启发式优化算法综述
多目标优化算法综述
多目标优化算法综述随着科技的发展和社会进步,人们不断地提出更高的科学技术要求,其中许多问题都可以用多目标优化算法得到解决。
多目标优化算法的发展非常迅速,当前已经有各种综合性比较全面的算法,如:遗传算法、粒子群算法、蚁群算法、模拟退火算法等。
本文将进一步介绍这些算法及其应用情况。
一、遗传算法遗传算法(Genetic Algorithm,简称GA)是一种源于生物学进化思想的优化算法,它通过自然选择、交叉和变异等方法来产生新的解,并逐步优化最终的解。
过程中,解又称为个体,个体又组成种群,种群中的个体通过遗传操作产生新的个体。
遗传算法的主要应用领域为工程优化问题,如:智能控制、机器学习、数据分类等。
在实际应用上,遗传算法具有较好的鲁棒性和可靠性,能够为人们解决实际问题提供很好的帮助。
二、粒子群算法粒子群算法(Particle Swarm Optimization,简称PSO)是一种基于群体智能的优化算法,其核心思想是通过群体中的个体相互协作,不断搜索目标函数的最优解。
粒子群算法适用于连续和离散函数优化问题。
和遗传算法不同,粒子群算法在每次迭代中对整个种群进行更新,通过粒子间的信息交流,误差及速度的修改,产生更好的解。
因此粒子群算法收敛速度快,对于动态环境的优化问题有着比较突出的优势。
三、蚁群算法蚁群算法(Ant Colony Optimization,简称ACO)是一种仿生学启发式算法,采用“蚂蚁寻路”策略,模仿蚂蚁寻找食物的行为,通过“信息素”的引导和更新,粗略地搜索解空间。
在实际问题中,这些target可以是要寻找的最优解(minimum或maximum)。
蚁群算法通常用于组合优化问题,如:旅行商问题、资源分配问题、调度问题等。
和其他优化算法相比,蚁群算法在处理组合优化问题时得到的结果更为准确,已经被广泛应用于各个领域。
四、模拟退火算法模拟退火算法(Simulated Annealing,简称SA)是一种启发式优化算法,通过随机搜索来寻找最优解。
启发式算法研究小结
启发式算法研究小结0.探究启发式算法的缘由在选《管理优化决策》这门课的时候,我抱着很强的好奇心和巨大的求知欲,试图尝试在这门课上学到我感兴趣的知识点以及确定我今后极有可能的研究领域和大方向。
很幸运的是,我找到了。
为什么这么说呢?就在我选择博士专业内选修课和专业外选修课的同时我发现了管理优化决策这门课和计算机学院那边开的选修课——《启发式优化》(由吕志鹏教授讲授),有很多是相通的,发现管理界尤其是在管理科学与工程方向和计算机技术应用领域所探究的问题出奇的一致,已经很难分清,哪个是管理方面的问题,哪个是计算机技术应用的范围了。
正如各位都知道的是,由于选修课最终确定前一个月是可以去试听的,然而我并没有因为两者看上去内容有些相似就匆忙退选。
通过对这两门课的内容进行比较,它给了我很大的触动,也带给我巨大的好奇,到底是管理方面的研究越来越偏向运用计算机等其他学科的知识和工具,还是计算机应用研究的方面越来越偏向实际的管理优化问题了呢?亦或者两个学科的边界正在走向模糊?我想学科交叉和融合的这一说法对于我来说可能并不是很新鲜,但这的确是我亲身经历的一种美妙体验和发现。
它带给我新奇的同时也无疑给了我值得我深思几点的启示:首先,众所周知,管理学科作为一门交叉的新兴学科,它的方法和工具都是依托和借助其他领域和学科而来的,它本身并没有或者几乎没有一个完完整整的只属于管理学科的方法和工具,几乎是其它学科的知识演变而来的,这就是我们所知道的学科交叉和学科融合;然而管理领域和传统计算机研究等领域的视角并不完全一样,其中对于计算机领域的研究者们而言,他们不但在乎启发式算法是否能够解决问题、效率是否大幅提高(而管理领域的专家们更在乎这点,能用第一,好用第二,或者说管理专家们更在乎第一点——问题能够得到的解决,至于第二点就不是那么迫切。
而对计算机领域的向专家们而言,可以说两者都非常重要、要求非常苛刻),更在乎它所表现出来的优越特性(就时间、空间复杂度以及算法求解过程中保持一定的集中性和分散性而言的)。
启发式算法介绍
启发式算法介绍
启发式算法(Heuristic Algorithm)是一种基于直观或经验构造的算法,主要用于解决复杂的优化问题。
其基本思想是模拟人类或自然界中蕴含的智慧和经验来寻找问题的最优解。
相对于传统的数学方法,启发式算法更加注重在近似解空间中进行搜索,从而能够快速找到较好的结果。
启发式算法有许多类型,包括但不限于遗传算法、鱼群算法、蚁群算法、粒子群算法等。
这些算法都提供了不同的机制来解决不同的问题,并且通常具有良好的适应性和可扩展性。
启发式算法常被应用于组合优化、约束优化、排队论、路径规划、生产调度等领域,并被证明在某些情况下能够为问题提供更好的解决方案。
然而,启发式算法也存在一些局限性。
例如,它在某些特殊情况下可能会得到很坏的答案或效率极差,但造成这些特殊情况的数据组合可能永远不会在现实世界出现。
因此,在使用启发式算法时,需要综合考虑其效果和实际问题的需求,选择合适的算法。
总之,启发式算法是一种基于经验和直观的算法,通过模拟自然界或人类的智慧来寻找问题的最优解。
它能够快速地找到较好的结果,但也需要考虑其局限性和适用范围。
关于优化无人机轨迹的启发式算法
标题:优化无人机轨迹的启发式算法探究在现代科技发展的今天,无人机已经成为了各行各业中不可或缺的工具。
然而,如何优化无人机的轨迹成为了众多研究者和工程师们的关注焦点。
启发式算法作为一种有效的优化方法,也被广泛应用于无人机轨迹规划中。
本篇文章将从深度和广度的角度,探讨如何使用启发式算法优化无人机轨迹。
1.引言无人机在军事、农业、航空、物流等领域都有着广泛的应用。
而在实际应用中,如何规划无人机的轨迹以最大程度地提高效率和减小能耗成为了一个挑战。
启发式算法作为一种搜索和优化方法,具有很大的潜力和价值。
2.什么是启发式算法启发式算法是一种基于直觉和经验的优化算法。
它从问题的特定领域知识出发,通过搜索的方式寻找问题的最优解。
常见的启发式算法包括遗传算法、模拟退火算法、粒子群算法等。
这些算法在寻优问题上有着很好的效果,因此也被应用到了无人机轨迹的优化中。
3.启发式算法在无人机轨迹优化中的应用无人机的轨迹优化问题通常可以抽象为一个多目标优化问题,需要考虑到距离、时间、能耗等多个因素。
而启发式算法恰好可以很好地应对这样的多目标优化问题。
通过设定适当的目标函数和约束条件,启发式算法可以有效地搜索出无人机的最优轨迹。
4.遗传算法在无人机轨迹优化中的实践以遗传算法为例,它模拟了达尔文的进化论中的“适者生存”这一思想,通过不断地进化和变异来寻找最优解。
在无人机轨迹优化中,我们可以将无人机的轨迹抽象为一条染色体,然后通过交叉、变异等操作来不断优化这条染色体,最终找到最优的轨迹方案。
5.模拟退火算法在无人机轨迹优化中的实践另外,模拟退火算法也是一种常用的启发式算法。
它模拟了金属在加热后的冷却过程,在搜索过程中可以跳出局部最优解,对全局最优解有更好的搜索能力。
在无人机轨迹优化中,模拟退火算法可以帮助无人机跳出局部最优解,找到更加优秀的飞行路径。
6.个人观点和总结在本文中,我们探讨了启发式算法在优化无人机轨迹中的应用。
启发式算法可以帮助无人机规划更加高效、节能的飞行路径,从而在各个行业中发挥更大的作用。
网络拓扑优化算法综述
网络拓扑优化算法综述概述:网络拓扑优化算法旨在通过优化网络拓扑结构来提高网络的性能和效率。
网络拓扑结构是指网络中节点和链路之间的连接关系,通过优化拓扑结构,可以实现网络传输的最优路径选择、负载均衡、网络容错等多种优化目标。
本文将综述目前常用的网络拓扑优化算法,包括基于贪心算法、遗传算法、模拟退火算法等。
一、基于贪心算法的网络拓扑优化算法贪心算法是一种常用的启发式算法,在网络拓扑优化中有着广泛的应用。
这种算法的基本思想是,从初始状态开始,每一步选择当前状态下最优的选择,以期望最终达到全局最优。
在网络拓扑优化中,贪心算法可以通过不断调整节点和链路之间的连接关系,以实现网络性能的最优化。
具体的实现方式可以是根据节点间的通信频率、距离等指标选择相应的连接,或者通过节点间的交换机配置调整来优化网络路径。
二、基于遗传算法的网络拓扑优化算法遗传算法是一种模拟自然界中生物进化过程的优化算法,通过模拟遗传、选择、交叉和变异等操作,从初始种群中找到最优解。
在网络拓扑优化中,遗传算法可以通过将网络拓扑结构编码成染色体,利用遗传操作对染色体进行进化,最终得到最优的网络拓扑结构。
遗传算法对于网络拓扑优化问题具有较好的全局搜索能力,能够避免陷入局部最优解。
三、基于模拟退火算法的网络拓扑优化算法模拟退火算法是基于物理学中固体退火过程的一种全局优化算法。
模拟退火算法通过在一个随机解空间中搜索最优解,在搜索过程中接受差于当前解的解,并以一定的概率跳出局部最优解,以避免陷入局部最优。
在网络拓扑优化中,模拟退火算法可以通过调整节点和链路之间的连接关系,不断优化网络拓扑结构,以提高网络的性能和效率。
四、其他网络拓扑优化算法除了基于贪心算法、遗传算法和模拟退火算法的网络拓扑优化算法,还有其他一些算法也可以用于该问题的求解。
比如,禁忌搜索算法、粒子群优化算法、蚁群算法等,它们都具有一定的优点和适用场景,可以根据具体的问题选择合适的算法。
总结:网络拓扑优化算法是提高网络性能和效率的重要手段,通过优化网络的拓扑结构,可以实现最优路径选择、负载均衡和容错等优化目标。
开题报告文献综述 北理工.doc
开题报告文献综述北理工不会写开题报告、文献综述,论文的过来看!下面是我整理的开题报告文献综述北理工范文。
【一】北京理工大学硕士学位论文开题文献综述报告学位论文题目为《基于聚类分析的启发式优化算法》,论文内容涉及了优化算法(主要是经典优化算法,启发式优化算法) ,算复杂性理论和聚类分析等相关领域。
根据这些领域与论文的相关程度,比较详细的归纳总结启发式优化算法,对计算复杂性理论和聚类分析只做了一般性的总结。
最后对这些相关领域未来的发展和研究提出自己的观点。
在现实生活中许多重要的问题,都涉及到选区一个最好的目标,或者为达到这个目标而选择某些参数、确定某些值,这些问题都可以归结为最优化问题。
对于一个最小值问题,其形式的描述为min ( )f xxs(1) 这里的s 为解的可行域,也称为解空间或搜索空间,条件xs概括了对向量x 的约束。
这些约束可以包括线性或非线性函数,以及离散变量,都可以根据实际要求设置。
最优化问题的目标是找到(1)的最优解(全局最优解或局部最优解) 。
显然,只要改变目标函数的符号,最大值问题就可以转变成最小值问题,因此,本文在说明都是以最小值问题问标准。
解决最优化问题的算法称为最优化算法,可以分为经典优化算法和启发式优化算法。
而经典优化算法又分为线形与非线性最优化算法,下面分别对两类算法的发展及常用的软件包做了介绍。
1. 线性最优化:线性最优化, 又称线性规划, 是运筹学中应用最广泛的一个分支.这是因为自然科学和社会科学中许多问题都可以近似地化成线性规划问题. 线性规划理论和算法的研究及发展共经历了三个高潮, 每个高潮都引起了社会的极大关注.线性规划研究的第一高潮是著名的单纯形法的研究.这一方法是dantzig 在1947 年提出的,它以-15- -15- 成熟的算法理论和完善的算法及软件统治线性规划达三十多年. 随着60 年代发展起来的计算复杂性理论的研究, 单纯形法在七十年代末受到了挑战.前苏联数学家khachiyan 提出了第一个理论上优于单纯形法的所谓多项式时间算法--椭球法, 曾成为轰动一时的新闻, 并掀起了研究线性规划的第二个高潮.但遗憾的是广泛的数值试验表明, 椭球算法的计算比单纯形方法差. 1984 年karmarkar 提出了求解线性规划的另一个多项式时间算法.这个算法从理论和数值上都优于椭球法, 因而引起学术界的极大关注, 并由此掀起了研究线性规划的第三个高潮. 从那以后, 许多学者致力于改进和完善这一算法,得到了许多改进算法.这些算法运用不同的思想方法均获得通过可行区域内部的迭代点列, 因此统称为解线性规划问题的内点算法.目前内点算法正以不可抗拒的趋势将超越和替代单纯形法. 在互联网上能访问到的解线性和整数规划问题的软件还有:eqps(线性,整数和非线性规划),fmp(线性和混合整数规划) ,hs/lplo(线性规划) ,korbx(线性规划) ,lamps(线性和整数规划) ,lpblp(线性规划) ,milp(混合整数规划) ,minto(混合整数规划) ,mpsiii(线性和混合整数规划) ,oml(线性和混合整数规划) ,osl(线性,二次和混合整数规划) ,proclp(线性和整数规划) ,wb(线性和混合整数规划) ,whizard(线性和混合整数规划) ,xpressmp(线性和混合整数规划)等。
启发式算法(HeuristicAlgorithm)
启发式算法(HeuristicAlgorithm)启发式算法(Heuristic Algorithm)有不同的定义:⼀种定义为,⼀个基于直观或经验的构造的算法,对优化问题的实例能给出可接受的计算成本(计算时间、占⽤空间等)内,给出⼀个近似最优解,该近似解于真实最优解的偏离程度不⼀定可以事先预计;另⼀种是,启发式算法是⼀种技术,这种技术使得在可接受的计算成本内去搜寻最好的解,但不⼀定能保证所得的可⾏解和最优解,甚⾄在多数情况下,⽆法阐述所得解同最优解的近似程度。
我⽐较赞同第⼆种定义,因为启发式算法现在还没有完备的理论体系,只能视作⼀种技术。
_______________________________________名词解释Heuristics,我喜欢的翻译是“探索法” ,⽽不是“启发式”,因为前者更亲民⼀些,容易被理解。
另外,导致理解困难的⼀个原因是该词经常出现在⼀些本来就让⼈迷糊的专业领域语境中,例如,经常看到某某杀毒软件⽤启发式⽅法查毒,普通民众本来就对杀毒软件很敬畏,看到“启发式”就更摸不着北了。
实际上,这个词的解释⼗分简单,例如,查朗⽂词典,可以看到:The use of experience and practical efforts to find answers to questions or to improve performance维基百科词条heuristic,将其定义为基于经验的技巧(technique),⽤于解决问题、学习和探索。
并对该词进⾏了更详尽的解释并罗列了多个相关领域:A heuristic method is used to rapidly come to a solution that is hoped to be close to the best possible answer, or 'optimal solution'. A heuristic is a "rule of thumb", an educatedguess, an intuitive judgment or simply common sense.A heuristic is a general way of solving a problem. Heuristics as a noun is another name for heuristic methods.Heuristic可以等同于:实际经验估计(rule of thumb)、有依据的猜测(educated guess, a guess beased on a certain amount of information, and therefore likely to be right)和常识(由经验得来的判断⼒)。
金豺优化算法的原理
金豺优化算法的原理
金豺优化算法(Golden Jackal Optimization,GJO)是一种基
于自然界金豺行为的启发式优化算法,用于解决优化问题。
该算法
模拟了金豺在觅食过程中的行为,通过模拟金豺的觅食策略来寻找
最优解。
其原理可以简要概括如下:
1. 群居行为,金豺通常是群居动物,GJO算法中也包含了这种
群体智能的特点。
算法中的每个个体代表一个潜在的解决方案,它
们通过相互合作和信息交流来寻找最优解。
2. 觅食策略,金豺在觅食时会选择距离较近的食物源,这种策
略有助于它们尽快找到食物。
在GJO算法中,个体根据当前解的质
量和距离其他个体的位置来调整自己的位置,以期望找到更优的解。
3. 领地争夺,金豺会为了食物资源而进行领地争夺,这种竞争
行为也被模拟到了GJO算法中。
个体之间会竞争资源,从而保持种
群多样性,避免陷入局部最优解。
4. 信息交流,金豺通过各种方式进行信息交流,帮助彼此更好
地找到食物。
在GJO算法中,个体之间也会通过信息交流来提高整
个种群的搜索能力,有助于更快地收敛到全局最优解。
总的来说,金豺优化算法的原理是基于金豺在自然界觅食行为的模拟,通过群体智能和信息交流来寻找最优解。
这种算法在解决优化问题时具有较好的全局搜索能力和收敛速度,适用于多种优化问题的求解。
启发式优化算法综述
启发式优化算法综述启发式优化算法 (Heuristic Optimization Algorithms) 是一类通过模拟自然界生物学中的智能行为来解决优化问题的算法。
这些算法通常能够在较短的时间内找到接近最优解的解决方案,尤其适用于复杂的优化问题,如组合优化、连续优化、多目标优化等。
1. 粒子群优化算法 (Particle Swarm Optimization, PSO)粒子群优化算法模拟了鸟群捕食行为中个体之间的信息交流和寻找最佳食物源的过程。
在算法中,每个解被看作是一个“粒子”,通过调整速度和位置以最优解。
粒子之间通过更新自己和邻居的最佳位置来共享信息,并且通过迭代的方式不断收敛到全局最优解。
2. 遗传算法 (Genetic Algorithm, GA)遗传算法模拟了生物进化的过程。
算法通过构建一组候选解,称为“染色体”,其中包含了问题的可能解决方案。
算法使用选择、交叉和变异等操作来生成新的染色体,并根据染色体的适应度评估解的质量。
通过不断迭代,遗传算法可以全局最优解。
3. 蚁群算法 (Ant Colony Optimization, ACO)蚁群算法模拟了蚂蚁寻找食物的行为。
在算法中,每只蚂蚁通过释放信息素来标记其行走路径。
蚂蚁根据信息素浓度决定下一步的行动,并且信息素浓度会根据蚂蚁的选择进行更新。
通过蚂蚁的协作和信息素的反馈,蚁群算法能够出较优解。
4. 模拟退火算法 (Simulated Annealing, SA)模拟退火算法模拟了固体从高温退火到低温的冷却过程。
算法从一个初始解开始,通过随机地变换当前解以生成新的解,并计算新解的目标函数值。
算法根据目标函数值的变化和当前温度来决定是否接受新解。
通过逐渐降低温度的方式,模拟退火算法最终能够收敛到全局最优解。
这些启发式优化算法在不同的问题领域都取得了一定的成功。
它们被广泛运用于机器学习、数据挖掘、智能优化等领域,解决了很多实际问题。
尽管启发式优化算法在大多数情况下能够找到较优解,但并不能保证找到确切的全局最优解。
超启发式算法综述
940 引言我们可以把算法看成是一道道的指令组合而成的,而这一道道指令,从数学的角度去分析,就好比我们在进行加法运算的时候,需要用到加法法则,还要有两个加数A和B,最终计算得到结果是: A B C +=;而从计算机的角度去分析指令的话,就好比一个流水CPU中,有取指阶段。
取指,顾名思义,就是把指令取出来。
指令取出来才可以用,指令不取出来是不能用的。
但是取出的指令不能够马上去执行,而是要经过译码阶段后,才能够去执行指令。
我们给算法一个输入项,经过了有限个步骤后,我们最终会得到输出项。
算法除了上段中提到的输入项、输出项以及有穷性之外,还有两个特性,两者是:确切性:算法的每一个步骤不能有二义性,不能让编程人员觉得这一步算法是模棱两可的,必须有唯一的通路;可行性:算法可以执行完成,不会不限制地循环下去[2]。
可行性也叫有效性。
计算机中的算法,我们可以把它看成是伪代码,而我们编程的过程,就是将伪代码转化为真实的代码的过程。
伪代码是不能够在计算机里面的编程软件上执行编译的,可是我们将它转换成真实的代码后,我们就可以对代码进行编译、调试等步骤。
如果我们想通过一个算法得到一个目标,可以先通过数学关系构造出函数,确定目标所在的一个大概的范围,以提高算法的收敛速度[3]。
1 启发式算法概述启发式算法是智能化程度较高的算法,有了像各类排序算法这样最基本的算法的基础后,我们要完善已有的算法,使算法变得越来越智能化,这样我们才能跟上问题复杂化的脚步。
我们在求解一个问题的解的过程中,有的时候,求出来一个解,并非难事;难的是我们如何去求解这个问题的最优解,或者说是在满足某些特定条件下的特解。
这里有一个范围,这个范围是一个具体的概念,无论是从时间的角度,还是空间的角度,在这个具体的范围内,去给出待解决组合优化问题每一个实例的一个可行解[4]。
虽然启发式算法不止一种,但是它们的本质都是一样的,就是要求解出全局的最优解[5]。
在现代科研中,对启发式算法的研究越来越深入,实践也越来越多,我们需要去不断创新出新的想法和技术去研究它[6]。
元启发式算法的研究及其在网络瓦解问题中的应用
元启发式算法的研究及其在网络瓦解问题中的应用元启发式算法的研究及其在网络瓦解问题中的应用引言网络系统在现代社会中扮演着重要的角色,它们被广泛应用于各种领域,如通信、金融、交通等。
然而,随着网络规模和复杂性的增加,网络瓦解问题也变得越来越普遍和严重。
如何有效地解决网络瓦解问题成为了当前研究的热点之一。
元启发式算法作为一种经典的优化方法,被广泛应用于各种实际问题中,并在网络瓦解问题的解决中起到了重要的作用。
一、元启发式算法的概述元启发式算法,即元算法,是一类利用启发式策略对其他优化算法进行改进的方法。
它的核心思想是通过结合多种优化算法的优点,提高算法的性能和效率。
元算法通常包括两个层次:内层算法和外层算法。
内层算法用于解决子问题,外层算法则用于调整和控制内层算法的搜索策略。
元算法的主要优势在于其灵活性和适应性,能够在不同问题中找到最佳的求解策略。
二、元启发式算法的发展历程1. 元启发式算法的起源元启发式算法最早可以追溯到20世纪50年代。
当时,研究者们利用计算机模拟生态系统的演化过程,提出了进化算法的概念。
进化算法以生物进化理论为基础,通过模拟自然选择的过程来求解优化问题。
进化算法的成功催生了后来的元启发式算法的发展。
2. 元启发式算法的分类随着研究的深入,元启发式算法被进一步细分为多种不同类型。
其中,基于集成学习的元启发式算法以集成多个基本算法的决策来提高性能;基于策略搜索的元启发式算法根据问题特点设计合适的策略来引导搜索过程;基于学习的元启发式算法通过学习历史经验来改进算法的性能。
三、元启发式算法在网络瓦解问题中的应用1. 网络瓦解问题的定义网络瓦解是指在网络系统中出现的一种状态,即网络中的一些节点和边失效或被破坏,导致网络性能下降甚至完全瓦解。
网络瓦解问题严重影响了网络的稳定性和可靠性,因此如何解决网络瓦解问题成为了亟待解决的难题。
2. 元启发式算法在网络瓦解问题中的应用元启发式算法在网络瓦解问题中的应用主要包括以下几个方面:(1)网络瓦解预测:通过分析网络的拓扑结构和属性,结合元启发式算法的搜索策略,预测网络瓦解的概率和可能的影响范围。
启发式算法在物流优化中的应用
启发式算法在物流优化中的应用近年来,随着物流业的不断发展,优化物流运输的效率成为了一个不容忽视的问题。
而启发式算法在物流优化中,由于其高效、有效的特性,正在被越来越多的人所关注和运用。
启发式算法的基本理念是通过模拟自然界中生物进化、人工智能等方面的思维模式,得到一个可能最优或次优的解。
与传统的普通算法不同,启发式算法不要求得到最优解,而是希望在有限的时间内,通过一些策略获得足够好的解,以期对实际问题作出贡献。
当我们将启发式算法应用于物流优化中,它能够优化物流运输中的各种问题,包括货物的排序、装车方案、仓库选址、路径规划等方面。
一、启发式算法在货物排序中的应用货物的排序通常是为了方便在运输过程中的装车。
启发式算法可以帮助我们快速得到货物最优的排序方案。
例如,我们可以采用遗传算法来实现货物的排序,即将货物的重量、体积、及其他相关因素组成一个适应度函数,通过不断调整基因、变异、交叉等方法,得到最优的货物排序方案。
二、启发式算法在装车方案中的应用装车方案的制定也是一项关键的物流优化策略。
我们可以采用蚁群算法来实现装车方案的优化,即将每条路径看做一只蚂蚁,通过信息素、路径优化等方法,找到一种最优的装车方案。
三、启发式算法在仓库选址中的应用一个好的仓库选址可以提高整个物流运输过程的效率。
启发式算法可以通过不断运用蜂群算法,不断找到能最大程度减少运输距离、提高仓储效率的仓库选址方案。
四、启发式算法在路径规划中的应用路径规划在物流运输中也是至关重要的一项策略。
启发式算法可以通过遗传算法、粒子群算法等多种方法来实现路径规划。
例如,我们可以通过调整路径中停留点的数量,再结合运输距离、运输时间等因素,找到一种最优的路径规划方案。
总之,启发式算法在物流优化中的应用是不可忽视的。
它能够为我们提供快速而有效的问题解决方案,优化物流运输中的诸多问题。
因此,在物流运输过程中,我们应该充分发掘启发式算法的潜力,并加以运用,以使物流运输更加高效、便捷。
启发式优化算法介绍
非线性电路与系统研究中心
1. 贪婪算法
在算法的每个阶段,都作出在当时看上去最好的决 策,以获得最大的“好处”,换言之,就是在每一 个决策过程中都要尽可能的“贪”, 直到算法中 的某一步不能继续前进时,算法才停止。 在算法的过程中,“贪”的决策一旦作出,就不可 再更改,作出“贪”的决策的依据称为贪婪准则。 局部搜索的缺点就是太贪婪地对某一个局部区域以 及其邻域搜索,导致一叶障目,不见泰山。
科学领域
物理、化学、生态学 医学、计算机科学等 1993年,Jones等 用多目标遗传算法 进行分子结构分析
6
非线性电路与系统研究中心
3. 研究意义
汉诺塔问题:和尚搬盘子 天神梵天的三条规则: 每次只能移动一个盘子; 盘子只能在三根柱子上 来回移动,不能放在他 处; 在移动过程中,三根柱 子上的盘子必须始终保 持大盘在下,小盘在上。
3. 模拟退火算法
模拟退火(simulated annealing)算法的思想最早是由 Metropolis等人在1953年提出。 1982年,Kirkpatrick等人将其运用在求组合最优化的问题 上。 金属物体在加热到一定的温度后,再徐徐冷却使之凝固成规 整晶体的热力学过程。在温度最低时,系统能量趋于最小值。 根据热力学定律,在温度为T的情况下,能量改变所表现的 几率如下: -ΔE
9
非线性电路与系统研究中心
3. 研究意义
P(polynominal)所有可以在多项式时间内用确定 算法求解的优化问题的集合,简称多项式问题。 判定问题(decision problem)如果一个问题的每 一个实例只有“是”或“否”两种答案。 NP(nondeterministic polynominal)是指可以在多 项式时间里验证一个解的判定问题的集合。
博弈论 启发式算法和纳什均衡-概述说明以及解释
博弈论启发式算法和纳什均衡-概述说明以及解释1.引言1.1 概述博弈论是一门研究决策和策略的数学理论,它以个体或组织在面对冲突和竞争时的互动行为为研究对象。
在现实生活中,博弈论可以应用于各种领域,如经济学、政治学、社会科学等。
启发式算法是一种基于经验和规则的问题解决方法,它通过不断试错和搜索最优解的过程,逐步逼近问题的解。
启发式算法可应用于各种优化问题、组合问题以及决策问题等。
本文旨在探讨博弈论、启发式算法和纳什均衡之间的关系。
博弈论的基本概念将会被介绍,包括博弈的类型、参与者的策略选择、收益与支付等因素。
启发式算法的原理和应用将会被解释,以展示它们在解决博弈论问题中的潜力。
本文的结论将会重点探讨纳什均衡的概念和特点。
纳什均衡是指在博弈中,每个参与者根据其他参与者的策略选择下的最佳响应策略。
此外,还将探讨博弈论、启发式算法和纳什均衡之间的联系,以揭示它们在实际问题中的应用潜力和相互作用关系。
通过本文的阅读,读者将对博弈论、启发式算法和纳什均衡有更深入的理解,并能够将它们应用于实际问题的解决中。
本文的目的是为读者提供一种全面的视角,以便能够更好地理解和应用这些概念和方法。
1.2 文章结构文章结构:本文主要分为引言、正文和结论三个部分。
在引言部分,将对博弈论、启发式算法和纳什均衡进行简要概述,并介绍文章的目的。
正文部分将着重阐述博弈论的基本概念以及启发式算法的原理和应用。
最后,在结论部分将探讨纳什均衡的概念和特点,并深入讨论博弈论、启发式算法和纳什均衡之间的关系。
本文旨在通过对博弈论、启发式算法和纳什均衡的研究,探索博弈论在实际问题中的应用,并探讨启发式算法与纳什均衡的关联性,从而提供对博弈论和启发式算法的理解和应用以及对纳什均衡的深入认识。
1.3 目的本部分将重点介绍本文的目的。
通过阅读本文,读者将能够深入了解博弈论、启发式算法和纳什均衡之间的关系。
我们将首先简要介绍博弈论的基本概念,包括博弈的定义和元素,以及博弈论在经济学、政治学和计算机科学等领域的应用。
启发式优化算法范文
启发式优化算法范文启发式优化算法(Heuristic optimization algorithms)是一类基于经验和启发式的算法,用于解决复杂、非确定性的优化问题。
这类算法通过启发式规则和近似方法,在给定的空间中找到接近最优解的解。
它们适用于无法使用传统优化算法进行求解的问题,如NP-hard问题、非线性问题等。
常见的启发式优化算法包括遗传算法、粒子群优化、模拟退火等。
启发式优化算法的核心思想是利用启发式规则来指导过程,以期望能够更快地找到更好的解。
通常,启发式规则是根据问题本身的特性和经验得到的,而不是根据严格的数学推导。
这种非确定性的过程,常常能够克服问题多样性带来的挑战,并找到较好的解。
遗传算法是一种经典的启发式优化算法。
它受到了进化生物学中“适者生存”的启发,模拟了生物进化过程中的自然选择、交叉和变异等操作。
在遗传算法中,解空间中的每个解被编码为染色体,通过自然选择和遗传操作等,使得较优的解能够逐渐在群体中传播。
遗传算法常被用于求解复杂的组合优化问题,如旅行商问题、工程布局问题等。
粒子群优化算法是一种基于群体智能的启发式优化算法。
它受到鸟群觅食行为的启发,将解空间中的每个解看作是群体中的一个粒子。
粒子通过根据当前的最优解和自身的历史经验进行位置的调整,以期望找到更好的解。
粒子群优化算法被广泛应用于连续优化问题以及机器学习和神经网络训练等领域。
模拟退火算法是一种模拟物质退火过程的优化算法。
它通过随机的策略,在解空间中寻找局部最优解,并逐渐减小温度以模拟退火过程。
模拟退火算法在解空间中具有较大的探索能力,在求解复杂问题的过程中,能够跳出局部最优解并寻找到更优的解。
除了上述三种常见的启发式优化算法,还有一些其他算法也属于该类别,如蚁群优化、人工鱼群算法等。
这些算法在不同的问题领域中被广泛应用,并取得了较好的结果。
启发式优化算法的优点是能够在非确定性的复杂问题中快速找到接近最优解的解,具有一定的鲁棒性和全局能力。
浣熊优化算法原理
浣熊优化算法原理
浣熊优化算法(Raccoon Optimization Algorithm,ROA)是一种受动物行为启发的启发式优化算法。
该算法模拟了浣熊在寻找食物时的行为。
具体来说,该算法通过迭代过程来搜索问题的解空间,每次迭代都根据个体的适应度来更新种群的位置和最优解。
以下是浣熊优化算法的基本原理:
1. 初始化种群:根据问题的规模和需求,初始化一定数量的个体,每个个体表示为一个解向量。
这些解向量构成了初始种群。
2. 评估适应度:对于每个个体,根据目标函数计算其适应度值。
目标函数是用来评估解的质量的函数,其值越小表示解的质量越好。
3. 更新最优解:根据适应度值,更新全局最优解和个体最优解。
全局最优解是整个种群中适应度最好的个体,个体最优解是每个个体在其历史中找到的最好解。
4. 选择操作:根据适应度值和其他策略,选择一部分个体进入下一代种群。
选择的依据可以是轮盘赌选择、锦标赛选择等。
5. 更新种群:对新一代的种群进行操作,如变异、交叉等,以产生新的个体。
这些操作旨在探索解空间并增加种群的多样性。
6. 终止条件:当达到预设的迭代次数或满足其他终止条件时,算法停止运行并输出最优解。
浣熊优化算法是一种相对较新的优化算法,具有简单、灵活和可扩展的优点。
它适用于解决各种优化问题,特别是那些具有复杂约束、多模态和离散问题。
求解TSP问题算法综述
求解TSP问题算法综述一、本文概述本文旨在全面综述求解旅行商问题(Traveling Salesman Problem, TSP)的各种算法。
TSP问题是一个经典的组合优化问题,自提出以来就引起了广泛的关注和研究。
该问题可以描述为:给定一系列城市和每对城市之间的距离,求解一条最短的可能路线,使得一个旅行商从某个城市出发,经过每个城市恰好一次,最后返回出发城市。
本文将首先介绍TSP问题的基本定义、性质及其在实际应用中的重要性。
接着,我们将综述传统的精确算法,如动态规划、分支定界法等,以及它们在求解TSP问题中的优缺点。
然后,我们将重点介绍启发式算法和元启发式算法,包括模拟退火、遗传算法、蚁群算法等,这些算法在求解大规模TSP问题时表现出良好的性能和效率。
本文还将探讨近年来新兴的机器学习算法在TSP问题求解中的应用,如深度学习、强化学习等。
我们将对各类算法进行总结和评价,分析它们在不同场景下的适用性和性能表现。
我们也将展望TSP问题求解算法的未来发展方向,以期为相关领域的研究和实践提供有益的参考和指导。
二、经典算法求解旅行商问题(TSP)的经典算法多种多样,每种算法都有其独特的优缺点和适用场景。
本节将对一些代表性的经典算法进行综述。
暴力穷举法(Brute-Force):暴力穷举法是最简单直观的TSP求解算法。
其基本思想是生成所有可能的旅行路径,计算每条路径的总距离,然后选择最短的那条。
虽然这种方法在理论上可以找到最优解,但由于其时间复杂度为O(n!),对于大规模问题来说计算量极大,因此并不实用。
动态规划(Dynamic Programming, DP):动态规划是一种通过将问题分解为更小的子问题来求解的优化方法。
对于TSP问题,DP算法可以将一个大循环中的多个子问题合并成一个子问题,从而减少重复计算。
然而,TSP的DP算法仍面临“维度灾难”的问题,即当城市数量增多时,所需存储空间和计算时间呈指数级增长。
车辆路径优化问题综述
车辆路径优化问题综述随着各行业的不断发展,物流运输的重要性也越来越凸显。
而车辆路径优化问题则是物流运输中的一个重要问题,它的解决程度直接关系到物流运输的效率、成本和质量。
本文将从车辆路径优化问题的定义、分类、模型及求解方法等方面进行综述。
一、车辆路径优化问题的定义车辆路径优化问题是指在给定的路网和配送需求下,通过合理的路径规划和调度,使得车辆的行驶距离、时间和成本等指标最小化的问题。
这个问题的本质是一个组合优化问题,需要在满足各种约束条件的前提下,寻找最优解。
二、车辆路径优化问题的分类根据车辆路径优化问题的特点和应用领域,可以将其分为多种不同的类型。
其中,常见的分类方式包括:1. 静态路径优化问题:在给定的路网和配送需求下,确定车辆的路径规划和调度,使得车辆的行驶距离、时间和成本等指标最小化。
这种问题的特点是路网和需求量都是固定的,不存在随时间变化的情况。
2. 动态路径优化问题:在给定的路网和配送需求下,根据实时的交通状况和需求变化,对车辆的路径规划和调度进行优化,使得车辆的行驶距离、时间和成本等指标最小化。
这种问题的特点是路网和需求量都是不断变化的,需要实时调整路径规划和调度。
3. 车辆路径优化问题的应用领域:物流配送、公共交通、城市物流、航空物流等。
三、车辆路径优化问题的模型为了解决车辆路径优化问题,需要建立相应的数学模型。
常用的模型包括:1. TSP模型:TSP(Traveling Salesman Problem,旅行商问题)是一类经典的路径优化问题,是最基本的车辆路径优化问题。
TSP模型的目标是确定一条经过所有需求点的最短路径,使得所有需求点都被访问且仅被访问一次。
2. VRP模型:VRP(Vehicle Routing Problem,车辆路径问题)是一种更为复杂的车辆路径优化问题,它考虑了多个车辆的调度和路径规划。
VRP模型的目标是确定多个车辆的路径规划和调度,使得所有需求点都被访问且仅被访问一次,同时最小化车辆行驶的距离、时间和成本等指标。
求解系统可靠性优化中指派问题的启发式算法
求解系统可靠性优化中指派问题的启发式算法刘琴;孙林岩【摘要】This paper reviews the literature about component assignment problem in system reliability optimization. Based on the characteristic of the problem, a new heuristic is proposed. The heuristic is designed with the reliability importance. A numerical example is given in the paper. Existing heuristic is compared with our method. The new heuristic is simple and efficient. It can obtain satisfactory solution in very short time, which is appropriate for large-scale problem.%本文回顾了系统可靠性优化中部件指派问题的研究,针对该类问题特点提出了一个新的启发式算法,该算法基于概率重要度来指派部件可靠度.文章最后给出了算例分析,并将算法结果与已有的算法和枚举法求得的最优解进行了比较.新的算法简单,而且效率非常高,可以在很短的计算时间内得到较好的求解效果,有效提高了复杂系统和大规模系统可靠性优化的计算效率.【期刊名称】《运筹与管理》【年(卷),期】2011(000)006【总页数】4页(P15-18)【关键词】运筹学;最优分派;启发式算法;系统可靠性【作者】刘琴;孙林岩【作者单位】西安交通大学管理学院,陕西西安710049 机械制造系统工程国家重点实验室,陕西西安710049;过程控制与效率工程教育部重点实验室,陕西西安71004900;西安交通大学管理学院,陕西西安710049 机械制造系统工程国家重点实验室,陕西西安710049;过程控制与效率工程教育部重点实验室,陕西西安71004900【正文语种】中文【中图分类】O224系统可靠性是现代社会中的一个重要课题,已经在工业制造领域中得到很大的重视和发展。
启发式优化算法综述
启发式优化算法综述启发式优化算法是一类基于启发式思想的算法,用于解决优化问题。
与传统优化算法不同,启发式优化算法通过启发性的探索和策略,能够在大规模优化问题中找到接近最优解的解决方案。
本文将对启发式优化算法进行综述,并介绍其中几种常见的算法。
1.启发式优化算法概述启发式优化算法是一类基于启发式思想的算法,通过对问题的空间进行启发性地探索和,找到问题的最优解或近似最优解。
与传统的优化算法(如数学规划算法)相比,启发式优化算法更适用于大规模优化问题,尤其是在空间非常庞大或者问题非常复杂的情况下。
2.启发式思想启发式是一种通过规定一定的策略,在解空间上进行有针对性地的方法。
它通过选择最有希望的方向进行,以期望达到更好的结果。
启发式的关键在于找到有效的启发信息,用于指导过程。
启发性信息可以通过问题的特点、领域知识、经验等方式得到。
3.常见的启发式优化算法以下是几种常见的启发式优化算法的简要介绍:(1)遗传算法(Genetic Algorithm,GA)遗传算法是一种模拟生物遗传和进化过程的优化算法。
它通过选择、交叉、变异等操作对解空间中的个体进行和优化。
遗传算法的核心思想是模拟自然界的生物进化过程,通过遗传交叉和变异操作产生新的解,并利用适应度评价函数对解进行评估,进而选择适应度较高的个体进行下一代的繁殖。
(2)粒子群优化算法(Particle Swarm Optimization,PSO)粒子群优化算法是基于鸟群觅食行为的一种优化算法。
它模拟了粒子在解空间中最优解的过程。
每个粒子根据自身的位置和速度,在解空间中进行,并通过与邻域粒子的信息交流,不断更新自己的位置和速度。
粒子群优化算法具有全局能力和较强的收敛性。
(3)模拟退火算法(Simulated Annealing,SA)模拟退火算法是一种模拟金属退火冷却过程的优化算法。
它通过随机性的接受劣解来避免陷入局部最优解,并逐渐降低温度,从而收敛到全局最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟退火算法新解的产生和接受可分为如下四个步骤:
第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
2)选择操作。选择是指从群体中选择优良的个体并淘汰劣质个体的操作。它建立在适应度评估的基础上,遼应度楚大的个体,被选择的可能性就越大,它的吁孙"在下一代的个数就越多。选择出来的个体被放入配对库中。目前常用的选择方法有轮盘赌方法、最佳个体保留法、期望值法和排序选择法等。
3)交叉操作。交叉是指两个父代个体的部分结构加W替换重组而生成新个体的操作,目的是为了能够在下一代产生新的个体。通过交叉操作,遗传算法的搜索能力得W提高。交叉是遗传算法获取新优良个体最重要的手段,按照一定的交叉概率在配对库中随机地选取两个个体进交叉,交叉的位置也是随机确定的。
80年代以后:模拟退火算法(Simulated Annealing Algorithm),人工神经网络(Artificial Neural Network),禁忌搜索(Tabu Search)相继出现。
最近比较火热的:演化算法(Evolutionary Algorithm), 蚁群算法(Ant Algorithms), 拟人拟物算法,量子算法等。
启发式优化算法综述
一、启发式算法简介
1、定义
由于传统的优化算法如最速下降法,线性规划,动态规划,分支定界法,单纯形法,共轭梯度法,拟牛顿法等在求解复杂的大规模优化问题中无法快速有效地寻找到一个合理可靠的解,使得学者们期望探索一种算法:它不依赖问题的数学性能,如连续可微,非凸等特性; 对初始值要求不严格、不敏感,并能够高效处理髙维数多模态的复杂优化问题,在合理时间内寻找到全局最优值或靠近全局最优的值。于是基于实际应用的需求,智能优化算法应运而生。智能优化算法借助自然现象的一些特点,抽象出数学规则来求解优化问题,受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。
2、发展历史
启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,才能取得了巨大的成就。纵观启发式算法的历史发展史:
40年代:由于实际需要,提出了启发式算法(快速有效)。
50年代:逐步繁荣,其中 贪婪算法和局部搜索 等到人们的关注。
60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规模的问题仍然无能为力(收敛速度慢)。
那么如何避免陷入局部最优呢?随机。
具体实现手段上,可以根据所采用的启发式框架来灵活地加入随机性。比如遗传里面,可以在交叉变异时,可以在控制人口策略中,也可以在选择父本母本样本时;禁忌里面,可以在禁忌表的长度上体现,也可以在解禁策略中使用,等等。这些都要结合具体问题特定的算例集,需要反复尝试摸索才行。参数的敏感性是一个问题,建议不要超过3个参数,参数越不敏感越好。不同算例集用不同种子运行多次(100次左右才有统计意义),统计平均性能即可。需注意全局的随机重启通常来说不是一个好办法,因为等于主动放弃之前搜索结果,万不得已不要用,或者就是不用。
遗传算法是一种基于自然选择和群体遗传机理的捜索算法,它模拟了自然选择和自然遗传过程中的繁殖、杂交和突变现象。标准的遗传算法包括四个组成部分:
1)编码(产生初始种群)。在利用遗传算法求解问题时,首先要确定问题的目标函数和解变量,然后对解变量进行编码,遗传算法的所有操作都是基于这种实际变量的编码。编码是遗传算法的一个重要环节。它不仅决定了染色体的组织方式,还影响到交叉、变异算子的执行方式。不同的编码策略对遗传算法的运行效率有较大的影响。问题的编码一般应满足完备性、健全性和非冗长性H个原则,完备性是指问题空间中的所有点都能成为GA编码空间中点的表现型;健全性是指GA编码空间中染色体必须对应问题空间中的某一潜在解;非冗长性是指染色体和潜在解必须一一对应PS1。对于一个特定的问题,如何设计出一种高效的编码方式是遗传算法所面临的难题之一,遗憾的是,研究者们至今也没能找到一种通用的编码策略。目前,工程优化中多采用两种常用的编码方式,即二进制编码Psi和实数编码PD1。二进制编码的染色体是由一个二值集合{0,1}所组成的二进制符号串。作为GA算法的标准编码方式,该编码方式尤其适用于能用二值向量描述的优化问题,如化学反应P11、多用途过程规划P3和最优水流参数评估Psi等;实数编码是指个体的每个基因值用某一范围的一个浮点数表示,个体的编码长度等于其决策变量(设计变量)的个数。这种编码方式适用于精度要求较高的遗传算法中,便于较大空间的遗传搜索:改善了遗传算法的计算复杂性,提高了运算效率;便于遗传算法和经典优化算法的混合使用:目前基于实数编码的遗传算法也被广泛用于优化问题中,如多目标优化IW,凸轮轮廓设汁等。
70年代:计算复杂性理论的提出,NP问题。许多实际问题不可能在合理的时间范围内找到全局最优解。发现贪婪算法和局部搜索算法速度快,但解不好的原因主要是他们只是在局部的区域内找解,等到的解没有全局最优性。由此必须引入新的搜索机制和策略。
Holland的遗传算法出现了(Genetic Algorithm)再次引发了人们研究启发式算法的兴趣。
第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。
模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。
设想这样一个场景:一群鸟在随机的搜索食物。在这个区域里只有一块食物,所有的鸟都不知 道食物在那。但是它们知道自己当前的位置距 离食物还有多远。 那么找到食物的最优策略是什么? 最简单有效的就是搜寻目前离食物最近的鸟的 周围区域。
2、蚁群算法
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
4)变异。变异就是很小的变异概率随机地改变群体中个体的某些基因的值。变异操作中位置选取的基本过程如下:产生一个在0~1之间的随机数,如果小于Pm则进行变异操作。
4、模拟退火
模拟退火算法来源于固体退火原理,是一种基于概率的算法,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
蚂蚁在运动过程中,会留下一种称为信息素的东西,并且会随着移动的距离,播散的信息素越来越少,所以往往在家或者食物的周围,信息素的浓度是最强的,而蚂蚁自身会根据信息素去选择方向,当然信息素越浓,被选择的概率也就越大,并且信息素本身具有一定的挥发作用。蚂蚁的运动过程可以简单归纳如下:
1当周围没有信息素指引时,蚂蚁的运动具有一定的惯性,并有一定的概率选择其他方向;
2当周围有信息素的指引时,按照信息素的浓度强度概率性的选择运动方向;
3找食物时,蚂蚁留下家相关的A信息素,找家时,蚂蚁留下食物相关的B信息素,并随着移动距离的增加,洒播的信息素越来越少;
4随着时间推移,信息素会自行挥发;
由上面4点原则构成蚁群算法的核心规则。
3、遗传基因算法
遗传算法(Genetic Algorithm)又叫基因进化算法,或进化算法。生物只有经过许多世代的不断进化(evolution,演化),才能更好地完成生存与繁衍的任务。遗传算法也遵循同样的方式,需要随着时间的推移不断成长、演化,最后才能收敛,得到针对某类特定问题的一个或多个解。
启发式算法是和问题求解及搜索相关的,也就是说,启发式算法是为了提高搜索效率才提出的。人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案,以随机或近似随机方法搜索非线性复杂空间中全局最优解的寻取。启发式解决问题的方法是与算法相对立的。算法是把各种可能性都一一进行尝试,最终能找到问题的答案,但它是在很大的问题空间内,花费大量的时间和精力才能求得答案。启发式方法则是在有限的搜索空间内,大大减少尝试的数量,能迅速地达到问题的解决。
三个原则应该把握:越随机越好;越不随机越好;二者平衡最好。
越随机越好没有随机性,一定会陷入局部最优。为了获得更大的找到最优解的期望,算法中一定要有足够的随机性。具体体现为鲁棒性较好,搜索时多样性较好。算法的每一步选择都可以考虑加入随机性,但要控制好概率。比如,某个贪心策略下,是以概率1做某一动作,可以考虑将其改为以概率0.999做之前的操作,以剩余概率做其他操作。具体参数设置需调试。越不随机越好随机性往往是对问题内在规律的一种妥协。即没有找到其内在规律,又不知道如何是好,为了获得更好的多样性,逼不得已加入随机。因此,对给定问题的深入研究才是根本:分辨出哪些时候,某个动作就是客观上能严格保证最优的——这点至关重要,直接决定了算法性能。最好的算法一定是和问题结构紧密相连的,范范地套用某个启发式的框架不会有出色的性能。当然,如果不是追求性能至上,而是考虑到开发效率实现成本这些额外因素,则另当别论。二者平衡最好通常情况下,做好第一点,可以略微改善算法性能;做好第二点,有希望给算法带来质的提高。而二者调和后的平衡则会带来质的飞跃。贪心是“自强不息”的精进,不放过任何改进算法的机会;多样性的随机是“厚德载物”的一分包容,给那些目前看似不那么好的解一些机会。调和好二者,不偏颇任何一方才能使算法有出色的性能。要把握这种平衡,非一朝一夕之功,只能在反复试验反思中去细细品味。