa) and strain (0.6%). A typical tensile stress-strain curve is shown in Fig. 1. ECC has its uniqueness not only insuperior mechanical properties in tension or in relatively small amount ofchopped fiber usage but also in micromechanical methodology in material design.The use of ECC for concrete repair was proposed by Li et al. [4], and Lim and Li [5]. In theseexperiments, specimens representative of an actual repair system - bonded overlay of a concrete pavement above a joint, were used. It was shown that the common failure phenomenona ofspalling or delamination in repaired concrete systems were eliminated. Instead, microcracksemanated from the tips of defects on the ECC/concrete interface, kinked into and subsequently were arrested in the ECC material (see Fig. 2, [5]). The tendency for the interface crack to kink into the ECC material depends on the competing driving force for crack extension at differentorientations, and on the competing crack extension resistance along the interface and into the ECC material. A low initial toughness of ECC combined with a high Mode II loading configuration tends to favor kinking. However, if the toughness of ECC remains low after crack kinking, this crack will propagate unstably to the surface, forming a surface spall. This is the typically observed phenomenon associated with brittle concrete and even fiber-reinforced concrete (FRC). In the case of ECC, the kinked crack is trapped or arrested in the ECC material, dueto the rapidly rising toughness of the ECC material. Conceptually, the ECC behaves like a material with strong R-curve behavior, with lowinitial toughness similar to that of cement (0.01 kJ/m2) and high plateau toughness (25-30 kJ/m2). After kinked crack arrest,additional load can drive further crackextension into the interface, followed by subsequent kinking and arrest.Details of the energetics of kink-crack trapping mechanism can befound in [5]. It was pointed out that this kink-crack trapping mechanism could serve as a means for enhancing repaired concrete system durability.In standard concrete repair, surface preparation of the substrate concrete is considered critical in achieving a durable repair [6]. Inthe study of Lim and Li [5], the ECC is cast onto a diamond saw cut surface of the concrete. Hence, the concrete surface is smooth and is expected as a result to produce a low toughness interface. Higherinterface roughness has been associated with higher interface toughnessin bi-material systems [7].In this paper, this particular aspect of the influence of surface preparation on the kink-crack trapping phenomenon is investigated. Specifically, the base concrete surfaces were prepared by threedifferent methods. The first surface was obtained as cut surface byusing a diamond saw (smooth surface), similar to that used in theprevious study [5]. The second one was obtained by applying a lubricanton the smooth surface of the concrete to decrease the bond between thebase concrete and the repair material. This surface was applied only in one test case to examine the effect of weak bond of interface on the fracture behavior of the repaired specimen. The third surface was prepared with a portable scarifier to produce a roughened surface (rough surface) from a diamond saw-cut surface.Regarding the repair materials, the water/cement ratio of ECC was varied to control its toughness and strength. Thus, two different mixtures of ECC were used for the comparison of fracture behavior in both smooth and rough surface case. Concrete and steel fiber-reinforced concrete (SFRC) were also used as control repair materials instead of ECC.2. Experimental procedure2.1. Specimens and test methodsThe specimens in this experiment were designed to induce a defect in the form of aninterfacial crack between the repair material and the base concrete, as well as a joint in thesubstrate. Fig. 3 shows the dimensions of the designed specimen and the loading configuration, and these were the same as those of the previous experiment [5]. This loading condition can provide a stable interface crack propagation condition, when the crack propagates along the interface [8].In this experiment, concrete, SFRC and ECC (with two different W/C ratios) were used as therepair materials. Table 1 illustrates the combinations of the repair material and the surface condition of test specimens. The numbers of specimens are also shown in Table 1. Only in the concrete overlay specimens, a special case where lubricant was smeared on the concrete smooth surface was used.The mix proportions of materials are shown in Table 2. Ordinary mixture proportions wereadopted in concrete and SFRC as controls for comparisons with ECC overlay specimens. The steel fiber for SFRC was ``I.S fiber’’, straight with indented surfaceand rectangular cross-section (0.5* 0.5 mm2), 30 mm in length. An investigation using a steel fiber with hooked ends had already been performed in the previous study [5]. Polyethylene fiber (Trade name Spectra 900) with 19 mm length and 0.038 mm diameter was used for ECC. The elastic modulus, the tensile strength and the fiber density of Spectra 900 were 120 GPa, 2700 MPa and 0.98 g/cm3, respectively. Two different ECCs were used with different water/cement ratios. The mechanical properties of the base concrete and the repair materials are shown in Table 3. The tensile strain capacity of the ECC materials are not measured, but are estimated to be in excess of 3% based on test results of similar materials [2].An MTS machine was used for loading. Load and load point displacement were recorded. The loading rate in this experiment was0.005 mm/s. After the final failure of specimens, interface crack (extension) lengths were measured at both (left and right) sides of a specimen as the distance from a initial notch tip to a propagated crack tip along the interface between the base concrete and the repair material.2.2. Specimen preparationMost of the specimen preparation procedures followed those of the previous work [5]. The base concrete was prepared by cutting a concrete block (see Fig. 4(a)) into four pieces (see Fig. 4(b)) using a diamond saw. Two out of the four pieces were usedfor one smooth surface repairspecimen. In order to make a rough surface, a cut surface was roughened uniformly with ascarifier for 30 s. To prepare a repair specimen in the form of an overlay system, a repair material was cast against either the smooth surface or the rough surface of the base concrete blocks (see Fig. 5). Special attention was paid both to maintain cleanliness and to provide adequate moisture on the base concrete surface just before the casting. In two of the concrete overlay specimens, lubricant was sprayed on the smooth surface just before concrete casting. The initial notch and joint were made by applying a smooth tape on the base concrete before casting the repair materials(see Fig. 4(c)).The specimens were cured for 4 weeks in water. Eventually, the base concrete was cured for a total of 8 weeks, and repair materials were cured for 4 weeks in water. The specimens were dried for 24 h before testing.3. Results and discussion3.1. Comparison of the ECC overlay system with the control systemsFig. 6 shows the representative load-deflection curves in each test case. The overall peak load and deflection at peak load are recorded in Table 4. In the ECC overlay system, the deflections at peak load, which reflect the system ductility, are considerably larger than those of both theconcrete overlay (about one order of magnitude higher) and the SFRC overlay system (over five times). These results show good agreement with the previous results [5]. Moreover, it is clear fromFig. 6 that the energy absorption capacity in the ECC overlay system is much enhanced when it is compared with the other systems. This significant improvement in ductility and in energyabsorption capacity of the ECC overlay system is expected to enhance the durability of repaired structures by resisting brittle failure. The ECC overlay system failed without spalling ordelamination of the interface, whereas, both the concrete and SFRC overlay systems failed by spalling in these experiments (Fig. 7).3.2. Influence of surface preparationBoth in the concrete overlay system and the SFRC overlay system, the peak load and thedeflection at peak load do not show significant differences between smooth surface specimen and rough surface specimen (Table 4). Thetypical failure mode for both overlay systems (for smooth surface) is shown in Fig. 7. In the concrete overlay specimen with lubricant on the interface, delamination between repair concrete and substrate occurred first, followed by a kinked crack which propagates unstably to the surface of the repair concrete. On the other hand, in the concrete overlay system without lubricant, the initial interface crack kinked out from the interface into the repair concrete with a sudden load drop, without any interface delamination. The fractured halves of the specimens separated completely in both smooth surface specimens and rough surfacespecimens. In the SFRC overlay system, the initial interface crack also kinked out into the SFRC and the load decreased gradually in both surface conditions of specimen. In all these repairsystems, a single kink-crack always leads to final failure, and the influence of surface preparation is not reflected in the experimental data. Instead, only the fracture behavior of the repair material (concrete versus SFRC) are revealed in the test data. These specimen failures are characterized bya single kinked crack with immediate softening following elastic response.。

建筑专业毕业设计外文资料翻译

建筑专业毕业设计外文资料翻译

Title:The Poetics of City and Nature:T oward a New Aesthetic for Urban DesignJournal Issue:Places, 6(1)Author:Spirn,Anne WhistonPublication Date:10-01—1989Publication Info:Places,College of Environmental Design, UC BerkeleyCitation:Spirn,AnneWhiston.(1989).ThePoeticsofCityandNature:T owardaNewAestheticforUrban Design。

Places,6(1),82。

Keywords:places,placemaking,architecture,environment,landscape,urbandesign,publicrealm,planning, design,aesthetic, poetics,Anne Whiston SpirnThe city has been compared to a poem, a sculpture, a machine. But the city is more than a text,and more than an artistic or technological. It is a place where natural forces pulse and millions of people live—thinking,feeling,dreaming,doing。

An aesthetic of urban design must therefore be rooted in the normal processes of nature and of living.I want to describe the dimensions of such an aesthetic。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建筑学毕业设计的外文文献及译文文献、资料题目:《Advanced Encryption Standard》文献、资料发表(出版)日期:2004.10.25系(部):建筑工程系学生:陆总 LYY外文文献:Modern ArchitectureModern architecture, not to be confused with 'contemporary architecture', is a term given to a number of building styles with similar characteristics, primarily the simplification of form and the elimination of ornament. While the style was conceived early in the 20th century and heavily promoted by a few architects, architectural educators and exhibits, very few Modern buildings were built in the first half of the century. For three decades after the Second World War, however, it became the dominant architectural style for institutional and corporate building.1. OriginsSome historians see the evolution of Modern architecture as a social matter, closely tied to the project of Modernity and hence to the Enlightenment, a result of social and political revolutions.Others see Modern architecture as primarily driven by technological and engineering developments, and it is true that the availability of new building materials such as iron, steel, concrete and glass drove the invention of new building techniques as part of the Industrial Revolution. In 1796, Shrewsbury mill owner Charles Bage first used his ‘fireproof’ design, which relied on cast iron and brick with flag stone floors. Such construction greatly strengthened the structure of mills, which enabled them to accommodate much bigger machines. Due to poor knowledge of iron's properties as a construction material, a number of early mills collapsed. It was not until the early 1830s that Eaton Hodgkinson introduced the section beam, leading to widespread use of iron construction, this kind of austere industrial architecture utterly transformed the landscape of northern Britain, leading to the description, "Dark satanic mills" of places like Manchester and parts of West Yorkshire. The Crystal Palace by Joseph Paxton at the Great Exhibition of 1851 was an early example of iron and glass construction; possibly the best example is the development of the tall steel skyscraper in Chicago around 1890 by William Le Baron Jenney and Louis Sullivan. Early structures to employ concrete as the chief means of architectural expression (rather than for purely utilitarian structure) include Frank Lloyd Wright's Unity Temple, built in 1906 near Chicago, and Rudolf Steiner's Second Goetheanum, built from1926 near Basel, Switzerland.Other historians regard Modernism as a matter of taste, a reaction against eclecticism and the lavish stylistic excesses of Victorian Era and Edwardian Art Nouveau.Whatever the cause, around 1900 a number of architects around the world began developing new architectural solutions to integrate traditional precedents (Gothic, for instance) with new technological possibilities. The work of Louis Sullivan and Frank Lloyd Wright in Chicago, Victor Horta in Brussels, Antoni Gaudi in Barcelona, Otto Wagner in Vienna and Charles Rennie Mackintosh in Glasgow, among many others, can be seen as a common struggle between old and new.2. Modernism as Dominant StyleBy the 1920s the most important figures in Modern architecture had established their reputations. The big three are commonly recognized as Le Corbusier in France, and Ludwig Mies van der Rohe and Walter Gropius in Germany. Mies van der Rohe and Gropius were both directors of the Bauhaus, one of a number of European schools and associations concerned with reconciling craft tradition and industrial technology.Frank Lloyd Wright's career parallels and influences the work of the European modernists, particularly via the Wasmuth Portfolio, but he refused to be categorized with them. Wright was a major influence on both Gropius and van der Rohe, however, as well as on the whole of organic architecture.In 1932 came the important MOMA exhibition, the International Exhibition of Modern Architecture, curated by Philip Johnson. Johnson and collaborator Henry-Russell Hitchcock drew together many distinct threads and trends, identified them as stylistically similar and having a common purpose, and consolidated them into the International Style.This was an important turning point. With World War II the important figures of the Bauhaus fled to the United States, to Chicago, to the Harvard Graduate School of Design, and to Black Mountain College. While Modern architectural design never became a dominant style in single-dwelling residential buildings, in institutional and commercial architecture Modernism became the pre-eminent, and in the schools (for leaders of the profession) the only acceptable, design solution from about 1932 to about 1984.Architects who worked in the international style wanted to break with architectural tradition and design simple, unornamented buildings. The most commonly used materials are glass for the facade, steel for exterior support, and concrete for the floors and interior supports; floor plans were functional and logical. The style became most evident in the design of skyscrapers. Perhaps its most famous manifestations include the United Nations headquarters (Le Corbusier, Oscar Niemeyer, Sir Howard Robertson), the Seagram Building (Ludwig Mies van der Rohe), and Lever House (Skidmore, Owings, and Merrill), all in New York. A prominent residential example is the Lovell House (Richard Neutra) in Los Angeles.Detractors of the international style claim that its stark, uncompromisingly rectangular geometry is dehumanising. Le Corbusier once described buildings as "machines for living", but people are not machines and it was suggested that they do not want to live in machines. Even Philip Johnson admitted he was "bored with the box." Since the early 1980s many architects have deliberately sought to move away from rectilinear designs, towards more eclectic styles. During the middle of the century, some architects began experimenting in organic forms that they felt were more human and accessible. Mid-century modernism, or organic modernism, was very popular, due to its democratic and playful nature. Alvar Aalto and Eero Saarinen were two of the most prolific architects and designers in this movement, which has influenced contemporary modernism.Although there is debate as to when and why the decline of the modern movement occurred, criticism of Modern architecture began in the 1960s on the grounds that it was universal, sterile, elitist and lacked meaning. Its approach had become ossified in a "style" that threatened to degenerate into a set of mannerisms. Siegfried Giedion in the 1961 introduction to his evolving text, Space, Time and Architecture (first written in 1941), could begin "At the moment a certain confusion exists in contemporary architecture, as in painting; a kind of pause, even a kind of exhaustion." At the Metropolitan Museum of Art, a 1961 symposium discussed the question "Modern Architecture: Death or Metamorphosis?" In New York, the coup d'état appeared to materialize in controversy around the Pan Am Building that loomed over Grand Central Station, taking advantage of the modernist real estate concept of "air rights",[1] In criticism by Ada Louise Huxtable and Douglas Haskell it was seen to "sever" the Park Avenue streetscape and "tarnish" the reputations of its consortium of architects: Walter Gropius, Pietro Belluschi and thebuilders Emery Roth & Sons. The rise of postmodernism was attributed to disenchantment with Modern architecture. By the 1980s, postmodern architecture appeared triumphant over modernism, including the temple of the Light of the World, a futuristic design for its time Guadalajara Jalisco La Luz del Mundo Sede International; however, postmodern aesthetics lacked traction and by the mid-1990s, a neo-modern (or hypermodern) architecture had once again established international pre-eminence. As part of this revival, much of the criticism of the modernists has been revisited, refuted, and re-evaluated; and a modernistic idiom once again dominates in institutional and commercial contemporary practice, but must now compete with the revival of traditional architectural design in commercial and institutional architecture; residential design continues to be dominated by a traditional aesthetic.中文译文:现代建筑现代建筑,不被混淆与'当代建筑' , 是一个词给了一些建筑风格有类似的特点, 主要的简化形式,消除装饰等. 虽然风格的设想早在20世纪,并大量造就了一些建筑师、建筑教育家和展品,很少有现代的建筑物,建于20世纪上半叶. 第二次大战后的三十年, 但最终却成为主导建筑风格的机构和公司建设.1起源一些历史学家认为进化的现代建筑作为一个社会问题, 息息相关的工程中的现代性,从而影响了启蒙运动,导致社会和政治革命.另一些人认为现代建筑主要是靠技术和工程学的发展, 那就是获得新的建筑材料,如钢铁, 混凝土和玻璃驱车发明新的建筑技术,它作为工业革命的一部分. 1796年, shrewsbury查尔斯bage首先用他的'火'的设计, 后者则依靠铸铁及砖与石材地板. 这些建设大大加强了结构,使它们能够容纳更大的机器. 由于作为建筑材料特性知识缺乏,一些早期建筑失败. 直到1830年初,伊顿Hodgkinson预计推出了型钢梁, 导致广泛使用钢架建设,工业结构完全改变了这种窘迫的面貌,英国北部领导的描述, "黑暗魔鬼作坊"的地方如曼彻斯特和西约克郡. 水晶宫由约瑟夫paxton的重大展览, 1851年,是一个早期的例子,钢铁及玻璃施工; 可能是一个最好的例子,就是1890年由William乐男爵延长和路易沙利文在芝加哥附近发展的高层钢结构摩天楼. 早期结构采用混凝土作为行政手段的建筑表达(而非纯粹功利结构) ,包括建于1906年在芝加哥附近,劳埃德赖特的统一宫, 建于1926年瑞士巴塞尔附近的鲁道夫斯坦纳的第二哥特堂,.但无论原因为何, 约有1900多位建筑师,在世界各地开始制定新的建筑方法,将传统的先例(比如哥特式)与新的技术相结合的可能性.路易沙利文和赖特在芝加哥工作,维克多奥尔塔在布鲁塞尔,安东尼高迪在巴塞罗那, 奥托瓦格纳和查尔斯景mackintosh格拉斯哥在维也纳,其中之一可以看作是一个新与旧的共同斗争.2现代主义风格由1920年代的最重要人物,在现代建筑里确立了自己的名声. 三个是公认的柯布西耶在法国, 密斯范德尔德罗和瓦尔特格罗皮乌斯在德国. 密斯范德尔德罗和格罗皮乌斯为董事的包豪斯, 其中欧洲有不少学校和有关团体学习调和工艺和传统工业技术.赖特的建筑生涯中,也影响了欧洲建筑的现代艺术,特别是通过瓦斯穆特组合但他拒绝被归类与他们. 赖特与格罗皮乌斯和Van der德罗对整个有机体系有重大的影响.在1932年来到的重要moma展览,是现代建筑艺术的国际展览,艺术家菲利普约翰逊. 约翰逊和合作者亨利-罗素阁纠集许多鲜明的线索和趋势, 内容相似,有一个共同的目的,巩固了他们融入国际化风格这是一个重要的转折点. 在二战的时间包豪斯的代表人物逃到美国,芝加哥,到哈佛大学设计黑山书院. 当现代建筑设计从未成为主导风格单一的住宅楼,在成为现代卓越的体制和商业建筑, 是学校(专业领导)的唯一可接受的, 设计解决方案,从约1932年至约1984年.那些从事国际风格的建筑师想要打破传统建筑和简单的没有装饰的建筑物。

相关文档
最新文档