高一数学期中期末考试题汇总版(含答案) (27)

合集下载

高一数学上学期期中期末考试精选50题基础解析版

高一数学上学期期中期末考试精选50题基础解析版

期中解答题精选50题(基础版)1.(2020·新疆巴州第一中学)设函数221()1x f x x +=-求证:1()()f f x x =- 【分析】直接将1x代入函数化简即可. 【详解】221()1x f x x +=-,()22221111111x x f f x x x x ⎛⎫+ ⎪+⎛⎫⎝⎭∴===- ⎪-⎝⎭⎛⎫- ⎪⎝⎭,即得证. 2.(2020·宾县第一中学)已知函数()2f x 3x 5x 2=+-.(1)求()3f ,()1f a +的值; (2)若()4f a =-,求a 的值.【答案】(1)40,23116a a ++;(2)23a =-,或1a =- 【分析】(1)直接代入求值即可; (2)令()4f a =-,解出即可. 【详解】解:(1)()2352f x x x =+-,()233353240f ∴=⨯+⨯-=,()()()221315123116f a a a a a +=⨯++⨯+-=++;(2)令()4f a =-,即()23524f a a a =+-=-,解得:23a =-,或1a =-.3.(2020·济南市济阳区第一中学高一期中)已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,()22f x x x =--.(1)求函数()()f x x R ∈的解析式;(2)写出函数()()f x x R ∈的增区间(不需要证明)【答案】(1)()222.02,0x x x f x x x x ⎧--≤=⎨->⎩;(2)(),1-∞-和()1,+∞.【分析】(1)当0x >时,0x -<,根据()()f x f x =--可得函数解析式; (2)根据二次函数的性质可得答案. 【详解】()1函数()f x 是定义在R 上的函数∴当0x >时,0x -<,()()f x f x ∴=--又当0x ≤时,()22f x x x =--()()()()2222f x f x x x x x ⎡⎤∴=--=-----=-⎣⎦∴函数()()f x x R ∈的解析式为:()222.02,0x x x f x x x x ⎧--≤=⎨->⎩;()2由二次函数的性质可知函数()f x 的单调递增区间为(),1-∞-和()1,+∞.4.(2020·大同市第四中学校)已知函数22()1x f x x =+.(1)求11(2),(3)23f f f f ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭的值;(2)求证:1()f x f x ⎛⎫+ ⎪⎝⎭是定值. 【答案】(1)1,1;(2)证明见解析. 【分析】(1)根据函数解析式代入即可求解. (2)根据解析式,代入整理即可求解.【详解】(1)因为()221x f x x =+,所以()2222112221212112f f ⎛⎫ ⎪⎛⎫⎝⎭+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭, ()2222113331313113f f ⎛⎫ ⎪⎛⎫⎝⎭+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭.(2)()22222222211111111111x x x x f x f x x x x x x ⎛⎫ ⎪+⎛⎫⎝⎭+=+=+== ⎪++++⎝⎭⎛⎫+ ⎪⎝⎭,是定值. 5.(2020·拉萨市第四高级中学高一期中)已知二次函数()2f x ax bx c =++,满足(0)(1)0f f ==,且()f x 的最小值是14-.(1)求()f x 的解析式;(2)设函数2()52g x x x =+-,函数()()()h x f x g x =-,求函数()h x 在区间[2,5]-上的最值. 【答案】(1)2()f x x x =-;(2)最大值14,最小值28-.【分析】(1)由已知条件列方程组,可求出,,a b c 的值,从而可得,,a b c ; (2)由题意得()62h x x =-+,再利用其单调性可求出其在[2,5]-上的最值 【详解】(1)因为(0)(1)0f f ==, 所以(0)0,(1)0f c f a b c ===++=,由二次函数的性质得11112424f a b c ⎛⎫=++=- ⎪⎝⎭,解得,1,1,0a b c ==-= 所以2()f x x x =-(2)依题得:()62h x x =-+ 函数()h x 在区间内[2,5]-单调递减 当2x =-时,()h x 有最大值14 当5x =时,()h x 有最小值28-6.(2020·南宁市第十九中学)已知函数()26x f x x +=-. (1)点()86,在()f x 的图像上吗? (2)当3x =时,求()f x 的值; (3)当()8f x =时,求x 的值.【答案】(1)不在,(2)53-,(3)507【分析】(1)将点的坐标代入解析式中验证即可; (2)将3x =代入函数中直接求解; (3)由()8f x =,可得286x x +=-,从而可求出x 的值 【详解】解:(1)因为()8285686f +==≠-,所以点()86,不在()f x 的图像上, (2)()3253363f +==--, (3)由()8f x =,得286x x +=-,解得507x =7.(2020·云南砚山县第三高级中学高一期中)判断下列函数的奇偶性. (1)21()f x x =; (2)()31f x x =-+;【答案】(1)偶函数;(2)非奇非偶函数.【分析】先求函数的定义域,再利用函数奇偶性的定义判断即可 【详解】(1)因为定义域为:{}0x x ≠ 所以定义域关于原点对称, 又因为2211()()()f x f x x x -===-,所以函数f (x )是偶函数; (2)因为定义域为R ,关于原点对称又因为()31f x x =-+,则()31()f x x f x -=+≠,()31()f x x f x -=+≠-, 所以()f x 是非奇非偶函数;8.(2019·广东高一期中)已知函数f (x 12x +. (1)求函数f (x )的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.【答案】(1)[3,2)(2,)---+∞;(2)()31f -=-;23()38f =;(3)()12f a a +;()111f a a -=+ 【分析】(1)由平方根被开方数大于等于0,分母不为零,同时成立求出定义域; (2)代入解析式,求出()3f -,23f ⎛⎫⎪⎝⎭的值;(3)代入解析式,即可求出结果. 【详解】(1)要使函数有意义,须3033202x x x x x +≥≥-⎧⎧⇒⇒-≤⎨⎨+≠≠-⎩⎩且2x ≠-, 所以函数的定义域为[3,2)(2,)---+∞(2)()12f x x =+,所以()1301,32f -=+=--+213()23823f ==+ (3)0,11a a >∴->-,()12f a a =+ ()111f a a -=+ 9.(2020·云南砚山县第三高级中学高一期中)(1)求解:2340x x --=; (2)解不等式的解集:(9)0x x -> ; 【答案】(1)124,-1x x ==;(2){}|09x x <<. 【分析】(1)利用因式分解法解方程即可; (2)直接解一元二次不等式即可 【详解】(1)2340x x --=(4)(1)0x x -+= 124,-1x x ==(2)不等式化为(9)0x x -<, 09x ∴<<,∴不等式的解集为{}|09x x <<;10.(2019·抚顺市雷锋高级中学高一期中)已知0x >,求函数4y x x=+的最小值,并说明当x 为何值时y 取得最小值.【答案】最小值为4,当2x =时y 取得最小值【分析】根据基本不等式求得函数的最小值,且求得此时x 的值. 【详解】因为0x >,所以4224y x x =+≥⨯=. 当且仅当4x x=时取等号.24x =.因为0x >,所以2x =. 所以2x =为何值时y 取得最小值4.11.(2019·抚顺市雷锋高级中学高一期中)已知一元二次方程22320x x +-=的两个实数根为12,x x .求值:(1)2212x x +; (2)1211+x x . 【答案】(1)174;(2)32.【分析】利用韦达定理可得12123,12x x x x +=-⋅=-,再对所求式子进行变行,即222121212()2x x x x x x +=+-;12121211x x x x x x ++=⋅;两根和与积代入式子,即可得到答案; 【详解】解:因为一元二次方程22320x x +-=的两个实数根为12,x x ,所以由根与系数关系可知12123,12x x x x +=-⋅=-.(1)222121212()2x x x x x x +=+-9172(1)44=-⨯-=;(2)1212123113212x x x x x x -++===⋅-.12.(2019·抚顺市雷锋高级中学高一期中)解一元二次不等式:2560x x -+>. 【答案】(,2)(3,)-∞⋃+∞.【分析】对多项式进行因式分解得256(2)(3)x x x x -+=--,再利用大于取两边,即可得到答案;【详解】解:因为256(2)(3)x x x x -+=--, 所以原不等式等价于(2)(3)0x x -->. 所以所求不等式的解集为(,2)(3,)-∞⋃+∞.13.(2020·河北英才国际学校高一期中)已知23a <<,21b -<<-,求2a b +的范围. 【答案】225a b <+<【分析】根据不等式的性质可得出答案. 【详解】解:23a <<,426a ∴<<,又21b -<<-, 225a b ∴<+<.14.(2021·四川省武胜烈面中学校高一期中)(1)解不等式2210x x --+<. (2)若不等式20ax x b -+<的解集为1,12⎛⎫ ⎪⎝⎭,求实数a ,b 的值; 【答案】(1)不等式的解集为{|1x x <-或12x ⎫>⎬⎭;(2)23a =,13b =.【分析】(1)根据一元二次不等式的解法即可求出; (2)根据函数与方程的思想即可求出.【详解】(1)2210x x --+<即为2210x x +->,而2210x x +-=的两根为11,2-,所以不等式的解集为{|1x x <-或12x ⎫>⎬⎭.(2)由题意可知20ax x b -+=的两根为1,12,所以,1112112a ba⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得23a =,13b =. 15.(2019·福建高一期中)若二次函数满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 【答案】(1)f (x )=x 2-x +1;(2)m <-1.【分析】(1)设f (x )=ax 2+bx +c (a ≠0),则由f (0)=1可求出c ,由f (x +1)-f (x )=2x 可求出,a b ,从而可求出函数的解析式,(2)将问题转化为x 2-3x +1-m >0在[-1,1]上恒成立,构造函数g (x )=x 2-3x +1-m ,然后利用二次函数的性质求出其最小值,使其最小值大于零即可求出实数m 的取值范围 【详解】(1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1, ∴c =1,∴f (x )=ax 2+bx +1. ∵f (x +1)-f (x )=2x ,∴2ax +a +b =2x ,∴220a a b =⎧⎨+=⎩,∴11a b =⎧⎨=-⎩,∴f (x )=x 2-x +1.(2)由题意:x 2-x +1>2x +m 在[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立.令g (x )=x 2-3x +1-m =3()2x -2-54-m ,其对称轴为x =32,∴g (x )在区间[-1,1]上是减函数, ∴g (x )min =g (1)=1-3+1-m >0, ∴m <-1.16.(2021·巴楚县第一中学高一期中)比较下列各组中两个代数式的大小: (1)256x x ++与2259x x ++; (2)2(3)x -与(2)(4)x x --; 【答案】(1)2256259x x x x ++<++;(2)2(3)(2)(4)x x x ->-- 【分析】利用作差法,分析两式之差的正负判定即可【详解】(1)因为()()2225625930x x x x x ++-++=--<,故2256259x x x x ++<++; (2)因为()()2220(63)(2)(4)9681x x x x x x x --=--++---=>,故2(3)(2)(4)x x x ->--【点睛】本题主要考查了作差法判定两式大小的问题,属于基础题17.(2020·上海财经大学附属中学高一期中)若x ∈R ,试比较26x x +3与24216x x -+的大小. 【答案】2264216.x x x x +≤-+3 【分析】利用作差法比较即可.【详解】因为()()()22226421681640x x x x x x x +--+=-+-=--≤3,所以2264216.x x x x +≤-+318.(2020·咸阳百灵学校)已知M = {x |-3 ≤ x ≤5}, N = {x | a ≤ x ≤ a +1},若N M ⊆,求实数a 的取值范围.【答案】34a -≤≤【分析】先分析集合N ≠∅,再根据N M ⊆建立不等式然后解之即可. 【详解】因为1a a <+,所以集合N ≠∅.因此,N M ⊆时,应满足315a a ≥-⎧⎨+≤⎩,解得34a -≤≤.19.(2020·大同市第四中学校)设集合{|12}A x x =-≤≤,集合{|21}B x m x =<<.若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围;【答案】1,2⎡⎫-+∞⎪⎢⎣⎭.【分析】由“x A ∈”是“x B ∈”的必要条件有B A ⊆,讨论12m <、12m ≥满足条件时m 的范围,最后求并集即可.【详解】若“x A ∈”是“x B ∈”的必要条件,则B A ⊆, {}2|1A x x =-≤≤,①当12m <时,{|21}B x m x =<<,此时121m -≤<,即1122m -≤<;②当12m ≥时,B =∅,有B A ⊆成立;∴综上所述,所求m 的取值范围是1,2⎡⎫-+∞⎪⎢⎣⎭.20.(2020·南宁市第十九中学)已知{}10A x x =-=,{}210B x x =-=.求:(1)A B ; (2)A B 【答案】(1){}1;(2){}1,1-【分析】先求出集合A ,B ,再根据交集并集的定义即可求出. 【详解】{}{}101A x x =-==,{}{}2101,1B x x =-==-,∴(1){}1A B ⋂=;(2){}1,1A B =-.21.(2020·桂林市临桂区五通中学高一期中)奇函数2()1ax bf x x +=+是定义在区间[]1,1-上的增函数,且1225f ⎛⎫= ⎪⎝⎭.(1)求()f x 解析式;(2)求不等式(1)()0f x f x -+<的解集. 【答案】(1)()21x f x x =+;(2)10,2⎡⎫⎪⎢⎣⎭. 【分析】(1)先根据奇函数可求0b =,再利用1225f ⎛⎫= ⎪⎝⎭可求1a =,进而可得解析式;(2)根据奇函数和增函数把不等式(1)()0f x f x -+<进行转化,结合定义域可求答案. 【详解】(1)∵函数2()1ax bf x x +=+是定义在[]1,1-上的奇函数, ∴()00001bf +==+,即0b =, ∵1225f ⎛⎫= ⎪⎝⎭,∴2112225121a f ⨯⎛⎫== ⎪⎝⎭⎛⎫ +⎪⎝⎭,解得1a =, ∴()21xf x x =+. 经验证知,()21x f x x =+是定义在[]1,1-上的奇函数,所以()21xf x x =+.(2)∵函数()f x 在[]1,1-上为奇函数,且(1)()f x f x -<-,∴(1)()f x f x -<-,又∵函数()f x 是定义在[]1,1-上的增函数,∴111111x x x x-≤-≤⎧⎪-≤-≤⎨⎪-<-⎩,解得102x ≤<.故不等式(1)()0f x f x -+<的解集为10,2⎡⎫⎪⎢⎣⎭.22.(2019·福建高一期中)已知函数2()1ax b f x x +=+是定义在(1,1)-上的奇函数,且3(3)10f =.(1)确定函数()f x 的解析式;(2)当(1,1)x ∈-时判断函数()f x 的单调性,并证明;(3)解不等式1(1)()02f x f x -+<. 【答案】(1)2()1x f x x =+;(2)()f x 在区间()1,1-上是增函数,证明见解析;(3)20,3⎛⎫⎪⎝⎭.【分析】(1)由奇函数的概念可得b 的值,根据()3310f =可得a 的值,进而得结果; (2)设1211x x -<<<,用作差法分析可得可得()()12f x f x <,由函数单调性的定义即可得证明; (3)将奇偶性和单调性相结合列出不等式组,解出即可. 【详解】(1)∵()()f x f x -=-, ∴221()1ax b ax bx x -+--=+-+,即b b -=,∴0b =.∴2()1axf x x =+, 又()3310f =,1a =, ∴2()1xf x x =+. (2)对区间()1,1-上得任意两个值1x ,2x ,且12x x <,22121221121212222222121212(1)(1)()(1)()()11(1)(1)(1)(1)x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++, ∵1211x x -<<<,∴120x x -<,1210x x ->,2110x +>,2210x +>,∴12())0(f x f x -<,∴12()()f x f x <, ∴()f x 在区间()1,1-上是增函数. (3)∵1(1)()02f x f x -+<, ∴1(1)()2f x f x -<-,1111211211x x x x ⎧-<-<⎪⎪⎪-<-⎨⎪-<<⎪⎪⎩,解得203x <<,∴实数x 得取值范围为20,3⎛⎫⎪⎝⎭.23.(2019·陕西镇安中学高一期中)函数()21ax bf x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数. 【答案】(1)()21xf x x =+;(2)证明见解析. 【分析】(1)由函数()f x 是定义在()1,1-上的奇函数,则()00f =,解得b 的值,再根据1225f ⎛⎫= ⎪⎝⎭,解得a 的值从而求得()f x 的解析式; (2)设1211x x -<<<,化简可得()()120f x f x -<,然后再利用函数的单调性定义即可得到结果.【详解】解:(1)依题意得()00,12,25ff ⎧=⎪⎨⎛⎫= ⎪⎪⎝⎭⎩∴20,1022,1514bab ⎧=⎪+⎪⎪⎨+⎪=⎪+⎪⎩∴1,0,a b =⎧⎨=⎩∴()21x f x x =+ (2)证明:任取1211x x -<<<,∴()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++ ∵1211x x -<<<,∴120x x -<,2110x +>,2210x +>,由1211x x -<<<知,1211x x -<<,∴1210x x ->. ∴()()120f x f x -<.∴()f x 在()1,1-上单调递增.24.(2020·黔西南州同源中学高一期中)已知函数()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-.(1)画出当0x <时,()f x 函数图象; (2)求出()f x 解析式.【答案】(1)见解析;(2)()()()222,02,0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩ .【分析】(1)根据函数奇偶性的性质即可画出当0x <时,函数()f x 的函数图象; (2)根据函数奇偶性的定义即可求出函数解析式. 【详解】解:(1)()f x 是奇函数,且当0x ≥时,2()2f x x x =-.∴函数()f x 的函数图象关于原点对称,则当0x <时,()f x 函数图象:;(2)若0x <,则0x ->, 当0x ≥时,2()2f x x x =-.()()2()2()f x x x f x ∴-=---=-,则当0x <时,2()2f x x x =--.即()()()222,02,0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩ .25.(2020·黔西南州同源中学高一期中)已知函数1()f x x x=-. (1)判断函数()f x 的奇偶性,并加以证明; (2)用定义证明函数()f x 在区间[)1,+∞上为增函数.【分析】(1)判断函数的奇偶性,利用奇偶性的定义证明即可; (2)作差判断符号,利用函数的单调性的定义证明即可. 【详解】解:(1)()f x 是奇函数,理由如下:函数1()f x x x=-的定义域为(-∞,0)(0⋃,)+∞,关于原点对称, 且11()()()f x x x f x xx-=-+=--=-,()f x ∴是奇函数;证明:(2)任取1x ,2[1x ∈,)+∞且12x x <,则1212121211()()()()f x f x x x x x x x -=---=-12121x x x x +,120x x -<,1210x x +>,120x x >12()()0f x f x ∴-<,即12()()f x f x <.()f x ∴在[1,)+∞上单调递增.26.(2019·上海市嘉定区封浜高级中学高一期中)若0,0a b >>,试比较33+a b 与22a b b a +的大小.【答案】3322a b a b b a +≥+,当且仅当a b =时等号成立.【分析】运用作差法求出两式的差,结合题意将两式的差与0进行比较即可. 【详解】由题意得,3333222222222))()()()()()()()(()(a b b a a b b a a a b b b a a b a b a b a b a b a b +==-+-=+-=+----+-因为0,0a b >>,所以20,()0a b a b +>-≥,当且仅当a b =时取等号, 所以2()()0a b a b -+≥,即32320())(a a b b b a +-≥+,当且仅当a b =时取等号, 故3322a b a b b a +≥+,当且仅当a b =时等号成立.27.(2021·安徽池州市·高一期中)已知函数()231f ax x ax =+-,a R ∈.(1)当4a =时,求不等式()0f x >的解集; (2)若()0f x ≤在R 上恒成立,求a 的取值范围. 【答案】(1){12x x <-或16x ⎫>⎬⎭;(2)[]12,0-.【分析】(1)解不含参数的一元二次不等式即可求出结果;(2)二次函数的恒成立问题需要对二次项系数是否为0进行分类讨论,即可求出结果.【详解】(1)当4a =时,()212410x f x x =+->,即()()21610x x +->,解得12x <-或16x >, 所以,解集为{12x x <-或16x ⎫>⎬⎭.(2)因为()2310f x ax ax =+-≤在R 上恒成立,①当0a =时,()10f x =-≤恒成立;②当0a ≠时,2120a a a <⎧⎨∆=+≤⎩,解得120a -<≤, 综上,a 的取值范围为[]12,0-.28.(2010·辽宁大连市·)解关于x 的不等式ax 2-(a +1)x +1<0.【分析】根据二次函数开口方向和一元二次方程的根的大小,分0,0,01,1,1,a a a a a <=<<=>讨论求解.【详解】①当a =0时,原不等式即为-x +1<0,解得x >1.②当a <0时,原不等式化为()11x x a ⎛⎫-- ⎪⎝⎭>0,解得1x a <或x >1.③当a >0时,原不等式化为()11x x a ⎛⎫-- ⎪⎝⎭<0.若a =1,即1a=1时,不等式无解;若a >1,即1a <1时,解得1a<x <1; 若0<a <1,即1a>1时,解得1<x <1a.综上可知,当a <0时,不等式的解集为11x x x a ⎧⎫⎨⎬⎩⎭或;当a =0时,不等式的解集为{x |x >1};当0<a <1时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭;当a =1时,不等式的解集为Ø;当a >1时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭.29.(2020·江苏泰州·)已知关于x 的不等式()2220x a x a -++<.(1)当3a =时,解关于x 的不等式; (2)当a R ∈时,解关于x 的不等式.【答案】(1){}23x x <<;(2)答案不唯一,具体见解析. 【分析】(1)直接求解一元二次不等式即可,(2)原不等式化为()()20x x a --<,然后分2a <,2a =和2a >三种情况解不等式【详解】解:(1)因为不等式为()2220x a x a -++<,所以当3a =时,不等式为2560x x -+<,即()()230x x --<, 则23x <<,故原不等式的解集为{}23x x <<. (2)原不等式为()()20x x a --<, 当2a <时,不等式解集为{}2x a x <<; 当2a =时,不等式解集为∅;当2a >时,不等式解集为{}2x x a <<.综上所述:当2a <时,不等式解集为{}2x a x <<; 当2a =时,不等式解集为∅;当2a >时,不等式解集为{}2x x a <<.30.(2020·杭州之江高级中学高一期中)设函数()()222,f x x ax a a =++-∈R . (1)当1a =时,解关于x 的不等式()()215f x a x a >--+;(2)若[]1,2x ∃∈,使得()0f x >成立,求a 的取值范围.【答案】(1)(,3)(1,)-∞-⋃+∞;(2)(3,)-+∞.【分析】(1)当1a =时,不等式可化简为()()310x x +->,根据一元二次不等式的解法,即可求得答案.(2)[]1,2x ∃∈,使得()0f x >成立的否定为:[]()1,2,0x f x ∀∈≤恒成立,列出方程组,可求得a 的范围,进而可得答案.【详解】(1)当1a =时,()()215f x a x a >--+,整理可得2214x x ++>所以()()310x x +->,解得3x <-或1x >, 故原不等式的解集为(,3)(1,)-∞-⋃+∞.(2)命题:[]1,2x ∃∈,使得()0f x >成立的否定为:[]()1,2,0x f x ∀∈≤恒成立,则(1)0(2)0f f ≤⎧⎨≤⎩,解得3a ≤-, 若原命题成立,则a 的取值范围为(3,)-+∞.31.(2020·江苏)已知不等式2320ax x -+>的解集为{|1x x <或}x b >. (1)求a ,b 的值;(2)当2c ≠时,解关于x 的不等式2()0ax ac b x bc -++<.【答案】(1)12.a b =⎧⎨=⎩,;(2)答案见解析.【分析】(1)根据二次不等式的解集得到1和b 是方程2320ax x -+=的两根,利用韦达定理得到方程组求解;(2)根据(1)的结论不等式2()0ax ac b x bc -++<化为(2)()0x x c --<,分类讨论得到不等式的解集.【详解】解:(1)由题意知,1和b 是方程2320ax x -+=的两根,则312b a b a⎧=+⎪⎪⎨⎪=⎪⎩,,解得12.a b =⎧⎨=⎩,(2)不等式2()0ax ac b x bc -++<, 即为2(2)20x c x c -++<,即(2)()0x x c --<. ①当2>c 时,解集为{}2x x c <<; ②当2c <时,解集为{}2x c x <<;综上,当2>c 时,原不等式的解集为{}2x x c <<; 当2c <时,原不等式的解集为{}2x c x <<;32.(2021·云南砚山县第三高级中学高一期中)已知函数()()()236f x x a x =-+-. (1)若1a =-,求()f x 在[]3,0-上的最大值和最小值;(2)若关于x 的方程()140f x +=在()0,∞+上有两个不相等实根,求实数a 的取值范围. 【答案】(1)最大值是0,最小值是498-;(2)58,23⎛⎫ ⎪⎝⎭. 【分析】(1)由1a =-,得到()2253f x x x =+-,再利用二次函数的性质求解;(2)将方程()140f x +=在()0,∞+上有两个不相等实根,转化为方程()2232380x a x a +--+=有两个不相等正实根求解.【详解】(1)当1a =-时,()()()1236f x x x =++-2253x x =+-2549248x ⎛⎫=+- ⎪⎝⎭,因为二次函数()f x 开口向上,对称轴为54x =-,又因为()f x 在5[3,)4--上递减,在5(,0]4-上递增, 所以()min 54948f x f ⎛⎫=-=- ⎪⎝⎭,又()()30,03f f -==-, 所以()()max 30f x f =-=;(2)因为方程()140f x +=在()0,∞+上有两个不相等实根,所以方程()2232380x a x a +--+=有两个不相等正实根,则()()232838032023802a a aa ⎧⎪∆=---+>⎪-⎪->⎨⎪-+⎪>⎪⎩, 解得5823a <<,所以实数a 的取值范围是58,23⎛⎫ ⎪⎝⎭.33.(2020·曲靖市关工委麒麟希望学校高一期中)如下图所示,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?最大面积为多少?(2)若使每间虎笼面积为242m ,则每间虎笼的长、宽各设计为多少时,可使围成四间笼的钢筋网总长最小?最小值为多少?【答案】(1)当长为9m 2,宽为3m 时,面积最大,最大面积为227m 2;(2)当长为6m ,宽为4m 时,钢筋网总长最小,最小值为48m .【分析】(1)求得每间虎笼面积的表达式,结合基本不等式求得最大值. (2)求得钢筋网总长的表达式,结合基本不等式求得最小值. 【详解】(1)设长为a ,宽为b ,,a b 都为正数,每间虎笼面积为ab ,则463623181823a b a b a b +=⇒+=⇒=+≥ 则272ab ≤,所以每间虎笼面积ab 的最大值为227m 2,当且仅当23a b =即9m,3m 2a b ==时等号成立.(2)设长为a ,宽为b ,,a b 都为正数,每间虎笼面积为24ab =,则钢筋网总长为4648a b +≥===,所以钢筋网总长最小为48m ,当且仅当46,23,6m,4m a b a b a b ====等号成立.34.(2020·上海市第三女子中学高一期中)已知a R ∈,求证:“102a <<”是“111a a>+-”的充分非必要条件.【分析】从充分性和必要性两个方面去进行说明即可.【详解】解:充分性:当102a <<时,()()21111a a a -=-+<,且10a ->,则111a a>+-, 故充分性满足;必要性:当111a a >+-时,()1101a a -+>-,即201a a>-,可得1a <,且0a ≠,故必要性不满足;则“102a <<”是“111a a>+-”的充分非必要条件 35.(2020·福建厦门一中高一期中)已知20:{|}100x p x x +≥⎧⎨-≤⎩,q :{x |1-m ≤x ≤1+m ,m >0}.(1)若m =1,则p 是q 的什么条件?(2)若p 是q 的充分不必要条件,求实数m 的取值范围. 【答案】(1)p 是q 的必要不充分条件;(2)m ∈[9,+∞).【分析】(1)分别求出p 、q 对应的集合,根据集合间的关系即可得出答案;(2)根据p 是q 的充分不必要条件,则p 对应的集合是q 对应的集合的真子集,列出不等式组,解得即可得出答案.【详解】(1)因为20:{|}100x p x x +≥⎧⎨-≤⎩={x |-2≤x ≤10}, 若m =1,则q :{x |1-m ≤x ≤1+m ,m >0}={x |0≤x ≤2}, 显然{x |0≤x ≤2}≠⊂{x |-2≤x ≤10}, 所以p 是q 的必要不充分条件.(2)由(1),知p :{x |-2≤x ≤10},因为p 是q 的充分不必要条件,所以}{}{21011x x x m x m ≠-≤≤⊂-≤≤+∣∣, 所以012110m m m >⎧⎪-≤-⎨⎪+≥⎩,且12m -≤-和110m +≥不同时取等号,解得m ≥9,即m ∈[9,+∞).36.(2020·玉林市育才中学高一期中)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围. 【答案】{m |m ≤3}.【分析】由B =∅和B ≠∅分类讨论得不等式(或不等式组)解之可得. 【详解】解:A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A . ①若B =∅,则m +1>2m -1,解得m <2, 此时有B ⊆A ;②若B ≠∅,则m +1≤2m -1,即m ≥2,由B ⊆A ,得212215m m m ≥⎧⎪+≥-⎨⎪-≤⎩,解得2≤m ≤3.由①②得m ≤3.∴实数m 的取值范围是{m |m ≤3}.37.(2019·福建高一期中)(1)设{}22,2,6A a a =-,{}22,2,36B a a =-,若{}2,3A B ⋂=,求A B .(2)已知{}26A x x =≤≤,{}23B x a x a =≤≤+,若B A ⊆,求实数a 的取值范围.【答案】(1){}2,3,6,18A B =;(2){}1a a >.【分析】(1)由交集的概念可得223a a -=,求出a 代入验证,再求并集即可; (2)分为B =∅和B ≠∅两种情形,列出不等式解出即可. 【详解】(1)由{}2,3A B ⋂=,∴223a a -=,解得3a =或1a =-, 当3a =时,{}2,3,18B =,此时{}2,3,6,18A B =, 当1a =-时,不合题意. ∴{}2,3,6,18A B =. (2)∵B A ⊆,当B =∅时,23a a >+,∴3a >,当B ≠∅时,222336a a a a ≤⎧⎪≤+⎨⎪+≤⎩,∴13a .综上,{}1a a a ∈>.38.(2020·曲靖市关工委麒麟希望学校高一期中)已知M={x| -2≤x ≤5}, N={x| a+1≤x≤2a -1}.(1)若M ⊆N ,求实数a 的取值范围; (2)若M ⊇N ,求实数a 的取值范围. 【答案】(1)空集;(2){}3a a ≤.【分析】(1)根据子集的性质进行求解即可;(2)根据子集的性质,结合N =∅和N ≠∅两种情况分类讨论进行求解即可. 【详解】(1)由M N ⊆得:12321531212a a a a a a a +≤-≤-⎧⎧⎪⎪⇒-≥≥⎨⎨⎪⎪+≤-≥⎩⎩无解; 故实数a 的取值范围为空集; (2)由M N ⊇得: 当N =∅时,即1212a a a +>-⇒<; 当N ≠∅时,12121232153a a a a a a a +≤-≥⎧⎧⎪⎪+≥-⇒≥-⎨⎨⎪⎪-≤≤⎩⎩, 故23a ≤≤;综上实数a 的取值范围为{}3a a ≤.39.(2019·陕西镇安中学高一期中)已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-. (1)若4m =,求A B ;(2)若A B =∅,求实数m 的取值范围.【答案】(1){}27x x -≤≤;(2){2m m <或}4m >.【分析】(1)当4m =时,求出集合B ,利用并集的定义可求得集合A B ;(2)分B =∅、B ≠∅两种情况讨论,结合A B =∅可得出关于实数m 的不等式,综合可求得实数m 的取值范围.【详解】(1)当4m =时,{}57B x x =≤≤,故{}27A B x x ⋃=-≤≤; (2)当121m m +>-时,即当2m <时,B =∅,则A B =∅; 当121m m +≤-时,即当2m ≥时,B ≠∅,因为A B =∅,则212m -<-或15m +>,解得12m <-或4m >,此时有4m >.综上所述,实数m 的取值范围是{2m m <或}4m >.40.(2019·广西大学附属中学高一期中)设全集U =R ,集合{}14A x x =≤<,{}23B x a x a =≤<-.(1)若2a =-,求B A ⋂;(2)若A B A ⋃=,求实数a 的取值范围. 【答案】(1) {}|14x x ≤<;(2)1,2⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)利用集合间的交集运算求解; (2)由A B A ⋃=得B A ⊆,再分B φ=和B φ≠讨论.【详解】(1) 若2a =-,则{}45B x x =-≤<,又{}14A x x =≤<,所以{}|14B A x x =≤<. (2) 若A B A ⋃=,则B A ⊆. 当B φ=时,23a a ≥-,1a ≥; 当B φ≠时,由1,21,34a a a <⎧⎪≥⎨⎪-≤⎩,解得112a ≤<.综上可知,实数a 的取值范围1,2⎡⎫+∞⎪⎢⎣⎭.41.(2020·吉林江城中学)已知集合{}12A x x =-≤<,集合B ={}12x a x a -≤<,(1)B A ⊆,求实数a 的取值范围; (2)若A B =∅,求实数a 的取值范围.【答案】(1){}|011a a a ≤≤≤-或;(2)1|32a a a ⎧⎫≤-≥⎨⎬⎩⎭或.【分析】(1)(2)都是根据题意讨论B φ=和B φ≠两种情况,从而列出关于a 的不等式组,进而求实数a 的取值范围. 【详解】(1)因为B A ⊆,所以当B φ=时,12a a -≥,解得1a ≤-,此时满足题意;当B φ≠时,由题意得112212a a a a -≥-⎧⎪≤⎨⎪-<⎩,解得01a ≤≤,所以实数a 的取值范围为{}|011a a a ≤≤≤-或. (2)因为A B =∅,所以当B φ=时满足题意,即12a a -≥,解得1a ≤-;当B φ≠时,由题意得2112a a a ≤-⎧⎨-<⎩或1212a a a-≥⎧⎨-<⎩,解得112a -<≤-或3a ≥,所以实数a 的取值范围为1|32a a a ⎧⎫≤-≥⎨⎬⎩⎭或.42.(2019·浙江高一期中)已知602x A xx ⎧⎫-=>⎨⎬-⎩⎭,()(){}110B x x a x a =---+≤. (1)当2a =时,求A B ;(2)当0a >时,若A B B ⋃=,求实数a 的取值范围. 【答案】(1){}23A B x x ⋂=<≤;(2)[)5,+∞.【分析】(1)解不等式求得集合,A B ,由并集定义可求得结果; (2)由并集结果可确定A B ⊆,根据包含关系可构造不等式组求得结果. 【详解】(1)由602xx ->-得:26x <<,则{}26A x x =<<; 当2a =时,由()()110x a x a ---+≤得:()()310x x -+≤,则{}13B x x =-≤≤;{}23A B x x ∴⋂=<≤;(2)若A B B ⋃=,则A B ⊆,当0a >时,{}11B x a x a =-≤≤+,又{}26A x x =<<,则1216a a -≤⎧⎨+≥⎩,解得:5a ≥,∴实数a 的取值范围为[)5,+∞.43.(2019·甘肃兰州市·兰州五十一中高一期中)已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,求m 的取值范围 【答案】(,1]-∞.【分析】分类讨论:0m ≤和0m >,前者由子集定义即得,后者由包含关系得不等关系后可得.【详解】当0m ≤时,B A =∅⊆, 当0m >时,则13m m -≥-⎧⎨≤⎩,解得01m <≤.综上,m 的取值范围是(,1]-∞.44.(2020·上海市杨思高级中学高一期中)若x ∈R ,不等式2680mx mx m -++>恒成立,求实数m 的取值范围. 【答案】[0,1)【分析】根据x ∈R 时,不等式2680mx mx m -++>恒成立,分0m =和0m ≠两种情况,利用判别式法求解.【详解】因为x ∈R 时,不等式2680mx mx m -++>恒成立, 当0m =时,80>成立,当0m ≠时,则2364(8)0m m m m >⎧⎨∆=-+<⎩, 解得01m <<, 综上:01m ≤<. 则实数m 的取值范围[0,1).45.(2021·乌苏市第一中学高一期中)解下列不等式:(1)2440x x -+-< (2)()210x a x a +-->【答案】(1){}|2x x ≠;(2)当1a =-时原不等式的解集为{|1}x x ≠,当1a >-时原不等式的解集为{|x x a <-,或1}x >,当1a <时原不等式的解集为{|x x a >-,或1}x <.【分析】(1)将一元二次不等式化简,将左边配成完全平方式,即可得出不等式的解集; (2)由题意,一元二次不等式所对应的一元二次方程的两个根为a - 和1,分类讨论a -和1的大小,从而求得它的解集.【详解】解:(1)因为2440x x -+-<,所以2440x x -+>,即()220x ->,所以2x ≠,即原不等式的解集为{}|2x x ≠(2)x 的不等式:2(1)0x a x a +-->,即()(1)0x a x +->,此不等式所对应的一元二次方程2(1)0x a x a +--=的两个根为a -和1. 当1a -=,即1a =-时,此时不等式即2(1)0x ->,它的解集为{|1}x x ≠; 当<1a -,即1a >-时,它的解集为{|x x a <-或1}x >;当1a ->,即1a <时,它的解集为{|x x a >-或1}x <.综上可得:当1a =-时原不等式的解集为{|1}x x ≠,当1a >-时原不等式的解集为{|x x a <-或1}x >,当1a <时原不等式的解集为{|x x a >-或1}x <.46.(2021·乌苏市第一中学高一期中)解下列不等式: (1)23710x x -≤ (2)(1)()0x x a --> 【答案】(1)10{|1}3x x -≤≤;(2)1a ≥时,解集为(,1)(,)a -∞+∞,1a <时,解集为(,)(1,)a -∞+∞.【分析】(1)不等式变形为一边为0,一边二次系数为正,分解因式确定相应二次方程的根后结论二次函数性质得解;(2)根据a 和1的大小分类讨论得解.【详解】(1)不等式化为237100x x --≤,即(1)(310)0x x +-≤,解集为10{|1}3x x -≤≤; (2)当1a ≥时,不等式的解为1x <或x a >,解集为(,1)(,)a -∞+∞; 当1a <时,不等式的解为x a <或1x >,解集为(,)(1,)a -∞+∞.47.(2020·吉林江城中学)(1)若不等式20ax bx c ++>的解集是{}|23x x -<<,求不等式20cx bx a ++>的解集;(2)已知不等式210kx kx ++>恒成立,求k 的取值范围. 【答案】(1)1|2x x ⎧<-⎨⎩或13x ⎫>⎬⎭;(2){}|04k k ≤<.【分析】(1)根据不等式20ax bx c ++>的解集是{}|23x x -<<,得到0a <,=-b a ,6c a =-,代入20cx bx a ++>即可求解;(2)通过讨论0k =和0k >两种情况来求解.【详解】(1)因为不等式20ax bx c ++>的解集是{}|23x x -<<, 所以2-和3是方程20ax bx c ++=的两根,且0a <,所以23,23b ca a-+=--⨯=,即=-b a ,6c a =-,代入不等式20cx bx a ++>得260ax ax a --+>, 因为0a <,所以2610x x +->,解得12x <-或13x >, 所以不等式20cx bx a ++>的解集为1|2x x ⎧<-⎨⎩或13x ⎫>⎬⎭. (2)当0k =时,不等式为10>,恒成立,满足题意; 当0k ≠时,要满足题意,需2040k k k >⎧⎨∆=-<⎩,解得04k <<,所以实数k 的取值范围为{}|04k k ≤<48.(2018·天津河东·高一期中)已知函数()af x x x=+. (1)当a R ∈时,用定义证明()f x 为奇函数.(2)当0a <时,用定义证明()f x 在()0,∞+上单调递增. 【分析】(1)根据奇函数的定义进行证明即可; (2)根据函数的单调性进行证明即可.【详解】(1)定义域:{}|0x x ≠,关于原点对称,()a a f x x x x x ⎛⎫-=-+=-+ ⎪-⎝⎭()f x =-,∴()f x 为奇函数; (2)0a <时,设12,x x 是()0,∞+上任意两个实数,且120x x <<, 则()()12f x f x -1212a a x x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭()1212a a x x x x ⎛⎫=-+- ⎪⎝⎭()()211212a x x x x x x -=-+()12121a x x x x ⎛⎫=-- ⎪⎝⎭因为120x x <<,所以120x x -<,120x x >,而0a <,所以120ax x ->, ∴()()120f x f x -<, 即()()12f x f x <,故()f x 在()0,∞+单调递增.49.(2020·河南郑州·高一期中)已知函数()f x 是定义域为R 的奇函数,当0x >时,()22f x x x =-.(1)求出函数()f x 在R 上的解析式;(2)画出函数()f x 的图象,并根据图象写出()f x 的单调区间; (3)求使()1f x =时的x 的值.【答案】(1)222,0()0,02,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩;(2)函数图象见解析,单调增区间为(],1-∞-和[)1,+∞,单调减区间为(1,1)-.(3)1x =或1x =-【分析】(1)通过①由于函数()f x 是定义域为R 的奇函数,则(0)0f =;②当0x <时,0x ->,利用()f x 是奇函数,()()f x f x -=-.求出解析式即可.(2)利用函数的奇偶性以及二次函数的性质画出函数的图象,写出单调增区间,单调减区间. (3)利用当0x >时,221x x -=,当0x <时,221x x --=,分别求解方程即可. 【详解】解:(1)①由于函数()f x 是定义域为R 的奇函数,则(0)0f =; ②当0x <时,0x ->,因为()f x 是奇函数,所以()()f x f x -=-. 所以22()()[()2()]2f x f x x x x x =--=----=--.综上:222,0()0,02,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩.(2)函数图象如下所示:由函数图象可知,函数的单调增区间为(],1-∞-和[)1,+∞,单调减区间为(1,1)-. (3)当0x >时,221x x -=解得1x =或1x =因为0x >,所以1x =当0x <时,221x x --= 解得1x =-综上所述,1x =+或1x =-50.(2019·云南昭通市第一中学高一期中)某商店试销一种成本单价为40元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于80元/件,经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数100=-+y x 的关系.设商店获得的利润(利润=销售总收入-总成本)为S 元. (1)试用销售单价x 表示利润S ;(2)试问销售单价定为多少时,该商店可获得最大利润?最大利润是多少?此时的销售量是多少?【答案】(1)()214040004080S x x x =-+-≤≤;(2)当销售单价为70元/件时,可获得最大利润900元,此时销售量是30件.【分析】(1)由利润=销售总收入-总成本可得答案;(2)对于()()()2709004080S x x x =--+≤≤配方法即可求得最大值. 【详解】(1)()()()()404040100S x xy y x y x x =-=-=--+ ()214040004080x x x =-+-≤≤.(2)()()()2709004080S x x x =--+≤≤,∴当销售单价为70元/件时,可获得最大利润900元,此时销售量是30件.。

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。

2024-2025学年上期高一年级期中考试数学试题

2024-2025学年上期高一年级期中考试数学试题

2024-2025学年上期高一年级期中考试数学试题(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、考号填写在答题卡上相应的位置。

2.作答时,全部答案在答题卡上完成,答在本试卷上无效。

3.考试结束后,只交答题卡,试卷由考生带走。

一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若集合,集合,,则A ∪(C U B )=( )A .B .C .D .2.“”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知,,则( )A .B .C .D .4.已知函数,( )A .B .C .D .15.函数的定义域为( )A .B .C .D .6.为提高生产效率,某公司引进新的生产线投入生产,投入生产后,除去成本,每条生产线生产的产品可获得的利润(单位:万元)与生产线运转时间(单位:年)满足二次函{}1,2,3,4U ={}1,2A ={}2,3B ={}2{}1,3{}1,2,4{}1,2,302x <<13x -<<0a b >>d c <0ac bd >>ac bd >a c b d +>+0a cb d +>+>211,1()1,11x x f x x x ⎧--≤⎪=⎨>⎪+⎩((2))f f =15-151-()()01f x x =-2,3⎛⎫+∞ ⎪⎝⎭()2,11,3∞⎡⎫⋃+⎪⎢⎣⎭()2,11,3∞⎛⎫⋃+ ⎪⎝⎭2,3⎡⎫+∞⎪⎢⎣⎭s t数关系:,现在要使年平均利润最大,则每条生产线运行的时间t 为( )年.A .7B .8C .9D .107.已知函数,且,则实数的取值范围是( )A .B .C .D .8.德国著名数学家狄利克雷在数学领域成就显著,以其命名的函数f (x )={1, x ∈Q0, x ∈C R Q 被称为狄利克雷函数,其中为实数集,为有理数集,以下关于狄利克雷函数的四个结论中,正确的个数是( )个.①函数偶函数;②函数的值域是;③若且为有理数,则对任意的恒成立;④在图象上存在不同的三个点,,,使得∆ABC 为等边角形. A .1B .2C .3D .4二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的有( )A .命题“,”的否定是“,”B .若,则C .命题“,”是假命题D .函数是偶函数,且在上单调递减.10.下列选项中正确的有( )A .已知函数是一次函数,满足,则的解析式可能为B .与表示同一函数C .函数的值域为224098s t t =-+-()()4f x x x =+()()2230f a f a +-<a ()3,0-()3,1-()1,1-()1,3-R Q ()f x ()f x ()f x {}0,10T ≠T ()()f x T f x +=x R ∈()f x A B C 1x ∀>20x x ->1x ∃≤20x x -≤a b >22ac bc ≥Z x ∀∈20x >21y x =()0,∞+()f x ()()98f f x x =+()f x ()34f x x =--||()x f x x =1,0()1,0x g x x >⎧=⎨-≤⎩()2f x x =+(,4]-∞D .定义在上的函数满足,则11.下列命题中正确的是( )A .若,,,则B .已知,,,则的最小值是C .若,则的最小值为4D .若,,,则的最小值为三、填空题:本大题共 3 小题,每小题 5 分,共 15 分.12.已知集合,若,则实数13.已知函数,则的单调增区间为14.若定义在上的函数同时满足;①为奇函数;②对任意的,,且,都有.则称函数具有性质P .已知函数具有性质P ,则不等式的解集为 .四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15.已知集合,.(1)当时,求,,A ∩(C R B ); (2)若,求实数m 的取值范围.16.已知关于x 的不等式的解集为.(1)求m ,n 的值;(2)正实数a ,b 满足,求的最小值.R ()f x 2()()1f x f x x --=+()13x f x =+0a >0b >21a b +=ab 0a >0b >32a b +=12a b a b+++20ab >4441a b ab ++0a >0b >31132a b a b+=++2+a b 165{}21,2,1A a a a =---1A -∈a =()2f x x x x =-+()f x (,0)(0,)-∞+∞ ()f x ()f x 1x 2(0,)x ∈+∞12x x ≠x f x x f x x x -<-211212()()0()f x ()f x 2(4)(2)2f x f x x --<+{}27|A x x =-<<{}|121B x m x m =+≤≤-4m =A B ⋂A B A B B = 2200x mx --<{}2|x x n -<<2na mb +=115a b+17.已知幂函数为偶函数.(1)求的解析式; (2)若在上是单调函数,求实数的取值范围.18.已知函数.(1)证明:函数是奇函数;(2)用定义证明:函数在上是增函数;(3)若关于的不等式对于任意实数恒成立,求实数的取值范围.19.已知函数(1)证明:,并求函数的值域;(2)已知为非零实数,记函数的最大值为.①求;②求满足的所有实数.()()2157m f x m m x -=-+()f x ()()3g x f x ax =--[]1,3a ()31x f x x x =++()f x ()f x ()0,∞+x ()()2310f ax ax f ax ++-≥x a ()()f x g x ==()()222f x g x =+()f x a ()()()x x h f g x a =-()m a ()m a ()1m a m a ⎛⎫= ⎪⎝⎭a。

2023~2024学年第一学期高一期中考试数学试题[含答案]

2023~2024学年第一学期高一期中考试数学试题[含答案]


上单调递增,
f x f 1 1
min
,C 正确;
D
选项,令
2x2
3x
0
,解得
x
3 2

0(舍去),
f x

的图象与 x 轴只有 1 个交点,D 错误.
故选:ABC
11.
已知关于 x 的不等式
ax²
2bx
3c
0
x
的解集为
|
3
x
1 ,则下列结论正确的是(
A. 充要条件
B. 充分不必要条件
C. 必要不充分条件
D. 既不充分又不必要条件
【答案】C
【解析】
【分析】利用充分、必要条件的定义即可判断.
【详解】由 a b 得不到 ac2 bc2 ,如 c 0 ,故充分性不成立,
反之,由 ac2 bc2 可以得到 a b ,故必要性成立,
则“ a b ”是“ ac2 bc2 ”的必要不充分条件.
若 m 2 ,则 f (x) x2 ,函数 f (x) 在 (0, ) 上为增函数,不符合题意,舍去;
若m
1 ,则
f
(x)
1 x
,函数
f
(x) 在 (0, ) 上为减函数,符合题意;
所以实数 m 的值是 1.
故选:B.
4. 已知 a, b, c 是实数,则“ a b ”是“ ac2 bc2 ”的( )

2
x
5
0
【答案】C
【解析】
【分析】“存在一个符合”的否定为“任一个都不符合”
【详解】命题
p: x R
3x2
,使得
2
x
5
0

高一数学期中考试题及答案

高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,不是一次函数的是()A. y = 2x + 1B. y = 3x^2 + 5C. y = 1/xD. y = -4x2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∪B等于()A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}3. 若sinα=0.6,则cosα的值是()A. 0.8B. -0.8C. -0.4D. 0.44. 函数f(x) = |x - 2| + |x + 3|的最小值是()A. 5B. 2C. 1D. 45. 不等式x^2 - 4x + 3 ≤ 0的解集是()A. (1, 3)B. (-∞, 3]C. [1, 3]D. (-∞, 1] ∪ [3, +∞)6. 已知数列1, 3, 5, 7, ...,其第n项an等于()A. 2n - 1B. 2n + 1C. 2nD. n + 17. 若a + b + c = 0,则a^2 + b^2 + c^2 =()A. 0B. 2abC. 2bcD. 2ac8. 函数y = x^3 - 6x^2 + 12x - 4的极大值点是()A. x = 1B. x = 2C. x = 3D. x = 49. 已知tanθ = 2,求sin^2θ + cos^2θ的值是()A. 1B. 5C. 3D. 410. 下列哪个选项是二元一次方程()A. x^2 + y = 7B. 3x + 2y = 10C. x^2 - y = 0D. 2x/3 + y/4 = 1二、填空题(每题4分,共20分)11. 等差数列的首项是5,公差是3,则其第10项是_________。

12. 若函数f(x) = x^2 - 2x在区间[1, 4]上是增函数,则f(1) = ________。

13. 已知三角形ABC中,∠A = 90°,a = 3,b = 4,则c=_________。

高一数学期中考试参考答案

高一数学期中考试参考答案

2019-2020学年度上学期期中考试高一年级数学参考答案一.选择题:1.A2.A3.B4.D5.C6.D7.D 8.D 9.A 10.B 11.D 12.B二.填空题:13. (1,1)(1,)-⋃+∞ 14. (,3)(1,)-∞-⋃+∞15. ①③ 16. 17(2,]4 三.解答题17. 解:(1)原式= 231(212+++-=(2)原式=242lg5lg 2(2lg 2)(lg 2)++-+42lg52lg 26=++=18.解:(1)根据题意,当m =2时,A ={x|1≤x ≤7},B ={x|−2<x <4}, 则A ∪B ={x|−2<x ≤7},又∁R A ={x|x <1或x >7},则(∁R A)∩B ={x|−2<x <1};(2)根据题意,若A B B ⋃=,则A ⊆B ,分2种情况讨论:①当A =⌀时,有m −1>2m +3,解可得m <−4,②当A ≠⌀时,若有A ⊆B ,必有{m −1≤2m +3m −1>−22m +3<4,解可得−1<m <12,综上可得:m 的取值范围是:(−∞,−4)∪(−1,12).19.解:(1)由题意可知f(x)定义域在R 上的奇函数可得f(0)=0,f(2)=65即: {f(0)=a+b+12=0f(2)=4a+b+15=65,解得:{a =2b =−3 即实数a =2、b =−3 临川一中 临川一中实验学校(2)由(1)f(x)=2⋅2x −22x +1=2−42x +1函数f(x)在R 上为增函数,证明:在R 上任x 1,x 2,且x 1<x 2,则f(x 1)−f(x 2)=2−42x 1+1−(2−42x 2+1)=4(2x 1−2x 2)(2x 1+1)(2x 2+1) ∵x 1<x 2,∴0<2x 1<2x 2,∴4(2x 1−2x 2)(2x 1+1)(2x 2+1)<0 即f(x 1)−f(x 2)<0∴函数f(x)在R 上为增函数.(3)不等式:1(1)(22)222[log][log ]0x x f f ---+≥ 等价转化为:1(1)(22)222[log][log ]x x f f --≥-- ∵f(x)定义域在R 上的奇函数 1(1)(22)222[log ][log ]x x f f --≥ 又∵函数f(x)是R 上的增函数, 由110222011222x x x x ⎧->⎪⎪->⎨⎪⎪-≥-⎩解得: {x >1x <2x ≤65 ∴原不等式的解集为{x|1<x ≤65}. 20.解:(1)由题意知,当0≤x ≤8时,y =0.6x +0.2(14−x)−120x 2=−120x 2+25x +145 当8<x ≤14时,y =0.6x +0.2(14−x)−3x+810=110x +2, 即y ={−120x2+25x +145,0≤x ≤8110x +2,8<x ≤14 (2)当0≤x ≤8时,y =−120x 2+25x +145=−120(x −4)2+185, 所以 当x =4时,y max =185. 当8<x ≤14时,y =110x +2,所以当x =14时,y max =175因为 185>175,所以当x =4时,y max =185.答:当精加工蔬菜4吨时,总利润最大,最大利润为185万21.解:(1)因为函数f(x)=√x 在区间[0,1]上的值域为[0,1],所以f(x)=√x 是“优美函数”,此时a =0,b =1.(2)因为函数f(x)=√x +t 为递增函数,要使f(x)在定义域区间上存在[a,b],使得f(x)的值域[a,b],则只需√x +t =x 有两个不等的实根,由√x +t =x 得x 2−x −t =0在[0,+∞)有两个不等的实根,{Δ=1+4t >0x 1+x 2>0x 1x 2≥0 解得t ∈(−14,0].(3)由题意得{m −√a +3=b m −√b +3=a两式相减,得√b +3−√a +3=b −a ,可得√b +3+√a +3=1.①将①式代入方程组得{m −(1−√b +3)=b m −(1−√a +3)=a ∴a ,b 是方程m −1+√x +3=x 的两根. 令√x +3=t ∴t 2−t −m −2=0在[0,+∞)上有两个不同的实根. ∴m ∈(−94,−2]. 22. 解: (1)因为函数2()h x x bx c =++是偶函数,所以(2)420(2)420h b c h b c -=-+=⎧⎨=++=⎩,解得0,4b c ==-.故2()4h x x =-,244()x f x x x x -==-. 当[1,2]x ∈时,函数4y x=-和y x =都是单调递增函数, 故函数()f x 在[1,2]上单调递增,(1)143f =-=-,(2)220f =-=,所以当[1,2]x ∈时,函数()f x 的值域是[]30-,.(2)22216444()2()()2()8F x x a x x a x x x x x =+--=---+, 令4m x x=-,由(1)知[]30m ∈-,,则2()28F x m am =-+, 因为二次函数228y m am =-+开口向上,对称轴为x a =,故3a <-时,228y m am =-+在[]30-,上单调递增,最小值为617a +; 30a -≤≤时,228y m am =-+在[]3a -,上单调递减,在(],0a 上单调递增,最小值为28a -;0a >时,228y m am =-+在[]30-,上单调递减,最小值为8.故函数()F x 的最小值()()()()2617,38,308,0a a g a a a a ⎧+<-⎪=--≤≤⎨⎪>⎩. (3)当(3,0)a ∈-时,()28g a a =-, 则2()24g a a at >-++即22824a a at ->-++,整理得24a at +>, 因为(3,0)a ∈-,所以4t a a >+对于任意的(3,0)a ∈-恒成立, 令()4T a a a=+, 只需令t 大于()T a 在(3,0)-上的最大值即可.()T a 在()3,2--上单调递增;在()2,0-上单调递减;所以函数()T a 在(3,0)-上的最大值为()42242T -=--=-,故4t >-. 所以实数t 的取值范围是()4,-+∞.。

2023-2024学年度上学期高一数学期中考试[含答案]

2023-2024学年度上学期高一数学期中考试[含答案]

又 f (x) 是奇函数,所以 0 x 2 时, f (x) 0 , x 2 时, f (x) 0 ,且 f (0) f (2) 0 ,
不等式
xf
x
0
x
f
0
x
0

x
f
0 (x)
0

x
0
,所以 0
x
2 或 2
x
0

综上 2 x 2 .
故选:D.a 23 , b 45 , c 253 ,则
【解析】
【分析】根据交集含义即可得到答案.
A B 1, 0,1
【详解】根据交集含义即可得到

故选:B.
2. 命题: x R, x | x | 0 的否定为( )
A. x R, x | x | 0
B. x R, x | x | 0
C. x R, x | x | 0
D. x R, x | x | 0
【详解】因为
f
2x
1
x2
1 t
,令
2x
1,
x
t
1 2

f
(t)
t
1 2 2
1
,即
f
(x)
x 12 2
1

所以 f (3) 2 .
故选:B
6.
若定义在 R 的奇函数
f
x
,若
x
0

f
x
x 2
xf
,则满足
x 0 的 x 的取值范围是(

, 20, 2
A. 【答案】D 【解析】
, 2 2, , 20, 2
对于 C,
y∣y∣ x2 1, x R

高一数学期中考试题及答案

高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 已知集合A={1,2,3},B={2,3,4},求A∪B的值。

A. {1,2,3}B. {1,2,3,4}C. {2,3}D. {1,4}2. 函数f(x)=2x^2-3x+1在区间[-1,2]上的最大值是多少?A. 1B. 5C. 7D. 93. 已知等差数列的首项a1=3,公差d=2,求第10项的值。

A. 23B. 25C. 27D. 294. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π5. 已知直线y=-3x+5与x轴的交点坐标是什么?A. (0, 5)B. (1, 2)C. (5/3, 0)D. (0, 0)6. 已知sin(α)=3/5,α∈(0,π),求cos(α)的值。

A. 4/5B. -4/5C. √(1-(3/5)^2)D. -√(1-(3/5)^2)7. 一个函数f(x)是奇函数,且f(1)=2,求f(-1)的值。

A. 2B. -2C. 0D. 18. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 7C. 8D. 99. 已知一个函数f(x)=x^3-6x^2+11x-6,求f(2)的值。

A. -2B. 0C. 2D. 410. 已知一个等比数列的首项a1=2,公比q=3,求第5项的值。

A. 162B. 243C. 486D. 729二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求对称轴的方程。

___________________________12. 已知等比数列的前n项和为S_n=3^n-1,求首项a1。

___________________________13. 已知正弦定理公式为a/sinA=b/sinB=c/sinC,求三角形ABC的面积,已知a=5,sinA=3/5。

___________________________14. 已知某函数的导数f'(x)=6x^2-4x+1,求f'(1)的值。

高一数学期中考试题及答案

高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 函数f(x) = 2x^2 - 3x + 1在区间[0, 2]上的最大值是:A. 1B. 5C. 7D. 93. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B的元素个数。

A. 1B. 2C. 3D. 44. 若a > 0,b < 0,且|a| < |b|,则a + b的符号是:A. 正B. 负C. 零D. 不确定5. 下列哪个不等式是正确的?A. √2 < πB. e < 2.72C. √3 > √2D. log2(3) > log3(2)6. 已知等差数列的首项为a1 = 3,公差为d = 2,第5项a5的值是:A. 9B. 11C. 13D. 157. 函数y = x^3 - 6x^2 + 9x + 2的零点个数是:A. 0B. 1C. 2D. 38. 已知f(x) = x^2 - 4x + 4,求f(x)的最小值。

A. 0B. 4C. 8D. 169. 抛物线y = x^2 - 2x - 3与x轴的交点个数是:A. 0B. 1C. 2D. 310. 已知等比数列的首项为a1 = 2,公比为r = 3,求第4项a4的值。

A. 162B. 486C. 729D. 1458二、填空题(每题2分,共20分)11. 圆的一般方程为x^2 + y^2 + dx + ey + f = 0,其中d^2 + e^2 - 4f > 0时,表示______。

12. 若函数f(x) = 3x - 2在区间[1, 4]上是增函数,则f(1) =______。

13. 已知集合M = {x | x^2 - 5x + 6 = 0},则M的补集∁_R M = {x | ______ }。

14. 函数y = log_2(x)的定义域是{x | x > ______ }。

(完整版)高一数学期中考试试卷及答案,推荐文档

(完整版)高一数学期中考试试卷及答案,推荐文档

(4) x2 1 2x 的解可表示为1,1;
D.负数没有 n 次方根
⑶、⑸
考场:
************
准考证号:
姓名:
其中正确命题的个数为( ) A. 0 个 B. 1个 C. 2 个 D. 3 个
8. 若 n<m<0,则
-
等于( ).
3. 若集合 M a,b, c中的元素是△ ABC 的三边长,
—————————————————装——————————————订—————————————线——————————————————
************************************************************************************************************************************
⑶由 f (lg a) 100 知, alga1 100 .
所以, lg alga1 2 (或 lg a 1 loga 100 ).
∴ (lg a 1) lg a 2 .
∴ lg2 a lg a 2 0 , ∴ lg a 1 或 lg a 2 ,
……………………………………… 12 分
在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合
该学生走法的是( )
d
d
d
d
d0
d0
d0
d0
5. 下列函数中,在区间 0,1上是增函数的是( )
A. y x B. y 3 x
O
t0 t
O
t0 t
O
t0 t
O
t0 t
A.

高一数学期中考试题及答案

高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x - 3,则f(2)等于多少?A. 1B. -1C. 5D. 7答案:A2. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于?A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}答案:B3. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = x + 1答案:B4. 直线y = 2x + 1与x轴的交点坐标是?A. (0, 1)B. (-1/2, 0)C. (1/2, 0)D. (1, 0)答案:B5. 已知等差数列{an}的首项a1 = 2,公差d = 3,则a5等于多少?A. 14B. 17C. 20D. 23答案:A6. 若cosθ = 1/2,则θ的值是多少?A. π/3B. 2π/3C. π/6D. 5π/6答案:A7. 已知函数f(x) = x^2 - 4x + 4,求f(x)的最小值。

A. 0B. -4C. 4D. 8答案:A8. 抛物线y = x^2 - 6x + 9的顶点坐标是?A. (3, 0)B. (-3, 0)C. (3, 9)D. (-3, 9)答案:C9. 已知三角形ABC的三边长分别为a、b、c,且满足a^2 + b^2 =c^2,该三角形是?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B10. 函数y = √(x - 1)的定义域是?A. x ≥ 1B. x ≤ 1C. x > 1D. x < 1答案:A二、填空题(每题4分,共20分)11. 已知向量a = (3, -2),b = (1, 2),则a·b = _________。

答案:-412. 函数f(x) = x^2 - 6x + 8的对称轴方程为x = _________。

高一数学下学期期中考试及参考答案

高一数学下学期期中考试及参考答案

高一下学期期中考试高一数学考生注意:本卷共三道大题,满分100分,考试时间120分钟。

一.选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.sin 240的值是( )A. 21-B. 21C. 23-D. 23 2.下列函数中,最小正周期为2π的是( ) A.4sin y x = B.sin cos y x x = C.tan 2xy = D.cos 4y x = 3.半径为10cm ,弧长为20cm 的扇形的圆心角为( )A.︒2B.2弧度C.π2弧度D.10弧度 4.已知在平行四边形ABCD 中,若AC a =,BD b =,则AB =( )A.1()2a b →→-B.1()2b a →→-C. 12a b →→+D.1()2a b →→+5.已知向量=(3, 2),=(x, 4),若与共线,则x 的值为( ) A.6 B.-6 C.38-D.386.若(2,2)a =-,则与a 垂直的单位向量的坐标为( )A.cos 4ππ(,sin )4 B.2222(,-C.22(--)D.( 1, 1)或(-1,-1) 7.函数)sin(ϕω+=x A y ,(πϕω<>,0)在一个周期内的图象如右图所示,此函数的解析式为( ) A.)322sin(2π+=x y B.)32sin(2π+=x yC.)32sin(2π-=x y D.)32sin(2π-=x y8.设α是一个任意角,它的终边与单位圆交于点(,)P x y ,由此定义了正弦(sin α)、余弦(cos α)、正切(tan α),其实还有另外三个三角函数,分别是:余切(cot xyα=)、正割(1sec x α=)、余割(1csc y α=). 则下列关系式错误的是( )A.cos cot sin ααα=B.1sec cos αα=C.1csc sin αα= D.22cot csc 1αα-=二.填空题:本大题共7个小题,每小题3分,共21分,把答案填在答题卡中对应题号后的横线上。

高一数学期中考试题及答案

高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 - 4x + 3,那么f(2)的值为()A. 3B. 5C. 7D. 92. 已知集合A={1,2,3},B={2,3,4},则A∩B等于()A. {1}B. {2,3}C. {3,4}D. {1,2,3}3. 函数y=x^3-6x^2+9x+1的导数y'是()A. 3x^2-12x+9B. x^3-6x^2+9C. 3x^2-12xD. x^3-6x^2+9x4. 已知等差数列{an}的前三项分别为3,7,11,则其公差d为()A. 2B. 4C. 6D. 85. 圆的一般方程为x^2+y^2+Dx+Ey+F=0,当D^2+E^2-4F=0时,圆的半径为()A. 0B. 1C. D^2+E^2D. √(D^2+E^2)6. 函数y=x^2-6x+8的对称轴方程为()A. x=3B. x=-3C. x=6D. x=-67. 已知向量a=(3,-4),b=(2,1),则向量a与向量b的夹角θ的余弦值为()A. 1/√17B. -1/√17C. √17D. -√178. 函数y=|x|+1的值域为()A. (-∞, ∞)B. [1, ∞)C. (-∞, 1]D. [0, ∞)9. 已知等比数列{bn}的前三项分别为2,4,8,则其公比q为()A. 1B. 2C. 4D. 810. 函数y=√x的反函数为()A. y=x^2B. y=x^3C. y=x^(1/2)D. y=x^(-1/2)二、填空题(每题4分,共20分)1. 已知函数f(x) = 3x - 2,若f(a) = 7,则a的值为______。

2. 已知集合C={x|x^2-5x+6=0},则C的元素个数为______。

3. 函数y=x^3-3x^2-9x+1的极值点为______。

4. 已知等差数列{cn}的前三项分别为-2,-5,-8,则其通项公式为cn=______。

高一年级期中考试数学试题参考答案

高一年级期中考试数学试题参考答案

长沙市周南中学2012年下学期高一年级数学期中考试试题参 考 答 案一、选择题:DBCA ,CABD二、填空题:9.1-10.(2,0)11.12,33⎛⎤ ⎥⎝⎦ 12.lg(1)x -13.②④14.2276,1()2,1x x x h x x x ⎧-+-≥=⎨-<⎩,18 15.5三、解答题:16、解:……………………………………2分 (Ⅰ)当时,,……………………………………4分……6分(Ⅱ)当时,即,得,此时有;………7分 当时,由得:…………………………10分解得综上有实数的取值范围是……………………………12分 17.(12 (2)418. 解:(1)()()log (1)log (1)a a f x g x x x +=++- ,若要式子有意义,则{1010x x +>-> , 1分 即1x >.所以所求定义域为{}1x x >. 3分(2)设()()()F x f x g x =+,因为()()()F x f x g x =+的定义域为{}1x x >,所以()()()F x f x g x =+是非奇非偶函数。

5分(3)()(2)0f x g x ->,即 log (1)log (21)0a a x x +-->,log (1)log (21)a a x x +>-.当01a <<时,上述不等式等价于10210121x x x x +>⎧⎪->⎨+<-⎪⎩,解得2x >; 8分当1a >时,原不等式等价于10210121x x x x +>⎧⎪->⎨+>-⎪⎩,解得122x <<. 11分 综上所述, 当01a <<时,原不等式的解集为{2}x x >;当1a >时 , 原不等式的解集为1{2}2xx <<. 12分 19.解:⑴依题意, 产品升级后,每件的成本为431000x -元,利润为43200x +元…………1分, 年销售量为x21-万件……………………………2分, 纯利润为x xx x f --+=)21)(43200()(………………………………………5分, 44005.198x x --=(([40,60])x ∈)…………………………6分 ⑵设400(),[40,60]4x g x x x =+∈……7分, 证明()g x 的单调性…………10分,求出()g x 的最小值及x 取值…………12分即当40=x (万元)时,有最大值178.5万元……13分。

高一数学期中考试测试题(必修一含答案)(K12教育文档)

高一数学期中考试测试题(必修一含答案)(K12教育文档)

高一数学期中考试测试题(必修一含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学期中考试测试题(必修一含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学期中考试测试题(必修一含答案)(word版可编辑修改)的全部内容。

高一年级上学期期中考试数学试题一、选择题(本大题共12小题,每小题5分,共60分.给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5},集合A={1,2},B={2,3},则A ∩C U B A .{}45, B .{}23, C .{}1 D .{}2 2.下列表示错误的是(A )0∉Φ (B ){}12Φ⊆, (C ){}{}21035(,)3,4x y x y x y +=-== (D )若,A B ⊆则A B A⋂=3.下列四组函数,表示同一函数的是A .f (x)=2x ,g (x )=x B .f (x)=x ,g(x )=2x xC .2(),()2ln f x lnx g x x ==D .33()log (),()x a f x a a g x x =>0,α≠1= 4.设1232,2,log (1), 2.(){x x x x f x -<-≥=则f ( f (2) )的值为A .0B .1C .2D .3 5.当0<a <1时,在同一坐标系中,函数x y a -=与log a y x =的图象是6.令0.760.76,0.7,log 6a b c ===,则三个数a 、b 、c 的大小顺序是A .b <c <aB .b <a <cC .c <a <bD .c <b <a 7.函数2()ln f x x x=-的零点所在的大致区间是A .(1,2)B .(2,3)C .11,e ⎛⎫⎪⎝⎭和(3,4) D .(),e +∞8.若2log 31x =,则39x x +的值为A .6B .3C .52D .129.若函数y = f (x )的定义域为[]1,2,则(1)y f x =+的定义域为A .[]2,3B .[]0,1C .[]1,0-D .[]3,2-- 10.已知()f x 是偶函数,当x <0时,()(1)f x x x =+,则当x >0时,()f x = A .(1)x x - B .(1)x x -- C (1)x x + D .(1)x x -+11.设()()f x x R ∈为偶函数,且()f x 在[)0,+∞上是增函数,则(2)f -、()f π-、(3)f 的大小顺序是A .()(3)(2)f f f π->>-B .()(2)(3)f f f π->->C .()(2)f f f π-<(3)<-D .()(2)(3)f f f π-<-<12 已知函数f(x)的图象是连续不断的,x 与f(x )的对应关系见下表,则函数f (x )在区间[1,6]上的零点至少有(A ) 2(B ) 3 (C) 4(D) 5第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题4分,共16分。

高一数学下学期期中试题含解析 26

高一数学下学期期中试题含解析 26

第HY学2021-2021学年度下学期期中考试高一数学试卷考试说明:本套试卷分第I卷〔选择题〕和第II卷〔非选择题〕两局部,满分是150分,考试时间是是120分钟.〔1〕在答题之前,考生先将本人的姓名、准考证号码填写上清楚;〔2〕选择题必须使需要用2B铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整,字迹清楚;〔3〕请在各题目的答题区域内答题,超出答题区域书写之答案无效,在草稿纸、试题卷上答题无效;〔4〕保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第一卷〔选择题一共60分〕一.选择题:本大题一一共12个小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.的不等式的解集是,那么关于的不等式的解集是〔〕A. B. C. D.【答案】A【解析】【分析】由不等式的解集可知且;从而可解得的根,根据二次函数图象可得所求不等式的解集.【详解】由的解集为可知:且令,解得:,的解集为:此题正确选项:【点睛】此题考察一元二次不等式的求解问题,关键是可以通过一次不等式的解集确定方程的根和二次函数的开口方向.,那么以下不等式成立的是〔〕A. B. C. D.【答案】D【解析】【分析】通过特殊值可依次排除选项;根据不等式的性质可知正确.【详解】选项:当,时,,可知错误;选项:当时,,可知错误;选项:当,时,,可知错误;选项:,,由不等式性质可得:,可知正确.此题正确选项:【点睛】此题考察不等式的性质,可以通过特殊值的方式排除得到结果,也可以利用性质直接证得结论.3.,那么的大小关系是〔〕A. B. C. D.【答案】A【解析】【分析】通过作差得到,根据判别式和开口方向可知,从而得到结果.【详解】,即此题正确选项:【点睛】此题考察作差法判断大小问题,关键是通过作差得到二次函数,根据判别式和开口方向得到符号.中,,数列是等比数列,且,那么〔〕A. 4B. 8C. 16D. 64【答案】D【解析】【分析】根据等差数列性质可求得,再利用等比数列性质求得结果.【详解】由等差数列性质可得:又各项不为零,即由等比数列性质可得:此题正确选项:【点睛】此题考察等差数列、等比数列性质的应用,属于根底题.前项和为,假设,那么〔〕.A. B. C. D.【答案】B【解析】【分析】根据等比数列性质可得,,成等比数列;假设,利用等比数列定义可求得,从而可求得,进而得到结果.【详解】由等比数列前项和性质可知:,,成等比数列设,那么,即此题正确选项:【点睛】此题考察等比数列性质的应用,关键是明确数列仍然成等比数列,进而可通过等比数列定义推得结果.是由正数组成的等比数列,为其前项和.,那么 ( )A. B. C. D.【答案】C【解析】【分析】将条件化成等比数列根本量的形式,构成和的方程,解方程求得根本量;再利用等比数列求和公式求得结果.【详解】由等比数列性质可得:又是由正数组成的等比数列且,此题正确选项:【点睛】此题考察等比数列求和问题,关键是可以通过条件构成关于等比数列根本量的方程,求解得到首项和公比.的边长为,,那么A. B. C. D.【答案】D【解析】试题分析:由题意得,设,根据向量的平行四边形法那么和三角形法那么,可知,应选D.考点:向量的数量积的运算.中,内角所对应的边分别为,假设,且三边成等比数列,那么的值是〔〕A. B. C. 2 D. 4【答案】C【解析】试题分析:在中,由,利用正弦定理得,所以,得,由余弦定理得,又成等比数列,所以,所以,所以,应选C.考点:正弦定理与余弦定理的应用.满足:,假设数列是等比数列,那么的值是〔〕A. 1 B. C. D.【答案】B【解析】【分析】根据等比数列的定义,可知,根据式子恒成立,可知对应项系数一样,从而求得结果.【详解】数列为等比数列即:上式恒成立,可知:此题正确选项:【点睛】此题考察利用等比数列的定义求解参数问题,关键是可以通过对应项系数一样求解出结果.:,那么数列前项和为〔〕A. B. C. D.【答案】B【解析】【分析】归纳总结出数列的通项公式,从而得到;采用裂项相消的方式求得.【详解】由题意可知:此题正确选项:【点睛】此题考察裂项相消法求数列的前项和的问题,关键是可以通过归纳总结得到数列的通项公式.的夹角为,,,那么的最大值为〔〕A. B. C. D.【答案】C【解析】【分析】首先求解出;再通过平方运算可得,根据,可求得所求最大值.【详解】又此题正确选项:【点睛】此题考察向量模长最值的运算,解题关键是可以通过平方运算将问题转化为模长和夹角的运算问题,再根据夹角余弦值的范围得到所求模长的最值.,,且对于任意的都有,那么实数的取值范围是〔〕A. B. C. D.【答案】D【解析】【分析】根据等比数列求和公式可得:;由可知. 【详解】,那么:此题正确选项:【点睛】此题考察等比数列求和问题,关键是可以通过的通项公式得到为等比数列,从而利用等比数列求和公式求得结果.第II卷〔非选择题一共90分〕二.填空题〔本大题一一共4小题,每一小题5分.〕前项和为,且,那么_______【答案】.【解析】【分析】当时,求得结果,经历证满足此结果,从而可得.【详解】当时,当且时,综上所述:,此题正确结果:【点睛】此题考察数列通项公式的求解,关键是利用求得结果,一定要注意验证首项.,向量,且,那么__________.【答案】【解析】由题意可得:,,故:,据此可得:.中,,,那么_________________【答案】.【解析】【分析】通过变形可得;通过累加的方式求得.【详解】由题意得:那么,,,……左右两侧分别作和可得:又此题正确结果:【点睛】此题考察根据递推关系求解数列的通项公式,关键是根据递推关系的形式确定采用累加法来求解通项公式.各项均不为零,前n项和为,且,那么______【答案】.【解析】【分析】根据递推关系式可整理得:;由此可知数列的奇数项和偶数项分别成等差数列,通过等差数列求和公式分别求得结果,加和即可.【详解】由得:,且,即又数列的奇数项是以为首项,为公差的等差数列;偶数项是以为首项,为公差的等差数列此题正确结果:【点睛】此题考察数列求和的问题,关键是可以通过递推公式得到数列的特点,从而可采用分组求和的方式求得结果.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤.〕前项和为,等比数列前项和为,且满足〔1〕求数列及数列的通项公式;〔2〕假设,假设数列前项和为,求【答案】〔1〕;〔2〕.【解析】【分析】〔1〕将和化成和的形式,求解出根本量后得到;根据和求解出和,从而得到;〔2〕根据〔1〕得到,采用分组求和的方法分别求解等差和等比数列的和,加和得到结果.【详解】〔1〕由题意得:,即又,可知:,即,〔2〕由〔1〕得:【点睛】此题考察等差数列、等比数列通项公式的求解、分组求和法求数列的前项和的问题,属于根底题型.的不等式【答案】见解析.【解析】【分析】将不等式变为;根据二次项系数为零、开口方向、实根个数与大小分别讨论不同取值范围下的解集.【详解】①当时,②当时,③当时,④当时,⑤当时,【点睛】此题考察含参数不等式的求解问题,要通过二次项系数、开口方向、实根个数和大小确定参数不同取值下的解集.,等比数列,满足,且〔1〕求数列及数列的通项公式;〔2〕设,求数列的前项和为【答案】〔1〕;〔2〕.【解析】【分析】〔1〕将条件化为根本量的形式,分别求得公差和公比,从而根据等差、等比数列通项公式求得结果;〔2〕由〔1〕可得,从而可根据错位相减法求得.【详解】〔1〕由题意知:又〔2〕由〔1〕得:那么:上下两式作差得:即:整理可得:【点睛】此题考察等差数列、等比数列通项公式的求解,错位相减法求数列的前项和的问题,关键是通过得到通项公式后,根据通项公式为等差数列与等比数列乘积的形式,可确定采用错位相减法求和.中,角所对的边是,假设向量与一共线. 〔1〕求角的大小;〔2〕假设,求的取值范围【答案】〔1〕;〔2〕.【解析】【分析】〔1〕根据向量一共线得到边角关系式,利用正弦定理和两角和差公式可求得,进而得到;〔2〕根据正弦定理可得:,从而可化简为;根据锐角三角形求得的范围,进而求得三角函数的范围,即可得的范围.【详解】〔1〕与一共线由正弦定理得:又〔2〕由正弦定理得:那么,又为锐角三角形,【点睛】此题考察利用正弦定理化简边角关系式、边长范围的求解问题,涉及到向量一共线的知识和三角函数值域的求解,关键是可以将边长的范围通过正弦定理变为角度问题,通过三角函数的知识进展化简求值.中,角所对的边是,假设〔1〕求的值;〔2〕假设点为的中点,且,求的面积【答案】〔1〕;〔2〕2.【解析】【分析】〔1〕根据同角三角函数和三角形内角和关系可求得,根据正弦定理可得,从而求得结果;〔2〕将延长到,使得,从而可构成平行四边形;在中利用余弦定理构造关于的方程,利用〔1〕中关系可求解出;代入三角形面积公式求得结果. 【详解】〔1〕由题意得:由正弦定理得:〔2〕延长到,使得,如以下图所示:由向量运算可知:即四边形为平行四边形,又在中,由余弦定理可得:由〔1〕知:,解得:,【点睛】此题考察正弦定理、余弦定理解三角形、三角形面积公式的应用问题,关键是可以通过向量关系将三角形扩展到平行四边形,从而在扩展后所得三角形中利用余弦定理构造方程,从而求解出所需的边长.前项和为,满足(1)证明:数列是等差数列,并求;〔2〕设,求证:【答案】〔1〕由知,当时,,即,所以,对成立.又,所以是首项为1,公差为1的等差数列.所以,即.〔2〕因为,所以.【解析】〔1〕由可得,当时,,两式相减可是等差数列,结合等差数列的通项公式可求进而可求〔2〕由〔1〕可得,利用裂项相消法可求和,即可证明.试题分析:〔1〕〔2〕试题解析:〔1〕由知,当即所以而故数列是以1为首项,1为公差的等差数列,且〔2〕因为所以考点:数列递推式;等差关系确实定;数列的求和励志赠言经典语录精选句;挥动**,放飞梦想。

高一数学期中考试题及答案

高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2+2x+1,则f(-1)的值为()A. 0B. 1C. 2D. 3答案:B2. 已知集合A={1,2,3},B={2,3,4},则A∩B为()A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B3. 若a>0,b>0,则下列不等式中一定成立的是()A. a+b>0B. ab>0C. a-b>0D. a/b>0答案:B4. 函数y=x^3-3x^2+2在区间(1,2)上是()A. 增函数B. 减函数C. 先增后减D. 先减后增答案:D5. 已知等比数列{an}的首项a1=1,公比q=2,则a5的值为()B. 32C. 64D. 128答案:C6. 已知向量a=(3,-2),b=(2,1),则a·b的值为()A. 4B. -2C. 2D. -4答案:B7. 已知双曲线x^2/a^2-y^2/b^2=1的离心率为e=√5,则b/a的值为()A. √5/2B. 2/√5D. 2答案:B8. 已知直线l:y=2x+3与直线m:y=-x+1平行,则l与m的斜率之比为()A. 1B. -1C. 2D. -2答案:A9. 已知圆C:(x-2)^2+(y-3)^2=9,圆心为C(2,3),半径r=3,则圆C与x轴的交点个数为()A. 0B. 1C. 2答案:C10. 已知函数f(x)=x^2-4x+3,若f(a)=0,则a的值为()A. 1B. 3C. 1或3D. 无解答案:C二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x^2+2,求导数f'(x)=________。

答案:3x^2-6x12. 已知等差数列{an}的首项a1=2,公差d=3,则a5的值为________。

答案:1713. 已知向量a=(1,2),b=(3,-1),则|a+b|的值为________。

高一数学期中考试题及答案

高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = x + 12. 若函数f(x) = 2x + 3,则f(-1)的值为:A. 1B. -1C. -5D. 53. 等差数列{an}的首项a1=3,公差d=2,则a5的值为:A. 11B. 13C. 15D. 174. 圆的方程为(x-2)^2 + (y-3)^2 = 9,则圆心坐标为:A. (2, 3)B. (-2, -3)C. (0, 0)D. (3, 2)5. 函数y = 3x - 2与x轴的交点坐标为:A. (2/3, 0)B. (0, 2/3)C. (2/3, 2/3)D. (0, 0)6. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B为:A. {1, 2, 3}B. {2, 3}C. {1, 2, 4}D. {1, 3, 4}7. 函数y = sin(x)的周期为:A. 2πB. πC. 1D. 08. 抛物线y = x^2 - 4x + 3的顶点坐标为:A. (2, -1)B. (2, 1)C. (-2, -1)D. (-2, 1)9. 已知等比数列{bn}的首项b1=2,公比q=3,则b3的值为:A. 18B. 24C. 54D. 8110. 函数y = 1/x的图像关于:A. y轴对称B. x轴对称C. 原点对称D. 直线y=x对称二、填空题(每题4分,共20分)1. 已知等差数列的前n项和为S_n,若S_5=50,则a3的值为______。

2. 函数f(x) = x^2 - 6x + 9的最小值为______。

3. 若直线y = 2x + 1与直线y = -x + 3平行,则它们的斜率k的值为______。

4. 圆的方程(x-1)^2 + (y+2)^2 = 25的半径为______。

5. 已知集合M={x | x^2 - 5x + 6 = 0},则M中元素的个数为______。

高一数学期中试题及答案

高一数学期中试题及答案

高一数学期中试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=2x-3,g(x)=x^2-2x+1,则f[g(x)]的值为()A. 2x^2-7x+4B. 2x^2-5x+2C. 2x^2-5x+1D. 2x^2-7x+22. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B 为()A. {1, 2}B. {2, 3}C. {1, 3}D. {2}3. 函数y=x^3-3x的导数为()A. 3x^2-3B. 3x^2+3C. x^3-3D. x^2-3x4. 已知向量a=(2, -1),b=(1, 3),则向量a与向量b的数量积为()A. 1B. -1C. 5D. -55. 已知函数f(x)=x^2-4x+3,求f(1)的值为()A. 0B. 1C. 2D. 36. 已知等比数列{an}的首项a1=2,公比q=2,则a5的值为()A. 16B. 32C. 64D. 1287. 已知双曲线方程为x^2/a^2-y^2/b^2=1,其中a=2,b=1,则该双曲线的渐近线方程为()A. y=±xB. y=±2xC. y=±1/2xD. y=±1/2x8. 已知直线方程为y=2x+1,求该直线与x轴的交点坐标为()A. (-1/2, 0)B. (0, 1)C. (1/2, 0)D. (-1, 0)9. 已知抛物线方程为y=x^2-4x+3,求该抛物线的顶点坐标为()A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)10. 已知函数f(x)=x^3-3x^2+2,求f'(1)的值为()A. 0B. 1C. -1D. -2二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求f(2)的值为______。

12. 已知等差数列{an}的首项a1=3,公差d=2,则a5的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学试题 注意事项:1. 请将本试卷答案填写在答题卡相应位置上. 2. 考试时间120分钟,试卷总分120分.
一、填空题:本大题共14小题,每小题4分,共56分。

把答案填在答题卡指定位置上。

1. 已知集合A={1,2,3},B={1,X},若AUB=A,则实数x 的值为__________
2. sin 6
7π的值为__________ 3. 已知||−→−a ,||−→−b =6,−→−a ,−→−b 的夹角为60°,则−→−a .(−→−a +−→−b
)=__________
4. 已知tan (βα+)=52,tan (4-πβ)=41,则tan (4
+πα)的值是__________ 5. 函数y=cos 2x -cosx 的值域是_____
6. 已知函数f (x )=Asin (ϕω+x )(x ∈R )(其中A>0,2<
<0,0>πϕω)的图像与x 轴的相邻两个交点之间的距离为
2π,且图象上一个最高点为(6π,3),则该函数的解析式为f(x)=_____
7. 把函数f (x )=sin2x 的图象向右平移
6π个单位,得到函数y =g (x )的图象,则函数 y =g (x )的单调递减区间是_____
8. 《九章算术)是我国古代数学成就的出代表作,其中(方田)章给
出计算弧田面积所用的经验公式为:弧田面积=2
1(弦x 矢+矢2), 弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对
弦长“矢”等于半径长与圆心到弦的距离之差,现有圆心角为π3
2,半
径等于4米的弧
田,按照上述经验公式计算所得弧田面积是_____
C
9. 函数(x )=x 2-4x (-1≤x ≤a )的值域为[-4,5],则实数a 的取值范围为_____
10. a =3
2323123,35,32⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫
⎝⎛--c b .则a ,b,c 的大小关系用“<”连接是_____ 11.已知函数y =f (x )为偶函数,且y =f (x )在(0,∞+)上单调递增,f (-1)=0,f(0)=-1, 则f (x -1)>0的解集为_____
12.下列命题中正确的序号是_____
①函数y =tanx 在第一象限是增函数;②函数y =cos2[2(4
π-x)]是偶函数; ③函数y =4sin (2x -3π)的一个对称中心是(6
π,0); ④函数y =sin (x +4π)在区间「2
2-ππ,]上是增函数。

13.如图,扇形AOB 的圆心角为
3
2π,半径为1.M ,N 分别是半径OB ,OA 的中点,点P P
是弧AB 上任意一点,则NP MP ⋅的取值范围是____________.
14.偶函数y =f (x )满足f (x +3)=f(3-x ),在x ∈]0,3[-时,f (x )=x -2. 若存在,,21x x …n x 满足<<≤210x x …<n x ,
且+-+-|)()(||)()(|3221x f x f x f x f …2019|)()(|1=-+-n n x f x f ,
则x 最小值为___________.
ニ、解答题:本大题共6小题,共64分.解答时应写出文字说明、证明过程成演算步骤.
15.(本小题满分10分)
函数f (x )=ln (x -3)的定义域为A ,集合B =}31|{+≤≤-a x a x ,其中a ∈R
(1)若a =2,求A ∩B;
(2)若AUB =A ,求实数a 的取值范围.
16.(本小题满分10分)
已知向量m =(cosa ,sina ),n =(-1,2)
(1)若m//n,求
a a a a cos sin cos 2sin +-的值;
(2)若|m -n|=2,a ∈⎪⎭
⎫ ⎝⎛ππ,2,求tana 的值。

17.(本小题满分10分)
在平面直角坐标系中,O 为坐标原点
(1)A 、B 、C 三点满足OC ⃗⃗⃗⃗⃗ =13OA ⃗⃗⃗⃗ +23OB ⃗⃗⃗⃗⃗ ,求证:A 、B 、C 三点共线; (2)已知A (sinx ,cosx ),B (cosx ,Cosx ),函数f (x )=OA ⃗⃗⃗⃗⃗ (OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ),求使不等式f(x)
≥32 成立的x 的取值范围
18.(本小题满分10分)
(1)求cos15°的值并写出“两角差的余弦公式”(角用α,β,α - β 表示)
(2)证明“两角差的余弦公式”(备用图是单位圆,如果用到备用图请在答卷上作图)
X
(备用图)
19.(本小题满分分)
如图,学校图书馆前有一块矩形草坪,草坪长AB=80米,宽BC=40√3米,为了便于
师生体闲散步,打算在这块草坪内铺设三条小路,要求三条小路连成直角三角形,其中两条路的一端在草坪长的中点处(此处为所成直角三角形的直角顶点),另一端分别在草坪两条宽上,三条路铺设费用均为每米500元,铺设这三条小路至少需要经费多少元?
C
E
F
A O B
20.(本小题满分12分)
设函数∫(x)=a x-(k+1)a−x(a>0且a≠1)是定义域为R的奇函数
(1)若f(1)>0,求k的值并判断函数f(x)的单调性(要说明理由)
(2)在(1)的条件下若不等式f(sin29+cos2の)+f(1-m cosϴ)0对所有的ϴ∈)恒成立,求m的取值范围
(0,π
3
(3)若f(1)=2,g(x)=a2x+a−2x-2tf(x),且g(x)在[1,2]上的最小值为-2,求t的值。

相关文档
最新文档