最新微尺度传热ppt
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长 的 时 间 隧 道,袅
微尺度传热ppt
目录
• 一、微尺度传热产生的背景及发展 • 二、微尺度传热的特点 • 三、微尺度传热研究的主要问题 • 四、微尺度传热应用的主要领域 • 五、参考文献
一、 微尺度传热产生的背景及发展
早期的微尺度传热学研究主要集中在导热问题上,之后则扩展到辐射 和对流问题。关于微尺度下热导率依赖于材料厚度的认识追溯到20世纪 30年代,且最早是由物理学家认识到的:20世纪60年代后期,热物理学 家(其中尤以美国加州大学的旧反霖教授为代表)开始注意到一系列工程器 件中的传热问题的尺寸效应,于是微尺度传热学俏然兴起,特别到80年 代后期进展更为迅速。因此,对于所有微电子机械系统(MEMS)的设计 及应用来说,全面了解系统在特定尺度内的微机电性质及材料的热物性、 热行为等已经成为边在眉睫的任务;于是现代热科学中的一门崭新学 科——微米/纳米尺度传热学应运而生。1997 年国际传热传质中心首次 召开了微传热的国际会议,成为微尺度传热这一学科正式建立的标志[ 1 ] 。
导热系数的尺度效应的物理机制来自于两个方面:一是与导热问 题中的特征长度有关;另一方面导热能力与材料中晶粒大小有关,当 尺寸减小时,晶粒尺寸会随之减小,由于晶粒界面增大,所以输运能 力减弱,导热系数降低。
• 导热的波动效应
研究导热问题时,最常用的是傅立叶定律,即热流与温度梯度成 正比,然而 ,在研究快速瞬态导热时,发现傅立叶定律不再适用,此时 热量温度传播是以波动方式传播,这与基于傅立叶定律的抛物型导热 方程所阐述的的能量传递方式有很大不同。
- ns (10 - 9s) – ps ( 10 - 12s) -fs (10 - 15s) 其中ns 是目前数字系统如计算机的时钟脉冲宽度的量级。
图1 多尺度的客观世界
微尺度的流动和传热与常规尺度的流动和传热的 不同的原因:
(1)当物体的特征尺寸缩小至与载体粒子的平均自由程同一量级时, 基于连续介质概念的一些宏观概念和规律就不再适用,粘性系数、导 热系数等概念要重新讨论 , N-S方程和导热方程等也不再适用。
(2)物体的特征尺寸远大于载体粒子的平均自由程,即连续介质的假 定仍能成立,但是由于尺度的微细,使原来的各种影响因数的相对重要 性发生了变化,从而导致流动和传热规律的变化。
三、微尺度传热研究的主要问题
• 微尺度导热 • 微尺度流动和对流换热 • 微尺度热辐射 • 微尺度的相变传热
1、微尺度导热
• 导热系数的尺度效应
微细尺度传热问题的工程背景来自于80年代高密度微电子器件的冷却 和90年代出现的微电子机械系统中的流动和传热问题它的特点是, 当空间 和时间尺度微细化后, 出现了很多与常规尺度下不同的物理现象, 其原因
可以分为两大类一类是连续介质的假定不再适用,另一类则是各种作用 力的相对重要性发生了变化所需研究的挑战性问题有, 导热系数的 尺度效应、导热的波动现象, 微小通道中来自百度文库动和传热, 流动压缩性 和界面效应等的影响, 微细尺度下的辐射和相变等。
微细尺度传热是近些年形成的一个新的学科分支,主要研究空间尺度和时 间尺度微细情况下的传热学规律。当尺度微细化后,其动和传热的规律已明显 不同于常规尺度条件下的流动和传热现象,换言之,当研究对象微细到一定程 度以后 ,出现了流动和传热的尺度效应。“微细”只是一个相对的概念 ,而不是 指某一特定尺度。不同的场合会有不同的定义。所谓“微尺度”并没有严格的 界定,只是一个相对大小的概念,它不仅包括空间尺度,还包括时间尺度。随着 研究对象的不同,出现微尺度效应的时空尺度范围也不相同。通常所指的空间微 尺度是跨越微米到原子尺度的宽广范围:
进 入 夏 天 ,少 不了一 个热字 当头, 电扇空 调陆续 登场, 每逢此 时,总 会想起 那 一 把 蒲 扇 。蒲扇 ,是记 忆中的 农村, 夏季经 常用的 一件物 品。 记 忆 中 的故 乡 , 每 逢 进 入夏天 ,集市 上最常 见的便 是蒲扇 、凉席 ,不论 男女老 少,个 个手持 一 把 , 忽 闪 忽闪个 不停, 嘴里叨 叨着“ 怎么这 么热” ,于是 三五成 群,聚 在大树 下 , 或 站 着 ,或随 即坐在 石头上 ,手持 那把扇 子,边 唠嗑边 乘凉。 孩子们 却在周 围 跑 跑 跳 跳 ,热得 满头大 汗,不 时听到 “强子 ,别跑 了,快 来我给 你扇扇 ”。孩 子 们 才 不 听 这一套 ,跑个 没完, 直到累 气喘吁 吁,这 才一跑 一踮地 围过了 ,这时 母 亲总是 ,好似 生气的 样子, 边扇边 训,“ 你看热 的,跑 什么? ”此时 这把蒲 扇, 是 那 么 凉 快 ,那么 的温馨 幸福, 有母亲 的味道 ! 蒲 扇 是 中 国传 统工艺 品,在 我 国 已 有 三 千年多 年的历 史。取 材于棕 榈树, 制作简 单,方 便携带 ,且蒲 扇的表 面 光 滑 , 因 而,古 人常会 在上面 作画。 古有棕 扇、葵 扇、蒲 扇、蕉 扇诸名 ,实即 今 日 的 蒲 扇 ,江浙 称之为 芭蕉扇 。六七 十年代 ,人们 最常用 的就是 这种, 似圆非 圆 , 轻 巧 又 便宜的 蒲扇。 蒲 扇 流 传 至今, 我的记 忆中, 它跨越 了半个 世纪, 也 走 过 了 我 们的半 个人生 的轨迹 ,携带 着特有 的念想 ,一年 年,一 天天, 流向长
目前大部分的文章探讨了激光脉冲加热的金属薄膜,或是对半导 体等薄膜材料的研究和集中于某种材料的制备方法和应用的研究, 如若对非金属薄膜材料的传热机理加以研究, 将使体积和重量不断 减少的半导体微尺度器件促成一些新的工程应用, 开辟新的市场,并 为有关基础探索提供了崭新的研究手段。
二、 微尺度传热的特点
- 微米- 亚微米- 纳米- 团簇- 原子其中微米范围的上限是在100μm 以下,而亚微米通常定义为0. 1μm 以下至nm 之 间。团簇一般定义为尺度为1nm 以下的原子聚合体,由几个到几百个原子构成。 在亚微米和团簇之间的1nm~100nm 范围是纳米体系所在处。目前集成电路的 特征线条尺寸已进入纳米范围。通常所说的时间微尺度的范围是:
微尺度传热ppt
目录
• 一、微尺度传热产生的背景及发展 • 二、微尺度传热的特点 • 三、微尺度传热研究的主要问题 • 四、微尺度传热应用的主要领域 • 五、参考文献
一、 微尺度传热产生的背景及发展
早期的微尺度传热学研究主要集中在导热问题上,之后则扩展到辐射 和对流问题。关于微尺度下热导率依赖于材料厚度的认识追溯到20世纪 30年代,且最早是由物理学家认识到的:20世纪60年代后期,热物理学 家(其中尤以美国加州大学的旧反霖教授为代表)开始注意到一系列工程器 件中的传热问题的尺寸效应,于是微尺度传热学俏然兴起,特别到80年 代后期进展更为迅速。因此,对于所有微电子机械系统(MEMS)的设计 及应用来说,全面了解系统在特定尺度内的微机电性质及材料的热物性、 热行为等已经成为边在眉睫的任务;于是现代热科学中的一门崭新学 科——微米/纳米尺度传热学应运而生。1997 年国际传热传质中心首次 召开了微传热的国际会议,成为微尺度传热这一学科正式建立的标志[ 1 ] 。
导热系数的尺度效应的物理机制来自于两个方面:一是与导热问 题中的特征长度有关;另一方面导热能力与材料中晶粒大小有关,当 尺寸减小时,晶粒尺寸会随之减小,由于晶粒界面增大,所以输运能 力减弱,导热系数降低。
• 导热的波动效应
研究导热问题时,最常用的是傅立叶定律,即热流与温度梯度成 正比,然而 ,在研究快速瞬态导热时,发现傅立叶定律不再适用,此时 热量温度传播是以波动方式传播,这与基于傅立叶定律的抛物型导热 方程所阐述的的能量传递方式有很大不同。
- ns (10 - 9s) – ps ( 10 - 12s) -fs (10 - 15s) 其中ns 是目前数字系统如计算机的时钟脉冲宽度的量级。
图1 多尺度的客观世界
微尺度的流动和传热与常规尺度的流动和传热的 不同的原因:
(1)当物体的特征尺寸缩小至与载体粒子的平均自由程同一量级时, 基于连续介质概念的一些宏观概念和规律就不再适用,粘性系数、导 热系数等概念要重新讨论 , N-S方程和导热方程等也不再适用。
(2)物体的特征尺寸远大于载体粒子的平均自由程,即连续介质的假 定仍能成立,但是由于尺度的微细,使原来的各种影响因数的相对重要 性发生了变化,从而导致流动和传热规律的变化。
三、微尺度传热研究的主要问题
• 微尺度导热 • 微尺度流动和对流换热 • 微尺度热辐射 • 微尺度的相变传热
1、微尺度导热
• 导热系数的尺度效应
微细尺度传热问题的工程背景来自于80年代高密度微电子器件的冷却 和90年代出现的微电子机械系统中的流动和传热问题它的特点是, 当空间 和时间尺度微细化后, 出现了很多与常规尺度下不同的物理现象, 其原因
可以分为两大类一类是连续介质的假定不再适用,另一类则是各种作用 力的相对重要性发生了变化所需研究的挑战性问题有, 导热系数的 尺度效应、导热的波动现象, 微小通道中来自百度文库动和传热, 流动压缩性 和界面效应等的影响, 微细尺度下的辐射和相变等。
微细尺度传热是近些年形成的一个新的学科分支,主要研究空间尺度和时 间尺度微细情况下的传热学规律。当尺度微细化后,其动和传热的规律已明显 不同于常规尺度条件下的流动和传热现象,换言之,当研究对象微细到一定程 度以后 ,出现了流动和传热的尺度效应。“微细”只是一个相对的概念 ,而不是 指某一特定尺度。不同的场合会有不同的定义。所谓“微尺度”并没有严格的 界定,只是一个相对大小的概念,它不仅包括空间尺度,还包括时间尺度。随着 研究对象的不同,出现微尺度效应的时空尺度范围也不相同。通常所指的空间微 尺度是跨越微米到原子尺度的宽广范围:
进 入 夏 天 ,少 不了一 个热字 当头, 电扇空 调陆续 登场, 每逢此 时,总 会想起 那 一 把 蒲 扇 。蒲扇 ,是记 忆中的 农村, 夏季经 常用的 一件物 品。 记 忆 中 的故 乡 , 每 逢 进 入夏天 ,集市 上最常 见的便 是蒲扇 、凉席 ,不论 男女老 少,个 个手持 一 把 , 忽 闪 忽闪个 不停, 嘴里叨 叨着“ 怎么这 么热” ,于是 三五成 群,聚 在大树 下 , 或 站 着 ,或随 即坐在 石头上 ,手持 那把扇 子,边 唠嗑边 乘凉。 孩子们 却在周 围 跑 跑 跳 跳 ,热得 满头大 汗,不 时听到 “强子 ,别跑 了,快 来我给 你扇扇 ”。孩 子 们 才 不 听 这一套 ,跑个 没完, 直到累 气喘吁 吁,这 才一跑 一踮地 围过了 ,这时 母 亲总是 ,好似 生气的 样子, 边扇边 训,“ 你看热 的,跑 什么? ”此时 这把蒲 扇, 是 那 么 凉 快 ,那么 的温馨 幸福, 有母亲 的味道 ! 蒲 扇 是 中 国传 统工艺 品,在 我 国 已 有 三 千年多 年的历 史。取 材于棕 榈树, 制作简 单,方 便携带 ,且蒲 扇的表 面 光 滑 , 因 而,古 人常会 在上面 作画。 古有棕 扇、葵 扇、蒲 扇、蕉 扇诸名 ,实即 今 日 的 蒲 扇 ,江浙 称之为 芭蕉扇 。六七 十年代 ,人们 最常用 的就是 这种, 似圆非 圆 , 轻 巧 又 便宜的 蒲扇。 蒲 扇 流 传 至今, 我的记 忆中, 它跨越 了半个 世纪, 也 走 过 了 我 们的半 个人生 的轨迹 ,携带 着特有 的念想 ,一年 年,一 天天, 流向长
目前大部分的文章探讨了激光脉冲加热的金属薄膜,或是对半导 体等薄膜材料的研究和集中于某种材料的制备方法和应用的研究, 如若对非金属薄膜材料的传热机理加以研究, 将使体积和重量不断 减少的半导体微尺度器件促成一些新的工程应用, 开辟新的市场,并 为有关基础探索提供了崭新的研究手段。
二、 微尺度传热的特点
- 微米- 亚微米- 纳米- 团簇- 原子其中微米范围的上限是在100μm 以下,而亚微米通常定义为0. 1μm 以下至nm 之 间。团簇一般定义为尺度为1nm 以下的原子聚合体,由几个到几百个原子构成。 在亚微米和团簇之间的1nm~100nm 范围是纳米体系所在处。目前集成电路的 特征线条尺寸已进入纳米范围。通常所说的时间微尺度的范围是: