青霉素的发酵工艺
青霉素及其发酵生产工艺
青霉素及其发酵生产工艺引言青霉素是一种广泛应用于临床的抗生素,被广泛用于治疗多种细菌感染。
它具有杀菌作用,对多种革兰氏阳性细菌和革兰氏阴性细菌都有抑制作用。
青霉素是由真菌属于青霉菌制造的,具体的发酵工艺可以实现其大规模生产。
青霉素的来源青霉素最早是由苏格兰科学家亚历山大·弗莱明于1928年发现的。
弗莱明在实验中发现,一种称为青霉菌的真菌能够抑制细菌的生长。
经过进一步研究,他发现这种真菌产生的抑菌物质就是青霉素。
青霉素的结构和作用机制青霉素的化学结构非常复杂,由一个由螺旋形的β-内酰胺环和一个侧链组成。
这个结构决定了青霉素具有抗菌活性。
青霉素能够与细菌的细胞壁合成酶结合,抑制酶的活性,从而破坏细菌细胞壁的合成,导致细菌死亡。
青霉素的发酵生产工艺青霉素的发酵生产工艺是指通过培养和发酵青霉菌来产生大量的青霉素。
以下是一般的青霉素发酵生产工艺的步骤:1.接种培养基:将青霉菌接种到培养基中,培养基中包含有利于青霉菌生长和产生青霉素的营养物质。
2.培养和发酵:将接种后的培养基放入发酵罐中,并控制合适的温度和pH值。
同时,对培养物进行搅拌和通气,以促进青霉菌的生长和代谢产物的产生。
3.青霉素提取:经过一定时间的发酵后,青霉素会在培养物中积累。
将培养物经过离心等方法分离,然后使用适当的溶剂进行提取。
4.杂质去除:从培养物中提取的青霉素溶液中会含有一些杂质,需要通过过滤、萃取和洗涤等步骤进行去除。
5.结晶和纯化:经过杂质去除后的青霉素溶液会进行结晶,通过进一步的洗涤和纯化步骤,最终得到纯度较高的青霉素产品。
青霉素发酵工艺的优化为了提高青霉素的产量和质量,科研人员对青霉素发酵工艺进行了不断的优化。
以下是一些常用的优化方法:1.营养物质优化:根据青霉菌的营养需求,优化发酵培养基中的碳源、氮源和矿物质等成分,以提高青霉素的产量。
2.发酵条件控制:优化发酵罐的温度、pH值和氧气供给等条件,使青霉菌处于最适宜的生长状态,从而增加青霉素的产量。
青霉素的发酵工艺过程
青霉素生产工艺1.青霉素的发酵工艺过程 (3)2.工艺流程图 (3)图1.生产工艺过程 (3)图2.生产工艺流程图 (4)3.青霉素发酵工艺控制要点: (4)4.工艺指标 (4)5.物料衡算 (4)a)发酵培养基(g/l) (5)b)种子罐发酵培养基 (5)6.热量衡算 (6)6.1生物热 (7)6.2搅拌热 (7)6.3 汽化热 (7)6.4 发酵热 (7)7.设备:发酵罐 (7)1)公称500m3的发酵罐: (8)2)公称为100m3的发酵罐 (8)3) 公称为20 m3的发酵罐 (8)参考文献: (9)1.青霉素的发酵工艺过程1.冷冻干燥孢子————→琼脂斜面————→米孢子————→种子罐————→发酵罐————→过滤————→醋酸丁酯提取————→脱水脱色————→结晶————→洗涤晶体————→工业盐————→综合应用在发酵过程中补料(碳源,氮源,前体),加消沫剂2.工艺流程图(1)丝状菌三级发酵工艺流程冷冻管(25°C,孢子培养,7天)——斜面母瓶(25°C,孢子培养,7天)——大米孢子(26°C,种子培养56h)——一级种子培养液(27°C,种子培养,24h)——二级种子培养液(27~26°C,发酵,7天)——发酵液。
(2)球状菌二级发酵工艺流程冷冻管(25°C,孢子培养,6~8天)——亲米(25°C,孢子培养,8~10天)——生产米(28°C,孢子培养,56~60h)——种子培养液(26~25-24°C,发酵,7天)——发酵液。
图1.生产工艺过程图2.生产工艺流程图3.青霉素发酵工艺控制要点:青霉素培养基中碳源主要是工业用葡萄糖,氮源为豆粉、麸质粉、玉米浆。
无机盐主要含硫酸钠、磷酸二氢钾等。
青霉素发酵温度一般为25~26℃,有研究表明青霉素采用变温培养比恒温培养提高产量近15%。
青霉素合成速率对温度的影响最为敏感,这也说明了次级代谢发酵温度控制的重要性。
青霉素发酵工艺流程
青霉素发酵工艺流程青霉素是一种广谱抗生素,广泛应用于临床医学、畜牧养殖、农业等领域。
其制备过程主要是利用青霉菌进行发酵。
以下是青霉素发酵工艺流程的简要介绍。
首先,选用高产菌株进行繁种。
经过筛选和改良的青霉菌菌株具有较高的产青霉素能力。
通过筛选,从已有的菌株库中挑选出一个能够产生高效青霉素产量的菌株,进行培养扩大。
接下来,进行菌种扩大培养。
利用白垩液培养基培养菌种,保持培养基的稳定性。
菌种的培养过程中要注意控制温度、PH 值、氧气供应等因素。
控制好这些因素,就可以使菌种的增殖速度达到最大化。
进行主发酵。
将已经增殖好的菌种接种到主发酵罐中,添加适当的基质,如磷酸盐、蛋白胨等,提供菌体生长所需要的营养物质。
控制好温度、PH值、搅拌速度等因素,同时保证氧气供应充分,有利于菌体的生长和产生青霉素。
进行青霉素分泌期发酵。
在主发酵结束后,通过一定的处理方式,将菌体分离出来,损坏菌体,将菌体内的青霉素释放出来。
方法有机械破碎法、超声破碎法等。
进行青霉素提取和纯化。
提取过程主要是利用有机溶剂将青霉素从发酵液中提取出来。
纯化过程则是通过各种化学方法,如薄层层析、反渗透、离子交换等,去除杂质,提高纯度。
进行药品制剂。
经过提取和纯化后的青霉素需要进行制剂,使其成为适合临床使用的产品。
根据药物的性质和要求,选择合适的制剂方法和辅料,制备出片剂、注射液等型态的青霉素。
以上就是青霉素发酵工艺流程的基本步骤。
在实际生产中,这只是一个简化的流程,实际操作中还需要进行各种监测和控制,确保发酵过程中各项参数控制合适,从而提高产量和质量,并减少成本和废物产生。
青霉素发酵工艺的不断改进和优化,使得青霉素的产量和质量得到大幅提升,为人们提供了更好的抗生素选择。
青霉素的工艺过程
青霉素的工艺过程
青霉素(Penicillin)是一种广谱抗生素,其工艺过程如下:
1. 青霉菌培养:选择适宜的青霉菌菌株,如金黄色葡萄球菌、链球菌等,并将其转入培养基中进行培养。
培养基通常包含适量的碳源、氮源、矿物盐和其他必需营养物质。
2. 发酵:将培养基加入发酵罐中,并控制适当的温度、pH值和氧气供应,以提供最佳的生长环境。
青霉菌在发酵过程中会产生青霉素。
3. 静置培养:在发酵结束后,将发酵液进行离心分离,得到菌体和混合物。
菌体可以用于下一批的青霉素发酵,而混合物则需要经过后续处理。
4. 提取青霉素:混合物通常含有青霉素、其他杂质和溶剂,需要经过提取工艺进行分离。
常用的提取方法包括酸化、溶剂萃取和离子交换等。
通过这些方法可以将青霉素从混合物中纯化并得到高纯度的青霉素溶液。
5. 结晶:通过调节青霉素溶液的温度、浓度和pH值等条件,使其逐渐结晶。
结晶通常采用冷却结晶或浓缩结晶等方法。
6. 干燥:将青霉素结晶体进行过滤和干燥,以去除残留的溶剂和水分,得到纯净的青霉素晶体。
7. 包装和贮存:将干燥的青霉素晶体进行包装,并在适当的环境条件下进行贮存,以保证其质量和稳定性。
需要注意的是,以上是青霉素的一般工艺过程,不同的青霉素类别和生产厂家可能会有一些差异。
同时,生产过程中也要遵循相关的质量管理和安全规定,以确保产品的质量和安全性。
青霉素发酵工艺
H 2N
CH3
cooH
H 2N
cooH
cooH
L-α-氨基己二酸
H 2N
SH
cooH
L- 半胱氨酸
三肽合成酶
CH3
H 2N
CH3
cooH
L-缬氨酸
H 2N cooH
H 2N cooH
HN
o
o
HN
o
o
HN
o
o
SH
CH3
HN
CH3
cooH
异青霉素N合成酶
(LLD—ACV)
S N
CH3
(异青霉素N)
CH3
脱色液 结晶混悬液
按脱色液中青霉素含量计算所需钾量的110%加入25%乙酸 钾丁醇溶液,在真空度>0.095MPa及45~48 ℃下共沸结晶 过滤,先后用少量丁醇和乙酸乙酯各洗涤晶体两次
湿晶体
在>0.095MPa的真空及50 ℃下干燥
青霉素工业盐
思考题
n ⒈ 青霉素的基本结构? n ⒉ 青霉素生物合成的前体? n 3.青霉素提取方法?
COOH
异青霉素N酰基转移酶
酰基辅酶A 、苯乙酸
S
CH3
N
CH3
COOH
(青霉素G)
三、青霉素的生产和提取工艺
菌种
孢子 制备
种子 制备
提取和精制
发酵 发酵液的预处理
青霉菌
成品包装
青霉素生产工艺
丝 状 菌 发 酵 工 艺 流 程
补料: 葡萄糖 硫酸铵
氨水 苯乙酸 消沫剂
产黄青霉 真空冷冻干燥或液氮保藏孢子
(3)前体
因为生物合成含有苄基基团 的青霉素G,需在发酵中加入 前体如苯乙酸或苯乙酰胺。
(完整版)青霉素生产工艺过程
青霉素生产工艺过程一、青霉素的发酵工艺过程1、工艺流程(1)丝状菌三级发酵工艺流程冷冻管(25℃,孢子培养,7天)——斜面母瓶(25℃,孢子培养,7天)——大米孢子(26℃,种子培养56h,1:1.5vvm)——一级种子培养液(27℃,种子培养,24h,1:1.5vvm)——二级种子培养液(27~26℃,发酵,7天,1:0.95vvm)——发酵液。
(2)球状菌二级发酵工艺流程冷冻管(25℃,孢子培养,6~8天)——亲米(25℃,孢子培养,8~10天)——生产米(28℃,孢子培养,56~60h,1:1.5vvm)——种子培养液(26~25-24℃,发酵,7天,1:0.8vvm)——发酵液。
2、工艺控制(1)影响发酵产率的因素基质浓度:在分批发酵中,常常因为前期基质量浓度过高,对生物合成酶系产生阻遏(或抑制)或对菌丝生长产生抑制(如葡萄糖和钱的阻遏或抑制,苯乙酸的生长抑制),而后期基质浓度低限制了菌丝生长和产物合成,为了避免这一现象,在青霉素发酵中通常采用补料分批操作法,即对容易产生阻遏、抑制和限制作用的基质进行缓慢流加以维持一定的最适浓度。
这里必须特别注意的是葡萄糖的流加,因为即使是超出最适浓度范围较小的波动,都将引起严重的阻遏或限制,使生物合成速度减慢或停止。
目前,糖浓度的检测尚难在线进行, 故葡萄糖释放率予以调节。
的流加不是依据糖浓度控制,而是间接根据pH 值、溶氧或C02(2)温度:青霉素发酵的最适温度随所用菌株的不同可能稍有差别,但一般认为应在25℃左右。
温度过高将明显降低发酵产率,同时增加葡萄糖的维持消耗,降低葡萄糖至青霉素的转化率。
对菌丝生长和青霉素合成来说,最适温度不是一样的, 一般前者略高于后者, 故有的发酵过程在菌丝生长阶段采用较高的温度,以缩短生长时间, 到达生产阶段后便适当降低温度,以利于青霉素的合成。
(3)pH值:青霉素发酵的最适pH值一般认为在6.5左右,有时也可以略高或略低一些,但应尽量避免pH值超过7.0, 因为青霉素在碱性条件下不稳定, 容易加速其水解。
青霉素生产工艺过程
青霉素生产工艺过程 Document number:PBGCG-0857-BTDO-0089-PTT1998青霉素生产工艺过程一、青霉素的发酵工艺过程1、工艺流程(1)丝状菌三级发酵工艺流程冷冻管(25℃,孢子培养,7天)——斜面母瓶(25℃,孢子培养,7天)——大米孢子(26℃,种子培养56h,1:)——一级种子培养液(27℃,种子培养,24h,1:)——二级种子培养液(27~26℃,发酵,7天,1:)——发酵液。
(2)球状菌二级发酵工艺流程冷冻管(25℃,孢子培养,6~8天)——亲米(25℃,孢子培养,8~10天)——生产米(28℃,孢子培养,56~60h,1:)——种子培养液(26~25-24℃,发酵,7天,1:)——发酵液。
2、工艺控制(1)影响发酵产率的因素基质浓度:在分批发酵中,常常因为前期基质量浓度过高,对生物合成酶系产生阻遏(或抑制)或对菌丝生长产生抑制(如葡萄糖和钱的阻遏或抑制,苯乙酸的生长抑制),而后期基质浓度低限制了菌丝生长和产物合成,为了避免这一现象,在青霉素发酵中通常采用补料分批操作法,即对容易产生阻遏、抑制和限制作用的基质进行缓慢流加以维持一定的最适浓度。
这里必须特别注意的是葡萄糖的流加,因为即使是超出最适浓度范围较小的波动,都将引起严重的阻遏或限制,使生物合成速度减慢或停止。
目前,糖浓度的检测尚难在线进行, 故葡萄糖的流加不是依据糖浓度控制,而是间接根据pH 值、溶氧或C02释放率予以调节。
(2)温度:青霉素发酵的最适温度随所用菌株的不同可能稍有差别,但一般认为应在25℃左右。
温度过高将明显降低发酵产率,同时增加葡萄糖的维持消耗,降低葡萄糖至青霉素的转化率。
对菌丝生长和青霉素合成来说,最适温度不是一样的, 一般前者略高于后者, 故有的发酵过程在菌丝生长阶段采用较高的温度,以缩短生长时间, 到达生产阶段后便适当降低温度,以利于青霉素的合成。
(3)pH值:青霉素发酵的最适pH值一般认为在左右,有时也可以略高或略低一些,但应尽量避免pH值超过, 因为青霉素在碱性条件下不稳定, 容易加速其水解。
青霉素工艺流程图
青霉素工艺流程图青霉素是一种广泛应用于医药领域的抗生素,其工艺流程主要包括发酵培养、提取纯化、结晶干燥等步骤。
下面将介绍青霉素工艺流程图。
一、发酵培养1. 发酵菌株的培养:首先将青霉属菌株经过预培养,然后在发酵罐中进行大规模培养。
2. 发酵培养基的配制:将适量玉米粉、葡萄糖、麦粉等原料按一定比例混合,加入水中搅拌均匀,然后进行高温高压灭菌。
3. 发酵罐的装填:将培养基倒入发酵罐中,然后接种青霉属菌株,控制好温度、湿度和氧气供给等条件。
4. 发酵过程的控制:对培养罐中的温度、pH值、氧气流速等进行实时监测和调控,确保菌体的合理生长。
二、提取纯化1. 发酵液的分离:将发酵罐中的发酵液与菌体分离,一般采用离心分离的方法。
2. 青霉素的析出:将分离得到的发酵液加入一定量的酸,使其pH值降至4以下,青霉素即可析出。
3. 青霉素的提取:将得到的青霉素溶液经过萃取、浓缩等步骤,逐渐提高青霉素的纯度。
4. 青霉素的沉淀:将纯化后的青霉素溶液与醚类溶剂进行混合,使青霉素生成颗粒状物质并沉淀下来。
三、结晶干燥1. 青霉素的结晶:将沉淀下来的青霉素颗粒与一定量的溶剂混合,通过控制温度和湿度等条件,使青霉素结晶成大颗粒。
2. 结晶过程的控制:对结晶过程中的温度、湿度、搅拌速度等进行严格控制,以保证结晶的质量。
3. 青霉素的干燥:将结晶得到的青霉素颗粒经过过滤、干燥等操作,除去余液,获得干燥的青霉素产品。
4. 产品的包装:将干燥的青霉素产品进行包装,通常采用铝塑复合袋或玻璃瓶等容器进行包装、封装。
青霉素工艺流程图主要包括发酵培养、提取纯化和结晶干燥等步骤。
通过合理控制各个步骤中的参数和条件,能够高效地生产出高纯度的青霉素产品,从而满足医药领域对该药物的需求。
青霉素的生产工艺流程
青霉素的生产工艺流程
《青霉素的生产工艺流程》
青霉素是一种广泛应用的抗生素,其生产工艺流程经过多年的发展和优化,现已比较成熟。
下面我们来了解一下青霉素的生产工艺流程。
1. 发酵原料准备
青霉素的生产主要依赖于青霉菌的发酵,因此首先需要准备发酵原料。
通常使用的原料包括玉米粉、葡萄糖、氨水等,这些原料提供了青霉菌生长和合成青霉素所需的营养物质。
2. 发酵罐
准备好发酵原料后,需要将其加入发酵罐中。
发酵罐内需控制好温度、湿度和氧气供应等条件,以促进青霉菌的生长和青霉素的合成。
3. 提取青霉素
当发酵过程结束后,青霉素已经在发酵液中合成。
接下来需要进行提取工艺,将青霉素从发酵液中分离出来。
提取工艺通常包括分液、萃取、结晶等步骤。
4. 青霉素精制
通过提取工艺得到的青霉素并不纯净,还需进行进一步的精制工艺,以去除杂质并提高青霉素的纯度和活性。
5. 包装和贮存
经过精制的青霉素最终需要进行包装,以便于运输和使用。
此外,青霉素的贮存条件也十分重要,需要妥善保存,以确保其品质和稳定性。
总的来说,青霉素的生产工艺流程主要包括发酵、提取、精制和包装等环节。
在整个生产过程中,需要严格控制各项参数,确保青霉素的质量和产量达到预期目标。
随着生物工程技术的发展和进步,相信青霉素的生产工艺将会进一步改善和完善,为人类健康事业做出更大的贡献。
青霉素的工艺流程
青霉素的工艺流程
《青霉素的生产工艺流程》
青霉素是一种重要的抗生素,广泛应用于临床医学和养殖业中。
其生产工艺流程包括以下几个主要步骤:
1. 发酵培养:首先,选取高产菌株,将其接种于含有合适营养物质的发酵培养基中,进行培养和发酵。
在适宜的温度、搅拌和通气条件下,维持菌株的生长和代谢活动,产生大量的青霉素。
2. 分离提纯:将发酵液中的青霉素进行提取、分离和纯化。
通常采用物理法和化学法相结合的方法进行,包括有机溶剂提取、离心、过滤、结晶和柱层析等步骤。
通过这些方法,可将青霉素从其他杂质中分离出来,得到高纯度的青霉素。
3. 结晶干燥:将提纯后的青霉素溶液进行结晶和干燥处理,得到成品的青霉素粉末或结晶体。
这一步是为了提高青霉素的稳定性和保存期限,以便后续的包装、储存和运输。
4. 包装储存:最后,将成品的青霉素进行包装和标识,存放于干燥、阴凉和通风的环境中。
严格控制温湿度等环境条件,以确保青霉素的质量和效力。
总的来说,青霉素的生产工艺流程是一个复杂且精细的过程,需要高度的技术储备和严格的操作管理。
只有通过科学规范的
工艺流程,才能生产出高质量、高效力的青霉素产品,为医疗卫生和养殖业做出贡献。
青霉素发酵工艺流程
青霉素发酵工艺流程
《青霉素发酵工艺流程》
青霉素是一种广泛应用于医药领域的抗生素,其生产工艺主要是通过青霉菌的发酵来实现的。
青霉菌在适宜的条件下,可以产生大量的青霉素,而青霉素发酵工艺流程就是为了优化这个生产过程。
青霉素发酵工艺流程的第一步是选取适宜的青霉菌菌株,这需要通过实验室的筛选和培养来确定。
接下来是种子培养,将选取的青霉菌菌株进行预培养,以便后续发酵生产的播种。
然后是青霉素主发酵阶段,将种子培养得到的菌种接种到发酵罐中,同时提供适宜的发酵条件,包括温度、pH值、氧气供应等。
在这个阶段,青霉菌将大量生产青霉素。
接着是青霉素收获和提取,当发酵达到一定的时间后,青霉素在发酵液中达到一定的浓度。
此时就需要对发酵液进行分离和提取,以获取青霉素的纯品。
最后是废液处理和产品精制,青霉素的发酵过程会产生一定量的废液,需要进行处理和清洁。
而提取得到的青霉素也需要进行进一步的精制和检验,以确保产品的质量和纯度。
整个青霉素发酵工艺流程涉及到微生物学、生物工程、化学工程等多个领域的知识,需要严格的操作和管理。
但通过这个工
艺流程,青霉素得以大规模的生产,并且在医药领域得到了广泛的应用。
青霉素发酵生产工艺介绍
青霉素发酵生产工艺介绍引言青霉素是一种广泛应用于医药领域的抗生素药物,具有抗菌作用。
它可有效治疗多种感染,成为临床上不可或缺的抗生素之一。
青霉素的生产主要通过发酵工艺实现,本文将介绍青霉素的发酵生产工艺。
青霉素的发酵生产工艺选材和制种青霉素的生产需要选择合适的发酵菌种。
常见的菌种有青霉菌和链霉菌,它们都能高效地产生青霉素。
制种过程中,首先要选择适宜的基质,如葡萄糖、麦芽糖等,将其加入发酵培养基中,以提供营养物质供菌种生长。
同时,还需要对发酵容器进行无菌处理,确保制种环境的卫生。
发酵过程发酵是青霉素生产的关键步骤。
在制种完成后,将菌种转移到发酵培养基中,以开启青霉素的生产过程。
发酵过程需要控制合适的温度、pH值和通氧速率等条件,以保证产酸和产生青霉素的效果。
一般情况下,发酵温度控制在25-30摄氏度,pH值控制在5.5-6.5范围内。
在发酵过程中,还需要进行补料操作,以补充发酵液中的营养物质。
通常会根据菌种的需要,在合适的时间点添加特定的营养物质,以促进青霉素的产生。
此外,还需要监测发酵液的生物量、酸度和溶解氧含量等指标,以及时调整发酵条件。
青霉素的提取和纯化发酵过程完成后,青霉素被积累在发酵液中。
为了提取和纯化青霉素,通常需要进行一系列的操作。
首先,将发酵液经过过滤或离心,去除细胞渣和固体颗粒。
接下来,利用适当的溶剂和提取剂,将青霉素从发酵液中提取出来。
提取过程中,可采用溶剂萃取、离子交换或凝胶过滤等技术。
提取后,还需要对青霉素进行纯化。
通常会通过吸附、洗脱和结晶等方法,去除杂质和非青霉素成分,使得最终产品纯度达到要求。
在纯化过程中,需要注意避免高温和酸碱环境,以免对青霉素产生不良影响。
青霉素的包装和贮存最后一步是对青霉素进行包装和贮存。
将纯化后的青霉素药物填充到合适的容器中,并进行密封和标识。
包装过程需要保持无菌环境,以防止药物受到污染。
同时,在贮存过程中,需注意避免高温和潮湿环境,以保持青霉素的稳定性和药效。
青霉素发酵工艺
青霉素的发酵工艺青霉素生产工艺过程一、青霉素的发酵工艺过程1、工艺流程(1)丝状菌三级发酵工艺流程冷冻管(25°C,孢子培养,7天)——斜面母瓶(25°C,孢子培养,7天)——大米孢子(26°C,种子培养56h,1:1.5vvm)——一级种子培养液(27°C,种子培养,24h,1:1.5vvm)——二级种子培养液(27~26°C,发酵,7天,1:0.95vvm)——发酵液。
(2)球状菌二级发酵工艺流程冷冻管(25°C,孢子培养,6~8天)——亲米(25°C,孢子培养,8~10天)——生产米(28°C,孢子培养,56~60h,1:1.5vvm)——种子培养液(26~25-24°C,发酵,7天,1:0.8vvm)——发酵液。
2、工艺控制(1)影响发酵产率的因素基质浓度在分批发酵中,常常因为前期基质量浓度过高,对生物合成酶系产生阻遏(或抑制)或对菌丝生长产生抑制(如葡萄糖和钱的阻遏或抑制, 苯乙酸的生长抑制), 而后期基质浓度低限制了菌丝生长和产物合成, 为了避免这一现象, 在青霉素发酵中通常采用补料分批操作法, 即对容易产生阻遏、抑制和限制作用的基质进行缓慢流加以维持一定的最适浓度。
这里必须特别注意的是葡萄糖的流加,因为即使是超出最适浓度范围较小的波动, 都将引起严重的阻遏或限制, 使生物合成速度减慢或停止。
目前, 糖浓度的检测尚难在线进行, 故葡萄糖的流加不是依据糖浓度控制, 而是间接根据pH 值、溶氧或C02 释放率予以调节。
(2)温度青霉素发酵的最适温度随所用菌株的不同可能稍有差别 , 但一般认为应在25 °C 左右。
温度过高将明显降低发酵产率 ,同时增加葡萄糖的维持消耗 , 降低葡萄糖至青霉素的转化率。
对菌丝生长和青霉素合成来说 , 最适温度不是一样的, 一般前者略高于后者, 故有的发酵过程在菌丝生长阶段采用较高的温度,以缩短生长时间, 到达生产阶段后便适当降低温度 , 以利于青霉素的合成。
青霉素发酵工艺
青霉素发酵工艺青霉素是一种重要的抗生素,已经被广泛应用于医疗、兽药、农业等领域。
青霉素的发现是20世纪20年代的重要事件,但是想要大规模生产青霉素并不容易,因为青霉素的自然合成数量很少。
因此,研究人员通过青霉菌的灵活性和代谢特征,发现了青霉素发酵生产工艺,这是一种通过在发酵罐中培养青霉菌而生产青霉素的工艺。
青霉素的发酵生产工艺是一种以青霉菌为发酵微生物,并通过搭建适当的发酵系统,控制发酵条件,最终使青霉菌产生大量的青霉素的过程。
这个过程可以被分成四个阶段,包括发酵罐中的菌种扩增、发酵大量生产、分离提纯和制剂加工。
(一)发酵罐中的菌种扩增青霉素的发酵过程首先需要一种高效的菌种,这种菌种可以在特定的生长条件下产生高浓度的青霉素。
因此,首先要将这种菌种分离出来,并在培养基中培养和扩增细胞。
这个阶段的目标是通过适宜的环境模拟自然环境中的菌落,使得青霉菌得到生长和繁殖,并从野生状态转化为高产状态。
(二)发酵大量生产共性因素主要包括:温度、压力、通气、搅拌、pH等等。
1.温度:温度是影响青霉素生产的最重要的因素之一,一般发酵储罐的温度均维持在26~28℃为宜,此温度通常是霉菌生长的适宜温度,同时因此温度增加可使霉菌代谢过程居多,有利于生长速度的提高。
2.压力:在发酵生产的过程中,亦需要控制流程质量,以避免闷罐子假象的现象,通过调整发酵罐的压力和通气量,可以尽量减少产生的溶氧量,避免发生大量的酸化反应,减少废弃物生成,也有助于青霉菌的生产和提高产量。
3.通气:通气的作用主要是补充氧气和排放二氧化碳,维持发酵罐内环境的平衡状态。
因此,控制通气量的大小是非常重要的。
4.搅拌:搅拌可以使发酵罐中的菌种均匀地分布,保证发酵过程中各个点的温度、pH等值保持稳定。
5.pH: pH的调整主要是为了保证发酵罐内的pH值适合青霉菌的生长和代谢,并维持适宜的代谢环境。
青霉菌对酸碱度的要求比较严格,因此需要保证pH值能够保持在最适宜范围内,一般为5.5到7.5之间,可以促进罐内微生物群落的生长和繁殖。
青霉素发酵生产工艺
氧气控制:优化氧气浓度, 提高青霉素产量
营养控制:优化营养成分, 提高青霉素产量
发酵时间控制:优化发酵 时间,提高青霉素产量
菌种优化:优化菌种,提 高青霉素产量
发酵设备优化:优化发酵 设备,提高青霉素产量
青霉素提取与精制的优化与改进
提取工艺优化:采用先进的提取技术,提高提取效率和纯度 精制工艺优化:采用先进的精制技术,提高精制效率和纯度 工艺参数优化:优化工艺参数,提高生产效率和稳定性 设备优化:采用先进的设备,提高生产效率和稳定性 质量控制优化:采用先进的质量控制技术,提高产品质量和稳定性
发酵过程控制
温度控制:保持 恒定温度,防止 温度波动影响发 酵效果
酸碱度控制:维 持适当的酸碱度, 保证发酵顺利进 行
氧气浓度控制: 保持适当的氧气 浓度,促进青霉 素合成
时间控制:根据 青霉素合成速度, 控制发酵时间, 保证产量和质量
青霉素提取与精制
提取方法:采用溶剂萃取法, 如乙酸乙酯、丙酮等
青霉素发酵生产工艺的重要性
发酵生产工艺是青霉素生产 的关键环节,直接影响产品 质量和产量
青霉素是重要的抗生素,广 泛应用于临床治疗
发酵生产工艺的优化可以提 高生产效率,降低生产成本
发酵生产工艺的创新可以提 高青霉素的疗效和适用范围,
满足市场需求
青霉素发酵生产工艺的发展历程
• 1928年,英国科学家弗莱明发现青霉素 • 1939年,英国科学家钱恩和弗洛里成功分离出青霉素 • 1943年,美国科学家瓦克斯曼成功实现青霉素的工业化生产 • 1950年代,青霉素生产工艺得到进一步改进,提高了产量和质量 • 1960年代,青霉素生产工艺开始采用基因工程和生物技术,提高了生产效率 • 1970年代,青霉素生产工艺开始采用连续发酵技术,提高了生产效率和环保性 • 1980年代,青霉素生产工艺开始采用酶工程和生物反应器技术,提高了生产效率和质量 • 1990年代,青霉素生产工艺开始采用生物技术,提高了生产效率和质量 • 2000年代,青霉素生产工艺开始采用生物技术,提高了生产效率和质量,并实现了绿色
年产2300吨青霉素发酵工段工艺设计
青霉素是一种重要的抗生素,广泛应用于临床医学领域。
为了满足需求量,需要设计一个年产2300吨青霉素的发酵工段工艺。
一、原料准备:1. 青霉菌菌种的培养与保存:选择高产菌株,如Penicillium chrysogenum,进行培养,并保存在冷冻条件下,以备后续的发酵过程使用。
2.发酵基质的配制:发酵基质一般为含有葡萄糖、植物粉末、无机盐等营养成分的培养基。
按照一定配方比例,将原料混合,进行高温高压灭菌处理。
二、发酵过程:1.调整发酵罐参数:调整发酵罐的温度、pH值、氧气供应等参数,以提供最适宜的菌种生长环境。
2.接种原料:将保存好的青霉菌菌种加入预先准备好的发酵罐中,进行接种。
3.发酵过程控制:通过监测和调节发酵过程中的温度、pH值、氧气供应等参数,以优化菌种生长和代谢产物的积累。
4.发酵液搅拌:发酵罐中的搅拌装置将发酵液进行循环搅拌,确保培养基中的营养物质均匀分布,提供更好的菌种生长环境。
三、发酵液的分离与提纯:1.发酵结束后,将发酵液进行分离:将发酵液通过离心或其他分离技术,将菌体和液体分离。
2.提纯发酵产物:采用沉淀、过滤、吸附、浓缩等技术手段,将溶液中的青霉素提纯出来。
四、产品包装与贮存:1.产品包装:将提纯好的青霉素进行合理的包装,确保产品的完整性和质量。
2.产品贮存:将包装好的青霉素进行冷藏贮存,保持其稳定性和活性。
以上是一个简单的年产2300吨青霉素发酵工段工艺设计。
实际生产中,还需要考虑工艺流程的优化、监测和控制系统的建立、废料处理等问题。
同时需要注意生产工艺的合法性和环保性,确保产品的质量和供应的可持续性。
青霉素的合成
青霉素的合成
青霉素的合成是一种利用微生物发酵产生青霉素的过程。
具体步骤如下:
1. 制备培养基:将牛肉汤、玉米面、糊精、甘油等原料混合,加入少量的碳酸钙,调节pH值为6.0-6.5,蒸煮30分钟。
2. 接种:从母种中选取菌种,以玻璃珠将菌种磨碎,放入培养基中,在250-300摄氏度下培养8-10小时。
3. 发酵:将培养基放入发酵罐中,在150-180摄氏度下灭
菌30分钟。
然后加入适量的小苏打和铵盐,调节pH值和温度,进行发酵。
4. 提取:将发酵液进行过滤,用乙醇或异丙醇进行沉淀,再加入适量的丙酮进行精制。
5. 化学合成:将精制的青霉素溶解在有机溶剂中,经过一系列的化学反应,如取代、加成、缩合等,可以得到不同结构的青霉素类化合物。
需要注意的是,以上步骤仅为青霉素合成的一种方法,实际生产中可能会因菌种、工艺、设备等因素而有所差异。
另外,青霉素的合成需要在严格的无菌条件下进行,并注意安全防护,避免对人体造成伤害。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青霉素的发酵工艺作者:佚名文章来源:本站原创点击数:392 更新时间:2009-6-22 12:36:27青霉素生产工艺过程一、青霉素的发酵工艺过程1、工艺流程(1)丝状菌三级发酵工艺流程冷冻管(25°C,孢子培养,7天)——斜面母瓶(25°C,孢子培养,7天)——大米孢子(26°C,种子培养 56h,1:1.5vvm)——一级种子培养液(27°C,种子培养,24h,1:1.5vvm)——二级种子培养液(27~26°C,发酵,7 天,1:0.95vvm)——发酵液。
(2)球状菌二级发酵工艺流程冷冻管(25°C,孢子培养,6~8天)——亲米(25°C,孢子培养,8~10天)——生产米(28°C,孢子培养,56~60h,1:1.5vvm)——种子培养液(26~25-24°C,发酵,7天,1:0.8vvm)——发酵液。
2、工艺控制(1)影响发酵产率的因素基质浓度在分批发酵中,常常因为前期基质量浓度过高,对生物合成酶系产生阻遏(或抑制)或对菌丝生长产生抑制(如葡萄糖和钱的阻遏或抑制 , 苯乙酸的生长抑制), 而后期基质浓度低限制了菌丝生长和产物合成 , 为了避免这一现象 , 在青霉素发酵常采用补料分批操作法 , 即对容易产生阻遏、抑制和限制作用的基质进行缓慢流加以维持一定的最适浓度。
这里必须特别注意的是葡萄糖的流加 , 因为即使是超出最适浓度围较小的波动 , 都将引起严重的阻遏或限制 , 使生物合成速度减慢或停止。
目前 , 糖浓度的检测尚难在线进行 , 故葡萄糖的流加不是依据糖浓度控制 , 而是间接根据pH 值、溶氧或 C02 释放率予以调节。
(2)温度青霉素发酵的最适温度随所用菌株的不同可能稍有差别 , 但一般认为应在25 °C 左右。
温度过高将明显降低发酵产率 , 同时增加葡萄糖的维持消耗 , 降低葡萄糖至青霉素的转化率。
对菌丝生长和青霉素合成来说 , 最适温度不是一样的, 一般前者略高于后者, 故有的发酵过程在菌丝生长阶段采用较高的温度,以缩短生长时间, 到达生产阶段后便适当降低温度 , 以利于青霉素的合成。
(3) pH 值青霉素发酵的最适 pH 值一般认为在 6. 5 左右 , 有时也可以略高或略低一些 , 但应尽量避免 pH 值超过7.0, 因为青霉素在碱性条件下不稳定, 容易加速其水解。
在缓冲能力较弱的培养基中, pH 值的变化是葡萄糖流加速度高低的反映。
过高的流加速率造成酸性中间产物的积累使 pH 值降低;过低的加糖速率不足以中和蛋白质代产生的氨或其他生理碱性物质代产生的碱性化合物而引起 pH 值上升。
(4)溶氧对于好氧的青霉素发酵来说 , 溶氧浓度是影响发酵过程的一个重要因素。
当溶氧浓度降到 30% 饱和度以下时, 青霉素产率急剧下降, 低于10% 饱和度时, 则造成不可逆的损害。
溶氧浓度过高 , 说明菌丝生长不良或加糖率过低, 造成呼吸强度下降, 同样影响生产能力的发挥。
溶氧浓度是氧传递和氧消耗的一个动态平衡点, 而氧消耗与碳能源消耗成正比, 故溶氧浓度也可作为葡萄糖流加控制的一个参考指标。
(5)菌丝浓度发酵过程中必须控制菌丝浓度不超过临界菌体浓度, 从而使氧传递速率与氧消耗速率在某一溶氧水平上达到平衡。
青霉素发酵的临界菌体浓度随菌株的呼吸强度 (取决于维持因数的大小, 维持因数越大,呼吸强度越高) 、发酵通气与搅拌能力及发酵的流变学性质而异。
呼吸强度低的菌株降低发酵中氧的消耗速率,而通气与搅拌能力强的发酵罐及黏低的发酵液使发酵中的传氧速率上升, 从而提高临界菌体浓度。
(6)菌丝生长速度用恒化器进行的发酵试验证明,在葡萄糖限制生长的条件下,青霉素比生产速率与产生菌菌丝的比生长速率之间呈一定关系。
当比生长速率低于0.015h-1时,比生产速率与比生长速率成正比, 当比生长速率高于 O. 015h-1时, 比生产速率与比生长速率无关 D 因此, 要在发酵过程中达到并维持最大比生产速率, 必须使比生长速率不低0.015h-1 。
这一比生长速率称为临界比生长速率。
对于分批补料发酵的生产阶段来说, 维持0.015h斗的临界比生长速率意味着每 46h 就要使菌丝浓度或发酵液体积加倍, 这在实际工业生产中是很难实现的。
事实上 , 青霉素工业发酵生产阶段控制的比生长速率要比这一理论临界值低得多, 却仍然能达到很高的比生产速率。
这是由于工业上采用的补料分批发酵过程不断有部分菌丝自溶, 抵消了一部分生长, 故虽然表观比生长速率低, 但真比生长速率却要高一些。
(7)菌丝形态在长期的菌株改良中 , 青霉素产生菌在沉没培养中分化为主要呈丝状生长和结球生长两种形态。
前者由于所有菌丝体都能充分和发酵液中的基质及氧接触, 故一般比生产速率较高;后者则由于发酵液黏度显著降低, 使气-液两相间氧的传递速率大大提高, 从而允许更多的菌丝生长 (即临界菌体浓度较高), 发酵罐体积产率甚至高于前者。
在丝状菌发酵中, 控制菌丝形态使其保持适当的分支和长度, 并避免结球 , 是获得高产的关键要素之一。
而在球状菌发酵中, 使菌丝球保持适当大小和松紧 , 并尽量减少游离菌丝的含量, 也是充分发挥其生产能力的关键素之一。
这种形态的控制与糖和氮源的流加状况及速率、搅拌的剪切强度及比生长速率密切相关。
3、工艺控制要点(1)种子质量的控制丝状菌的生产种子是由保藏在低温的冷冻安瓿管经甘油、葡萄糖、蛋白胨斜面移植到小米固体上,25 °C 培养 7 天, 真空干燥并以这种形式保存备用。
生产时它按一定的接种量移种到含有葡萄糖、玉米浆、尿素为主的种子罐,26 °C 培养 56h 左右, 菌丝浓度达6%-8%, 菌丝形态正常, 按10%-15%的接种量移人含有花生饼粉、葡萄糖为主的二级种子罐,27°C 培养24h, 菌丝体积 10%-12%, 形态正常, 效价在700D/ml左右便可作为发酵种子。
球状菌的生产种子是由冷冻管子孢子经混有O. 5% -1. 0 %玉米浆的三角瓶培养原始亲米孢子, 然后再移人罗氏瓶培养生产大米抱子 (又称生产米), 亲米和生产米均为25 °C静置培养, 需经常观察生长发育情况在培养到 3-4 天, 大米表面长出明显小集落时要振摇均匀, 使菌丝在大米表面能均匀生长, 待10天左右形成绿色孢子即可收获。
亲米成熟接人生产米后也要经过激烈振荡才可放置恒温培养, 生产米的孢子量要求每粒米300万只以上。
亲米、生产米子孢子都需保存在5 °C冰箱。
工艺要求将新鲜的生产米 (指收获后的孢瓶在10天以使用) 接人含有花生饼粉、玉米胚芽粉、葡萄糖、饴糖为主的种子罐,28 °C 培养 50-60h当pH 值由6. 0-6. 5 下降至 5.5-5. 0, 菌丝呈菊花团状,平均直径在 100- 130μm, 每毫升的球数为 6万 -8万只, 沉降率在 85% 以上, 即可根据发酵罐球数控制在8000-11000只/ml 围的要求, 计算移种体积, 然后接入发酵罐, 多余的种子液弃去。
球状菌以新鲜孢子为佳, 其生产水平优于真空干燥的孢子,能使青霉素发酵单位的罐批差异减少。
(2)培养基成分的控制a. 碳源产黄青霉菌可利用的碳源有乳糖、蕉糖、葡萄糖等。
目前生产上普遍采用的是淀粉水解糖、糖化液 (DE 值 50% 以上) 进行流加。
b. 氮源氮源常选用玉米浆、精制棉籽饼粉、麸皮,并补加无机氮源(硫酸氨、氨水或尿素)。
c. 前体生物合成含有苄基基团的青霉素 G, 需在发酵液中加人前体。
前体可用苯乙酸、苯乙酰胺, 一次加入量不大于0.1%, 并采用多次加入, 以防止前体对青霉素的毒害。
无机盐加人的无机盐包括硫、磷、钙、镁、钾等, 且用量要适度。
另外, 由于铁离子对青霉菌有毒害作用, 必须严格控制铁离子的浓度, 一般控制在30μg/ml 。
(3)发酵培养的控制a. 加糖控制加糖量的控制是根据残糖量及发酵过程中的 pH 值确定 , 最好是根据排气中CO2 量及 O2 量来控制, 一般在残糖降至 0.6% 左右, pH 值上升时开始加糖。
b. 补氮及加前体补氮是指加硫酸铵、氨水或尿素, 使发酵液氨氮控制在 O. 01%-0.05%,补前体以使发酵液中残存苯乙酰胺浓度为 0.05%-0.08% 。
c. pH 值控制对pH 值的要求视不同菌种而异, 一般为 pH 6.4-6.8, 可以补加葡萄糖来控制。
目前一般采用加酸或加碱控制pH值。
d. 温度控制前期 2 5- 2 6 °C, 后期23 °C, 以减少后期发酵液中青霉素的降解破坏。
e. 溶解氧的控制一般要求发酵中溶解氧量不低于饱和溶解氧的30% 。
通风比一般为1 : 0. 8L/(L • min), 搅拌转速在发酵各阶段应根据需要而调整。
f. 泡沫的控制在发酵过程中产生大量泡沫, 可以用天然油脂, 如豆油、玉米油等或用化学合成消泡剂 " 泡敌 " 来消泡, 应当控制其用量并要少量多次加入, 尤其在发酵前期不宜多用, 否则会影响菌体的呼吸代。
g. 发酵液质量控制生产上按规定时间从发酵罐中取样 , 用显微镜观察菌丝形态变化来控制发酵。
生产上惯称" 镜检 ",根据" 镜检 "中菌丝形变化和代变化的其他指标调节发酵温度, 通过追加糖或补加前体等各种措施来延长发酵时间, 以获得最多青霉素。
当菌丝中空泡扩大、增多及延伸, 并出现个别自溶细胞, 这表示菌丝趋向衰老, 青霉素分泌逐渐停止, 菌丝形态上即将进入自溶期, 在此时期由于茵丝自溶, 游离氨释放, pH 值上升, 导致青霉素产量下降, 使色素、溶解和胶状杂质增多, 并使发酵液变蒙古稠, 增加下一步提纯时过滤的困难。
因此, 生产上根据" 镜检 "判断, 在自溶期即将来临之际, 迅速停止发酵, 立刻放罐, 将发酵液迅速送往提炼工段。
生产青霉素需经以下步骤:配料、发酵、过滤、提取、结晶、干燥、包装。
青霉素Benzylpenicillin中文别名:青霉素G、青霉素G钾、苄青霉素、苄西林英文别名:Benzylpenicillin Potassium、Benzylpenicillin Sod.、Crystalline Penicillin G、Penicillin、Penicillin G Potassium、Penicillin G Sod.生产企业:药品类别:青霉素类抗生素药理药动药效学青霉素对多数革兰阳性菌、革兰阴性球菌、个别阴性杆菌(如嗜血杆菌属)、螺旋体和放线菌有抗菌活性,为杀菌剂。