3高层建筑荷载与地震作用
高层建筑结构设计荷载和地震作用
结构地震反应分析
结构地震反应分析是研究结构在地震作用下的反应,包括位移、速度、加速 度和内力等反应。通过结构地震反应分析,可以确定结构的动力特性、地震 作用效应以及结构薄弱环节。
抗震设计
抗震设计是根据结构地震反应分析和建筑物的使用要求,采取相应的抗震措 施,包括场地选择、地基处理、结构体系选择、构造措施等,以满足建筑物 在地震作用下的安全性和可靠性要求。
采用有限元分析法对结构进行离散化分析, 得到各种荷载作用下的应力、应变、位移等 响应,并进行组合计算。
03
地震作用分析
地震作用特点及影响因素
地震作用随震源深度的增加而减小; 地震作用随场地土质的承载能力增加而减小;
地震作用随震中距离的增加而减小; 地震作用随建筑物高度增加而增加。
地震烈度指标和地震动参数
04
高层建筑结构荷载和地震作用精细化设计
基于性能的设计理念和原则
基于性能的设计理念
强调结构设计的安全性、适用性和耐久性,以结构性能为核心,综合考虑结构安 全性、使用性能和耐久性等多方面因素。
基于性能的设计原则
采用合理、有效的设计方法和措施,提高结构性能指标,降低结构安全风险和经 济成本,实现结构设计的高效、经济和安全。
可变荷载
包括楼面活荷载、风荷载、雪荷 载等,其数值随时间变化且与结 构使用性能有关。
偶然荷载
包括地震作用、爆炸力、撞击力等 ,其数值巨大、作用时间短暂,具 有随机性和不可预测性。
结构荷载效应组合
承载能力极限状态
结构或构件达到最大承载能力或出现不适于继续承载的变形状态,需要进行承载 能力极限状态计算。
《高层建筑结构设计荷载和地震作 用》
高层建筑结构设计要求及荷载效应组合
结构的继续使用需要修复。
从抗震角度来看,出现超过设防烈度的地震是不可避 免的,结构应该具备足够的塑性变形能力。
但是结构过早地出现塑性变形也是十分不利的。结构 在小震、甚至风荷载作用下就出现塑性变形,必然导致裂 缝和变形过大,将影响到建筑物的正常使用。
② 短暂设计状况:适用于结构出现的临时情况,包括 结构施工和维修时的情况等;
③ 偶然设计状况:适用于结构出现的异常情况,包括结 构遭受火灾、爆炸、撞击时的情况等;
④ 地震设计状况:适用于结构遭受地震时的情况,在抗 震设防地区必须考虑地震设计状况。
1.1、持久设计状况和短暂设计状况下(无地震作用组合) 当荷载与荷载效应按线性关系考虑时,按下式:
结构顶点最大加速度
使用功能 住宅、公寓 办公、旅馆
alim (m / s盖竖向振动加速度限值
《高层规程》中规定楼盖结构的竖向振动频率不宜小于3Hz, 竖向振动加速度不应超过下表的限值。
2.4、稳定性与抗倾覆
结构整体稳定性是高层建筑设计的基本要求。研究表 明,高层建筑混凝土结构仅在竖向重力荷载作用下产生整 体丧失稳定的可能性很小。稳定性设计主要是控制在风荷 载或水平地震力作用下,重力荷载产生的二阶效应(P-Δ) 不致过大,以免引起结构的失稳、倒塌。
n—结构总层数。
2、高层建筑结构的稳定应符合下列规定
1)剪力墙、框架—剪力墙结构、筒体结构
n
EJd 1.4H 2 Gi i 1
2)框架结构:
n
Di 10 G j / hi j i
(i=1,2,…,n)
3、抗倾覆控制: ⑴、控制高宽比H/B; ⑵、控制基底零应力区面积,<15%总面积。
第3章高层建筑结构的荷载和地震作用(精)
第3章 高层建筑结构的荷载和地震作用[例题] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为m m 4030⨯,地下室采用筏形基础,埋置深度为12m ,如图3.2.4(a)、(b)所示。
已知基本风压为2045.0m kN w =,建筑场地位于大城市郊区。
已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。
为简化计算,将建筑物沿高度划分为六个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结构底部(一层)的剪力和筏形基础底面的弯矩。
解:(1)基本自振周期:根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期为: s n T 90.13805.005.01=⨯==222210m s kN 62.19.145.0T w ⋅=⨯=(2)风荷载体型系数:对于矩形平面,由附录1可求得80.01=s μ57040120030480L H 0304802s .....-=⎪⎭⎫ ⎝⎛⨯+-=⎪⎭⎫ ⎝⎛+-=μ (3)风振系数:由条件可知地面粗糙度类别为B 类,由表3.2.2可查得脉动增大系数502.1=ξ。
脉动影响系数ν根据H/B 和建筑总高度H 由表3.2.3确定,其中B 为迎风面的房屋宽度,由H/B=3.0可从表3.2.3经插值求得=ν0.478;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即H H i /z =ϕ,i H 为第i 层标高;H 为建筑总高度。
则由式(3.2.8)可求得风振系数为:HH 478050211H H 11iz i z ⋅⨯+=⋅+=+=μμξνμϕνξβ.. z z z(4)风荷载计算:风荷载作用下,按式(3.2.1)可得沿房屋高度分布的风荷载标准值为:()z z z z ....)z (q βμβμ6624=40×570+80×450=按上述公式可求得各区段中点处的风荷载标准值及各区段的合力见表3.2.4,如图3.2.4(c)所示。
高层建筑结构的荷载和地震作用
4、风振系数 z
1)风速特点: 风速的变化可分为两部分:一种是长周期的成分,其值一般在10min以上;另一种 是短周期成分,一般只有几秒左右。因此,为便于分析,通常把实际风分解为平均风 (稳定风)和脉动风两部分。稳定风周期长,对结构影响小;脉动风周期短,对结构 影响大。
2)风的动力效应:对于高度较大、刚度较小的高层建筑,脉动风压会产生不可
2)定义:风荷载体型系数是指风作用在建筑物表面所引起的压力(吸力)与原 始风速算得的理论风压的比值。
3)特点:风荷载体型系数一般都是通过实测或风洞模拟试验的方法确定,它 表示建筑物表面在稳定风压作用下的静态压力分布规律,主要与建筑物的体型与尺 度有关。
3.2 风荷载
+0.8 -(0.48+0.03H/L)
0.8+1.2/n1/2
3)计算:在计算风荷载对建筑物的整体作用时,只需按各个表面的平 均风压计算,即采用各个表面的平均风荷载体型系数计算。
4)风荷载体型系数的确定:根据设计经验和风洞试验 (1)单体风压体型系数
例:
-0.6
当表面粗糙时取μs = 0.8
-0.6
3.2 风荷载
(2)群体风压体型系数 对建筑群,尤其是高层建筑群,当房屋相互间距较近时,由于漩涡
第3章 高层建筑结构的荷载和地震作用
高层建筑结构主要承受竖向荷载和水平荷载。
1)竖向荷载
恒荷载 活荷载
2)水平荷载
风荷载 地震作用
与多层建筑结构有所不同,高层建筑结构—— 1)竖向荷载效应远大于多层建筑结构; 2)水平荷载的影响显著增加,成为其设计的主要因素; 3)对高层建筑结构尚应考虑竖向地震的作用。
3.1 竖向荷载
3.1 恒荷载
高层建筑设计理论第3章
2、风压高度变化系数 μ Z 风速大小不仅与高度有关,一般越靠近地面风速越小,
愈向上风速越大,而且风速的变化与地貌及周围环境有直 接关系。
风压高度变化系数
表 3-7 风压高度变化系数 z
风压的高度变化
单位面积风荷载标准值
(1)当计算主要承重结构时
wk z s z w0
式中 wk ——风荷载标准值(kN/m2); w0 ——基本风压(kபைடு நூலகம்/m2);
s ——风压高度变化系数; z ——风荷载体型系数; z ——z 高度处的风振系数。
(2)当计算围护结构时
wk gz s z w0
式中 gz ——高度 z 处的阵风系数。
基本风压
作用在建筑物上的风压力与风速有关,可表示为:
0
1 2
2
式中 0 ——用于建筑物表面的风压(N/m2); ——空气的密度,取 =1.25k9/m3; ——平均风速(m/s)。
全国l0年、50年和l00年一遇的风压标准值可由《建筑结 构荷载规范》(GB50009--2012)附表中查得。
屋面活荷载
屋面活荷载一般可按下述方法进行取值: 1.房屋建筑的屋面,其水平投影面上的屋面均布活荷载的标准值 及其组合值系数、频遇值系数和准永久值系数的取值,不应小于 表3-3的规定。 2.屋面直升机停机坪荷载应按局部荷载考虑,或根据局部荷载换 算为等效均布荷载考虑,其等效均布荷载不应低于5.0kN/m2。
2.风力受建筑物周围环境影响较大,处于高层建筑群中的高层建筑,有时会 出现受力更为不利的情况。例如,由于不对称遮挡而使风力偏心产生扭转;相邻 建筑物之间的狭缝风力增大,使建筑物产生扭转等等。在这些情况下要适当加大 安全度。
高层建筑结构设计荷载和地震作用
为了提高高层建筑的抗震性能,可以采取多重抗震措施, 如设置抗震隔离层、采用隔震支座、安装消能器等。
抗震加固
对于已经建成的老旧高层建筑,如果其抗震性能不足,需 要进行抗震加固。常用的抗震加固方法包括增大截面法、 粘贴钢板法、碳纤维加固法等。
04
结构设计实例
上海中心大厦结构设计
建筑高度
上海中心大厦高度达 632米,是中国第一高
结构反应
02
结构反应是指高层建筑在地震作用下的变形和内力分布情况。
结构抗震性能评估
03
通过对结构反应的分析,评估高层建筑的抗震性能,确定是否
需要进行抗震加固或采取其他措施。
抗震设计方法
基于性能的抗震设计
基于性能的抗震设计是一种以结构性能目标为导向的抗震 设计方法,通过对不同性能目标下的结构反应进行分析和 评估,选择最优的抗震设计方案。
高层建筑未来发展方向
超高层建筑
随着技术的不断进步,未来高层建筑的高度将不断增加,超高层建筑将成为一种新的发展 趋势。
绿色化建筑
未来高层建筑将更加注重绿色环保,采用更多的可再生能源和环保材料,降低能耗和环境 影响。
智能化建筑
未来高层建筑将更加注重智能化设计和管理,利用先进的计算机技术和物联网技术,提高 建筑的智能化水平和运营效率。
结构设计的优化建议
精细化设计
高层建筑的结构设计需要更加精细化,考虑更多的因素,如风荷载 、地震作用、材料性能等,以确保结构的安全性和稳定性。
智能化设计
利用计算机技术和数值模拟方法,进行高层建筑的结构设计和优化 ,提高设计效率和准确性。
创新性设计
鼓励采用新的结构形式和材料,以及新的施工方法和技术,提高高层 建筑的结构性能和经济效益。
高层建筑结构设计水平地震作用
水平荷载与结构计算简化原则
第二节 地震作用
一、特点
地震时,地震波产生地面运动,通过房屋基础使上部结构产生振动, 这就是地震作用。地震作用使结构产生的运动称为地震反应,包括位移、 速度、与加速度,加速度将使结构产生惯性力,过大的惯性力将会影响 结构的正常使用,甚至造成结构的破坏。 地震波使建筑房屋产生竖向振动和水平振动,一般对房屋的破坏主要 由水平振动造成。设计中主要考虑水平地震作用,只有震中附近的高烈 度区域才考虑竖向地震作用。 地震动三要素: 1、强度:反应地震波的幅值,烈度大,强度大。 2、频谱:反应地震波的波形,1962年墨西哥地震时,墨西哥市a=0.05g, 但由于地震卓越周期与结构接近,从而破坏严重。 3、持时:反应地震波的持续时间,短则对结构影响不大。
动速度和位移可能对结构的破坏具有更大影响,但振型反应谱法或底部剪力尚无 法对此作出估计。出于结构安全的考虑,《高层规程》规定了结构各楼层水平地 震剪力最小值的要求,给出了不同烈度下的楼层地震剪力系数(即剪重比),结 构的水平地震作用效应应据此进行相应的调整。 水平地震作用计算时,结构各楼层对应于地震作用标准值的剪力应符合下式要 求:
1、计算范围: 水平地震作用:
• 6度区 (除甲类建筑和IV类场地上的较高房屋
外)可不算 • 7-9度区 (除可不进行上部结构抗震验算的房 屋外)均算
竖向地震作用:
•8、9度大跨度结构和长悬臂结构 •9度的高层建筑
2、水平地震作用的计算原则: – 一般正交布置抗侧力构件的结构,可沿纵横主轴方向分别计算 – 斜交布置抗侧力构件的结构,宜按平行于抗侧力构件方向计算 – 质量和刚度明显不均匀、不对称的结构,应考虑水平地震作用的 扭转影响
5、动力时程分析法
第3章 高层建筑荷载及其效应组合
根据假定(1),可分别考虑纵向平面结构 和横向平面结构的受力情况,即在横向水 平分力的作用下,只考虑横向框架(横向 剪力墙)而忽略纵向框架(纵向剪力墙)的 作用,而在纵向水平力作用下,只考虑纵 向框架(纵向剪力墙)而忽略横向框架(横 向剪力墙)的作用。这样可使计算大为简 化。
3.2 竖向荷载
竖向荷载包括恒载、楼面及屋面活荷载、 雪荷载。恒载由构件及装修材料的尺寸和材 料重量计算得出,材料自重可查《建筑结构 荷载规范》(GB 50009-2001)(以下简称《荷 载规范》)。楼面上的活荷载可按《荷载规 范》采用,常用民用建筑楼面均布活荷载见 表3-1。
震中距的影响 建筑物本身的动力特性对建筑破坏程 度有很大的影响 建筑物的动力特性:主要指建筑物的 自振周期、振型和阻尼。
自振周期:结构按某一振型完成一次自由振动所需
要的时间 阻尼:使自由振动衰减的各种摩擦和其他阻碍作用
地震的几个名词
地震震级 地震能量的量度。 地震烈度 对地面及建筑物的破坏程度。
3.在遭受高于本地区设防烈度的预估 罕遇地震的影响时,建筑物不致倒塌 或发生危及生命的严重破坏。(此时 建筑物将产生严重破坏但不至于倒塌, 大震)
恒载的计算内容: 1、结构构件(梁、板、柱、墙、支撑) 的重量 2、非结构构件(粉灰、饰面材料、填 充墙、吊顶等)的重量 这些重量的大小不随时间而改变,又 称为永久荷载。 恒载标准值等于构件的体积乘以材料 的容重。
常用材料的容重为:
钢筋混凝土 25kN/m3; 钢材 78.5kN/m3 水泥砂浆 20kN/m3; 混合砂浆 17kN/m3 铝型材 28kN/m3; 玻璃 25.6kN/m3
水平荷载作用方向图
3.1.2 平面化假定 荷载作用下的房屋结构都是空间受力体系, 对框架结构、剪力墙结构及框架-剪力墙结构进行 计算时,可以把空间结构简化为平面结构,并作 以下两个假定。 (1) 每榀框架或剪力墙可以抵抗自身平面内的侧 力,平面外刚度很小,可忽略不计。即不考虑框 架(剪力墙)参与抵抗平面外的水平作用,当作只 抵抗自身平面内水平作用的平面结构。 (2) 楼盖结构在自身平面内刚度无限大,平面外 刚度很小,可忽略不计。
第3,4章 高层建筑荷载
建筑物的抗震设防类别
建筑应根据其使用功能的重要性分为甲类、乙 类、丙类和丁类四个抗震设防类别。 甲类建筑应属于重大建筑工程和地震时可能发 生严重次生灾害的建筑, 乙类建筑应属于地震时使用功能不能中断或需 尽快恢复的建筑, 丙类建筑应属于除甲、乙、丁类以外的一般建 筑, 丁类建筑应属于抗震次要建筑。
局部风荷载:用于计算局部构件或围护构件或
维护构件与主体的连接。 对于檐口、雨蓬、遮阳板、阳台等突出构件的 上浮力,取μs>=-2.0。 对封闭式建筑,按外表面风压的正、负情况取2.0或+2.0。
3.1.3风洞试验
(JGJ3-2002)规定:有下列情况之一的建筑物, 宜按风洞试验确定风荷载。 1 高度大于200m 2高度大于150m,且平面性状不规则、立面形 状复杂,或立面开洞、连体建筑等 3 规范或规程中没有给出风载体形系数的建筑 物 4 周围地形和环境复杂的建筑物
3.2.3抗震计算理论
计算地震作用的方法可分为静力法、反应谱方法 (拟静力法)和时程分析法(直接动力法)。
反应谱理论
反应谱:单质点弹性体系在一定的地面 运动作用下,其最大反应(加速度、速 度和位移反应)与体系自振周期之间的 变化曲线(谱曲线)。
• 直接动力理论
用地震波(加速度时程)作为地面运动输入,直接计算 并输出结构随时间而变化的地震反应。 • 地震波的选取: 采用弹塑性动力分析方法进行薄弱层验算时,宜符合以下 要求:
第3章 高层建筑荷载
教学提示:本章主要介绍了高层建筑风荷载
的计算;抗震设防的准则和基本设计方 法,水平地震作用的计算方法(主要是 反应谱法)与竖向地震作用的计算方法。 教学要求:熟练掌握风荷载的计算方法,以 及用反应谱方法计算水平地震作用的方 法,理解抗震设防的准则和基本设计方 法,理解反应谱理论。
高层建筑结构设计要求和荷载效应组合
高层建筑结构设计要求和荷载效应组合高层建筑的结构设计是十分重要的,因为它需要承受巨大的荷载效应,包括自重、风荷载、地震荷载等。
设计师在进行高层建筑结构设计时应考虑以下几个方面的要求和荷载效应组合:1.强度要求:高层建筑需要承受大量的荷载,因此在结构设计中必须满足强度要求。
这包括材料的强度要求,如钢筋混凝土的抗拉、抗压强度等;以及构件的强度要求,如梁、柱、墙等结构构件的尺寸、截面形状、厚度等。
2. 稳定性要求:高层建筑结构设计中,不仅需要考虑结构的强度,还需要考虑结构的稳定性。
稳定性要求包括纵向稳定性和横向稳定性。
纵向稳定性指建筑结构在垂直方向上的承载能力以及抗 overturning 能力;横向稳定性指建筑结构在水平方向上的抗侧倾和抗扭转能力。
3.刚度要求:高层建筑结构设计中,不仅需要考虑结构的强度和稳定性,还需要考虑结构的刚度,即结构的变形和振动。
高层建筑结构的刚度要求会影响到结构的稳定性、舒适度以及非结构性附件的设计和使用。
4.建筑荷载组合:高层建筑结构设计中,需要考虑不同荷载效应的组合。
荷载效应包括恒定荷载、活载、特殊荷载、风荷载、地震荷载等。
根据设计规范,这些荷载效应需要进行组合计算,确保结构在最不利的工况下的承载能力与安全性。
5.抗震设计:高层建筑结构设计中,地震荷载是一个重要的荷载效应。
地震设计要求结构在地震作用下,能够保持抗震安全性。
这包括结构的抗震设计参数、抗震性能要求、荷载效应的组合等。
需要注意的是,高层建筑结构设计不仅要满足上述要求,还需要考虑其他因素,如施工可行性、经济性、可维护性等。
因此,在进行高层建筑结构设计时,需要综合考虑各种因素,并遵守相应的设计规范和标准。
只有满足这些要求,才能确保高层建筑结构工程的安全性、可靠性和稳定性。
高层建筑受力分析
高层建筑受力分析高层建筑是现代城市发展的重要标志,然而,由于其高度和结构的复杂性,受力分析成为设计和施工的关键问题。
本文将对高层建筑的受力特点、受力分析方法以及常见的受力问题进行探讨。
一、高层建筑的受力特点高层建筑由于自身重量的影响,以及外界风力、地震力等因素的作用,存在着复杂的受力情况。
为了确保高层建筑的结构稳定和安全性,需要对其受力特点进行全面分析。
1. 自重受力:高层建筑的自重主要由建筑材料的重量构成,包括楼板、墙体、柱子等。
自重受力是高层建筑最基本也是最直接的受力形式。
2. 垂直荷载受力:除了自重外,高层建筑还需要承受来自人们活动、家具设备以及各种设施的垂直荷载。
在设计和施工过程中,需要对这些荷载进行准确合理的估计和计算。
3. 风荷载受力:高层建筑由于其外形特殊,容易受到风的作用,尤其是靠近沿海或者山区的高层建筑更容易受到强风的影响。
设计和施工过程中,需要预先估计风荷载并进行合理的受力分析。
4. 地震荷载受力:地震是高层建筑最大的威胁之一,特别是在地震多发地区。
鉴于地震的不确定性,设计者需要合理地预测地震的荷载,并采取相应的防护措施。
二、高层建筑的受力分析方法为了对高层建筑的受力情况进行准确的分析和计算,工程师们采用了各种分析方法,包括静力分析、弹性分析和有限元分析等。
1. 静力分析:静力分析是最常见的高层建筑受力分析方法之一。
通过假设结构和外界荷载静止不变,采用力学平衡原理对结构进行受力分析。
这种方法适用于受力简单、结构稳定的情况。
2. 弹性分析:弹性分析是一种更为精确的分析方法,通过考虑结构的变形和刚度的影响,在分析过程中考虑结构的弹性变形。
这种方法适用于受力复杂、结构刚度较大的情况。
3. 有限元分析:有限元分析是一种更加综合和精确的受力分析方法,可用于高层建筑的复杂受力情况。
通过将结构分割成有限个小单元,将结构的受力和变形问题转化为求解各个单元的受力和变形问题。
三、高层建筑的常见受力问题在高层建筑的设计和施工过程中,存在一些常见的受力问题,需要进行仔细的分析和解决。
高层建筑结构设计荷载和地震作用
要点三
温度变化的取值标准
根据现行国家规范和标准,结合结构 设计实际情况确定温度变化值。
土壤-结构相互作用
土壤-结构相互作用的概念
土壤-结构相互作用是指高层建筑结构与地基之间的相互作用,包括侧向力和垂直向下的 重力。
土壤-结构相互作用对高层建筑结构的影响
土壤-结构相互作用对高层建筑结构的影响主要体现在结构的稳定性、沉降和侧移等方面 ,可能影响结构的正常使用和耐久性。
土壤-结构相互作用的取值标准
根据高层建筑结构的类型、地质条件等因素,按照现行国家规范和标准确定土壤-结构相 互作用的数值。同时根据实际情况进行地基处理和加固措施,以保障高层建筑结构的稳定 性。
05
设计案例分析
某高层办公楼结构设计方案
01
结构形式
采用钢筋混凝土框架-核心筒结构形式,具有较高的承载力和侧向刚度Leabharlann 结构设计中的荷载组合和分布
荷载组合
根据结构设计需要,将不同荷载进行组合,以考虑其对结构 的影响。
荷载分布
分析不同荷载在结构中的分布情况,以确定结构设计的重点 和难点。
荷载对结构安全和使用寿命的影响
结构安全性
荷载对结构安全性影响较大,过大的荷载可能导致结构失稳或破坏。
使用寿命
荷载对结构使用寿命有很大影响,过大的荷载可能缩短结构使用寿命。
目前对于高层建筑结构设计荷载和地震作用的研究数据仍不充足 ,需要加强实测数据的积累和整理。
研究方法的局限性
现有的研究方法主要基于理论分析和数值模拟,对于真实情况下 的高层建筑结构设计荷载和地震作用仍存在一定的误差。
未来研究的需求
需要加强高层建筑结构设计荷载和地震作用的多学科交叉研究,包 括结构工程、地震工程、地理信息科学等领域。
高层建筑的主要荷载
高层建筑的主要荷载一、引言高层建筑是城市中耸立的巨型建筑物,其承受的荷载是建筑结构设计中至关重要的因素。
主要荷载是指对建筑物施加压力或力量的因素,包括建筑自重、风荷载、地震荷载以及使用荷载等。
本文将深入探讨高层建筑的主要荷载及其对建筑结构的影响。
二、建筑自重建筑自重是指建筑物本身所承受的重力,主要由建筑材料的重量所决定。
高层建筑的自重较大,因此在设计阶段需要充分考虑建筑结构的承载能力,以确保安全稳固。
三、风荷载风荷载是指风对建筑物表面所产生的压力。
由于高层建筑面积大、高度高,容易受到风力的影响,因此风荷载在设计中必须予以充分考虑。
工程师通常使用风洞试验等方法来确定高层建筑所承受的风荷载,以保证建筑的结构稳定性。
四、地震荷载地震荷载是指地震对建筑物结构所产生的力量。
高层建筑作为城市中的重要标志性建筑,必须能够在地震发生时保持稳定。
因此,在设计高层建筑时,地震荷载是必须要考虑的主要荷载之一。
工程师会根据地震区域的状况,采用合适的抗震设计措施,确保建筑的抗震能力。
五、使用荷载使用荷载是指建筑物在使用过程中所承受的荷载,如人员活动、设备设施等。
高层建筑由于人员密集、设备众多,使用荷载较大。
在设计中,需要充分考虑建筑物的使用功能,合理安排荷载分布,以确保建筑结构的安全性。
六、其他荷载除了以上主要荷载外,高层建筑还可能承受其他荷载,如温度荷载、雪荷载、震荡荷载等。
这些荷载的大小和影响因素需要根据具体情况进行综合考虑,并在设计中予以合理处理。
七、荷载对建筑结构的影响主要荷载对高层建筑的结构稳定性和安全性起着至关重要的作用。
合理的荷载设计可以确保建筑物在长期使用过程中不发生变形、开裂或倒塌等事故。
在设计过程中,工程师需要根据荷载的大小和性质,选择合适的建筑材料、结构形式和抗震措施,以确保建筑的结构安全可靠。
八、结论高层建筑的主要荷载是建筑结构设计中必须要考虑的关键因素。
建筑自重、风荷载、地震荷载和使用荷载等荷载对高层建筑的结构稳定性和安全性有着重要影响。
高层课后思考题答案
第1章绪论1.我国对高层建筑结构是如何定义的?答:我国规定:10层及10层以上或高度超过28m的住宅以及房屋高度大于24m的其他民用建筑为高层建筑。
2.高层建筑结构的受力及变形特点是什么?设计时应考虑哪些问题?答:特点:水平荷载对结构影响大,随高度的增加除轴力与高度成正比外,弯矩和位移呈指数曲线上升,并且动力荷载作用下,动力效应大,扭转效应大。
考虑:结构侧移,整体稳定性和抗倾覆问题,承载力问题。
3.从结构材料方面来分,高层建筑结构有哪些类型?各有何特点?答:相应的结构分类(以材料分类):砌体结构、钢结构、钢筋混凝土结构、钢-混凝土混合结构特点:(1)砌体结构具有取材容易、施工简便、造价低廉等优点,但其抗拉、抗弯、抗剪强度均较低,抗震性能较差。
(2)钢结构具有强度高,自重轻(有利于基础),延性好,变形能力大,有利于抗震,可以工厂预制,现场拼装,交叉作业但价格高,防火材料(增加造价),侧向刚度小。
(3)钢筋混凝土具有价格低,可浇筑成任何形状,不需要防火,刚度大。
但强度低,构件截面大占用空间大,自重大,不利于基础、抗震,延性不如钢结构。
(4)混合结构与钢构件比:用钢少,刚度大,防火、防锈;与混凝土构件比:重量轻,承载力大,抗震性能好。
第2章高层建筑结构体系与布置1. 高层结构体系大致有哪几类?各种结构体系优缺点和受力特点如何?答:高层结构体系类型:框架结构体系剪力墙结构体系框架—剪力墙结构体系筒中筒结构体系多筒体系巨型结构体系框架结构:受力变形特点:框架结构的侧移一般由两部分组成:1)水平力引起的楼层剪力,使梁、柱构件产生弯曲变形,形成框架结构的整体剪切变形Us;2)由水平力引起的倾覆力矩,使框架柱产生轴向变形(一侧柱拉伸,另一侧柱压缩)形成框架结构的整体弯曲变形Ub;3)当框架结构房屋的层数不多时,其侧移主要表现为整体剪切变形,整体弯曲变形的影响很小。
注:框架结构属于柔性结构,侧移主要表现为整体剪切变形。
高层建筑的荷载作用与作用效应组合
第4章高层建筑结构的计算分析和设计要求小结(1)高层建筑结构可采用线弹性分析方法、考虑塑性内力重分布的分析方法、非线性分析方法等进行分析,必要时也可采用模型试验分析方法。
目前,一般采用线弹性分析方法计算高层建筑结构的内力和位移,作为构件截面承载力计算和弹性变形验算的依据。
(2)高层建筑结构可选取平面或空间协同工作、空间杆系、空间杆-薄壁杆系、空间杆-墙板元及其他组合有限元等计算模型,一般情况下可假定楼盖在平面内的刚度为无限大,对于楼板开大洞或平面布置复杂的结构,可采用楼板分块平面内无限刚性或弹性楼板假定。
(3)高层建筑结构一般应考虑两种作用效应组合:无地震作用效应组合和有地震作用效应组合。
前者主要考虑恒荷载、楼面活荷载及风荷载的组合,后者考虑重力荷载代表值效应、水平地震作用效应、竖向地震作用效应及风荷载效应的组合。
(4)高层建筑结构应满足承载力、刚度和舒适度、稳定和抗倾覆以及延性等要求,其刚度通过使弹性层间位移小于规定的限值来保证;必要时,为了保证在强震下结构构件不产生严重破坏甚至房屋倒塌,应进行结构弹塑性位移的计算和验算。
刚重比是影响高层建筑结构整体稳定的主要因素,因此结构整体稳定验算表现为结构刚重比的验算;延性是结构抗震性能的一个重要指标,为方便设计,对不同的情况根据结构延性要求的严格程度,引入了抗震等级的概念,抗震设计时,应根据不同的抗震等级对结构和构件采取相应的计算和构造措施。
(5)概念设计是高层建筑结构抗震设计的重要内容,应从场地条件、结构体系和抗侧刚度的合理选择、结构的结构平面和竖向布置、延性和地震能量耗散、薄弱层、多道抗震设防、缝的处理等方面,掌握高层建筑结构抗震概念设计的有关内容。
(6)近年来,全国各地出现了很多的超限高层建筑工程,其抗震设计时,除遵守国家现有技术标准的要求外,还主要包括超限程度的控制和结构抗震概念设计、结构抗震计算分析和抗震构造措施、地基基础抗震设计以及必要时须进行结构抗震试验等内容。
高层结构设计第3章 高层建筑的荷载和地震作用
3、抗震设防目标
具体通过“三水准”的抗震设防要求和 “两阶段”的抗震设计方法实现。
三水准地震作用的标定
三水准:“小震”“中震”“大震” 地震影响 众值烈度(多遇地震)小震 基本烈度(设防烈度地震)中震 罕遇烈度(罕遇地震)大震 50年超越概率 63.2% 10% 2-3% 地震重现期 50年 475年 1642-2475年
:空气密度
2014-11-16
15
(2)风荷载体型系数 s 风对建筑表面的作用力并不等于基本风压值,而是随建筑物的 体型、尺度、表面位臵等而改变,其大小由实测或风洞试验确定 s =垂直于建筑表面的平均风作用力/基本风压值
2014-11-16
16
(2)风荷载体型系数 s 风对建筑表面的作用力并不等于基本风压值,而是随建筑物的 体型、尺度、表面位臵等而改变,其大小由实测或风洞试验确定 s =垂直于建筑表面的平均风作用力/基本风压值
吸力
2014-11-16
27
4、总风荷载
各个表面承受风力的合力,沿高度变化的分布荷载
Z Z 0 (1 B1 cos1 Zn Bn cos n )
α2 =900 α1=0 μs= +0.8 B1 wind B4
μs=-0.6
2014-11-16 28
μs=-0.6
4、地震作用计算原则
一般情况下,计算两个主轴方向的地震作用;有斜交抗 侧力构件(角度大于 15 度)时应分别计算各抗侧力构件 方向的地震作用 质量与刚度分布明显不对称、不均匀的结构,应计算双 向水平地震作用下的扭转影响,其他情况应计算单向地 震作用下的扭转影响 8 度和 9 度抗震设计时,高层建筑中的大跨度和长悬臂结 构应考虑竖向地震作用 9度抗震设计时应计算竖向地震作用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 计算公风式:振系数z计算方法
风荷载标准值计算
• 垂直于建筑物表面
总的风荷载
所有的作用面的合力
风荷载计算例题
建筑物剖面图: 基本条件: 基本风压值:0=0.35kN/m2 地面粗糙度B类 结构基本周期0.76s
平面图
计算公式:
已知:0=0.35kN/m2 风荷载体型系数:迎风面0.8,背风面-0.5 风压高度变化系数,根据高度查表插值计算 风振系数,《荷载规范》规定,高度大于30米,高宽比大于1.5, 可忽略扭转影响的高层建筑,可仅考虑第一振型影响,按下面 公式计算。
风振系数计算公式
脉动影响系数:对于结构迎风面宽面H/B=0.435,粗糙度B类。 查表V=0.42。
具体计算过程
• 具体计算时,可取平面图中某一轴线的一品框架,例如③ 轴线,其负载宽度是7.2米,则沿高度分布的风荷载是:
2 地震作用特点和抗震设计目标
用不同的阻尼比得到不用的加速度反应谱,反应谱曲线 中,最大值对应的周期就是该地震波的特征周期,也称为 卓越周期。
抗震设计的要点
• 概念设计 • 抗震计算 • 构造措施
概念设计
• 结构方案选型 • 结构布置 • 由于设计者的经验对结构薄弱环节的加强
抗震计算
•用定量的方法计算地震反应,保证结构有足够的刚度和承载能力 •规范要求采用二阶段的设计方法
承载力和使用状态下的变形验算
采用第一水准烈度的地震动参数,先计算出结构在弹性状态下的地震作用 效应,与风、重力等荷载效应组合,并引入承载力抗震调整系数,进行构件 截面设计,从而满足第一水准的强度要求;
地震波特性有关,与场地土特性有关,场 地土类别(软土,坚硬土质,覆盖层厚度)
与房屋的动力特性有关,自振周期,振型, 阻尼,结构的质量和刚度
抗震设防标准
• 功能重要性分类: • 甲类:地震破坏导致严重后果,造成严重
损伤,建筑物特别重要。
• 乙类:地震时须维持正常使用的建筑物 (医院),人员大量集中的公共建筑。
表面的平均风压计算的平均风压系数,称为风荷 载体型系数
风压分布特点
规范规定
与风向变化有关的系数
风振系数z
什么是风振系数?
变化的风压值对高层建筑的动力效应
什么时候考虑?
高度较高,刚度较小的建筑,必须考虑
如何考虑?
其实质是乘以一个大于1的系数,仍然按照 静力作用计算风荷载效应,对于大于200
米的高层,最好进行风洞试验
与风速有关的基本风压值0
《荷载规范》给出
下列因素相关:
风速,50年一遇10min平均最大风速
空旷地面上
10米高度处
50年一遇
具体计算公式
0=v02/1600
风速变化与高度有关
风压高度变化系数z
1. 风速变化与高度有关 (离地面高度或海平面高度) 2. 风速变化与地貌有关 3. 风速变化与周围环境有关
• 丙类:除了上述以外的一般高层建筑
抗震设防标准
• 甲类建筑:地震作用应高于本地区抗震设 防烈度的要求,抗震措施应比本地区设防 烈度提高1度要求。
• 乙类建筑:地震作用按本地区抗震设防烈 度的要求,抗震措施应比本地区设防烈度 提高1度要求。
• 丙类建筑:地震作用和抗震措施按本地区设 防烈度要求。
抗震设计的目标
地震加速度与设防烈度
• 一般情况下,设防烈度可采用中国地震烈度区划 图中的地震基本烈度
• 也可以采用设计地震基本加速度值对应的烈度值。 • 设计基本地震加速度定义为:50年设计基准期超
越概率10%的地震加速度设计取值。
小,中,大震概念
小、中、大震是指概率统计意义上的地震烈度大小:
小震是指该地区50年内超越概率约为63%的地震烈 度,即众值烈度,又称多遇地震。 中震是指该地区50年内超越概率约为10%的地震烈 度,又称基本烈度或设防烈度。 大震是指该地区50年内超越概率约为2%~3%的地 震烈度,又称为罕遇地震。
(1)小震不坏:建筑物使用期间可能遇到的多遇地 震,相当于比设防烈度低1.5度的地震作用。建筑 物应该保持弹性作用不损坏,按这种受力状态进 行内力计算和截面设计。
(2)中震可修:出现设防烈度相同的地震作用,结 构可以出现损坏,局部进入塑性状态,经过维修 后可以使用。
(3)大震不倒:遭遇千年一遇的罕遇地震,超出设 防烈度1~1.5倍,要求不倒塌,保证生命安全。
弹塑性变形验算
采用同一地震动参数计算出结构的弹性层间位移角,使其不超过规定的限值。 同时采取相应的抗震构造措施,保证结构具有足够的延续、变形能力和塑性 耗能,从而自动满足第二水准的变形要求。
抗震构造措施
• 保证结构的延性 • 实现在罕遇地震下避免倒塌
3 地震作用的计算方法
• 时程分析法 • 反应谱法
• 地震作用
地震波作用,产生地面运动,通过房屋基础影响上 部结构,使结构产生振动,这就是地震作用。
• 作用方式
产生竖向振动和水平振动,破坏主要有水平振动造 成的,一般仅考虑水平振动,震中附近高烈度区或 者竖向振动产生严重影响时才考虑竖向振动。
地震反应
• 地震反应
位移,速度,加速度,引起内力,变形
• 影响因素
1 规范规定的结构抗震计算方法 2 是一种拟静力方法 3 底部剪力法,振型分解法 4 抗震规范给出了标准的设计反应谱曲线,确 定地震影响系数
设计反应谱曲线
• 设计反应谱是通过单质点体系的动力计算得到的。
地面运动与质点最大加速度关系
• 质点运动方程:
地面运动加速度
如果地面运动已知,质点的位移,速度,加速度反应 就可以求出。当单质点的自振周期改变时,就会得到不同 的最大反应值。最大反应值与质点自振周期的关系称为位 移反应谱,速度反应谱,加速度反应谱。
地面粗糙度类别
A,海面,沙漠,空旷,空 气无阻挡
地面粗糙度类别 A,B,C,D
B,田野,乡村,丘陵,房屋稀 疏,大城市郊区
C,密集建筑物的大城市
D,密集建筑物群,且房屋较高
与建筑物平面形状有关
风 荷 载 体 型 系 数s
• 建筑物上各个面的风压分布并不均匀 • 迎风面一般是压力作用(体型系数用+表示) • 侧风面和背风面一般为吸力(体型系数用—表示) • 通过实测可以得到建筑物表面的实际风压 • 实际风压是指基本风压值乘以体型系数 • 实际计算风荷载对建筑物的作用时,是按照各个