复杂网络9讲加权网络共44页
复杂网络简介PPT课件
2021n/e3t/w7ork becomes increasingly disordered until CfoHr Ep=N1LaI ll edges are rewired randomly.
9
• Fig. 2 An example of scale-free network.
2021/3/7
• 在复杂网络的研究过程中,人们将网络中的节点用1, 2,…,N表出(注意:网络中的节点个数N可以是动态变 化的,也就是说网络可以而且应该是一个不断演化的过 程),网络建模主要考虑的是点与点之间的连边机制,下 面详细说明一下这四种网络的生成过程。
2021/3/7
CHENLI
7
• (i)规则网络(Lattice):节点个数N为不变的参数,将
这N个编号的节点通过以下的连边机制:每个节点连接到
• 它(的ii)K随临机近网的络节(点ERi)1,i:2节,...,点iK个2 ,数这N为里不K是变一的个参偶数整,数将。这
N个编号的节点通过以下的连边机制:节点 的概率为 p 。
i
和节点
j
连接
• (iii)小世界网络(WS):节点个数N为不变的参数,将 这N个编号的节点通过以下两个过程的连边机制:(1) 初始化:构造一个Lattice网络;(2)随机化:将网络中 的每一条边以概率 p 进行重连(即遍历选取每一条边,固 定边的一个节点,以概率选择另一个节点进行连接)。显 然WS网络是规则网络当 p 0 ,是随机网络当 p 1 。
复杂网络研究的是介于确定和随机之间的现实中的系统。 一个典型的网络由节点和连接两个节点的边组成。很长时 间以来,网络被考虑成点和边的随意集合,在数学上用随 机图表示。近几年,由于计算机数据处理和运算能力的飞 速发展,这种状况发生了根本性的改变。人们开始研究大 规模复杂网络的拓扑结构,研究发现,尽管很多网络具有 明显的复杂性和随机性,但也会出现可以用数学和统计语 言来描述的清晰的模式和规律,其中最重要的是小世界效 应(small-world effect),(Watts & Strogatz, 1998)和无标 度特性(scale-free property),(Barabási & Albert, 1999)。
复杂网络 PPT课件
二十一世纪(二十世纪末),系统成为主要的研 究对象,整合成为主要方法;
整合的方法在于了解细部以后,研究“如何组合”的
问题,这导致复杂网络结构的研究; 如:普列高津的耗散结构理论、哈肯的协同学、混沌 和复杂系统理论、系统生物学、…
复杂系统与复杂网络
复杂系统与复杂网络的概念
系统:集合(具体元素)+ 系统的结构是什么?
统失控等一系列不同网络间的连锁反应。
(4)网络分层结构的复杂性
行政管理网络是具有层结构的,多数网络都有节点的
分层结构,只是在许多网络中没有意识到是一种造成 复杂性的重要结构。
对复杂网络的理解
复杂网络是二十一世纪科学研究的思想和理念, 它启发我们用什么观点理解这个世界:整个世界 以及组成世界的任何细部都是由网络及其变化形 成的; 复杂网络也是研究复杂系统的一种技术和方法, 它关注系统中个体相互作用的拓扑结构,是理解 复杂系统性质和功能的基本方法。
复杂网络 Complex Network
为什么研究复杂网络?
二十一世纪涌现的新现象
互联网是怎样“链”接的? 从一个页面到另一个页面,
平均需要点击多少次鼠标?
美国航空网
城市公共交通网
为什么两者结构差异如此之大? 这种差异是必然还是偶然的? 城市交通涌堵的原因是什么?
• 非典发现在广州,为什么却 在北京爆发呢? • 传染病是怎样扩散和消失的?
互联网 病毒传播网
计算机病毒是怎样传播的? 为什么“好事不出门,坏事 行千里”呢?……
神经网络
生态网络
社交网络
电力网络
电信网络航空网络Biblioteka Facebook 全球友谊图
PPT—复杂网络.ppt
三、社区结构
整个网络是由若干个“社区"或“组’’构成的。每个社 区内部的结点间的连接相对非常紧密,但是各个社区之间 的连接相对来说却比较稀疏(网络中的顶点可以分成组, 组内连接稠密而组间连接稀疏)。我们将复杂网络的这种 结构特征称之为复杂网络的社团结构或社区结构。
社区结构是复杂网络的一个重要的特性,社区也被称为簇, 大量研究表明网络是由各种不同类型的节点构成的,一般 情况下,在不同类型的节点间存在较少的边,而在相同类 型的节点间会有较多的边。位于一个子图内的节点和边组 成一个社团。 复杂网络社区结构还有一个很重要的特性,即是它的层次特
复杂网络的统计特征
网络的聚类系数C:所有节点i的聚类系数Ci的平均值。
(0C1) C=0网络中所有节点都是孤立点 C=1网络中任意节点间都有边相连
★ 网络节点间联系的密切程度, 体现网络的凝聚力
★ 许多大规模的实际网络都具有明显的聚类效应。事实 上,在很多类型的网络(如社会关系网络)中,你的朋友同 时也是朋友的概率会随着网络规模的增加而趋向于某个非 零常数,即当N→∞时,C=O(1)。这意味着这些实际的复杂 网络并不是完全随机的,而是在某种程度上具有类似于社 会关系网络中“物以类聚,人以群分”的特性。
性现实中的网络是由一个个较小的社团组成,而这些社团又可 以包括更小的社团。发现网络中的社团结构,对于了解网络结 构,分析网络特性都具有很重要的意义。
复杂网络研究内容
1)复杂网络模型 典型的复杂网络:随机网、小世界网、无标度网等; 实际网络及其分类。
2)网络的统计量及与网络结构的相关性 度分布的定义和意义,聚集性、连通性的统计量及其实际 意义等。
节点的数目。
★ 直观上看,一个节点的度越大就意味着这个节点在
复杂网络概述 ppt课件
星形耦合网络:有一个中心点,其余N-1个点都只与这
个中心点连接,其平均路径长度为
Lstar 2
聚类系数为
C
star
2( N 1) 2 N ( N 1)
N 1 1 N
ppt课件
( N ) ( N )
16
随机图
随机图是与规则网络相反的网络,一个典型模型 是 Erdos 和 Renyi 于 40 多年前开始研究的随机图模 型。 假设有大量的纽扣( N》1 )散落在地上,并以相 同的概率p给每对纽扣系上一根线。这样就会得到 一个有 N 个节点,约 pN(N-1)/2 条边的 ER 随机图的 实例。
ppt课件 3
3
③ 小世界实验
20世纪60年代美国哈佛大学的社会心理学家Stanley Milgram通过
一些社会调查后给出的推断是:地球上任意两个人之间的平均距
离是6。这就是著名的“六度分离”(six degrees of separation)推断。 为了检验“六度分离”的正确性,小世界实验—Bacon数。美国
ppt课件
9
小世界实验---Erdos数
Erdos从来没有一个固定的职位,从来不定居在一 个地方,也没有结婚,带着一半空的手提箱,穿 梭于学术研讨会,浪迹天涯,颇富传奇色彩。有 人称他为流浪学者(wande ring scholar)。
他效忠的是科学的皇后, 而非一特定的地方。各 地都有热心的数学家提供他舒适的食宿,安排他 的一切,他则对招待他的主人,给出一些挑战性 的数学难题,或给予研究上的指导做为回馈。 他可以和许多不同领域的数学家合作。数学家常 将本身长久解决不了的问题和他讨论,于是很快 地一篇论文便诞生了。
复杂网络理论和应用研究PPT课件
早期网络模型-ER模型
Erdös和Rényi (ER)最早提出随机网 络模型并对模型进行了深入研究,他们 是用概率统计方法研究随机图统计特性 的创始人。
在模型开始阶段给定N个节点,没有边, 以概率p用边连接任意一对节点,用这样 的方法产生一随机网络。
~ 1.5 Poisson distribution
小世界模型
为了描述从一个局部有序系统到一个随机 网络的转移过程,Watts和 Strogatz (WS)提出了一个新模型,通常称为小 世界网络模型。
WS模型始于一具有N个节点的一维网络, 网络的节点与其最近的邻接点和次邻接点 相连接,然后每条边以概率p重新连接。 约束条件为节点间无重边,无自环。
成的一张图。
中国教科网
中国教科网拓扑结构
网络(图)的基本概念
• 关联与邻接 • 度、平均度 • 节点的度分布 • 最短路径与平均路径长度 • 群系数
网络(图)的基本概念
a
b
c
d
e
网络(图)的基本概念
节点的度分布是指网络(图)中 度为 k的节点的概率 p(k随) 节点
度 的变k化规律。
网络(图)的基本概念
规则图的特征
平均度为3
随机图的特征
节点确定,但边以概率 p任意连
接。 节点不确定,点边关系也不确定。
随机图——节点19,边43
平均度为2.42,集群系数为0.13。
随机图——节点42,边118
平均度为5.62,集群系数为0.133。
4. 复杂网络的演化模型
复杂网络是大量互联的节点的集合,节点 是信息的载体,比如互联网,万维网,以 及各种通信网、食物网、生物神经网、电 力网、社会经济网、科学家合作网等。
《复杂网络简介》课件
100%
小世界网络
指网络中节点间的平均距离很短 ,即信息在网络中传播的速度很 快。
80%
随机网络
节点和边的出现是随机过程的结 果,网络结构相对均匀。
03
复杂网络的演化
网络演化的基本规律
自相似性
复杂网络在演化过程中表现出 自相似性,即在不同尺度上网 络的结构和性质具有相似性。
无标度性
复杂网络中节点的度分布遵循 幂律分布,即少数节点拥有大 量连接,而大多数节点只有少 数连接。
小世界效应
复杂网络中的节点平均距离较 小,信息在网络中传播迅速。
网络演化的机制
01
02
03
增长
随着时间的推移,网络中 的节点数量不断增加,新 的节点通过与已有节点建 立连接加入网络。
优先连接
新加入的节点更倾向于与 已有节点中连接数较多的 节点建立连接,从而形成 层次结构。
自组织
网络中的节点通过局部规 则和相互作用,在演化过 程中形成复杂的结构和模 式。
复杂网络的重要性
揭示现实世界中复杂系统的内在规律和机制
复杂网络是描述现实世界中复杂系统的重要工具,可以帮助我们 揭示系统内在的规律和机制。
促进跨学科研究
复杂网络涉及多个学科领域,如数学、物理、计算机科学、社会 学等,通过复杂网络的研究可以促进跨学科的合作与交流。
复杂网络的应用领域
01
02
03
04
网络控制的基本概念
1 2
状态反馈控制
通过测量节点的状态,并利用状态反馈控制方法 调整节点的输入,实现网络的控制。
输出反馈控制
通过测量节点的输出,并利用输出反馈控制方法 调整节点的输入,实现网络的控制。
3
加权网络
10k
Random Real Inverse
100k
Betweenness
1k 100 10 1
Betweenness
Random Real Inverse
10k
Inverse Random Real
1 10 100 1k 10k
1k 1 10 100 1000
(c) Rank of link
(d) Rank of Vertex
wjk
d
i j k
w w
ij
jk
取最小值即为最短路径的距离
度分布
1000
Degree
800 600
Degree
400 200 0 0 100 200 300 400 500
Rank
点介数
logarithm multiplicative
1400
Unweighted
Betweenness of Vertex
Vertex Weight
1000
0.1
1
10
100
Rank of Vertex
Rank of Vertex
单位权
1 0.1
multiplicative
40 35 30
logarithm
Weight per Degree
1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 1 10 100
Weight per Degree
加权、有向网络的静态统计性质
In-Out度和权的分布,度权的相关性,单位权
网络的演化性质
偏好性的实证检验
网络上思想的传播及效率分析
科学家的类聚分析
复杂网络概述 ppt课件
小世界实验--- Bacon数
在网上有一个网页。网站的数据库里总共存有有783940个世界 各地的演员的信息以及231,088部电影信息。
通过简单地输入演员名字就可以知道这个演员的 bacon 数。目 前比如输入Stephen Chow(周星驰)就可以得到这样的结果: 周星驰在 1991 年的《豪门夜宴 (Haomen yeyan)》 中与洪金宝 (Sammo Hung Kam-Bo) 合作;而洪金宝又在李小龙的最后一部 电影,即 1978 年的《死亡的游戏 ( Game of Death )》 中与 Colleen Camp 合作; Colleen Camp 在去年的电影《Trapped》 中与Kevin Bacon 合作。这样周星驰的Bacon数为3。 对78万个演员所做的统计:演员的最大Bacon数仅仅为8,平均 Bacon数仅为2.948。
ppt课件 6小世界实验--- Bac Nhomakorabean数
截止到几天前,世界电影史上共产生了大约 23万 部电影,78多万名电影演员(参见互联网电影库 ). Kavin Bacon在许多部电影中饰演小角色。 几 年 前 ,Virginia 大 学 的 计 算 机 专 家 Brett Tjaden 设计了一个游戏,他声称电影演员 Kevin Bacon是电影界的中心。 在游戏里定义了一个所谓的 Bacon 数:随便想一 个演员,如果他(她)和 Kavin Bacon 一起演过 电影,那么他(她)的 Bacon 数就为 1 ;如果他 (她)没有和Bacon演过电影,但是和Bacon数为 1 的演员一起演过电影,那么他的 Bacon 数就为 2 ; 依此类推。 发现: 在曾经参演的美国电影演员中,没有一个 人的Bacon数超过4。
复杂网络基础理论(ppt)
IP
朋
地
友
址 网
关系
网
数理统计基础
概率论基础 数理统计基础 统计假设及检验 一元线性回归分析
图论的基本概念
图的基本概念 图的路和连通性 图的基本运算 树与生成树 图的矩阵表示
复杂网络的研究内容和意义
研究的主要内容包括:网络的几何性质,网络 的形成机制,网络演化的统计规律,网络上的模 型性质,网络的结构稳定性,网络的演化动力学 机制等。
间的距离dij和从节点vj到vi之间的距离dji是不同的。距离dij 定义为从节点vi出发沿着同一方向到达节点vj所要经历的弧的 最少数目,而它的倒数1/dij称为从节点vi到节点vj的效率, 记为εij。
有向连通简单网络的平均距离L
因为效率可以用来描述非连通网络,所以可以定义有向网 络的效率LC为
介数
介数 节点的介数Bi定义为
式中,Njl表示从节点vj到vl的最短路径条数,Njl(i)表示 从节点vj到vl的最短路径经过节点vi的条数。 边的介数Bij定义为
式中,Nlm表示从节点vl到vm的最短路径条数,Nlm(eij )表示从节点vl到vm的最短路径经过边eij(方向相同)的 条数。
加权网络的静态特征
核度 一个图的k-核是指反复去掉度值小于k的节点及其连线后
,所剩余的子图,该子图的节点数就是该核的大小。 节点核度的最大值叫做网络的核度。 节点的核度可以说明节点在核中的深度,核度的最大值自然
就对应着网络结构中最中心的位置。
度中心性
度中心性分为节点度中心性和网络度中心性。 节点vi的度中心性CD(vi)定义为
网络G的度中心性CD定义为
介数中心性
介数中心性分为节点介数中心性和网络介数中心性。 节点vi的介数中心性CB(vi)定义为
复杂网络New-Book
《复杂网络》目录2006-8-23前言第一部分理论篇1演化网络——模型、测度及方法作者史定华*,刘黎明1.1引言1.2演化网络模型1.3度分布的计算1.4结点度的相关性1.5群集系数的估计1.6进一步研究的问题2加权网络作者李梦辉,樊瑛,狄增如*2.1引言2.2加权网络的统计性质2.3加权网络的演化模型2.4权重对网络结构的影响2.5加权网络上的动力学2.6小结3基于Vicsek模型的动态网络分析与调控 作者刘志新*,韩靖,郭雷3.1引言3.2 Vicsek模型的描述及相关模型3.3 Vicsek 模型的自发行为分析3.4 Vicsek 模型中的控制问题3.5小结与展望4网络同步作者陈关荣*4.1引言4.2连续时间一般动态网络的完全同步4.3连续时间规则网络的完全同步4.4 随机网络和小世界网络的完全同步4.5无标度网络的完全同步4.6其它网络的完全同步4.7动态网络中各种因子与完全同步的关系4.8动态网络的相位同步4.9动态网络同步问题研究展望5网络控制作者李翔*,汪小帆,苏厚胜5.1引言5.2规则网络时空混沌的牵制控制5.3无标度动态网络的牵制控制:鲁棒性与脆弱性5.4一般复杂动态网络的牵制控制5.5多智能体网络的蜂拥控制5.6小结6网络传播作者周涛,汪秉宏*6.1引言6.2复杂网络上传播动力学的基本特征6.3网络免疫技术6.4结束语第二部分应用篇7生物网络的拓扑结构与动力学稳定性作者欧阳颀*,李方廷,谭宁7.1引言7.2细胞中调控网络的特性、研究方法和研究领域7.3酵母菌细胞周期和生命周期网络的动力学稳定性7.4复杂网络的拓扑性质和动力学收敛性7.5具有动力学稳定性的网络设计7.6小结8广义合作网络作者常慧,何大韧*8.1引言8.2广义合作网络的项目度分布与度分布8.3广义合作网络的同类性8.4广义合作网络的二方组项目度分布8.5广义合作网络的层次、群落与交连度8.6结论9城市交通网络的复杂性作者高自友*,赵小梅,黄海军9.1引言9.2城市交通网络9.3城市交通网络配流模型9.4城市交通网络复杂性问题的研究9.5展望10复杂网络理论在制造领域的应用作者祁国宁*,刘夫云10.1引言10.2零部件关系网络及其统计参数计算10.3产品族零部件通用性分析与用量预测10.4扩展的产品主结构网络及其应用10.5其它网络形式简介10.6展望11经济网络作者周石鹏*,许晓鸣11.1引言11.2基本概念和记号11.3网络的内生形成模型11.4基于网络的一般均衡模型11.5结论12信息网络作者汪秉宏*13网络模拟作者张宁*,王恒山13.1引言13.2网络生成方法13.3网络的静态统计量计算13.4复杂网络研究常用软件介绍13.5结束语第三部分经典文献篇(按发表年份为序)On the Evolution of Random Graphs作者P. Erdös, A. Rényi(发表于1960年)1 Introduction2 Thresholds for Subgraphs of Given Type3 Trees4 Cycles5 The Total Number of Points Belonging to Trees6 The Total Number of Points Belonging to Cycles7 The Number of Components8 The Size of the Greatest Tree9 When is a Planar Graph?Γ,n N10 On the Growth of the Greatest Component11 Remarks and Some Unsolved ProblemsStatistical Mechanics of Complex Networks作者R. Albert, A-L. Barabási(发表于2002年)1 Introduction3 Random Graph Theory5 Generalized Random Graph7 Scale-Free Networks8 The Theory of Evolving Networks9 Error and Attack Tolerance10 OutlookMathematical Results on Scale-Free Random Graphs 作者B. Bollobas, O. M. Riordan (发表于2003年)1 Introduction2 Classical Models of Random Graphs3 Results for Classical Random Graphs4 The Watts-Strogatz 'SmalI-World’ Model5 Scale-Free Models6 The Barabasi-Albert ModelG7 The LCD Model and )(nm8 The Buckley-Osthus Model9 The Copying Model10 The Cooper-Frieze Model11 Directed Scale-Free Graphs12 Clustering Coefficient and Small Subgraphs13 Pairings on [0, 1] and the Diameter of the LCD Model14 Robustness and Vulnerability15 The case [0,1]: Plane-Oriented Recursive Trees16 ConclusionThe ‘New’ Science of Networks 作者D. J. Watts(发表于2004年)1 Introduction2 Models of Network Structure3 Empirical Network Analysis4 Networks and Collective Dynamics5 Conclusion复杂网络中英文名词对照。
复杂网络分析方法
i t P(t) 1 ( i P(t))( i t)
k(i / 3) t1
i t1
t 1
i t2 1 ( i t)2
t 1
i t1
i 3,4,..., 18626 (8.3.15)
第23页/共54页
计算降水量序列可能出现的波动值的概率
Pk
k Num(x) N
(8.3.16)
第8页/共54页
图8.3.1 两种度分布:泊松分布(a)与幂律分布(b)
第9页/共54页
(2)距离与平均路径长度 在网络研究中,一般定义: 两个节点之间的距离(路径长度)为两个节点
间最短路径的长度; 网络的直径为任意两个节点之间的最大距离; 网络的平均路径长度则是所有节点对之间距离
的平均值,它描述了网络中节点之间的分离程度。
式中:Num(x) 为对应一种降水量波动模态x发生
的次数,Pk 为降水量序列可能出现的波动值的概率。
第24页/共54页
将降水量波动 Pk 划分为5个等概率区间,把落在 这5个区间的 k(t) 分别用符号表示为R,r,e, d,D, 即
R, 0 Pk 0.2
Si
r, e,
0.2 Pk 0.4 0.4 Pk 0.6
d , 0.6 Pk 0.8
D, 0.8 Pk 1.0
(8.3.17)
第25页/共54页
(8.3.17)式中,符号R,r,e, d,D所代表的含义 如图8.3.2所示:
图8.3.2 符号R,r,e,d,D 的含义
第26页/共54页
按照上述思想,可把日降水量序列 P(t) 转化为相 应的符号序列:
第三步:构建网络 引入一个加权网络来描述降水量序列中各波动
模态之间的关联性和作用,其中网络的节点就是125 个3元字符串的波动模态;