《数学分析》第五章 导数与微分

合集下载

数学分析第五章第一节

数学分析第五章第一节

8
西南财经大学经济数学学院数学分析教研室
若令 x 0 ∆ 注 (2)若令 x= x +∆ 则 x→ ⇔x→x 0 0
f (x)− f (x ) 0 f ′(x ) = lim 0 x→ 0 x x−x 0
, 从而
f (x +∆ )− f (x )可变化为 x 0 0 f 0 即 ′(x ) = lim x 0 ∆→ x ∆ f (x +h − f (x ) ) f (x)− f (x ) 0 0 0 f ′(x ) =lim = lim 0 h 0 x→ 0 x → h x−x 0 f 0 在 例若 ′(x )存 ,则 f (x −∆ )− f (x ) x 0 0 lim =−f ′(x ), 0 x 0 ∆→ x ∆ f (x )− f (x −h ) 0 0 lim = f ′(x ). 0 h 0 → h
10
西南财经大学经济数学学院数学分析教研室
点处的可导性: 例 讨论下列函数在 x = 0 点处的可导性:
1 x≠0 xsin (1 f (x) = ) ; x x=0 0 1 2 x≠0 x sin (2 f (x) = ) . x x=0 0
1 xsin f (x)− f (0 ) x =lim 1不 在 存 ) 为 解 (1因 lim sin =lim x→ 0 x→ 0 x→ 0 x−0 x x
(四)左右导数 四 左右导数
则称此极限值为函数ƒ(x)在点 0处的右导数.也称 在点x 右导数.也称ƒ(x)在点 0的右 在点x 则称此极限值为函数 在点 在点 可导. 可导 记作
左导数. 也称ƒ(x)在点 x0 左可导 记 限值为函数 ƒ(x)在点 x0 处的左导数 也称 在点 在点 左可导. 作

数学分析5.5微分(含习题详解)

数学分析5.5微分(含习题详解)

第五章导数和微分5 微分一、微分的概念定义1:设函数y=f(x)定义在点x0的某邻域U(x0)内. 当给x0一个增量△x,x0+△x∈U(x0)时,相应地得到函数的增量为△y=f(x0+△x)-f(x0). 如果存在常数A,使得△y能表示为△y=A△x +o(△x),则称函数f在点x0可微,并称上式中的第一项A△x为f在点x0的微分,记作:dy=A△x,或df(x)=A△x.当A≠0时,微分dy称为增量△y的线性主部。

定理5.10:函数f在点x0可微的充要条件是函数f在点x0可导,而且定义中的A=f’(x0).证:先证必要性:若f在点x0可微,则△y=A△x +o(△x),即=A+o(1),两边取极限得:f’(x0)==(A+o(1))=A.再证充分性:若f在点x0可导,则f在点x0的有限增量公式为:△y=f’(x0)△x+o(△x),根据微分的定义,f在点x0可微且有dy=f’(x0)△x.微分的几何意义:(如图)当自变量由x0增加到x0+△x时,函数增量△y= f(x0+△x)-f(x0)=RQ,而微分则是在点P处的切线上与△x所对应的增量,即dy=f’(x0)△x=RQ’,且==f’(x0)=0,所以当f ’(x 0)≠0时,=0. 即当x →x 0时线段Q ’Q 远小于RQ ’。

若函数y=f(x)在区间I 上每一点都可微,则称f 为I 上的可微函数.函数y=f(x)在I 上任一点x 处的微分记作dy=f ’(x)△x ,x ∈I. 特别地,当y=x 时,dy=dx=△x ,则微分也可记为dy=f ’(x)dx ,即 f ’(x)=,可见函数的导数等于函数微分与自变量微分的商。

因此导数也常称为微商。

二、微分的运算法则1、d[u(x)±v(x)]=du(x)±dv(x);2、d[u(x)v(x)]=v(x)du(x)+u(x)dv(x);3、d=;4、d(f ◦g(x))=f ’(u)g ’(x)dx ,其中u=g(x),或dy=f ’(u)du.例1:求y=x 2lnx+cosx 2的微分。

[高等教育]《数学分析》17第五章 导数与微分

[高等教育]《数学分析》17第五章 导数与微分

第五章 导数与微分引 言导数与微分是数学分析的基本概念之一。

导数与微分都是建立在函数极限的基础之上的。

导数的概念在于刻划瞬时变化率。

微分的概念在于刻划瞬时改变量。

求导数的运算被称为微分运算,是微分学的基本运算,也是积分的重要组成部分。

本章主要内容如下:1. 以速度问题为背景引入导数的概念,介绍导数的几何意义;2. 给出求导法则、公式,继而引进微分的概念;3. 讨论高阶导数、高阶微分以及参数方程所确定函数的求导法。

4. 可导与连续,可导与微分的关系。

导数与微分有广泛的应用,特别对研究初等函数变化的性态是极为有效的工具,因此学好本章内容意义非凡。

总起来讲: 1) 什么是导数?2) 导数有何用?3) 怎么算导数?4) 什么是微分?为什么引进?怎么算?§1 导数的概念[学习目的] 使学生准备掌握导数的概念。

明确其物理、几何意义,能从定义出发求一些简单函数的导数与微分,能利用导数的意义解决某些实际应用的计算问题。

[学习要求] 深刻理解导数的概念,能准确表达其定义;明确其实际背景并给出物理、几何解释;能够从定义出发求某些函数的导数;知道导数与导函数的相互联系和区别;明确导数与单侧导数、可导与连续的关系;能利用导数概念解决一些涉及函数变化率的实际应用为体;会求曲线上一点处的切线方程。

[学习重点] 导数的概念。

[学习难点] 导数的概念。

[教学方法]“系统讲授”结合“问题教学”。

[学习程序]一 导数的定义1. 引言(背景)导数的概念和其它的数学概念一样是源于人类的实践。

具体来讲,导数的思想最初是有法国数学家费马(Fermat )为研究极值问题而引入的。

后经牛顿、莱布尼兹(Leibuiz )等数学家的努力,提炼出了导数的思想,给出了导数的精确定义。

在引入导数的定义前,先看两个与导数概念有关的实际问题。

问题1. 已知曲线求它的切线:曲线方程)(x f y =,),(00y x p =是其上一点,求)(x f y =通过点p 的切线方程。

数学分析PPT课件第四版华东师大研制 第5章 导数和微分

数学分析PPT课件第四版华东师大研制  第5章 导数和微分

意一点 x 都有 f 的一个导数 f ( x0 )与之对应, 这就
定义了一个在区间 I 上的函数,称为 f 在 I 上的
导函数,简称导数,
记作
f ( x) 或
dy dx
.

f ( x)
lim
D x0
f (x Dx) Dx
f (x),
x I.
(7)
注 这里 dy 仅为一个记号,学了微分之后就会知
(cos
x)
sin D x
lim Dx0
2 Dx
lim sin( x
D x0
Dx) 2
sin
x.
2
前页 后页 返回
(iii) 由于
a xD x a x a x aD x 1 a x eD x ln a 1
Dx
Dx
Dx
a x ln a eD xln a 1, D x ln a
因此 (a x ) a x ln a lim eDxlna 1 a x ln a . 特别有 Dx0 Dx ln a
记 为切线与 x 轴正向的夹角,则
f (x0) = tan .
前页 后页 返回
由此可知, f (x0) 0 说明 是锐角; f (x0) 0 说
明 是钝角; f x0 0 说明 0 ( 切线与 x 轴平
行 ).
y
y 0

y 0 •
y 0

yf (x)
O
x
点击上图动画演示
前页 后页 返回
前页 后页 返回
证 当 x0 0 时,用归结原理容易证明 f (x) 在点 x0 不连续, 由定理 5.1, f (x) 在点 x0 不可导.
当 x0 = 0 时, 因为 D( x) 1,所以有

5-5——华东师范大学数学分析课件PPT

5-5——华东师范大学数学分析课件PPT
v( x)
v( x)d u( x) u( x)dv( x) v2(x)
函数 f 在点 x0 可微的充要条件是 f 在点 x0 可
导, 且 d f ( x) x x0 f ( x0)Δ x .
证 (必要性) 如果 f 在点 x0 可微, 据 (1) 式有
于是
Δy A o(1). Δx
f
(
x0
)
lim
Δ x 0
Δ Δ
y x
lim ( A o(1)) A ,
Δ x 0
(4) 式的写法会带来不少好处, 首先可以把导数看
成函数的微分与自变量的微分之商, 即
d y f ( x) ,
(5)
dx
所以导数也称为微商. 更多的好处将体现在后面
积分学部分中.
数学分析 第一章 实数集与函数
高等教育出版社
§5 微分
微分的概念
微分的 运算法则
高阶微分
微分在近似计算 中的应用
例1 d(x ) x 1 dx ;
d (sin x) cos x dx ; d (a x ) a x ln a dx .
数学分析 第一章 实数集与函数
高等教育出版社
§5 微分
微分的概念
微分的运算法则
微分的 运算法则
高阶微分
微分在近似计算 中的应用
由导数与微分的关系,可方便得出微分运算法则: 1. d (u( x) v( x)) du( x) dv( x); 2. d(u( x)v( x)) v( x)du( x) u( x)dv( x);
Δ S ( x x)2 x2 2x x ( x)2 由两部分组成 :
Δ x 的线性部分 2xΔx 和 Δ x 的高阶部分( Δ x)2. 因

《数学分析》第五章导数和微分1

《数学分析》第五章导数和微分1

《数学分析》第五章导数和微分1《数学分析》第五章导数和微分1导数和微分是数学分析中非常重要的概念。

导数以及微分的概念不仅在数学中有着广泛的应用,而且在物理、经济、工程等各个学科中都起着关键的作用。

本章首先介绍导数的概念和性质。

导数是描述函数变化快慢的指标,它衡量了函数在其中一点附近的变化率。

直观地说,如果函数在其中一点附近呈现出逐渐增大的趋势,那么该点的导数将是正值;如果函数在其中一点附近呈现出逐渐减小的趋势,那么该点的导数将是负值。

导数的符号和数值都能够揭示出函数局部性质的特点。

导数的计算通常使用极限的概念。

通过定义极限,我们可以精确地计算出函数在其中一点的导数值。

导数的定义以及计算方法是数学分析中的重要内容,对于理解函数的变化规律以及解决实际问题有着重要的帮助。

接下来,本章详细介绍了一阶导数和高阶导数的概念。

一阶导数是函数变化最基本的指标,它描述了函数在其中一点的瞬时变化率;而高阶导数则描述了函数变化率的变化率,它们在一阶导数的基础上进一步深化了对函数性质的研究。

导数和微分在实际问题中有着丰富的应用。

通过导数和微分可以解决各种数学建模中的问题,如最大值、最小值的求解、函数图形的研究、曲线的切线和法线的求解等等。

导数和微分在物理学、经济学、工程学等应用领域也有着广泛的运用,如速度和加速度的求解、最优化问题的分析等。

在本章的最后,还介绍了一些与导数和微分相关的基本定理,如费马定理、罗尔定理、拉格朗日中值定理等。

这些定理是导数和微分性质的重要推论,它们在数学分析和应用领域中起着重要的作用。

总之,导数和微分是数学分析中重要的概念,它们具有广泛的应用价值。

通过深入学习导数和微分的概念、性质和计算方法,我们可以更好地理解函数的特性、求解实际问题,为数学和应用科学的发展做出贡献。

2.许寿裳,王薄清.数学分析[M].高等教育出版社,2024.。

[整理]《数学分析》第五章 导数与微分.

[整理]《数学分析》第五章 导数与微分.

第五章 导数与微分 (计划课时:1 2时)§1 导数的概念 ( 2 时)一. 导数的背景与定义:1. 背景:曲线的切线、直线运动的瞬时速度. 2.导数的定义: )(0x f '定义的各种形式. )0(f '的定义. 导数的记法.有限增量公式: .0 ),( )(0→∆∆+∆'=∆x x x x f y 例1 ,)(2x x f = 求). 1 (f '例2 设函数)(x f 在点0x 可导, 求极限 .)3()(lim000hh x f x f h --→3.单侧导数: 定义. 单侧可导与可导的关系. 曲线的尖点.例3 . )(x x f = 考查)(x f 在点0=x 的可导情况.例4 设⎩⎨⎧<≥-=.0,,0,cos 1)(x x x x x f 讨论)(x f 在点0=x 处的左、右导数与导数.二. 导数的几何意义:可导的几何意义, 导数的几何意义, 单侧导数的几何意义. 例5 求曲线2)(x x f y ==在点) 1 , 1 (处的切线与法线方程.三. 可导与连续的关系:Th1 若函数f 在点0x (左、右)可导,则f 在点0x (左、右)连续.例6 证明函数)()(2x D x x f =仅在点00=x 处可导,其中)(x D 为Dirichlet 函数.四 导函数: 函数在区间上的可导性, 导函数, 导函数的记法..)()(lim )(0xx f x x f x f x ∆-∆+='→∆(注意:x sin 等具体函数的导函数不能记为,n si x ' 应记为.)(sin 'x ) 例7 求下列函数的导数:⑴ ,)(nx x f = ⑵x x f sin )(=, ⑶x x f a log )(=.五 导函数的介值性:1 极值的定义例8 证明: 若,0)(0>'+x f 则),(,000δδ+∈∀∍>∃x x x ,有)()(0x f x f <. 2 取极值的必要条件: Th2 (Fermat 定理)3 导函数的介值性:引理 (导函数的介值性)若函数f 在闭区间],[b a 上可导, 且,0)()(<''-+b f a f 则.0)( ),,( ='∍∈∃ξξf b a ( 证 )Th3 (Darboux 定理)设函数)(x f 在区间],[b a 上可导且)()(b f a f '≠'. 若k 为介于)(a f '与)(b f '之间的任一实数, 则.)( ),,(k f b a ='∍∈∃ξξ(设),()(a f k b f '<<'对辅助函数kx x f x F -=)()(,应用系4的结果.) ( 证 ) Ex [1]P 94—95 1—9§2 求 导 法 则( 4时)一 导数的四则运算法则: 推导导数四则运算公式. (只证“⨯”和“÷”)例1 .95)(23π+-+=x x x x f 求).(x f '例2 .ln cos x x y = 求.|π='x y ( ). 1π-例3 .122x x y +-=求.dx dy例4 证明: . ,) (1+---∈-='Z n nx xn n( 用商的求导公式证明 ).例5 证明: .csc ) ( ,sec ) (22x ctgx x tgx -='=' 例6 证明:.sec sec xtgx x dxd=. 二 反函数的导数: 推导公式并指出几何意义.例8 证明反三角函数的求导公式. ( 只证反正弦 ) Ex [1]P 102 1,2.三 复合函数的导数:推导复合函数的求导公式.例9 设,sin 2x y =求y '.例10 设α为实数,求幂函数)0( ≥=x x y α的导数. 解 ().1ln ln -=⋅=⋅='='αααααααx xx xeey xx例11 ,1)(2+=x x f 求 )0(f '和). 1 (f ' 例12 ),1ln(2++=x x y 求 .y '例13 ,12xtgy = 求 .y ' 四 取对数求导法:例14 设215312)4()2()4()5(++-+=x x x x y , 求 .y '例15 ().s i n ln xx y = 求 .y '例16 设)()(x v x u y =, 其中0)(>x u ,且)(x u 和)(x v 均可导, 求 .y '五 基本求导法则与公式:1 基本求导法则.2基本初等函数导数公式. 公式表: [1]P 101.Ex [1]P 102 3,4.§3 参变量函数的导数1 设曲线C 的参变量方程为⎩⎨⎧≤≤==)().(),(βαψϕt t y t x ,设函数)( ),(t y t x ψϕ==可导且,0)(⇒≠'t ϕ.)()(t t dx dy ϕψ''=证:(证法一) 用定义证明.(证法二) 由 ,0)(⇒≠'t ϕ恒有0)(>'t ϕ或.0)(<'t ϕ)( t ϕ⇒严格单调. ( 这些事实的证明将在下一章给出. ) 因此, )(t ϕ有反函数, 设反函数为x t (1-=ϕ), 有(),)()(1x t y -==ϕψψ 用复合函数求导法, 并注意利用反函数求导公式. 就有.)()(t t dtdx dt dydx dt dt dy dx dy ϕψ''==⋅=例1 .sin ,cos t b y t a x == 求.dxdy2 若曲线C 由极坐标)(θρρ=表示,则可转化为以极角θ为参数的参数方程:⎩⎨⎧====.sin )(sin ,cos )(cos θθρθρθθρθρy x 则.tan )()()(tan )(θθρθρθρθθρ-'+'=dx dy 例2 证明:对数螺线2θρe =上所有点的切线与向径的夹角ϕ为常量. Ex [1]P 105 1,2,3.§4 高 阶 导 数一 高阶导数:定义: .)()(lim)(0000xx f x x f x f x ∆'-∆+'=''→∆()().)()( ,)()()1()('=''=''-x f x f x f x f n n 注意区分符号)(0x f ''和().)(0''x f高阶导数的记法.二 几个特殊函数的高阶导数:1. 多项式: 多项式的高阶导数. 例1 求幂函数nx y =(n 为正整数)的各阶导数. 例2. 正弦和余弦函数: 计算())(sin n x 、())(cos n x 、())(sin n kx 、())(cos n kx 的公式.例3. x e 和kxe 的高阶导数: 例4.x1的高阶导数: 例5))((1b x a x ++的高阶导数:例6 分段函数在分段点的高阶导数:以函数⎪⎩⎪⎨⎧<-≥=.0 ,,0 ,)(22x x x x x f 求)(x f ''为例.三 高阶导数的运算性质: 设函数)(x u 和)(x v 均n 阶可导. 则1. ()).()()()(x ku x ku n n =2.()).()()()()()()(x v x u x v x u n n n ±=±3. 乘积高阶导数的Leibniz 公式: 约定 ).()()0(x u x u =()∑=-=nk k k n k n n x v x u C x v x u 0)()()().()()()( ( 介绍证法.) 例7 ,cos x e y x= 求 .)5(y解 ⇒====== .10 ,5 ,1352545155505C C C C C C).cos (sin 4)sin cos 5sin 10cos 10sin 5(cos )5(x x e x x x x x x e yx x -=-++--=例8 ),(arctgx f y = 其中)(x f 二阶可导. 求.22dx yd 例9 验证函数x y arcsin =满足微分方程 ) 3 ( .0)12()1()(2)1()2(2≥=-+--++n y n xy n y x n n n并依此求 ).0()(n y解 .11 ,1122='--='y x xy 两端求导,011 22=-'-''-⇒xy x y x 即.0)1(2='-''-y x y x 对此式两端求n 阶导数, 利用Leibniz 公式, 有=---+-+-+++)(1)1()(2)1(1)2(2)2()2()1(n n n n n n n n y C xy y C y x C yx .0)12()1()(2)1()2(2=-+--=++n n n y n xy n yx可见函数x y arcsin =满足所指方程. 在上式中令,0=x 得递推公式).(2)2( n n y n y=+注意到 0)0(=''y 和 1)0(='y , 就有k n 2=时, ;0)0()(=n y12+=k n 时, )0(13)32()12()0(2222)(f k k y n '⋅⋅--= [].!)!12(2-=k四. 参数方程所确定函数的高阶导数:=''⎪⎪⎭⎫ ⎝⎛''=⎪⎭⎫⎝⎛=)()()(22t t t dtdx dx dy dt d dx y d ϕϕψ().)()()()()(3t t t t t ϕϕψϕψ''''-''' 例6 .sin ,cos t b y t a x == 求.22dx yd 解 .c t g t abdx dy -= .s i n 3222t a b dx y d -== Ex [1]P 109 1—6.§5 微 分一 微分概念:1. 微分问题的提出: 从求正方形面积增量的近似值入手,引出微分问题.2. 微分的定义:Th1 ( 可微与可导的关系 ).3. 微分的几何意义:二 微分运算法则:一阶微分形式不变性. 利用微分求导数. 微商.例1 已知,cos ln 22x x x y += 求dy 和 .y '例2 已知,)sin(b ax ey += 求dy 和 .y '三 高阶微分:高阶微分的定义: ()()=⋅'='==dx x f d dxx f d dy d y d )()()(2.)())(()(22dx x f dx x f dx dx x f ''=''=⋅''=n 阶微分定义为1-n 阶微分的微分, 即().)()(1n n n ndx x f y dd y d ===-(注意区分符号 )( ),0( ,)(2222x dx d dx dx ==的意义.) 例3 已知.)( ,sin )(2x x u u u f y ====ϕ 求 .2y d以例3为例, 说明高阶微分不具有形式不变性:在例7中, 倘若以u y sin =求二阶微分, 然后代入2x u =, 就有;s i n 4)2(s i n )(s i n )()(s i n22222222dx x x xdx x du u du u y d -=-=-=''= 倘若先把2x u =代入u y sin =, 再求二阶微分, 得到.sin 4cos 2)sin 4cos 2(sin 222222222222dx x x dx x dx x x x x d y d -=-==可见上述两种结果并不相等. 这说明二阶微分已经不具有形式不变性. 一般地, 高阶微分不具有形式不变性.四 微分的应用:1. 建立近似公式: 原理: ,dy y ≈∆ 即 ).)(()()(000x x x f x f x f -'+≈ 特别当00=x 时, 有近似公式 .)0()0()(x f f x f '+≈ 具体的近似公式如:x e x nx x x x n +≈+≈+≈1 ,111 ,s i n 等.2. 作近似计算: 原理: .)()()(00.0x x f x f x x f ∆'+=∆+例4 求 97.0 和 3127的近似值.例5 求29sin 的近似值. ( 参阅[1]P 138 E4 ) 3.估计误差:绝对误差估计: ,)(0x x f y ∆'≈∆相对误差估计: ),(ln ln ),0( )(⇒=>=x f y x f y.)(ln x f d ydyy y =≈∆ 例6( [1]P 138 E5 )设已测得一根圆轴的直径为cm 43,并知在测量中绝对误差不超过cm 2.0. 试求以此数据计算圆轴的横截面面积时所产生的误差.4. 求速度: 原理: .)(,)( ),(dtdx x f dt dy dx x f dy x f y '='== 例7 球半径R 以sec 2.0cm 的速度匀速增大.求cm R 4=时,球体积增大的速度. [4]P 124 E53 ⅰ)Ex [1]P 116 1—5.。

§5.5 微分 数学分析(华师大 四版)课件 高教社ppt 华东师大教材配套课件

§5.5 微分 数学分析(华师大 四版)课件 高教社ppt 华东师大教材配套课件

0()f x '*点击以上标题可直接前往对应内容微分从本质上讲是函数增量中关于自变量增量的如果给边长x 一个增量, 正方形面积的增量Δx 的线性部分和的高阶部分( )2.Δx 2Δx x Δx Δx 此时, 当边长x 增加一个微小量时,可用Δx Δx ΔS 微分的概念222Δ()2()S x x x x x x =+∆-=∆+∆由两部分组成:设一边长为x 的正方形, 它的面积S = x 2是x 的函线性部分, 请先看一个具体例子.数.后退前进目录退出因的线性部分来近似.由此产生的误差是一个关于的高阶无穷小量Δx2(Δ),x即以为边长的小正方形(如图).Δx2xΔx x2Δx定义500Δ(Δ)()y f x x f x =+-可以表示成ΔΔ(Δ),(1)y A x o x =+设函数0(),().y f x x U x =∈并称为 f 在点处的微分, 记作ΔA x 0x 其中A 是与无关的常数, 则称函数f 在点0x Δx 由定义, 函数在点处的微分与增量只相差一个0x 关于的高阶无穷小量,而是的线性函数.Δx d y Δx ,d 0x A y x x ∆==()(2).d 0x A x f x x ∆==或更通俗地说, 是的线性近似.Δy d y 如果增量可微,定理5.10Δ(1).ΔyA o x=+于是00d ()()Δ.x x f x f x x ='=导, 且证(必要性)如果在点可微, 据(1) 式有f 0x 0Δ0Δ()lim Δx yf x x →'=即在点可导, 且f 0x 0().f x A '=函数在点可微的充要条件是在点可f f 0x 0x Δ0lim ((1)),x A o A →=+=(充分性) 设在点处可导,f 0x 0Δ()Δ(Δ),y f x x o x '=+00d ()Δ.x x yf x x ='=且f 则由的有限增量公式说明函数增量可Δy 表示为的线性部分,与关于的高x ∆0()Δf x x 'Δx 所以在点可微,f 0x 阶无穷小量部分之和.(Δ)o x 定理5.1000d ()()Δ.x x f x f x x ='=导, 且函数在点可微的充要条件是在点可f f 0x 0x0Δx x+xyO()y f x =Δyd y0x P RQ Q '∙∙∙∙Δ,y RQ =它是点P 处切线相在点的增量为f 0x d ,y RQ '=而微分是应于的增量.Δx 当很小时,两者之差相比于|Δd |y y Q Q '-=|Δ|x |Δ|x 将是更小的量(高阶无穷小).微分概念的几何解释:更由于0Δ0Δ0Δd limlim()0,Δx x y y Q Qf x xRQ →→'-'=='故若0()0,f x '≠Δ0lim 0.x Q Q RQ →'='这说明当d ()Δ,,(3)y f x x x I '=∈的高阶无穷小量.QQ 'RQ '还是Δ0,x →时若函数在区间上每一点都可微,则称是上f I f I 它既依赖于,也与有关.Δx x ()f x I 在上的微分记为的可微函数.则得到0Δx x+xyO()y f x =Δyd y0x P RQ Q '∙∙∙∙d ()d ,.(4)y f x x x I '=∈(4) 式的写法会带来不少好处, 首先可以把导数看所以导数也称为微商. 习惯上喜欢把写成,于是(3) 式可改写成Δx d x d d Δ.y x x ==这相当于的情形,此时显然有y x =d (),d yf x x '=(5)积分学部分中.成函数的微分与自变量的微分之商, 即更多的好处将体现在后面d (sin )cos d ;x x x =d()ln d .x xa a a x =1d()d ;x xx ααα-=例12()()d ()()d ()3.d ;()()u x v x u x u x v x v x v x ⎛⎫-= ⎪⎝⎭4.d (())()()d ,().f g x f u g x x u g x ''==其中由导数与微分的关系,可方便得出微分运算法则:1.d (()())d ()d ();u x v x u x v x ±=±2.d(()())()d ()()d ();u x v x v x u x u x v x =+d ()d ,u g x x '=由于故运算法则4 又可以写成微分的运算法则d ()d .y f u u '=解2222ln d()d(ln )sin d()x x x x x x =+-2(2ln 12sin )d .x x x x =+-它在形式上与(4)式完全一样, 不管是自变量还u 例2 求的微分.22ln cos y x x x =+这个性质称为“一阶微分形式不变性”.是中间变量( 另一个变量的可微函数) 上式都成立.22d d(ln cos )y x x x =+22d(ln )d(cos )x x x =+2222d(cos )sin d()2sin d x x x x x x =-=-这里在的计算中, 用了一阶微分形式不变性.例3 求的微分.123e ++=x x y 解3213d e d(21)x x y x x ++=++3221(32)e d .x x x x ++=+§5 微分微分的概念微分的运算法则微分在近似计算中的应用高阶微分或写作22d ()d ,y f x x ''=称为f 的二阶微分.d(d )d(()Δ)y f x x '=()ΔΔ()d(Δ)f x x x f x x '''=⋅+则当f 二阶可导时, d y 关于x 的微分为若将一阶微分d ()Δy f x x '=仅看成是的函数, x 注由于与x 无关, 因此x 的二阶微分Δx d(Δ)x =三者各不相同, 不可混淆.2()()f x x ''=∆2()(d ).f x x ''=d(d )x x 2d =,0=22d (d ),x x =它与2d()2d x x x=高阶微分22d ()d ;(6)y f x x ''=当x 是中间变量((),())y f x x t ϕ==时, 二阶微分依次下去, 可由阶微分求n 阶微分:1n -对的n 阶微分均称为高阶微分. 2n ≥当x 是自变量时,的二()y f x =阶微分是为高阶微分不具有形式不变性.)d (d d 1y y n n -=(1)1d(()d )n n f x x --=()()d .n n f x x =22()d ()d .(7)f x x f x x '''=+()2d d ()d y f x x '=()d d ()d(d )f x x x f x x '''=+例422()sin ,(),d .y f x x x t t y ϕ====设求解法一2 () (), sin ,x t y f x y t ϕ===先将代入得.0d 2=x 而当x 为自变量时,它比(6) 式多了一项2()d ,f x x '()x t ϕ=当时,由(6) 得22d ()d x t t ϕ''=不一定为0,22cos ,y t t '=于是.sin 4cos 2222t t t y -=''22222d (2cos 4sin )d .y t t t t =-解法二依(7) 式得222d ()d ()d y f x x f x x'''=+22sin d cos d x x x x =-+2222..sin (2d )cos 2d t t t t t =-+2222(2cos 4sin )d .t t t t =-2()d f x x '如果将漏掉就会产生错误.22d ()d x t tϕ''=§5 微分微分的概念微分的运算法则高阶微分微分在近似计算微分在近似计算中的应用1.函数值的近似计算000(Δ)()()Δ.(8)f x x f x f x x '+≈+000()()()().(9)f x f x f x x x '≈+-(9) 式的几何意义是当x 与x 0充分接近时, 可用点0Δ()Δ(Δ),y f x x o x '=+由于由此得Δd .y y ≈记, 即当时,0Δx x x =+0x x ≈故当很小时, 有Δx (8) 式可改写为中的应用公式(9) 分别用于sin x , tan x , ln(1+x ), e x ( x 0= 0 ), ,sin x x ≈,tan x x ≈(),1ln x x ≈+.1e x x +≈例5 试求sin 33o 的近似值( 保留三位有效数字).解π,60x ∆=由公式(9) 得到处的切线近似代替曲线, 这种线性近00(,())P x f x 可得近似计算公式( 试与等价无穷小相比较):似的方法可以简化一些复杂的计算问题.,606sin 33sin ⎪⎭⎫ ⎝⎛+=ππ 0()sin ,,6f x x x π==取sin33sin cos 6660πππ⎛⎫⎛⎫≈+⨯ ⎪ ⎪⎝⎭⎝⎭0.545≈2.误差的估计0|Δ|||,x x x x δ=-≤设数x 是由测量得到的, y 是由函数经过()y f x =如果已知测量值x 0 的误差限为,即x δ算得到的y 0= f (x 0) 也是y = f (x ) 的一个近似值. 差, 实际测得的值只是x 的某个近似值x 0. 由于测量工具精度等原因, 存在测量误计算得到.由x 0计000().(11)||()yx f x y f x δδ'=则当x δ很小时, 量y 0 的绝对误差估计式为:相对误差限则为0|()|y x f x δδ'=称为y 0 的绝对误差限,而的0y 0()()y f x f x ∆=-0()f x x '≈∆0().x f x δ'≤33001π38792.39cm ,6V d =≈201π2V d d δδ=解以d 0 = 42,0.05d δ=计算的球体体积和误差估绝对误差限和相对误差限.计分别为:203001π21||π6V d d V d δδ=⨯‰.03 3.57d d δ=≈例6 设测得一球体直径为42cm, 测量工具的精度为0.05cm. 试求以此直径计算球体体积时引起的2π420.052=⨯⨯3138.54cm ;≈。

数学分析课本(华师大三版)-习题及答案05

数学分析课本(华师大三版)-习题及答案05

数学分析课本(华师大三版)-习题及答案05第五章 导数和微分习题§5.1导数的概念1、已知直线运动方程为2510t t s +=,分别令01.0,1.0,1=∆t ,求从t=4至t t ∆+=4这一段时间内运动的平均速度及时的瞬时速度。

2、等速旋转的角速度等于旋转角与对应时间的比,试由此给出变速旋转的角速度的定义。

3、设4)(,0)(0='=x f x f ,试求极限xx x f x ∆+∆→∆)(lim 00。

4、设⎩⎨⎧<+≥=,3,,3,)(2x b ax x x x f 试确定的a,b 值,使f在x=3处可导。

5、试确定曲线y x ln =上哪些点的切线平行于下列直线:(1);1-=x y (2)32-=x y6、求下列曲线在指定点P 的切线方程与法线方程:(1)).1,0(,cos )2();1,2(,42p x y p x y ==7、求下列函数的导函数: ⎩⎨⎧<≥+==,0,1,0,1)()2(;)()1(3x x x x f xx f8、设函数⎪⎩⎪⎨⎧=≠=,0,0,0,1sin )(x x xx x f m(m 为正整数),试问:(1)m 等于何值时,f 在x=0连续;(2)m 等于何值时,f 在x=0可导; (3)m 等于何值时,f '在x=0连续。

9、求下列函数的稳定点:(1)f(x)=sinx-cosx ;(2)x x x f ln )(-=。

10、设函数f 在点0x 存在左右导数,试证明f 在点0x 连续。

11、设0)0()0(='=g g ,⎪⎩⎪⎨⎧=≠=,0,0,0,1sin )()(x x xx g x f求)0(f '。

12、设f 是定义在R 上的函数,而且对任何Rxx ∈21,,都有)()()(2121x f x f x x f =+。

若1)0(='f ,证明对任何R x ∈,都有)()(x f x f ='。

数学分析5.1导数的概念(讲义)

数学分析5.1导数的概念(讲义)

第五章导数和微分1 导数的概念一、导数的定义定义1:设函数y=f(x)在点x0的某邻域内有定义,若极限存在,则称函数f在点x0处可导,并称该极限为函数f在点x0处的导数,记作f’(x0). 若该极限不存在,则称f在点x0处不可导.令x=x0+△x,△y=f(x0+△x)-f(x0),则:==f’(x0).∴导数是函数增量△y与自变量增量△x之比的极限. 这个增量比称为函数关于自变量的平均变化率(又称为差商),而导数f’(x0)则为f在x0处关于x的变化率.注:显然常量函数f(x)=C在任何一点x的导数都等于零.例1:求函数f(x)=x2在点x=1处的导数,并求曲线在点(1,1)处的切线方程.解:f’(1)===2.∴曲线在点(1,1)处的切线方程为:y-1=2(x-1),即y=2x-1.例2:证明函数f(x)=|x|在点x=0处不可导.证:f’(0)=,∵=1,=-1,∵不存在,∴f在点x=0处不可导.设f(x)在点x0可导,则ε=f’(x0)-是当△x→0时的无穷小量,于是ε·△x=o(△x),即△y=f’(x0)△x+o(△x),称为f在点x0的有限增量公式.该公式对△x=0仍成立.定理5.1:若函数f在点x0可导,则f在点x0连续.注:可导是连续的充分而非必要条件.例3:证明函数f(x)=x2D(x)仅在点x0=0处可导,其中D(x)为狄利克雷函数.证:当x0≠0时,由归结原理可得f在x= x0处不连续,∴f在x= x0处不可导.当x0=0时,∵D(x)有界,∴f’(0)==xD(x)=0.即f仅在点x0=0处可导.定义2:设函数y=f(x)在点x0的某右邻域(x0, x0+δ)上有定义,若右极限=(0<△x<δ)存在,则称该极限值为f在点x0的右导数,记作f’+(x0). 类似地,定义左导数为f’-(x0)==.右导数和左导数统称为单侧导数.定理5.2:若函数f在点x0的某右邻域内有定义,则f’(x0)存在的充要条件是:f’+(x0)与f’-(x0)都存在,且f’+(x0)=f’-(x0).例4:设f(x)=,讨论f(x)在x=0处的左右导数与导数.解:f’+(0)===0.f’-(x0) ===1.∵f’+(x0)≠f’-(x0),∴f在x=0处不可导.二、导函数若函数在区间I上每一点都可导(区间端点只考虑单侧导数),则称f为I上的可导函数. 对每一个x∈I,都有一个导数f’(x)(或单侧导数)与之对应,函数f’就称为f 在I上的导函数,简称为导数. 记作f’, y’或,即:f’(x)=, x∈I注:f’(x0)可写作:y’或例5:证明:(1)(x n)’=nx n-1,n为正整数;(2)(sinx)’=cosx,(cosx)’=-sinx;(3)(log a x)’=log a e (a>0,a≠1,x>0),特别的(ln x)’=.证:(1)对于y=x n, ==x n-1+x n-2△x +…+△x n-1,∴(x n)’==(x n-1+x n-2△x +…+△x n-1)=x n-1=nx n-1.(2)∵==,由cosx在R上连续可得:(sinx)’==cosx.又==,由sinx在R上连续可得:(cosx)’== -sinx.(3)∵=log a=log a,又由log a x的连续性可得:(log a x)’=log a=log a=log a e.当a=e时,ln e=1,∴(ln x)’=.三、导数的几何意义曲线y=f(x)在点(x0,y0)的切线方程为:y-y0=f’(x0)(x-x0).即函数f在点x0的导数f’(x0)是曲线fy=(x)在点(x0,y0)的切线斜率.若α表示这条切线与x轴正方向的夹角,则f’(x0)=tanα.例6:求曲线y=x3在点P(x0,y0)处的切线方程与法线方程.解:y’=3x2, ∴f’(x0)=3x02==.当x0≠0时,曲线在点P(x0,y0)处的切线方程为y-y0=f’(x0)(x-x0),即y=3x02x-2y0;法线方程为y-y0=(x-x0),即y=x y0.当x0=0时,切线方程为y=0,法线方程为x=0.定义3:若函数f在点x0的某邻域U(x0)内对一切x∈U(x0)有f(x0)≥f(x)或f(x0)≤f(x),则称f在点x0取得极大(小)值,称点x0为极大(小)值点. 极大值和极小值统称为极值,极大值点、极小值点统称为极值点.例7:证明:若f’+(x0)>0,则存在δ>0. 对任何x∈(x0,x0+δ),有f(x0)<f(x).证:∵f’+(x0)=>0,由保号性可知,存在δ>0,对一切x∈(x0,x0+δ),有>0,∴对任何x∈(x0,x0+δ),有f(x0)<f(x).定理5.3(费马定理):设函数f在点x0的某邻域内有定义,且在点x0可导,若点x0为f的极值点,则必有f’(x0)=0.我们称满足方程f’(x0)=0的点为稳定点. 稳定点不一定是极值点。

《数学分析》第五章导数和微分

《数学分析》第五章导数和微分
函数的变化率问题
函数的增量问题
微分的概念
导数的概念
求导数与微分的方法,叫做微分法.
研究微分法与导数理论及其应用的科学,叫做微分学.
导数与微分的联系:


导数与微分的区别:
思考题
思考题解答
说法不对. 从概念上讲,微分是从求函数增量引出线性主部而得到的,导数是从函数变化率问题归纳出函数增量与自变量增量之比的极限,它们是完全不同的概念.
练 习 题
练习题答案
202X
感谢各位的观看
汇报人姓名
5 微分
Байду номын сангаас
一、问题的提出
实例:正方形金属薄片受热后面积的改变量.
再例如,
既容易计算又是较好的近似值
问题:这个线性函数(改变量的主要部分)是否所有函数的改变量都有?它是什么?如何求?
二、微分的定义
(微分的实质)
定义
由定义知:
三、可微的条件
定理 证 必要性
(2) 充分性
例1

四、微分的几何意义
M N T ) 几何意义:(如图) P
五、微分的求法
基本初等函数的微分公式
求法: 计算函数的导数, 乘以自变量的微分.
函数和、差、积、商的微分法则
例2

例3

六、微分形式的不变性
结论: 微分形式的不变性
例4

例3

例5

在下列等式左端的括号中填入适当的函数,使等式成立.
七、小结
微分学所要解决的两类问题:

第五章微分学基本定理及导数应用

第五章微分学基本定理及导数应用

+
例 9 把函数 展开成具 Peano 型余项的 Maclaurin 公式 ,并与

相应展开式进行比较.

;
.பைடு நூலகம்

.
五.Taylor 公式应用举例:
- 12 -
《数学分析》讲义 1. 证明 是无理数: 例 10 证明 是无理数. 证 把 展开成具 Lagrange 型余项的 Maclaurin 公式, 有
《数学分析》讲义
第五章 微分学基本定理及导数应用
教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根 据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性; 难点是用辅助函数解决问题的方法。
Th 3 设函数 和 在闭区间 和 在 内不同时为零, 又
上连续, 在开区间
内可导,
则在
内至少存在一点
使
.
证 分析引出辅助函数 上满足 Rolle 定理的条件,
. 验证

必有
, 因为否则就有
同时为零”矛盾.
Cauchy 中值定理的几何意义.
(三)中值定理的简单应用:
1. 证明中值点的存在性
.这与条件“ 和 在
是常值函数.
(证明
3. 证明不等式:
例 6 证明不等式:
时,
, 其中 是正常 ).
.

数学分析5.1导数的概念(讲义)

数学分析5.1导数的概念(讲义)

第五章导数和微分1 导数的概念一、导数的定义定义1:设函数y=f(x)在点x0的某邻域内有定义,若极限存在,则称函数f在点x0处可导,并称该极限为函数f在点x0处的导数,记作f’(x0). 若该极限不存在,则称f在点x0处不可导.令x=x0+△x,△y=f(x0+△x)-f(x0),则:==f’(x0).∴导数是函数增量△y与自变量增量△x之比的极限. 这个增量比称为函数关于自变量的平均变化率(又称为差商),而导数f’(x0)则为f在x0处关于x的变化率.注:显然常量函数f(x)=C在任何一点x的导数都等于零.例1:求函数f(x)=x2在点x=1处的导数,并求曲线在点(1,1)处的切线方程.解:f’(1)===2.∴曲线在点(1,1)处的切线方程为:y-1=2(x-1),即y=2x-1.例2:证明函数f(x)=|x|在点x=0处不可导.证:f’(0)=,∵=1,=-1,∵不存在,∴f在点x=0处不可导.设f(x)在点x0可导,则ε=f’(x0)-是当△x→0时的无穷小量,于是ε·△x=o(△x),即△y=f’(x0)△x+o(△x),称为f在点x0的有限增量公式.该公式对△x=0仍成立.定理5.1:若函数f在点x0可导,则f在点x0连续.注:可导是连续的充分而非必要条件.例3:证明函数f(x)=x2D(x)仅在点x0=0处可导,其中D(x)为狄利克雷函数.证:当x0≠0时,由归结原理可得f在x= x0处不连续,∴f在x= x0处不可导.当x0=0时,∵D(x)有界,∴f’(0)==xD(x)=0.即f仅在点x0=0处可导.定义2:设函数y=f(x)在点x0的某右邻域(x0, x0+δ)上有定义,若右极限=(0<△x<δ)存在,则称该极限值为f在点x0的右导数,记作f’+(x0). 类似地,定义左导数为f’-(x0)==.右导数和左导数统称为单侧导数.定理5.2:若函数f在点x0的某右邻域内有定义,则f’(x0)存在的充要条件是:f’+(x0)与f’-(x0)都存在,且f’+(x0)=f’-(x0).例4:设f(x)=,讨论f(x)在x=0处的左右导数与导数.解:f’+(0)===0.f’-(x0) ===1.∵f’+(x0)≠f’-(x0),∴f在x=0处不可导.二、导函数若函数在区间I上每一点都可导(区间端点只考虑单侧导数),则称f为I上的可导函数. 对每一个x∈I,都有一个导数f’(x)(或单侧导数)与之对应,函数f’就称为f 在I上的导函数,简称为导数. 记作f’, y’或,即:f’(x)=, x∈I注:f’(x0)可写作:y’或例5:证明:(1)(x n)’=nx n-1,n为正整数;(2)(sinx)’=cosx,(cosx)’=-sinx;(3)(log a x)’=log a e (a>0,a≠1,x>0),特别的(ln x)’=.证:(1)对于y=x n, ==x n-1+x n-2△x +…+△x n-1,∴(x n)’==(x n-1+x n-2△x +…+△x n-1)=x n-1=nx n-1.(2)∵==,由cosx在R上连续可得:(sinx)’==cosx.又==,由sinx在R上连续可得:(cosx)’== -sinx.(3)∵=log a=log a,又由log a x的连续性可得:(log a x)’=log a=log a=log a e.当a=e时,ln e=1,∴(ln x)’=.三、导数的几何意义曲线y=f(x)在点(x0,y0)的切线方程为:y-y0=f’(x0)(x-x0).即函数f在点x0的导数f’(x0)是曲线fy=(x)在点(x0,y0)的切线斜率.若α表示这条切线与x轴正方向的夹角,则f’(x0)=tanα.例6:求曲线y=x3在点P(x0,y0)处的切线方程与法线方程.解:y’=3x2, ∴f’(x0)=3x02==.当x0≠0时,曲线在点P(x0,y0)处的切线方程为y-y0=f’(x0)(x-x0),即y=3x02x-2y0;法线方程为y-y0=(x-x0),即y=x y0.当x0=0时,切线方程为y=0,法线方程为x=0.定义3:若函数f在点x0的某邻域U(x0)内对一切x∈U(x0)有f(x0)≥f(x)或f(x0)≤f(x),则称f在点x0取得极大(小)值,称点x0为极大(小)值点. 极大值和极小值统称为极值,极大值点、极小值点统称为极值点.例7:证明:若f’+(x0)>0,则存在δ>0. 对任何x∈(x0,x0+δ),有f(x0)<f(x).证:∵f’+(x0)=>0,由保号性可知,存在δ>0,对一切x∈(x0,x0+δ),有>0,∴对任何x∈(x0,x0+δ),有f(x0)<f(x).定理5.3(费马定理):设函数f在点x0的某邻域内有定义,且在点x0可导,若点x0为f的极值点,则必有f’(x0)=0.我们称满足方程f’(x0)=0的点为稳定点. 稳定点不一定是极值点。

导数与微分的定义通用课件

导数与微分的定义通用课件
导数与微分的定义通用课件
目录
• 导数定义与性质 • 微分定义与性质 • 导数与微分的关系 • 导数与微分在各领域的应用 • 导数与微分常见问题解析
01
导数定义与性质
导数的定义
导数的定义
导数描述了函数在某一点处的切线斜率,是函数 值随自变量变化的速率。
符号表示
用 f'(x) 表示函数 f 在 x 处的导数。
单调性与极值综合问题
掌握如何结合单调性和极值解决综合问题的方法。
THANK YOU
感谢各位观看
导数的性质
线性性质
若 c 是常数,f 和 g 是可导函数,则 (c * f)' = c * f' 和 (f + g)' = f' + g'。
链式法则
若 u = g(x) 是可导函数,y = f(u) 是可导函数,则 (f ∘ g)' = f'(g(x)) * g'(x)。
乘积法则
若 f 和 g 是可导函数,则 (fg)' = f'g + fg'。
03
导数与微分的关系
导数是微分的商
导数定义为函数在某一点的变化率, 即函数在这一点上切线的斜率,用微 分除以自变量的增量得到。
导数表示函数在某一点附近的小范围 内变化的速度或趋势,是微分的一种 数学表达。
导数与微分的应用
01
导数在经济学中用于研究边际 成本、边际收益和边际利润等 概念,帮助理解经济行为的变 化趋势和最优决策。
详细描述
在物理学中,导数和微分被用于描述物体的速度、加速度、温度变化、电磁场等物理量随时间或空间 的变化规律。例如,在经典力学中,物体的速度和加速度可以通过导数和微分来计算;在热力学中, 温度的变化率可以用导数来描述。

数学分析--导数 ppt课件

数学分析--导数  ppt课件

数,如果要讨论改函数在端点处的变化率时,就要对导数概念加以补充,引出单 侧导数的概念。
定义 2 设函数 y f (x) 在点 x0 的某右邻域 (x0 ,x 0 δ)上有定义,若右
极限 或
l i m Δ y l i m f ( x0 Δ x ) f ( x0 ) (0< x < )
Δ x Δx 0
理 5.1, f(x) x 在 x x 0 0 处不可导。
当 x0 0 时,由于 D(x) 为有界函数, 因此得到
f(0)
lim
f(x)
f(0)
li
mxD(x)
0.
x0 x 0
x 0
ppt课件
下页 18
(二)函数在一点的单侧导数
类似于函数在一点有左、右极限, 对于定义在某个闭区间或半开区间上的函
dx
dx
运算,待到学过“微分”之后,将说明这个记号实际上是一个“商”,相应于上述各种
表示导数的形式,f |x x 0 或
dy dx
|xx0

ppt课件
下页 23
例 6 证明:
(i) ( xn ) nxn1, n 为正整数 ;
(ii) (sinx) cosx , (cosx) sinx
(iii)
y 1
-1/π
0
1/π
x
ppt课件
下页 22
(三)导函数 若函数在区间 I 上每一点都可导(对区间端点,仅考虑相应的单侧导数),则称 f
为 I 上的可导函数。此时对每一个χ∈I,都有 f 的一个导数 f '(x) (或单侧导数)与之
对应,这样就定义了一个在 I 上的函数,称为 f 在 I 上的导函数,也简称为导数,记作

高中数学(人教版)第5章导数和微积分求导法则课件

高中数学(人教版)第5章导数和微积分求导法则课件
cos 2 x sin2 x 1 2 sec x. 2 2 cos x cos x
导数的四则运算
同理可得
1 2 ( cot x ) csc x. 2 sin x
1 cos x sin x (iii) (sec x ) 2 2 cos x cos x cos x
f ( x0 ) 1 . ( y0 ) (6)
证 设 Δx x x0 , Δy y y0 , 则 Δx ( y0+ Δy ) ( y0 ), Δy f ( x0Δx ) f ( x0 ) .
由假设, f 1 在点 x0 的某邻域内连续,
0
(4)
导数的四则运算
1 证 设 g( x ) ,则 f ( x ) u( x )g( x ). 对 g( x ), 有 v( x ) 1 1 v ( x0 Δ x ) v ( x0 ) g ( x0 Δ x ) g ( x 0 ) Δx Δx v ( x0 Δ x ) v ( x 0 ) 1 . Δx v ( x0 Δ x ) v ( x 0 ) 由于 v ( x ) 在点 x0 可导, v( x0 ) 0, 因此
1
反函数 的导数
π2) 上 (ii) y arctan x 是 x tan y 在 ( π 2,
的反函数,故
1 1 1 (arctan x ) 2 2 sec x 1 tan y (tan y )
1 2, 1 x x ( ,).
同理有
1 (arccot x ) , x ( , ). 2 1 x
sec x tan x.
同理可得
(csc x ) csc x cot x .

数学分析第五章 导数和微分

数学分析第五章 导数和微分
(1) 函数在个别点的函数值单独定义的, 其余点的函数 值用统一解析式定义的(函数在个别点连续).
(2) 求分段函数在分段点的导数.
例7
设f
(x)
1
cos x,
x,
x 0, 讨论f (x)在x 0处的左右 x 0.
导数与导数.
解 由于
f
(0
x) x
f
(0)
1 cosx , x 1,
f
(x)
f
(x0 ),
f
'
(
x0
)
0时,
0,当x (x0, x0
)时,
f
(x)
f
(x0 ),
f
'
(
x0
)
0时,
0,当x (x0, x0
)时,
f
(x)
f
(x0 )。
2 定理 (费马定理)
定理5.3 设函数f在点x0的某邻域内有定义, 且 在点x0可导;若点x0为f的极值点, 则必有 f (x0 ) 0
例3 求函数 f (x) x2在点x 1处的导数,并求曲线在 点(1 , 1) 处的切线方程.
解: 由定义求得
f '(1) lim f(1 x) f(1) lim (1 x)2 1
x 0
x
x x0
x
lim 2x x2 lim (2 x) 2
x0 x
x 0
由此知道抛物线 y x2在点(1 , 1)处的切线斜率为
存在, 则称函数f在点x0处可导, 并称该极限为函数f在点x0
处的导数,记作f (x0 ).

f
(x0
)
lim
x0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 导数与微分 (计划课时:1 2时)§1 导数的概念 ( 2 时)一. 导数的背景与定义:1. 背景:曲线的切线、直线运动的瞬时速度. 2.导数的定义: )(0x f '定义的各种形式. )0(f '的定义. 导数的记法.有限增量公式: .0 ),( )(0→∆∆+∆'=∆x x x x f y 例1 ,)(2x x f = 求). 1 (f '例2 设函数)(x f 在点0x 可导, 求极限 .)3()(lim000hh x f x f h --→3.单侧导数: 定义. 单侧可导与可导的关系. 曲线的尖点.例3 . )(x x f = 考查)(x f 在点0=x 的可导情况.例4 设⎩⎨⎧<≥-=.0,,0,cos 1)(x x x x x f 讨论)(x f 在点0=x 处的左、右导数与导数.二. 导数的几何意义:可导的几何意义, 导数的几何意义, 单侧导数的几何意义. 例5 求曲线2)(x x f y ==在点) 1 , 1 (处的切线与法线方程.三. 可导与连续的关系:Th1 若函数f 在点0x (左、右)可导,则f 在点0x (左、右)连续.例6 证明函数)()(2x D x x f =仅在点00=x 处可导,其中)(x D 为Dirichlet 函数.四 导函数: 函数在区间上的可导性, 导函数, 导函数的记法..)()(lim )(0xx f x x f x f x ∆-∆+='→∆(注意:x sin 等具体函数的导函数不能记为,n si x ' 应记为.)(sin 'x ) 例7 求下列函数的导数:⑴ ,)(nx x f = ⑵x x f sin )(=, ⑶x x f a log )(=.五 导函数的介值性:1 极值的定义例8 证明: 若,0)(0>'+x f 则),(,000δδ+∈∀∍>∃x x x ,有)()(0x f x f <. 2 取极值的必要条件: Th2 (Fermat 定理)3 导函数的介值性:引理 (导函数的介值性)若函数f 在闭区间],[b a 上可导, 且,0)()(<''-+b f a f 则.0)( ),,( ='∍∈∃ξξf b a ( 证 )Th3 (Darboux 定理)设函数)(x f 在区间],[b a 上可导且)()(b f a f '≠'. 若k 为介于)(a f '与)(b f '之间的任一实数, 则.)( ),,(k f b a ='∍∈∃ξξ(设),()(a f k b f '<<'对辅助函数kx x f x F -=)()(,应用系4的结果.) ( 证 ) Ex [1]P 94—95 1—9§2 求 导 法 则( 4时)一 导数的四则运算法则: 推导导数四则运算公式. (只证“⨯”和“÷”)例1 .95)(23π+-+=x x x x f 求).(x f '例2 .ln cos x x y = 求.|π='x y ( ). 1π-例3 .122x x y +-=求.dx dy例4 证明: . ,) (1+---∈-='Z n nx xn n( 用商的求导公式证明 ).例5 证明: .csc ) ( ,sec ) (22x ctgx x tgx -='=' 例6 证明:.sec sec xtgx x dxd=. 二 反函数的导数: 推导公式并指出几何意义.例8 证明反三角函数的求导公式. ( 只证反正弦 ) Ex [1]P 102 1,2.三 复合函数的导数:推导复合函数的求导公式.例9 设,sin 2x y =求y '.例10 设α为实数,求幂函数)0( ≥=x x y α的导数. 解 ().1ln ln -=⋅=⋅='='αααααααx xx xeey xx例11 ,1)(2+=x x f 求 )0(f '和). 1 (f ' 例12 ),1ln(2++=x x y 求 .y '例13 ,12xtgy = 求 .y ' 四 取对数求导法:例14 设215312)4()2()4()5(++-+=x x x x y , 求 .y '例15 ().sin ln xx y = 求 .y '例16 设)()(x v x u y =, 其中0)(>x u ,且)(x u 和)(x v 均可导, 求 .y '五 基本求导法则与公式:1 基本求导法则.2基本初等函数导数公式. 公式表: [1]P 101.Ex [1]P 102 3,4.§3 参变量函数的导数1 设曲线C 的参变量方程为⎩⎨⎧≤≤==)().(),(βαψϕt t y t x ,设函数)( ),(t y t x ψϕ==可导且,0)(⇒≠'t ϕ.)()(t t dx dy ϕψ''=证:(证法一) 用定义证明.(证法二) 由 ,0)(⇒≠'t ϕ恒有0)(>'t ϕ或.0)(<'t ϕ)( t ϕ⇒严格单调. ( 这些事实的证明将在下一章给出. ) 因此, )(t ϕ有反函数, 设反函数为x t (1-=ϕ), 有(),)()(1x t y -==ϕψψ 用复合函数求导法, 并注意利用反函数求导公式. 就有.)()(t t dtdx dt dydx dt dt dy dx dy ϕψ''==⋅=例1 .sin ,cos t b y t a x == 求.dxdy2 若曲线C 由极坐标)(θρρ=表示,则可转化为以极角θ为参数的参数方程:⎩⎨⎧====.sin )(sin ,cos )(cos θθρθρθθρθρy x 则.tan )()()(tan )(θθρθρθρθθρ-'+'=dx dy 例2 证明:对数螺线2θρe =上所有点的切线与向径的夹角ϕ为常量. Ex [1]P 105 1,2,3.§4 高 阶 导 数一 高阶导数:定义: .)()(lim)(0000xx f x x f x f x ∆'-∆+'=''→∆()().)()( ,)()()1()('=''=''-x f x f x f x f n n 注意区分符号)(0x f ''和().)(0''x f高阶导数的记法.二 几个特殊函数的高阶导数:1. 多项式: 多项式的高阶导数. 例1 求幂函数nx y =(n 为正整数)的各阶导数. 例2. 正弦和余弦函数: 计算())(sin n x 、())(cos n x 、())(sin n kx 、())(cos n kx 的公式.例3. x e 和kxe 的高阶导数: 例4.x1的高阶导数: 例5))((1b x a x ++的高阶导数:例6 分段函数在分段点的高阶导数:以函数⎪⎩⎪⎨⎧<-≥=.0 ,,0 ,)(22x x x x x f 求)(x f ''为例.三 高阶导数的运算性质: 设函数)(x u 和)(x v 均n 阶可导. 则1. ()).()()()(x ku x ku n n =2.()).()()()()()()(x v x u x v x u n n n ±=±3. 乘积高阶导数的Leibniz 公式: 约定 ).()()0(x u x u =()∑=-=nk k k n k n n x v x u C x v x u 0)()()().()()()( ( 介绍证法.) 例7 ,cos x e y x= 求 .)5(y解 ⇒====== .10 ,5 ,1352545155505C C C C C C).cos (sin 4)sin cos 5sin 10cos 10sin 5(cos )5(x x e x x x x x x e yx x -=-++--=例8 ),(arctgx f y = 其中)(x f 二阶可导. 求.22dx yd 例9 验证函数x y arcsin =满足微分方程 ) 3 ( .0)12()1()(2)1()2(2≥=-+--++n y n xy n y x n n n并依此求 ).0()(n y解 .11 ,1122='--='y x xy 两端求导,011 22=-'-''-⇒xy x y x 即.0)1(2='-''-y x y x 对此式两端求n 阶导数, 利用Leibniz 公式, 有=---+-+-+++)(1)1()(2)1(1)2(2)2()2()1(n n n n n n n n y C xy y C y x C yx .0)12()1()(2)1()2(2=-+--=++n n n y n xy n yx可见函数x y arcsin =满足所指方程. 在上式中令,0=x 得递推公式).(2)2( n n y n y=+注意到 0)0(=''y 和 1)0(='y , 就有k n 2=时, ;0)0()(=n y12+=k n 时, )0(13)32()12()0(2222)(f k k y n '⋅⋅--= [].!)!12(2-=k四. 参数方程所确定函数的高阶导数:=''⎪⎪⎭⎫ ⎝⎛''=⎪⎭⎫⎝⎛=)()()(22t t t dtdx dx dy dt d dx y d ϕϕψ().)()()()()(3t t t t t ϕϕψϕψ''''-''' 例6 .sin ,cos t b y t a x == 求 .22dx yd 解 .ctgt abdx dy -=.sin 3222t a b dx y d -== Ex [1]P 109 1—6.§5 微 分一 微分概念:1. 微分问题的提出: 从求正方形面积增量的近似值入手,引出微分问题.2. 微分的定义:Th1 ( 可微与可导的关系 ).3. 微分的几何意义:二 微分运算法则:一阶微分形式不变性. 利用微分求导数. 微商.例1 已知,cos ln 22x x x y += 求dy 和 .y '例2 已知,)sin(b ax ey += 求dy 和 .y '三 高阶微分:高阶微分的定义: ()()=⋅'='==dx x f d dxx f d dy d y d )()()(2.)())(()(22dx x f dx x f dx dx x f ''=''=⋅''=n 阶微分定义为1-n 阶微分的微分, 即().)()(1n n n ndx x f y dd y d ===-(注意区分符号 )( ),0( ,)(2222x d x d dx dx ==的意义.)例3 已知.)( ,sin )(2x x u u u f y ====ϕ 求 .2y d以例3为例, 说明高阶微分不具有形式不变性:在例7中, 倘若以u y sin =求二阶微分, 然后代入2x u =, 就有;sin 4)2(sin )(sin )()(sin 22222222dx x x xdx x du u du u y d -=-=-=''= 倘若先把2x u =代入u y sin =, 再求二阶微分, 得到.sin 4cos 2)sin 4cos 2(sin 222222222222dx x x dx x dx x x x x d y d -=-==可见上述两种结果并不相等. 这说明二阶微分已经不具有形式不变性. 一般地, 高阶微 分不具有形式不变性.四 微分的应用:1. 建立近似公式: 原理: ,dy y ≈∆ 即 ).)(()()(000x x x f x f x f -'+≈ 特别当00=x 时, 有近似公式 .)0()0()(x f f x f '+≈ 具体的近似公式如:x e x nx x x x n+≈+≈+≈1 ,111,sin 等. 2. 作近似计算: 原理: .)()()(00.0x x f x f x x f ∆'+=∆+ 例4 求97.0 和 3127的近似值.例5 求29sin 的近似值. ( 参阅[1]P 138 E4 ) 3.估计误差:绝对误差估计: ,)(0x x f y ∆'≈∆相对误差估计: ),(ln ln ),0( )(⇒=>=x f y x f y.)(ln x f d ydyy y =≈∆ 例6( [1]P 138 E5 )设已测得一根圆轴的直径为cm 43,并知在测量中绝对误差不超过cm 2.0. 试求以此数据计算圆轴的横截面面积时所产生的误差. 4. 求速度: 原理: .)(,)( ),(dtdx x f dt dy dx x f dy x f y '='== 例7 球半径R 以sec 2.0cm 的速度匀速增大.求cm R 4=时,球体积增大的速度. [4]P 124 E53 ⅰ)Ex [1]P 116 1—5.。

相关文档
最新文档