2019海淀区高二文科数学期末试卷及答案

合集下载

2019北京市海淀区高三数学文科期末练习答案

2019北京市海淀区高三数学文科期末练习答案

海淀区高三年级第一学期期末练习数学(文)答案及评分参考2019.1一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案CAACBDBD第II 卷(非选择题共110分)二、填空题(本大题共6小题,每小题5分, 共30分.有两空的题目,第一空3分,第二空2分)9.240x y 10. 19 11.(3,0)212yx12.2513.2 14. 4 3三、解答题(本大题共6小题,共80分)15.(共13分)解:(I )xxx f cos 23sin 21)()3sin(x,............................... 3分)(x f 的周期为2(或答:0,,2kZ k k ).................................4分因为xR ,所以3xR ,所以)(x f 值域为]1,1[. ...............................5分(II )由(I )可知,)3sin()(AA f ,...............................6分23)3s i n (A , ...............................7分A 0,3433A,..................................8分2,33A得到3A................................9分,23b a 且BbAa sin sin , ....................................10分32s i n 32b b B,1sin B ,....................................11分B0,2B. ....................................12分6BAC.....................................13分16. (共13分)解:(I )围棋社共有60人,...................................1分由150301260可知三个社团一共有150人....................................3分(II )设初中的两名同学为21,a a ,高中的3名同学为321,,b b b ,...................................5分随机选出2人参加书法展示所有可能的结果:1211121321{,},{,},{,},{,},{,},a a ab a b a b a b 222312132{,},{,},{,},{,},{,}a b a b b b b b b b ,共10个基本事件. ..................................8分设事件A 表示“书法展示的同学中初、高中学生都有”,..................................9分则事件A 共有111213212223{,},{,},{,},{,},{,},{,}a b a b a b a b a b a b 6个基本事件....................................11分53106)(A P .故参加书法展示的2人中初、高中学生都有的概率为35. ................................13分17. (共13分)解:(I )四边形ABCD 为菱形且ACBD O ,O 是BD 的中点....................................2分又点F 为1DC 的中点, 在1DBC 中,1//BC OF ,...................................4分OF平面11BCC B ,1BC 平面11BCC B ,//OF 平面11BCC B ....................................6分(II )四边形ABCD 为菱形,AC BD ,...................................8分又BD1AA ,1,AA ACA 且1,AA AC平面11ACC A ,.................................10分BD 平面11ACC A , ................................11分BD平面1DBC ,平面1DBC 平面11ACC A .................................13分18. (共13分)解:3332222()()2a xa f x xxx,0x ..........................................2分(I )由题意可得3(1)2(1)0f a ,解得1a ,........................................3分此时(1)4f ,在点(1,(1))f 处的切线为4y ,与直线1y 平行.故所求a 值为1. ........................................4分(II )由()0f x 可得xa ,0a,........................................ 5分①当01a时,()0f x 在(1,2]上恒成立,所以()yf x 在[1,2]上递增,.....................................6分所以()f x 在[1,2]上的最小值为3(1)22f a.........................................7分②当12a时,x(1,)a a(,2)a ()f x -0 +()f x 极小由上表可得()y f x 在[1,2]上的最小值为2()31f a a. ......................................11分③当2a 时,()0f x 在[1,2)上恒成立,所以()yf x 在[1,2]上递减.......................................12分所以()f x 在[1,2]上的最小值为3(2)5f a......................................13分综上讨论,可知:当01a 时,()yf x 在[1,2]上的最小值为3(1)22f a ;当12a时,()yf x 在[1,2]上的最小值为2()31f a a;....................................10分当2a 时,()yf x 在[1,2]上的最小值为3(2)5f a.19. (共14分)解:根据题意,设(4,)P t .(I)设两切点为,C D ,则,OC PC OD PD ,由题意可知222||||||,PO OC PC 即222242(23)t,............................................2分解得0t,所以点P 坐标为(4,0)............................................3分在Rt POC 中,易得60POC,所以120DOC.............................................4分所以两切线所夹劣弧长为24233ππ. ...........................................5分(II )设1122(,),(,)M x y N x y ,(1,0)Q ,依题意,直线PA 经过点(2,0),(4,)A P t ,可以设:(2)6t AP yx,............................................6分和圆224xy联立,得到22(2)64ty x xy ,代入消元得到,2222(36)441440txt xt,......................................7分因为直线AP 经过点11(2,0),(,)A M x y ,所以12,x 是方程的两个根,所以有2124144236t x t,21272236t x t ,..................................... 8分代入直线方程(2)6t yx得,212272224(2)63636t t t y t t. ..................................9分同理,设:(2)2t BP yx,联立方程有22(2)24ty x xy ,代入消元得到2222(4)44160t xt xt,因为直线BP 经过点22(2,0),(,)B N x y ,所以22,x 是方程的两个根,22241624t x t,222284t x t,代入(2)2t y x得到2222288(2)244t tt y tt. .....................11分若11x ,则212t,此时2222814t x t显然,,M Q N 三点在直线1x 上,即直线MN 经过定点Q (1,0)............................12分若11x ,则212t,21x ,所以有212212240836722112136MQty t t k t x tt,22222280842811214NQty ttk t x tt................13分所以MQNQ k k ,所以,,M N Q 三点共线,即直线MN 经过定点Q (1,0). 综上所述,直线MN 经过定点Q (1,0)........................................14分20. (共14分)解:(Ⅰ)当10n时,集合1,2,3,,19,20A,910,11,12,,19,20B x A x 不具有性质P ....................................1分因为对任意不大于10的正整数m ,都可以找到集合B 中两个元素110b 与210b m ,使得12b b m 成立. ...................................3分集合*31,CxA xkkN具有性质P .....................................4分因为可取110m ,对于该集合中任意一对元素112231,31c k c k ,*12,k k N都有121231c c k k .............................................6分(Ⅱ)若集合S 具有性质P ,那么集合(21)Tnx xS 一定具有性质P . ..........7分首先因为(21)T n x xS ,任取0(21),tn x T 其中0x S ,因为S A ,所以0{1,2,3,...,2}x n ,从而01(21)2n x n ,即,tA 所以TA...........................8分由S 具有性质P ,可知存在不大于n 的正整数m ,使得对S 中的任意一对元素12,s s ,都有12s s m ,..................................9分对上述取定的不大于n 的正整数m ,从集合(21)T n x xS 中任取元素112221,21t nx t nx ,其中12,x x S ,都有1212t t x x ;因为12,x x S ,所以有12x x m ,即12t t m所以集合(21)T n x xS 具有性质P ..............................14分说明:其它正确解法按相应步骤给分.。

2019-2020学年高二上学期期末考试数学试卷(文科)含解答

2019-2020学年高二上学期期末考试数学试卷(文科)含解答

2019-2020学年高二上学期期末考试数学试卷(文科)一、选择题(本大题共12小题,共60.0分)1.下列命题中,正确的是A. 若,,则B. 若,则C. 若,,则D. 若,则【答案】D【解析】解:对于A,要满足,,才能得到,故错;对于B,时,由,得,故错;对于C,若,,则或或,故错;对于D,若,则,则,故正确;故选:D.A,要满足,,才能得到;B,时,由,得;C,若,,则或或;D,若,则,则;本题考查了不等式的性质及其应用,属于基础题.2.一个命题与它们的逆命题、否命题、逆否命题这4个命题中A. 真命题与假命题的个数不同B. 真命题的个数一定是偶数C. 真命题的个数一定是奇数D. 真命题的个数可能是奇数,也可能是偶数【答案】B【解析】解:一个命题与他们的逆命题、否命题、逆否命题这4个命题,原命题与逆否命题具有相同的真假性,否命题与逆命题具有相同的真假性,真命题的若有事成对出现的,真命题的个数一定是一个偶数.故选:B.根据互为逆否命题的真假性是一致的,得到原命题与逆否命题具有相同的真假性,否命题与逆命题具有相同的真假性,真命题的若有事成对出现的.本题考查命题的四种形式,是一个概念辨析问题,这种题目不用运算,是一个比较简单的问题,若出现是一个送分题目.3.若点P到直线的距离比它到点的距离小1,则点P的轨迹为A. 圆B. 椭圆C. 双曲线D. 抛物线【答案】D【解析】解:点P到直线的距离比它到点的距离小1,点P到直线的距离和它到点的距离相等,故点P的轨迹是以点为焦点,以直线为准线的抛物线,即,则点P的轨迹方程为,故选:D.由题意得,点P到直线的距离和它到点的距离相等,故点P的轨迹是以点为焦点,以直线为准线的抛物线,,写出抛物线的方程.本题考查抛物线的定义,抛物线的标准方程,判断点P的轨迹是以点为焦点,以直线为准线的抛物线,是解题的关键.4.等差数列中,若,则A. 256B. 512C. 1024D. 2048【答案】C【解析】解:等差数列中,若,可得,则.故选:C.运用等差数列的性质和指数的运算性质,结合等差数列的求和公式,计算可得所求值.本题考查等差数列的性质和求和公式,以及指数的预算性质,考查运算能力,属于基础题.5.已知函数既存在极大值又存在极小值,那么实数m的取值范围是A. B.C. D.【答案】D【解析】解:函数既存在极大值,又存在极小值有两异根,,解得或,故选:D.求出函数的导函数,根据已知条件,令导函数的判别式大于0,求出m的范围.利用导数求函数的极值问题,要注意极值点处的导数值为0,极值点左右两边的导函数符号相反.6.下面四个条件中,使成立的一个必要不充分的条件是A. B. C. D.【答案】A【解析】解:“”能推出“”,但“”不能推出“”,故满足题意;“”不能推出“”,故选项B不是“”的必要条件,不满足题意;B 不正确.“”能推出“”,且“”能推出“”,故是充要条件,不满足题意;C不正确;“”不能推出“”,故选项C不是“”的必要条件,不满足题意;D不正确.故选:A.欲求成立的必要而不充分的条件,即选择一个“”能推出的选项,但不能推出,对选项逐一分析即可.本题主要考查了必要条件、充分条件与充要条件的判断,解题的关键是理解必要而不充分的条件,属于基础题.7.若,则的最小值为A. B. 5 C. 6 D. 7【答案】C【解析】解:设,因为,则,则,由“对勾函数”的性质可得:在为减函数,即,故选:C.由三角函数的有界性得:,因为,则,由对勾函数的单调性得:在为减函数,即,得解.本题考查了三角函数的有界性及对勾函数的单调性,属中档题.8.平面四边形ABCD中,若,,,则A. B. C. D.【答案】B【解析】解:中,,,,得.,,.故选:B.由平面几何知识,不难算出,从而求得AC,AD即可.此题考查了正弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.9.已知过抛物线的焦点的直线交抛物线于A,B两点,若O为坐标原点,则A. B. C. 0 D.【答案】A【解析】解:由题意知,抛物线的焦点坐标点,直线AB的方程为,由,得,设,,则,,,,故选:A.由抛物线与过其焦点的直线方程联立,消去y整理成关于x的一元二次方程,设出、两点坐标,由向量的数量积的坐标运算得,由韦达定理可以求得答案.本题考查直线与圆锥曲线的关系,解决问题的关键是联立抛物线方程与过其焦点的直线方程,利用韦达定理予以解决.10.若函数的导函数的图象如图所示,则函数的图象可能是A. B. C. D.【答案】D【解析】解:由的图象知,当时,,时,,即当时,,排除B,C,当时,,排除A,故选:D.根据的图象得到当时,,时,,然后讨论x 的范围得到函数取值是否对应进行排除即可.本题主要考查函数图象的识别和判断,根据函数符号的一致性进行排除是解决本题的关键.11.若P是椭圆上的点,点Q,R分别在圆:和圆:上,则的最大值为A. 9B. 8C. 7D. 6【答案】B【解析】解:椭圆中,,椭圆两焦点,恰为两圆和的圆心,,准线,过P点作x轴平行线,分别交两准线于A,B两点,连接,,并延长,分别交两圆于,,则.故选:B.椭圆中,,故椭圆两焦点,恰为两圆和的圆心,过P点作x轴平行线,分别交两准线于A,B两点,连接,,并延长,分别交两圆于,,则,由此能求出的最大值.本题考查椭圆和圆的简单性质,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.12.已知函数的图象过点,为函数的导函数,e为自然对数的底数若1'/>恒成立,则不等式的解集为A. B. C. D.【答案】C【解析】解:设,则,1'/>恒成立,恒成立,单调递增,,,不等式,,,故选:C.构造函数设确定在R单调递增,即可求出不等式的解集.本题考查导数知识的运用,考查函数的单调性,正确构造函数是关键.二、填空题(本大题共4小题,共20.0分)13.已知双曲线C的离心率为,那么它的两条渐近线所成的角为______.【答案】【解析】解:设该双曲线的实半轴为a,虚半轴为b,半焦距为c,离心率,,,又,,,当双曲线的焦点在x轴时,双曲线的两条渐近线方程为,双曲线的两条渐近线互相垂直所成的角是;故答案为:.设该双曲线的实半轴为a,虚半轴为b,半焦距为c,由离心率,可求得,从而可求双曲线的两条渐近线所成的角.本题考查双曲线的简单性质,求得是关键,考查分析与运算能力,属于中档题.14.若x,y满足约束条件,则的最小值为______.【答案】1【解析】解:由x,y满足约束条件作出可行域如图,联立,解得,化目标函数为,由图可知,当直线过点A时,直线在y轴上的截距最小,z有最小值为1.故答案为:1.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.数列1,3,1,3,3,1,3,3,3,1,3,3,3,3,1,3,依此规律,这个数列前44项之和为______.【答案】116【解析】解:数列1,3,1,3,3,1,3,3,3,1,3,3,3,3,1,3,规律为1后接着3,到第几个1后接几个3,当第8个1后接8个3时,共有,则前44项之和为.故答案为:116.由题意可得该数列规律为1后接着3,到第几个1后接几个3,当第8个1后结8个3时,项数为44,计算可得所求和.本题考查数列的求和,注意总结数列的规律,考查运算能力,属于基础题.16.若长度为,4x,的三条线段可以构成一个钝角三角形,则的取值范围是______.【答案】【解析】解:,可得为最大边.由于此三角形为钝角三角形,,化为:,由,解得.又,解得:,的取值范围为.故答案为:.,可得为最大边由于此三角形为钝角三角形,可得,解出,根据三角形两边之和大于第三边可求,即可得解本题考查了余弦定理、不等式的解法、锐角三角形,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知命题p:函数在定义域上单调递增;命题q:不等式对任意实数x恒成立.Ⅰ若q为真命题,求实数a的取值范围;Ⅱ若“¬”为真命题,求实数a的取值范围.【答案】解:Ⅰ因为命题q:不等式对任意实数x恒成立为真命题,所以或综上所述:分Ⅱ因为“¬为真命题,故p真q假.因为命题p:函数在定义域上单调递增,所以分q假,由可知或所以或分所以实数a的取值范围为,分【解析】Ⅰ恒成立,时,,即,结果相并;Ⅱ为真时,;¬为真,即q为假时,或,结果再相交.本题考查了复合命题及其真假,属基础题.18.已知中,内角A,B,C所对的边分别为a,b,c,且.Ⅰ求A;Ⅱ若,求的面积.【答案】本小题满分12分解:Ⅰ.由正弦定理,得分整理得,分因为,所以,又,所以分方法二:由余弦定理得:分化简整理得:分即,又,所以分Ⅱ由余弦定理得:,,即,分又,解得,分所以分【解析】Ⅰ方法一:由已知结合正弦定理及两角和的正弦公式可求,进而可求A;方法二:由余弦定理对已知进行化简可得,然后再由余弦定理可求,进而可求A;Ⅱ由已知结合余弦定理可得,结合已知,可求b,c代入三角形面积可求.本题主要考查了正弦定理余弦定理,三角形的面积公式及两角和的正弦公式,诱导公式等知识的综合应用,数中档试题19.设函数,曲线在点处的切线方程为.Ⅰ求b,c的值;Ⅱ若,求函数的极值.【答案】本小题满分12分解:Ⅰ,分由题意得解得:,分Ⅱ依题意,由得,分所以当时,,单调递增;时,,单调递减;时,,单调递增分故的极大值为,的极小值为分【解析】Ⅰ求出函数的导数,利用已知条件推出方程,然后求解b,c的值;Ⅱ若,判断导函数的符号,然后求解函数的极值.本题考查函数的导数的应用,考查转化思想以及计算能力.20.已知函数,数列的前n项和为,点在曲线上.Ⅰ求数列的通项公式;Ⅱ求数列的前n项和.【答案】本小题满分12分解:Ⅰ因为点,在曲线上,所以,,分当,时,分当,时,,满足上式,分,所以分,Ⅱ因为,,所以分,,分【解析】Ⅰ利用点在曲线上,通过通项公式与数列的和关系,然后求解数列的通项公式;Ⅱ化简数列,利用数列的裂项相消法,求解数列的前n项和.本题考查数列的通项公式的求法,递推关系式的应用,数列与曲线相结合,考查计算能力.21.椭圆C:的离心率为,且过点.Ⅰ求椭圆C的方程;Ⅱ过点M作两条互相垂直的直线,,椭圆C上的点P到,的距离分别为,,求的最大值,并求出此时P点坐标.【答案】本小题满分12分解:Ⅰ由题意知,,所以椭圆方程为:分Ⅱ设,因为,则分因为,所以分因为,所以当时,取得最大值为,此时点分【解析】Ⅰ利用椭圆的离心率,然后求解a,b,即可得到椭圆C的方程;Ⅱ设,结合,然后求解的表达式,然后求解表达式的最大值,然后求解求解P点坐标.本题考查椭圆的简单性质以及椭圆方程的求法,直线与椭圆的位置关系的应用,考查计算能力.22.已知函数.Ⅰ当时,讨论的单调性;Ⅱ证明:当时,.【答案】本小题满分12分解:Ⅰ,分当时,.令0'/>,得;令,得;分所以在单调递增,在单调递减分当时,令0'/>,得;令,得或;分所以在单调递增,在和单调递减分综上,当时,在单调递增,在单调递减;当时,在单调递增,在和单调递减分Ⅱ当时,分令,则.当时,,单调递减;当时,0'/>,单调递增;分所以因此分方法二:由Ⅰ得,当时,在单调递减,在单调递增,所以当时,取得极小值;分当时,,,分所以当时,取得最小值;分而,所以当时,分【解析】Ⅰ求出函数的导数,通过a的值,当时,导函数的符号,推出的单调性;Ⅱ当时,求出导函数,然后判断导函数的符号,推出单调区间.方法二:判断当时,判断导函数的符号,求解函数的最小值,然后求解函数的最值.本题考查函数的导数的应用,考查函数的单调性以及函数的最值的求法,考查计算能力.。

【精品高二数学期末】2018-2019海淀区高二年级第一学期期末数学练习+答案(理)

【精品高二数学期末】2018-2019海淀区高二年级第一学期期末数学练习+答案(理)

海淀区高二年级第一学期期末练习数 学 (理科) 2019.1学校 班级 姓名 成绩本试卷共100分.考试时间90分钟.一. 选择题:本大题共8小题,每小题4分,共32分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线210x y +-=在y 轴上的截距为( )A. 2-B. 1-C. 12- D. 12. 在空间直角坐标系中,已知点(1,0,1)A ,(3,2,1)B ,则线段AB 的中点的坐标是( )A. (1,1,1)B. (2,1,1)C. (1,1,2)D. (1,2,3)3. 已知圆22310x y x m +-++=经过原点,则实数m 等于( )A. 32-B. 1-C. 1D. 324. 鲁班锁是曾广泛流传于民间的智力玩具,它起源于中国古代建筑中首创的榫卯结构, 不用钉子和绳子,完全靠自身结构的连接支撑. 它看似简单,却凝结着不平凡的智慧. 下图为鲁班锁的其中一个零件的三视图,则该零件的体积为( )A. 32B. 34C. 36D. 405. 已知平面,αβ, 直线,m n , 下列命题中假命题是( )A. 若m α⊥, m β⊥, 则αβPB. 若m n P , m α⊥, 则n α⊥C. 若m α⊥, m β⊂, 则αβ⊥D. 若m αP , αβP ,n β⊂, 则m P n6. 椭圆22:11612x y C +=的焦点为1F ,2F ,若点M 在C 上且满足122MF MF -=,则12F MF ∆中最1244俯视图大角为( )A. 90︒B. 105︒C. 120︒D. 150︒ 7. “0m <”是“方程22x my m +=表示双曲线”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件8. 平面α ,β ,γ两两互相垂直, 在平面α内有一点A 到平面β , 平面γ的距离都等于1 . 则在平面α内与点A , 平面β, 平面γ距离都相等的点的个数为( ) A. 1 B. 2 C. 3 D. 4 二. 填空题:本大题共6小题,每小题4分,共24分.9. 直线:10l x y +-=的倾斜角为____, 经过点(1,1)且与直线l 平行的直线方程为_______. 10.10y +-=被圆221x y +=所截得的弦长为_______.11. 请从正方体1111ABCD A B C D -的8个顶点中,找出4个点构成一个三棱锥,使得这个三棱锥的4个面都是直角三角形,则这4个点可以是_________. (只需写出一组)12. 在空间直角坐标系中,已知点(1,2,0)A ,(,3,1)B x -,(4,,2)C y ,若,,A B C 三点共线, 则x y +=______.13. 已知椭圆1C 和双曲线2C 的中心均为原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标记录于右表中, 则双曲线的离心率为_______.14. 曲线W 的方程为22322()8x y x y +=.(i) 请写出曲线W 的两条对称轴方程______________; (ii) 请写出曲线W 上的两个点的坐标______________; (iii) 曲线W 上的点到原点的距离的取值范围是____________.三. 解答题:本大题共4小题,共44分. 解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分10分)在平面直角坐标系xOy 中,圆C 的半径为1,其圆心在射线(0)y x x ≥上,且OC (Ⅰ)求圆C 的方程;(Ⅱ)若直线l 过点(1,0)P 且与圆C 相切,求直线l 的方程.16. (本小题满分10分)如图,在三棱锥P ABC -中,PB PC =,AB AC =,且 点D ,E 分别是BC ,PB 的中点. (Ⅰ)求证:DE P 平面PAC ;(Ⅱ)求证:平面ABC ⊥平面PAD .EDCBAP17. (本小题满分12分)如图,平面ABCF ⊥平面FCDE ,四边形ABCF 和FCDE 是 全等的等腰梯形,其中AB FC ED P P ,且122AB BC FC ===,点O 为FC 的中点,点G 是AB 的中点.(Ⅰ)请在图中所给的点中找出两个点,使得这两点所在直线与平面EGO 垂直,并给出证明..; (Ⅱ)求二面角O EG F --的余弦值;(Ⅲ)在线段CD 上是否存在点H ,使得BH P 平面EGO ?如果存在,求出DH 的长度,如果不存在,请说明理由.C18.(本小题满分12分)已知抛物线2:4W y x =,直线4x =与抛物线W 交于,A B 两点. 点00(,)P x y 00(4,0)x y <≥为抛物线上一动点,直线,PA PB 分别与x 轴交于, M N . (Ⅰ)若PAB ∆的面积为4,求点P 的坐标; (Ⅱ)当直线PA PB ⊥时,求线段PA 的长;(Ⅲ)若PMN ∆与PAB ∆面积相等,求PMN ∆的面积.海淀区高二年级第一学期期末练习数 学(理科)参考答案及评分标准2019.1一. 选择题:本大题共8小题, 每小题4分,共32分.二.填空题:本大题共6小题, 每小题4分, 共24分.9.3π4,20x y +-= 10. 11. 1,,,A A B C (此答案不唯一)12. 12- 13.14. ① 0,0x y ==,,y x y x ==-中的任意两条都对② (0,0),(1,1)此答案不唯一 ③ 说明:9题每空2分,14题中 ① ②空 各给1分,③给2分 三. 解答题:本大题共4小题,共44分. 15.(本小题满分10分)解: (I )设圆心(,)C a a ,则 OC = …………………1分解得2a =,2a =-(舍掉) …………………2分 所以圆 22:(2)(2)1C x y -+-= …………………4分 (Ⅱ)① 若直线l 的斜率不存在,直线l :1x =,符合题意 …………………5分 ② 若直线l 的斜率存在,设直线l 为(1)y k x =-,即 0kx y k --= …………………6分由题意,圆心到直线的距离 1d == …………………8分解得34k =…………………9分 所以直线l 的方程为3430x y --= ………………10分综上所述,所求直线l 的方程为1x =或3430x y --=.16.(本小题满分10分)解: (Ⅰ)证明:在PBC ∆中,因为D ,E 分别是BC ,PB 的中点 ,所以 //DE PC …………………1分 因为 DE ⊄平面PAC ,PC ⊂平面PAC …………………3分说明:上面两个必须有,少一个扣1分.所以 //DE 平面PAC . …………………4分 (Ⅱ)证明:因为 PB PC =,AB AC =,D 是BC 的中点,所以 PD BC ⊥,AD BC ⊥ …………………6分 因为 PD AD D =I ,,PD AD ⊂平面PAD …………………8分 所以 BC ⊥平面PAD …………………9分 因为 BC ⊂平面ABC所以 平面ABC ⊥平面PAD …………………10分17.(本小题满分12分) 解:法一:向量法(Ⅰ),F D 点为所求的点.证明如下:因为四边形ABCF 是等腰梯形,点O 为FC 的中点,点G 是AB 的中点, 所以OG FC ⊥. 又平面ABCF ⊥平面FCDE ,平面ABCF I 平面FCDE FC =,所以OG ⊥平面FCDE …………………1分 同理取DE 的中点H ,则OH ⊥平面ABCF .分别以边,,OG OC OH 所在直线为,,x y z 轴,建立如图所示的空间直角坐标系.由2AB =,得G,D,(0,E -,(0,2,0)F -,则FD =u u u r,OG =u u u r,(0,OE =-u u u r.所以0 , 0FD OG FD OE ⋅=⋅=u u u r u u u r u u u r u u u r…………………3分又EO OG O =I ,所以FD ⊥平面EGO …………………4分(II )由(Ⅰ)知平面EGO的一个法向量为FD =u u u r. 设平面EFG 的法向量为(,,)m x y z =u r,则0,0,m FE m FG ⎧⋅=⎪⎨⋅=⎪⎩u r u u u ru r u u u r即0,20y y ⎧+=⎪+= …………………5分令y =1z =-,2x =-.所以(1)m =--u r…………………6分所以cos ,FD m <>==u u u r u r …………………7分 由题知所求二面角为锐角所以二面角O EG F --的余弦值为…………………8分 (Ⅲ) 假设存在点H ,使得BH P 平面EOG .设DH DC λ=u u u u r u u u r…………………9分所以BH BD DH BD DC λ=+=+u u u r u u u r u u u u r u u u r u u u r ,所以0FD BH ⋅=u u u r u u u r…………………10分 而计算可得 3FD BH ⋅=u u u r u u u r…………………11分这与0FD BH ⋅=u u u r u u u r矛盾所以在线段CD 上不存在点H ,使得BH P 平面EOG …………………12分法二:(Ⅰ) 证明如下:因为四边形ABCF 是等腰梯形,点O 为FC 的中点,点G 是AB 的中点, 所以OG FC ⊥ …………………1分 又平面ABCF ⊥平面FCDE ,平面ABCF I 平面FCDE FC =,所以OG ⊥平面FCDE …………………2分 因为FD ⊂平面FCDE ,所以OG ⊥FD . 又ED FO P ,且EF ED =,所以EFOD 为菱形,所以FD EO ⊥ …………………3分 因为EO OG O =I ,所以FD ⊥平面EGO . …………………4分 (Ⅲ)假设存在点H ,使得BH P 平面EOG …………………9分 由ED OC P ,所以EOCD 为平行四边形,所以EO DC P …………………10分 因为EO ⊂平面EOG所以 DC P 平面EOG …………………11分 又BH DC H =I ,所以平面EOG P 平面BCD , 所以BC P 平面EOG ,所以BC P OG ,所以GBCO 为平行四边形,所以 GB CO = ,矛盾所以不存在点H ,使得BH P 平面EOG …………………12分18.(本小题满分12分)解: (I )把4x =代入抛物线方程,得到4y =± …………………1分所以不妨设(4,4),(4,4)A B -,所以||8AB =. 因为11||8422PAB S AB d d ∆=⋅=⋅⋅=, 所以点P 到直线 AB 的距离1d = …………………2分所以点P 的横坐标03x = …………………3分 代入抛物线方程得P …………………4分 (II )因为PA PB ⊥ ,所以0AP BP ⋅=u u u r u u u r…………………5分 所以0000(4)(4)(4)(4)0x x y y --+-+=, 所以22000816160x x y -++-=,把2004y x =代入得到20040x x -= …………………6分所以00x =,04x =(舍) …………………7分 所以00y =,||PA =…………………8分 (Ⅲ)直线PA 的方程为000444(4)(4)44y y x x x y --=-=--+, 点M 横坐标0004(4)44M x x y y --=+=-- …………………9分同理PB 的方程为 000444(4)(4)44y y x x x y ++=-=---, 点N 横坐标0004(4)44N x x y y -=+=+ …………………10分 因为 PMN PAB S S ∆∆=,所以0011|||||||4|22MN y AB x ⋅=⋅-所以200=4(4)y x -,解得02x = …………………11分 所以 8PMN PAB S S ∆∆== …………………12分说明:解答题有其它正确解法的请酌情给分.11/ 11。

【精品高二数学期末】2018-2019海淀区高二年级第一学期期末数学练习+答案(文)

【精品高二数学期末】2018-2019海淀区高二年级第一学期期末数学练习+答案(文)

海淀区高二年级第一学期期末练习数 学 (文科) 2019.1学校 班级 姓名 成绩本试卷共100分.考试时间90分钟.一.选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线210x y +-=在y 轴上的截距为( )A .2- B. 1- C. 12- D. 12.双曲线22:1169x y C -=的渐近线方程为( )A .34y x =± B. 43y x =± C. 916y x =± D. 169y x =±3. 已知圆 22310x y x m +-++=经过原点,则实数m 等于( )A .32- B. 1- C. 1 D. 324. 鲁班锁是曾广泛流传于民间的智力玩具,它起源于中国古代建筑中首创的榫卯结构,不用钉子和绳子,完全靠自身结构的连接支撑. 它看似简单,却凝结着不平凡的智慧. 下图为鲁班锁的其中一个零件的三视图,则它的体积为( ) A. 32 B. 34C. 36D. 405. 椭圆22:11612x y C +=的焦点为1F ,2F ,若点M 在C 上且满足122MF MF -=,则12F MF ∆中最大角为( )A. 90︒B. 105︒C. 120︒D. 150︒ 6. “0m <”是“方程22x my m +=表示双曲线”的( )A .充分而不必要条件B .必要而不充分条件12244俯视图C .充分必要条件D .既不充分也不必要条件7. 已知两条直线,m n ,两个平面,αβ,下面说法正确的是( )A. m m n n αβαβ⊥⎫⎪⊂⇒⊥⎬⎪⊂⎭B. m m n n αβαβ⎫⎪⊂⇒⎬⎪⊂⎭C.m m αββα⊥⎫⇒⊥⎬⊂⎭D. mm αββα⎫⇒⎬⊂⎭8. 在正方体1111ABCD A B C D -中,点P 为BC 中点,点Q 为线段1AD (与1,A D 不重合)上一动点. 给出如下四个推断: ① 对任意的Q ,1A Q 平面11B BCC② 存在点Q ,使得11AQ B P③ 对任意的Q ,11B Q AC ⊥ 则上面推断中所有正确..的为( ) A. ① ② B. ② ③ C. ① ③ D. ① ② ③ 二.填空题:本大题共6小题,每小题4分,共24分.9.直线:10l x y +-=的倾斜角为____, 经过点(1,1)且与直线l 平行的直线方程为_____. 10. 抛物线24y x =的焦点坐标为____,点(4,4)到其准线的距离为____. 11.请从正方体1111ABCD A B C D -的8个顶点中,找出4个点构成一个三棱锥,使得这个三棱锥的4个面都是直角三角形,则这4个点 可以是_________. (只需写出一组)12. 直线10x y +-= 被圆221x y += 截得的弦长为_______. 13. 已知椭圆和双曲线的中心均为原点,且焦点均 在轴上,从每条曲线上取两个点,将其坐标记录于右表中, 则双曲线的离心率为_______.14.曲线W3=.① 请写出曲线W 的一条对称轴方程______________; ② 请写出曲线W 上的两个点的坐标______________; ③ 曲线W 上的点的纵坐标的取值范围是____________.1C 2C x1A 1D 1C 1A 1B 1DA BC三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分10分)在平面直角坐标系xOy 中,圆C 的半径为1,其圆心在射线(0)y x x ≥上,且OC (Ⅰ)求圆C 的方程;(Ⅱ)若直线l 过点(1,0)P 且与圆C 相切,求直线l 的方程.如图,在三棱锥P ABC -中,PB PC =,AB AC =,且点D ,E 分别是BC ,PB 的中点. (Ⅰ)求证://DE 平面PAC ; (Ⅱ)求证:BC ⊥PA .EDCBAPC如图,平面ABCF ⊥平面FCDE ,四边形ABCF 和FCDE 是 全等的等腰梯形,其中ABFC ED ,且122AB BC FC ===,点O 为FC 的中点,点G 是AB 的中点. (Ⅰ)求证:直线OG ⊥平面FCDE ;(Ⅱ)请在图中所给的点中找出两个点,使得这两点所在直线与平面EGO 垂直,并给出证明..; (Ⅲ)在线段CD 上是否存在点H ,使得BH 平面EGO ?如果存在,求出DH 的长度,如果不存在,请说明理由.18.(本小题满分12分)已知椭圆2222:1x y C a b+=(0a b >>)的左,右焦点分别为1F ,2F ,上顶点为A ,12AF F ∆是斜边长为 (Ⅰ)求椭圆C 的标准方程;(Ⅱ)直线y x m =+与椭圆C 交于不同两点,P Q .(i)当1m =时,求线段PQ 的长度;(ii)是否存在m ,使得43OPQ S ∆=? 若存在,求出m 的值;若不存在,请说明理由.海淀区高二年级第一学期期末练习数 学(文科)参考答案及评分标准2019.1一. 选择题:本大题共8小题, 每小题4分,共32分.二.填空题:本大题共6小题, 每小题4分, 共24分.9.3π4,20x y +-= 10. (1,0),5 11. 1,,,A A B C (此答案不唯一)12. 13.14. ① 0x =(或0y =) ② (0,2),(0,2)- 此答案不唯一 ③ [2,2]-说明:9,10题每空2分, 14题中 ① ②空 各给1分,③给2分 三. 解答题:本大题共4小题,共44分. 15.(本小题满分10分)解: (I )设圆心(,)C a a ,则 OC = …………………1分解得2a =,2a =-(舍掉) …………………2分 所以圆22:(2)(2)1C x y -+-= …………………4分 (Ⅱ)① 若直线l 的斜率不存在,直线l :1x =,符合题意 …………………5分 ② 若直线l 的斜率存在,设直线l 为(1)y k x =-,即 0kx y k --= …………………6分由题意,圆心到直线的距离1d ==, …………………8分解得34k =…………………9分 所以直线l 的方程为3430x y --= …………………10分综上所述,所求直线l 的方程为1x =或3430x y --=.16.(本小题满分10分)解: (Ⅰ)证明:在PBC ∆中,因为D ,E 分别是BC ,PB 的中点 ,所以 //DE PC …………………1分 因为 DE ⊄平面PAC ,PC ⊂平面PAC …………………3分说明:上面两个必须有,少一个扣1分.所以 //DE 平面PAC . …………………4分 (Ⅱ)证明:因为 PB PC =,AB AC =,D 是BC 的中点,C因为 PDAD D =,,PD AD ⊂平面PAD …………………8分所以 BC ⊥平面PAD …………………9分 因为 BC ⊂平面ABC所以 平面ABC ⊥平面PAD …………………10分17.(本小题满分12分)解:(Ⅰ) 因为四边形ABCF 是等腰梯形,点O 为FC 的中点,点G 是AB 的中点所以OG FC ⊥ …………………1分 又平面ABCF ⊥平面FCDE ,平面ABCF平面FCDE FC =………………3分所以OG ⊥平面FCDE …………………4分 (II ) ,F D 点为所求的点因为FD ⊂平面FCDE , 所以OG ⊥FD …………………5分又EDFO ,且EF ED =,所以EFOD 为菱形 …………………6分所以FD EO ⊥ …………………7分 因为EO OG O =,所以FD ⊥平面EGO …………………8分 (Ⅲ)假设存在点H ,使得BH 平面EOG …………………9分由EDOC ,所以EOCD 为平行四边形,所以EO DC …………………10分因为EO ⊂平面EOG又BH DC H =,所以平面EOG平面BCD ,所以BC平面EOG ,所以BCOG ,所以GBCO 为平行四边形,所以 GB CO = ,矛盾, 所以不存在点H ,使得BH平面EOG …………………12分18.(本小题满分12分)解: (I)由题意,12F F =b c = …………………1分所以2b c a === …………………3分椭圆C 的标准方程为22142x y += …………………4分 (II )把直线1l 和椭圆的方程联立22142x y y x m⎧+=⎪⎨⎪=+⎩ 2234240x mx m ++-= …………………5分当1m =时,有23420x x +-=,1243x x +=-, 1223x x =-…………………6分 所以12|||PQ x x -=…………………8分 (Ⅲ)假设存在m ,使得43OPQ S ∆=.因为12|||PQ x x -= …………………9分 点O 到直线y x m =+的距离为d = …………………10分所以114||223OPQ S PQ d ∆=⋅== 所以42680m m -+=,解得2,m =± …………………11分 代入221612(24)0,m m ∆=-->m=±均符合题意…………………12分说明:所以2,解答题有其它正确解法的请酌情给分.。

2019海淀区二模数学(文)试题及答案-10页文档资料

2019海淀区二模数学(文)试题及答案-10页文档资料

海淀区高三年级第二学期期末练习数 学(文科)2019.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作 答无效。

考试结束后,将本试卷和答题卡一并交回。

—、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出 符合题目要求的一项.1. 集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B =U A .(,0]-∞ B .(,1]-∞ C .[1,2] D .[1,)+∞ 2 已知a =ln21,b=sin 21,c=212-,则a,b ,c 的大小关系为A. a < b < cB. a <c <bC.b <a<cD. b <c < a3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m4.某空间几何体的三视图如右图所示,则该几何体的表面积为 A.180 B.240 C.276 D.3005 下列函数中,为偶函数且有最小值的是A.f(x) =x 2 +xB.f(x) = |lnx|C.f(x) =xsinxD.f(x) =e x +e -x6 在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==u u u r u u u r u u u r u u u r ”是“四边形ABCD 为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7.双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为B.1+1+D.2+俯视图8. 若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 A. 若m=54,则a 5=3 B 若a 3=2,则m 可以取3个不同的值 C. 若2m =,则数列{}n a 是周期为3的数列 D.Q m ∃∈且2m ≥,数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分. 9 复数ii-12=______ 10 甲、乙两名运动员在8场篮球比赛中得分的数据统计 如右图,则甲乙两人发挥较为稳定的是_____.11 已知数列{a n }是等比数列,且a 1 .a3 =4,a 4=8,a 3的值为____. 12 直线y= x+1被圆x 2-2x +y 2-3 =0所截得的弦长为_____ 13 已知函数f(x)=sin()10)(62<<-ωπωx 的图象经过点[0, π]上的单调递增区间为________14 设变量x,y 满足约束条件⎪⎩⎪⎨⎧-≤-≤-+≥-)1(10401x k y y x y 其中k 0,>∈k R(I)当k=1时的最大值为______; (II)若2x y的最大值为1,则实数a 的取值范围是_____. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15 (本小题满分13分)已知等差数列{a n }的前n 项和为 S n (I)若a 1=1,S 10= 100,求{a n }的通项公式; (II)若S n =n 2-6n ,解关于n 的不等式S n +a n >2n 16 (本小题满分13分)已知点 D 为ΔABC 的边 BC 上一点.且 BD =2DC, ADB ∠=750,ACB ∠=30°,AD =2.(I)求CD 的长; (II)求ΔABC 的面积 17 (本小题满分14分)如图1,在直角梯形ABCD 中,AD//BC, ADC ∠=900,BA=BC 把ΔBAC 沿AC 折起到PAC∆的位置,使得点P 在平面ADC 上的正投影O 恰好落在线段AC 上,如图2所示,点,E F 分别为线段PC ,CD 的中点. (I) 求证:平面OEF//平面APD ; (II)求直线CD 与平面POF(III)在棱PC 上是否存在一点M ,使得M 到点P,O,C,F 四点的距离相等?请说明理由. 18 (本小题满分13分) 已知函数f(x) =lnx g(x) =-)0(>a ax(1)当a=1时,若曲线y=f(x)在点M (x 0,f(x 0))处的切线与曲线y=g(x)在点P (x 0, g(x 0))处的切线平行,求实数x 0的值;(II)若∈∀x (0,e],都有f(x)≥g(x) 23,求实数a 的取值范围. 19 (本小题满分丨4分)已知椭圆C:22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60o 的菱形的四个顶点.(I)求椭圆C 的方程;(II)若直线y =kx 交椭圆C 于A ,B 两点,在直线l:x+y-3=0上存在点P,使得 ΔPAB 为等边三角形,求k 的值.20 (本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. (Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每1237-2- 1 0 1列的各数之和均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之 表2 和与每列的各数之和均为非负整数?请说明理由.数 学 (文科)参考答案及评分标准 2019.5说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)注:11题少写一个,扣两分,错写不给分 13题开闭区间都对三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I )设{}n a 的公差为d因为11a =,1910101002a a S +=⨯= ……………………2分 所以1101,19a a == ……………………4分 所以2d =所以 21n a n =- ……………………6分(II )因为26n S n n =-当2n ≥时,21(1)6(1)n S n n -=---所以27n a n =-,2n ≥ ……………………9分又1n =时,11527a S ==-=-所以 27n a n =- ……………………10分 所以247n n S a n n +=--所以2472n n n -->,即2670n n --> 所以7n >或1n <-,所以7n >,N n ∈ ……………………13分16. 解:(I )因为75ADB ∠=o ,所以45DAC ∠=o在ACD ∆中,AD =, 根据正弦定理有sin 45sin30CD AD=o o……………………4分所以2CD = ……………………6分 (II )所以4BD = ……………………7分 又在ABD ∆中,75ADB ∠=o ,sin75sin(4530)=+=o o o ……………………9分所以1sin7512ADB S AD BD ∆=⋅⋅=+o ……………………12分所以32ABC ABD S S ∆∆== ……………………13分同理,根据根据正弦定理有sin105sin30AC AD=o o而 sin105sin(4560)=+=o o o ……………………8分所以1AC =+ ……………………10分 又4BD =,6BC = ……………………11分 所以 ……………………13分17.解:(I )因为点P 在平面ADC 上的正投影O 恰好落在线段AC 上所以PO ⊥平面ABC ,所以PO ⊥AC …………………2分因为AB BC =,所以O 是AC 中点, …………………3分所以//OE PA …………………4分 同理//OF AD又,OE OF O PA AD A ==I I所以平面//OEF 平面PDA …………………6分 (II )因为//OF AD ,AD CD ⊥所以OF CD ⊥ …………………7分 又PO ⊥平面ADC ,CD ⊂平面ADC所以PO ⊥CD …………………8分 又OF PO O =I所以CD ⊥平面POF …………………10分 (III)存在,事实上记点E 为M 即可 …………………11分 因为CD ⊥平面POF ,PF ⊂平面POF 所以CD PF ⊥又E 为PC 中点,所以 12EF PC =…………………12分 同理,在直角三角形POC 中,12EP EC OE PC ===, …………………13分所以点E 到四个点,,,P O C F 的距离相等 …………………14分18.解:(I )当因为1a =, 211'(),()f x g x x x== …………………2分 若函数()f x 在点00(,())M x f x 处的切线与函数()g x 在点00(,())P x g x处的切线平行,所以20011x x =,解得01x = 此时()f x 在点(1,0)M 处的切线为1y x =-()g x 在点(1,1)P - 处的切线为2y x =-所以01x = …………………4分(II )若(0,e]x ∀∈,都有3()()2f xg x ≥+ 记33()()()ln 22a F x f x g x x x =--=+-, 只要()F x 在(0,e]上的最小值大于等于0221'()a x aF x x x x-=-= …………………6分 则'(),()F x F x 随x 的变化情况如下表:…………………8分 当e a ≥时,函数()F x 在(0,e)上单调递减,(e)F 为最小值所以3(e)102a F e =+-≥,得e 2a ≥ 所以e a ≥ …………………10分 当e a <时,函数()F x 在(0,)a 上单调递减,在(,e)a 上单调递增 ,()F a 为最小值,所以3()ln 02a F a a a =+-≥,得a ≥ e a ≤< ………………12分 a ≤ ………………13分19.解:(I)因为椭圆:C 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60o的菱形的四个顶点, 所以1a b ==,椭圆C的方程为2213x y += ………………4分 (II)设11(,),A x y 则11(,),B x y --当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线:30l x y +-=的交点为(0,3)P ,又因为|||3AB PO ==,所以60PAO ∠=o ,所以PAB∆是等边三角形,所以直线AB 的方程为0y = ………………6分 当直线AB 的斜率存在且不为0时,设AB 的方程为y kx =所以2213x y y kx⎧+=⎪⎨⎪=⎩,化简得22(31)3k x +=所以 1||x =,则||AO ==………………8分设AB 的垂直平分线为1y x k =-,它与直线:30l x y +-=的交点记为00(,)P x y 所以31y x y x k =-+⎧⎪⎨=-⎪⎩,解得003131k x k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩,则||PO =………………10分因为PAB ∆为等边三角形,所以应有||||PO AO =代入得到=0k =(舍),1k =-……………13分 此时直线AB 的方程为y x =-综上,直线AB 的方程为y x =-或0y = ………………14分20.解:(I )法1: 法2: 法3: (写出一种即可) …………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果操作第三列,则则第一行之和为21a -,第二行之和为52a -,210520a a -≥⎧⎨-≥⎩,解得1,2a a ==. …………………6分② 如果操作第一行则每一列之和分别为22a -,222a -,22a -,22a解得1a = …………………9分综上1a = …………………10分 (III) 证明:按要求对某行(或某列)操作一次时,则该行的行和(或该列的列和) 由负整数变为正整数,都会引起该行的行和(或该列的列和)增大,从而也就使得 数阵中mn 个数之和增加,且增加的幅度大于等于1(1)2--=,但是每次操作都只 是改变数表中某行(或某列)各数的符号,而不改变其绝对值,显然,数表中mn 个数之和必然小于等于11||mnij i j a ==∑∑,可见其增加的趋势必在有限次之后终止,终止之时必然所有的行和与所有的列和均为非负整数,故结论成立…………………13分。

2019-2020学年北京市海淀区数学高二第二学期期末经典试题含解析

2019-2020学年北京市海淀区数学高二第二学期期末经典试题含解析

2019-2020学年北京市海淀区数学高二第二学期期末经典试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.复数21i - (i 为虚数单位)的共轭复数是( ) A .1i +B .1i --C .1i -+D .1i - 2.设4log 9a =,4log 25b =,5log 9c =,则( )A .a b c >>B .c a b >>C .b c a >>D .b a c >> 3.设复数z 满足1+z 1z -=i ,则|z|=( ) A .1 B .2 C .3 D .24.设()f x '是函数()f x 的导函数,()y f x ='的图象如图所示,则()y f x =的图象最有可能的是( )A .B .C .D .5.函数32()log f x x x =-的一个零点所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)6.在一次调查中,根据所得数据绘制成如图所示的等高条形图,则( )A .两个分类变量关系较强B .两个分类变量关系较弱C .两个分类变量无关系 ^D .两个分类变量关系难以判断7.今年全国高考,某校有3000人参加考试,其数学考试成绩X : 2(100,)N a (0a >,试卷满分150分),统计结果显示数学考试成绩高于130分的人数为100,则该校此次数学考试成绩高于100分且低于130分的学生人数约为( )A .1300B .1350C .1400D .14508.已知(),0,1a b ∈,记,1M ab N a b ==+-,则M 与N 的大小关系是( )A .M N <B .M N >C .M N =D .不能确定9.设平面向量()()2,1,0,2a b ==-v v ,则与+2a b v v 垂直的向量可以是( )A .()4,6-B .()4,6C .()3,2-D .()3,210.设x ∈R ,则“28x <”是1<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.椭圆22194x y +=的点到直线240x y +-=的距离的最小值为( )A B C .5 D .012.以下四个命题,其中正确的个数有( )①由独立性检验可知,有99%的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程^0.212y x =+中,当解释变量x 每增加一个单位时,预报变量ˆy平均增加0.2个单位; ④对分类变量X 与Y ,它们的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大.A .1B .2C .3D .4二、填空题(本题包括4个小题,每小题5分,共20分)13.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。

北京市海淀区2019-2020学年高二上学期期末考试文科数学试卷 Word版含解析 (2)

北京市海淀区2019-2020学年高二上学期期末考试文科数学试卷 Word版含解析 (2)

北京市海淀区2019-2020学年上学期期末考试高二文科数学试卷一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)直线x+y=2的倾斜角是()A.B.C.D.2.(4分)焦点在x轴上的椭圆的离心率是,则实数m的值是()A.4 B.C.1 D.3.(4分)一个空间几何体的三视图如图所示,该几何体的体积为()A.8 B.C.D.64.(4分)已知圆O:x2+y2=1,直线l:3x+4y﹣3=0,则直线l被圆O所截的弦长为()A.B.1 C.D.25.(4分)命题“∃k>0,使得直线y=kx﹣2的图象经过第一象限”的否定是()A.∃k>0,使得直线y=kx﹣2的图象不经过第一象限B.∃k≤0,使得直线y=kx﹣2的图象经过第一象限C.∀k>0,使得直线y=kx﹣2的图象不经过第一象限D.∀k≤0,使得直线y=kx﹣2的图象不经过第一象限6.(4分)已知等差数列{a n},则“a2>a1”是“数列{a n}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(4分)已知正四面体A﹣BCD的棱长为2,点E是AD的中点,则下面四个命题中正确的是()A.∀F∈BC,EF⊥AD B.∃F∈BC,EF⊥AC C.∀F∈BC,EF≥D.∃F∈BC,EF∥AC8.(4分)已知曲线W:+|y|=1,则曲线W上的点到原点距离的最小值是()A.B.C.D.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.9.(4分)已知直线x﹣ay﹣1=0与直线y=ax平行,则实数a=.10.(4分)双曲线的两条渐近线方程为.11.(4分)已知椭圆上的点P到一个焦点的距离为3,则P到另一个焦点的距离为.12.(4分)已知椭圆C=1(a>b>0)的左右焦点分别为F1,F2,若等边△F1F2P的一个顶点P在椭圆C上,则椭圆C的离心率为.13.(4分)已知平面α⊥β,且α∩β=l,在l上有两点A,B,线段AC⊂α,线段BD⊂β,AC⊥l,BD⊥l,AB=4,AC=3,BD=12,则线段CD的长为.14.(4分)已知点,抛物线y2=2x的焦点为F,点P在抛物线上,且|AP|=|PF|,则|OP|=.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.(10分)已知点A(0,2),圆O:x2+y2=1.(Ⅰ)求经过点A与圆O相切的直线方程;(Ⅱ)若点P是圆O上的动点,求的取值范围.16.(12分)已知直线l:y=x+t与椭圆C:x2+2y2=2交于A,B两点.(Ⅰ)求椭圆C的长轴长和焦点坐标;(Ⅱ)若|AB|=,求t的值.17.(12分)如图所示的几何体中,直线AF⊥平面ABCD,且ABCD为正方形,ADEF为梯形,DE∥AF,又AB=1,AF=2DE=2a.(Ⅰ)求证:直线CE∥平面ABF;(Ⅱ)求证:直线BD⊥平面ACF;(Ⅲ)若直线AE⊥CF,求a的值.18.(10分)已知椭圆,经过点A(0,3)的直线与椭圆交于P,Q两点.(Ⅰ)若|PO|=|PA|,求点P的坐标;(Ⅱ)若S△OAP=S△OPQ,求直线PQ的方程.北京市海淀区2019-2020学年上学期期末考试高二文科数学试卷参考答案一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)直线x+y=2的倾斜角是()A.B.C.D.考点:直线的倾斜角.专题:直线与圆.分析:直线的倾斜角与斜率之间的关系解答:解:设倾斜角为θ,θ∈可得,解得m=4.故选:A.点评:本题考查椭圆的简单性质的应用,基本知识的考查.3.(4分)一个空间几何体的三视图如图所示,该几何体的体积为()A.8 B.C.D.6考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由已知中的三视图可得,该几何体为以俯视图为底面的四棱锥,求出底面面积和高,代入棱锥体积公式,可得答案.解答:解:由已知中的三视图可得,该几何体为以俯视图为底面的四棱锥,棱锥的底面面积S=2×2=4,棱锥的高h=2,故棱锥的体积V==,故选:B点评:本题考查三视图、三棱柱的体积,本试题考查了简单几何体的三视图的运用.培养同学们的空间想象能力和基本的运算能力.基础题.4.(4分)已知圆O:x2+y2=1,直线l:3x+4y﹣3=0,则直线l被圆O所截的弦长为()A.B.1 C.D.2考点:直线与圆相交的性质.专题:直线与圆.分析:根据直线和圆的位置关系结合弦长公式即可得到结论.解答:解:圆心到直线的距离d=,则直线l被圆O所截的弦长为==,故选:C点评:本题主要考查直线和圆相交的应用,根据圆心到直线的距离结合弦长公式是解决本题的关键.5.(4分)命题“∃k>0,使得直线y=kx﹣2的图象经过第一象限”的否定是()A.∃k>0,使得直线y=kx﹣2的图象不经过第一象限B.∃k≤0,使得直线y=kx﹣2的图象经过第一象限C.∀k>0,使得直线y=kx﹣2的图象不经过第一象限D.∀k≤0,使得直线y=kx﹣2的图象不经过第一象限考点:命题的否定.专题:简易逻辑.分析:根据特称命题的否定是全称命题即可得到结论.解答:解:命题为特称命题,则根据特称命题的否定是全称命题得命题的否定是∀k>0,使得直线y=kx﹣2的图象不经过第一象限,故选:C点评:本题主要考查含有量词的命题的否定,比较基础.6.(4分)已知等差数列{a n},则“a2>a1”是“数列{a n}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:等差数列与等比数列;简易逻辑.分析:根据充分条件和必要条件的定义进行判断即可.解答:解:在等差数列{a n}中,若a2>a1,则d>0,即数列{a n}为单调递增数列,若数列{a n}为单调递增数列,则a2>a1,成立,即“a2>a1”是“数列{a n}为单调递增数列”充分必要条件,故选:C.点评:本题主要考查充分条件和必要条件的判断,等差数列的性质是解决本题的关键.7.(4分)已知正四面体A﹣BCD的棱长为2,点E是AD的中点,则下面四个命题中正确的是()A.∀F∈BC,EF⊥AD B.∃F∈BC,EF⊥AC C.∀F∈BC,EF≥D.∃F∈BC,EF∥AC考点:棱锥的结构特征.专题:空间位置关系与距离.分析:由题意画出图形,利用线面垂直的判定判定AD⊥面BCE,由此说明A正确;由三垂线定理结合∠BEC为锐角三角形说明B错误;举例说明C错误;由平面的斜线与平面内直线的位置关系说明D错误.解答:解:如图,∵四面体A﹣BCD为正四面体,且E为AD的中点,∴BE⊥AD,CE⊥AD,又BE∩CE=E,∴AD⊥面BCE,则∀F∈BC,EF⊥AD,选项A正确;由AE⊥面BCE,∴AE⊥EF,若AC⊥EF,则CE⊥EF,∵∠BEC为锐角三角形,∴不存在F∈BC,使EF⊥AC,选项B错误;取BC中点F,可求得DF=,又DE=1,得EF=,选项C错误;AC是平面BCE的一条斜线,∴AC与平面BCE内直线的位置关系是相交或异面,选项D错误.故选:A.点评:本题考查了命题的真假判断与应用,考查了空间中直线与平面的位置关系,考查了线线垂直与线面平行的判定,考查了空间想象能力,是中档题.8.(4分)已知曲线W:+|y|=1,则曲线W上的点到原点距离的最小值是()A.B.C.D.考点:两点间距离公式的应用.专题:计算题;圆锥曲线的定义、性质与方程.分析:化简方程+|y|=1,得到x2=1﹣2|y|,作出曲线W的图形,通过图象观察,即可得到到原点距离的最小值.解答:解:+|y|=1即为=1﹣|y|,两边平方,可得x2+y2=1+y2﹣2|y|,即有x2=1﹣2|y|,作出曲线W的图形,如右:则由图象可得,O与点(0,)或(0,﹣)的距离最小,且为.故选A.点评:本题考查曲线方程的化简,考查两点的距离公式的运用,考查数形结合的思想方法,属于中档题.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.9.(4分)已知直线x﹣ay﹣1=0与直线y=ax平行,则实数a=1或﹣1.考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由平行关系可得向量相等,排除截距相等即可.解答:解:当a=0时,第二个方程无意义,故a≠0,故直线x﹣ay﹣1=0可化为x﹣,由直线平行可得a=,解得a=±1故答案为:1或﹣1点评:本题考查直线的一般式方程和平行关系,属基础题.10.(4分)双曲线的两条渐近线方程为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.解答:解:∵双曲线的a=4,b=3,焦点在x轴上而双曲线的渐近线方程为y=±x∴双曲线的渐近线方程为故答案为:点评:本题考查了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想11.(4分)已知椭圆上的点P到一个焦点的距离为3,则P到另一个焦点的距离为7.考点:椭圆的定义.专题:计算题.分析:椭圆的长轴长为10,根据椭圆的定义,利用椭圆上的点P到一个焦点的距离为3,即可得到P到另一个焦点的距离.解答:解:椭圆的长轴长为10根据椭圆的定义,∵椭圆上的点P到一个焦点的距离为3∴P到另一个焦点的距离为10﹣3=7故答案为:7点评:本题考查椭圆的标准方程,考查椭圆的定义,属于基础题.12.(4分)已知椭圆C=1(a>b>0)的左右焦点分别为F1,F2,若等边△F1F2P的一个顶点P在椭圆C上,则椭圆C的离心率为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意和椭圆的对称性可得:点P是椭圆短轴上的顶点,由椭圆的性质即可求出椭圆C的离心率.解答:解:因为等边△F1F2P的一个顶点P在椭圆C上,如图:所以由椭圆的对称性可得:点P是椭圆短轴上的顶点,因为△F1F2P是等边三角形,所以a=2c,则=,即e=,故答案为:.点评:本题考查椭圆的简单几何性质的应用,解题的关键确定点P的位置,属于中档题.13.(4分)已知平面α⊥β,且α∩β=l,在l上有两点A,B,线段AC⊂α,线段BD⊂β,AC⊥l,BD⊥l,AB=4,AC=3,BD=12,则线段CD的长为13.考点:点、线、面间的距离计算.专题:计算题;空间位置关系与距离.分析:由于本题中的二面角是直角,且两线段都与棱垂直,可根据题意作出相应的长方体,CD恰好是此长方体的体对角线,由长方体的性质求出其长度即可.解答:解:如图,由于此题的二面角是直角,且线段AC,BD分别在α,β内垂直于棱l,AB=4,AC=3,BD=12,作出以线段AB,BD,AC为棱的长方体,CD即为长方体的对角线,由长方体的性质知,CD==13.故答案为:13.点评:本题考查与二面角有关的线段长度计算问题,根据本题的条件选择作出长方体,利用长方体的性质求线段的长度,大大简化了计算,具体解题中要注意此类问题的合理转化.14.(4分)已知点,抛物线y2=2x的焦点为F,点P在抛物线上,且|AP|=|PF|,则|OP|=.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求得抛物线的焦点F,设P(m2,m),运用两点的距离公式,结合条件|AP|=|PF|,计算可得m,再由两点的距离公式计算即可得到结论.解答:解:抛物线y2=2x的焦点为F(,0),设P(m2,m),由|AP|=|PF|,可得|AP|2=2|PF|2,即有(m2+)2+m2=2,化简得m4﹣2m2+1=0,解得m2=1,即有|OP|===.故答案为:.点评:本题考查抛物线的方程和性质,主要考查抛物线的焦点坐标,同时考查两点的距离公式的运用,属于中档题.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.(10分)已知点A(0,2),圆O:x2+y2=1.(Ⅰ)求经过点A与圆O相切的直线方程;(Ⅱ)若点P是圆O上的动点,求的取值范围.考点:直线和圆的方程的应用.专题:平面向量及应用;直线与圆.分析:(1)由已知中直线过点A我们可以设出直线的点斜式方程,然后化为一般式方程,代入点到直线距离公式,根据直线与圆相切,圆心到直线的距离等于半径,可以求出k值,进而得到直线的方程;(2)设出P点的坐标,借助坐标来表示两个向量的数量积,再根据P在圆上的条件,进而得到结论.解答:(本小题满分10分)解:( I)由题意,所求直线的斜率存在.设切线方程为y=kx+2,即kx﹣y+2=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)所以圆心O到直线的距离为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所以,解得,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所求直线方程为或.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)( II)设点P(x,y),所以,,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)因为点P在圆上,所以x2+y2=1,所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又因为x2+y2=1,所以﹣1≤y≤1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)点评:本题考查的知识是直线和圆的方程的应用,其中熟练掌握直线与圆不同位置关系时,点到直线的距离与半径的关系是关键,还考查了向量数量积的坐标表示.16.(12分)已知直线l:y=x+t与椭圆C:x2+2y2=2交于A,B两点.(Ⅰ)求椭圆C的长轴长和焦点坐标;(Ⅱ)若|AB|=,求t的值.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)求出椭圆的标准方程,即可求椭圆C的长轴长和焦点坐标;(Ⅱ)联立直线和椭圆方程转化为一元二次方程,结合弦长公式进行求解即可.解答:解:( I)因为x2+2y2=2,所以,所以,所以c=1,所以长轴为,焦点坐标分别为F1(﹣1,0),F2(1,0).( II)设点A(x1,y1),B(x2,y2).因为,消元化简得3x2+4tx+2t2﹣2=0,所以,所以,又因为,所以,解得t=±1.点评:本题主要考查椭圆方程的应用和性质,以及直线和椭圆相交的弦长公式的应用,转化一元二次方程是解决本题的关键.17.(12分)如图所示的几何体中,直线AF⊥平面ABCD,且ABCD为正方形,ADEF为梯形,DE∥AF,又AB=1,AF=2DE=2a.(Ⅰ)求证:直线CE∥平面ABF;(Ⅱ)求证:直线BD⊥平面ACF;(Ⅲ)若直线AE⊥CF,求a的值.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:(I)由AB∥CD,DE∥AF,且AB∩AF=A,CD∩DE=D,可证平面ABF∥平面DCE即可证明CE∥平面ABF.(II)先证明AC⊥BD,AF⊥BD,即可证明直线BD⊥平面ACF.(Ⅲ)连接 FD,易证明CD⊥AE.又AE⊥CF,可证AE⊥FD.从而可得,即有,即可解得a的值.解答:(本小题满分12分)解:( I)因为ABCD为正方形,所以AB∥CD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)又DE∥AF,且AB∩AF=A,CD∩DE=D.所以平面ABF∥平面DCE.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)而CE⊂平面EDC,所以CE∥平面ABF.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(II)因为ABCD为正方形,所以AC⊥BD﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)因为直线AF⊥平面ABCD,所以AF⊥BD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)因为AF∩AC=A,所以直线BD⊥平面ACF.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)连接 FD.因为直线AF⊥平面ABCD,所以AF⊥CD,又CD⊥AD,AD∩AF=A所以CD⊥平面ADEF,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)所以CD⊥AE.又AE⊥CF,FC∩CD=C,所以AE⊥平面FCD,所以AE⊥FD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)所以,所以==解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分).点评:本题主要考察了直线与平面垂直的判定,直线与平面平行的判定,考察了转化思想,属于中档题.18.(10分)已知椭圆,经过点A(0,3)的直线与椭圆交于P,Q两点.(Ⅰ)若|PO|=|PA|,求点P的坐标;(Ⅱ)若S△OAP=S△OPQ,求直线PQ的方程.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由|PO|=|PA|,得P在OA的中垂线上,求出中垂线方程,代入椭圆方程进行求解即可求点P 的坐标;(Ⅱ)求出直线方程,联立直线和椭圆方程,转化为一元二次方程,结合三角形面积之间的关系即可得到结论.解答:解:( I)设点P(x1,y1),由题意|PO|=|PA|,所以点P在OA的中垂线上,而OA的中垂线为,所以有.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)把其代入椭圆方程,求得x1=±1.所以或.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(II)设Q(x2,y2).根据题意,直线PQ的斜率存在,设直线PQ的方程为y=kx+3,所以.消元得到(3+4k2)x2+24kx+24=0,所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)因为S△OAP=S△OPQ,所以S△OAQ=2S△OPQ,即﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)所以有|x1|=2|x2|,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)因为,所以x1,x2同号,所以x1=2x2.所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)解方程组得到,经检验,此时△>0,所以直线PQ的方程为,或.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)法二:设Q(x2,y2),因为S△OAP=S△OPQ,所以|AP|=|PQ|.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)即点P为线段OQ的中点,所以x2=2x1,y2=2y1﹣3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)把点P,Q的坐标代入椭圆方程得到﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)解方程组得到或者,即,或者.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)所以直线PQ的斜率为或者,所以直线PQ的方程为,.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)点评:本题主要考查椭圆方程的应用和性质,直线和椭圆相交的性质,利用设而不求的思想是解决本题的关键.考查学生的运算能力.。

2019-2020年高二下学期期末数学试卷(文科)含解析

2019-2020年高二下学期期末数学试卷(文科)含解析

2019-2020年高二下学期期末数学试卷(文科)含解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>04.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.45.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.58.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=_______.12.函数y=的值域为_______.13.若P=﹣1,Q=﹣,则P与Q的大小关系是_______.14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.15.已知函数则的值为_______.16.按程序框图运算:若x=5,则运算进行_______次才停止;若运算进行3次才停止,则x的取值范围是_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.2015-2016学年北京市东城区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)【考点】交集及其运算.【分析】先求出不等式x(x﹣2)<0的解集,即求出A,再由交集的运算求出A∩B.【解答】解:由x(x﹣2)<0得,0<x<2,则A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩B═{x|1<x<2}=(1,2),故选D.2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式an2=2+(n﹣1)×3=3n﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n2﹣a n﹣12=3,又∵a12=2,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0 C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D4.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.4【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:∵y′=,∴y′|x=1==1.故选:A.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】a=30.2>1,利用换底公式可得:b=log64=,c=log32=,由于1<log26<log29,即可得出大小关系.【解答】解:∵a=30.2>1,b=log64=,c=log32==,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【考点】函数奇偶性的性质;函数的值.【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=﹣1+i.【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】由条件利用两个复数相除,分子和分母同时乘以分母的共轭复数,计算求得结果.【解答】解:∵复数z满足(1﹣i)z=2i,则z====﹣1+i,故答案为:﹣1+i.12.函数y=的值域为{y|y≠2} .【考点】函数的值域.【分析】函数y===2+,利用反比例函数的单调性即可得出.【解答】解:函数y===2+,当x>1时,>0,∴y>2.当x<1时,<0,∴y<2.综上可得:函数y=的值域为{y|y≠2}.故答案为:{y|y≠2}.13.若P=﹣1,Q=﹣,则P与Q的大小关系是P>Q.【考点】不等式比较大小.【分析】利用作差法,和平方法即可比较大小.【解答】解:∵P=﹣1,Q=﹣,∴P﹣Q=﹣1﹣+=(+)﹣(+1)∵(+)2=12+2,( +1)2=12+2∴+>+1,∴P﹣Q>0,故答案为:P>Q14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.15.已知函数则的值为﹣.【考点】函数的值;函数迭代.【分析】由题意可得=f(﹣)=3×(﹣),运算求得结果.【解答】解:∵函数,则=f(﹣)=3×(﹣)=﹣,故答案为﹣.16.按程序框图运算:若x=5,则运算进行4次才停止;若运算进行3次才停止,则x 的取值范围是(10,28] .【考点】循环结构.【分析】本题的考查点是计算循环的次数,及变量初值的设定,在算法中属于难度较高的题型,处理的办法为:模拟程序的运行过程,用表格将程序运行过程中各变量的值进行管理,并分析变量的变化情况,最终得到答案.【解答】解:(1)程序在运行过程中各变量的值如下表示:x x 是否继续循环循环前5∥第一圈15 13 是第二圈39 37 是第三圈111 109 是第四圈327 325 否故循环共进行了4次;(2)由(1)中数据不难发现第n圈循环结束时,经x=(x0﹣1)×3n+1:x 是否继续循环循环前x0/第一圈(x0﹣1)×3+1 是第二圈(x0﹣1)×32+1 是第三圈(x0﹣1)×33+1 否则可得(x0﹣1)×32+1≤244且(x0﹣1)×33+1>244解得:10<x0≤28故答案为:4,(10,28]三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.【考点】函数奇偶性的判断;函数的定义域及其求法.【分析】(1)使函数各部分都有意义的自变量的范围,即列出不等式组,解此不等式组求出x范围就是函数的定义域;(2)根据函数奇偶性的定义进行证明即可.【解答】解:(1)由题得,使解析式有意义的x范围是使不等式组成立的x范围,解得﹣1<x<1,所以函数f(x)的定义域为{x|﹣1<x<1}.(2)函数f(x)为奇函数,证明:由(1)知函数f(x)的定义域关于原点对称,且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣log a(1+x)+log a(1﹣x)=﹣[log a(1+x)﹣log a (1﹣x)]=﹣f(x)所以函数f(x)为奇函数.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】先设箱底边长为xcm,则箱高cm,得箱子容积,再利用导数的方法解决,应注意函数的定义域.【解答】解:设箱底边长为xcm,则箱高cm,得箱子容积(0<x<60).(0<x<60)令=0,解得x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm320.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣﹣﹣﹣﹣﹣②当a<0时,由f'(x)=0,得.在区间上,f'(x)>0,在区间上,f'(x)<0,所以,函数f(x)的单调递增区间为,单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由已知,转化为f(x)max<g(x)max.g(x)=(x﹣1)2+1,x∈[0,1],所以g (x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.【考点】数列的求和;数列的应用.【分析】(I)由{a n}伴随数列{b n}的定义可得前5项为1,1,1,2,3.(II)由a n=3n﹣1≤m,可得n≤1+log3m,m∈N*,分类讨论:当1≤m≤2时,m∈N*,b1=b2=1;当3≤m≤8时,m∈N*,b3=b4=…=b8=2;当9≤m≤20时,m∈N*,b9=b10=…=3;即可得出数列{a n}的伴随数列{b n}的前20项和.【解答】解:(Ⅰ)数列1,4,5,…的伴随数列{b n}的前5项1,1,1,2,3;(Ⅱ)由,得n≤1+log3m(m∈N*).∴当1≤m≤2,m∈N*时,b1=b2=1;当3≤m≤8,m∈N*时,b3=b4=…=b8=2;当9≤m≤20,m∈N*时,b9=b10=…=b20=3.∴b1+b2+…+b20=1×2+2×6+3×12=50.2016年9月9日。

北京市海淀区2019-2020学年高二上学期期末考试文科数学试卷 Word版含解析

北京市海淀区2019-2020学年高二上学期期末考试文科数学试卷 Word版含解析

北京市海淀区2019-2020学年上学期期末考试高二文科数学试卷一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线x﹣y=0的斜率是()A.1 B.﹣1 C.D.2.圆(x﹣1)2+y2=1的圆心和半径分别为()A.(0,1),1 B.(0,﹣1),1 C.(﹣1,0),1 D.(1,0),13.若两条直线2x﹣y=0与ax﹣2y﹣1=0互相垂直,则实数a的值为()A.﹣4 B.﹣1 C.1 D.44.双曲线的渐近线方程为()A.y=±3x B.C.D.5.已知三条直线m,n,l,三个平面α,β,γ,下面说法正确的是()A.⇒α∥βB.⇒m∥n C.⇒l∥βD.⇒m⊥γ6.一个三棱锥的三视图如图所示,则三棱锥的体积为()A.B.C.D.7.“直线l的方程为y=k(x﹣2)”是“直线l经过点(2,0)”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.椭圆的两个焦点分别为F1(﹣1,0)和F2(1,0),若该椭圆与直线x+y﹣3=0有公共点,则其离心率的最大值为()A .B .﹣1C .D .二.填空题:本大题共6小题,每小题4分,共24分. 9.抛物线y 2=4x 的焦点到准线的距离是 .10.已知命题p :∀x ∈R ,x 2﹣2x+1>0,则¬p 是 .11.实数x ,y 满足,若m=2x ﹣y ,则m 的最小值为 .12.如图,在棱长均为2的正三棱柱ABC ﹣A 1B 1C 1中,点M 是侧棱AA 1的中点,点P 是侧面BCC 1B 1内的动点,且A 1P ∥平面BCM ,则点P 的轨迹的长度为 .13.将边长为2的正方形ABCD 沿对角线AC 折起,使得BD=2,则三棱锥D ﹣ABC 的顶点D 到底面ABC 的距离为 .14.若曲线F (x ,y )=0上的两点P 1(x 1,y 1),P 2(x 2,y 2)满足x 1≤x 2且y 1≥y 2,则称这两点为曲线F (x ,y )=0上的一对“双胞点”.下列曲线中:①;②;③y 2=4x ; ④|x|+|y|=1.存在“双胞点”的曲线序号是 .三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15.已知点A(﹣3,0),B(1,0),线段AB是圆M的直径.(Ⅰ)求圆M的方程;(Ⅱ)过点(0,2)的直线l与圆M相交于D,E两点,且,求直线l的方程.16.如图,在正四棱锥P﹣ABCD中,点M为侧棱PA的中点.(Ⅰ)求证:PC∥平面BDM;(Ⅱ)若PA⊥PC,求证:PA⊥平面BDM.17.顶点在原点的抛物线C关于x轴对称,点P(1,2)在此抛物线上.(Ⅰ)写出该抛物线C的方程及其准线方程;(Ⅱ)若直线y=x与抛物线C交于A,B两点,求△ABP的面积.18.已知椭圆经过点D(0,1),一个焦点与短轴的两端点连线互相垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过的直线l交椭圆C于A,B两点,判断点D与以AB为直径的圆的位置关系,并说明理由.北京市海淀区2019-2020学年上学期期末考试高二文科数学试卷参考答案一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线x﹣y=0的斜率是()A.1 B.﹣1 C.D.【考点】直线的斜率.【分析】直接化直线方程为斜截式得答案.【解答】解:由x﹣y=0,得y=x,∴直线x﹣y=0的斜率是1.故选:A.2.圆(x﹣1)2+y2=1的圆心和半径分别为()A.(0,1),1 B.(0,﹣1),1 C.(﹣1,0),1 D.(1,0),1【考点】圆的标准方程.【分析】根据圆的标准方程可以直接得到圆心和半径.【解答】解:由圆的标准方程(x﹣1)2+y2=1可以得到该圆的圆心是(1,0),半径是1.故选:D.3.若两条直线2x﹣y=0与ax﹣2y﹣1=0互相垂直,则实数a的值为()A.﹣4 B.﹣1 C.1 D.4【考点】直线的一般式方程与直线的垂直关系.【分析】利用两条直线相互垂直的充要条件即可得出.【解答】解:∵两条直线2x﹣y=0与ax﹣2y﹣1=0互相垂直,∴2a+2=0,解得a=﹣1.故选B.4.双曲线的渐近线方程为()A.y=±3x B.C.D.【考点】双曲线的简单性质.【分析】由标准方程,求出a和b的值,再根据焦点在x轴上,求出渐近线方程.【解答】解:双曲线中a=3,b=1,焦点在x轴上,故渐近线方程为y=±x,故选B.5.已知三条直线m,n,l,三个平面α,β,γ,下面说法正确的是()A.⇒α∥βB.⇒m∥n C.⇒l∥βD.⇒m⊥γ【考点】空间中直线与平面之间的位置关系.【分析】在A中,α与β相交或平行;在B中,m与n相交、平行或异面;在C中,l与β相交、平行或l⊂β;在D中,由线面垂直的判定定理得m⊥γ.【解答】解:三条直线m,n,l,三个平面α,β,γ,知:在A中,⇒α与β相交或平行,故A错误;在B中,⇒m与n相交、平行或异面,故B错误;在C中,⇒l与β相交、平行或l⊂β,故C错误;在D中,⇒m⊥γ,由线面垂直的判定定理得m⊥γ,故D正确.故选:D.6.一个三棱锥的三视图如图所示,则三棱锥的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】如图所示,三棱锥P﹣ABC,点P在平面ABC的投影D,则四边形ABCD是矩形.【解答】解:如图所示,三棱锥P﹣ABC,点P在平面ABC的投影D,则四边形ABCD是矩形.则三棱锥的体积V==.故选:B.7.“直线l的方程为y=k(x﹣2)”是“直线l经过点(2,0)”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义判断即可.【解答】解:若直线l的方程为y=k(x﹣2),则直线l过(2,0),是充分条件,若直线l经过点(2,0),则直线方程不一定是:y=k(x﹣2),比如直线:x=0,故不是必要条件,故选:A.8.椭圆的两个焦点分别为F1(﹣1,0)和F2(1,0),若该椭圆与直线x+y﹣3=0有公共点,则其离心率的最大值为()A. B.﹣1 C. D.【考点】椭圆的简单性质.【分析】由题意,c=1, =,从而a越小e越大,而椭圆与直线相切时,a最小,由此能求出其离心率的最大值.【解答】解:∵椭圆的两个焦点分别为F1(﹣1,0)和F2(1,0),∴由题意,c=1,∴=,∴a越小e越大,而椭圆与直线相切时,a最小设椭圆为+=1,把直线x+y﹣3=0代入,化简整理可得(2a2﹣1)x2+6a2x+10a2﹣a4=0由△=0,解得:a2=5,于是a=,==.emax故选:A.二.填空题:本大题共6小题,每小题4分,共24分.9.抛物线y2=4x的焦点到准线的距离是 2 .【考点】抛物线的简单性质.【分析】根据抛物线的方程求得抛物线的焦点坐标和准线的方程,进而利用点到直线的距离求得焦点到准线的距离.【解答】解:根据题意可知焦点F(1,0),准线方程x=﹣1,∴焦点到准线的距离是1+1=2故答案为2.10.已知命题p:∀x∈R,x2﹣2x+1>0,则¬p是∃x>1,x2﹣2x+1≤0 .【考点】命题的否定.【分析】根据全称命题的否定是特称命题进行求解即可.【解答】解:命题是全称命题,则命题的否定是特称命题,即∃x>1,x2﹣2x+1≤0,故答案为:∃x>1,x2﹣2x+1≤011.实数x,y满足,若m=2x﹣y,则m的最小值为﹣3 .【考点】简单线性规划.【分析】画出满足的可行域,进而可得当m=2x﹣y过(﹣2,﹣1)点时,m取最小值.【解答】解:满足的可行域如下图所示:当m=2x﹣y过(﹣2,﹣1)点时,m取最小值﹣3,故答案为:﹣312.如图,在棱长均为2的正三棱柱ABC﹣A1B1C1中,点M是侧棱AA1的中点,点P是侧面BCC1B1内的动点,且A1P∥平面BCM,则点P的轨迹的长度为 2 .【考点】轨迹方程.【分析】由题意,点P是侧面BCC1B1内的动点,且A1P∥平面BCM,A1P∥平面BCM,则P的轨迹是平行于BC 的一条线段,即可得出结论. 【解答】解:由题意,点P 是侧面BCC 1B 1内的动点,且A 1P ∥平面BCM ,A 1P ∥平面BCM ,则P 的轨迹是平行于BC 的一条线段,长度为2. 故答案为2.13.将边长为2的正方形ABCD 沿对角线AC 折起,使得BD=2,则三棱锥D ﹣ABC 的顶点D 到底面ABC 的距离为.【考点】棱锥的结构特征.【分析】取AC 的中点,连结OB ,OD ,求出OB ,OD ,利用勾股定理的逆定理得出OB ⊥OD ,结合OD ⊥AC 得出OD ⊥平面ABC ,由此能求出结果. 【解答】解:解:取AC 的中点O ,连结OB ,OD , ∵AD=CD=2,∠ADC=90°,∴AC=2,OD=AC=,OD ⊥AC .同理OB=,∵BD=2,∴OD 2+OB 2=BD 2,∴OB ⊥OD ,又AC ⊂平面ABC ,OB ⊂平面ABC ,AC ∩OB=O , ∴OD ⊥平面ABC ,∴三棱锥D ﹣ABC 的顶点D 到底面ABC 的距离为OD=.故答案为:14.若曲线F (x ,y )=0上的两点P 1(x 1,y 1),P 2(x 2,y 2)满足x 1≤x 2且y 1≥y 2,则称这两点为曲线F(x,y)=0上的一对“双胞点”.下列曲线中:①;②;③y2=4x;④|x|+|y|=1.存在“双胞点”的曲线序号是①③④.【考点】曲线与方程.【分析】利用新定义,分别验证,即可得出结论.【解答】解:由题意①,在第一、三象限,单调递减,满足题意;②,在第一象限,单调递减,第三象限单调递增,不满足题意;③y2=4x,存在“双胞点”比如(1,﹣1),(4,﹣4),满足题意;④|x|+|y|=1,存在“双胞点”比如(0,1),(1,0),满足题意;故答案为①③④.三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.已知点A(﹣3,0),B(1,0),线段AB是圆M的直径.(Ⅰ)求圆M的方程;(Ⅱ)过点(0,2)的直线l与圆M相交于D,E两点,且,求直线l的方程.【考点】直线与圆的位置关系;圆的标准方程.【分析】(Ⅰ)利用A(﹣3,0),B(1,0),线段AB是圆M的直径,则圆心M的坐标为(﹣1,0),又因为|AM|=2,即可求圆M的方程;(Ⅱ)过点(0,2)的直线l与圆M相交于D,E两点,且,分类讨论,即可求直线l的方程.【解答】解:(Ⅰ)已知点A(﹣3,0),B(1,0),线段AB是圆M的直径,则圆心M的坐标为(﹣1,0).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣又因为|AM|=2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以圆M的方程为(x+1)2+y2=4.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)由(Ⅰ)可知圆M的圆心M(﹣1,0),半径为2.设N为DE中点,则MN⊥l,,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣则.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当l的斜率不存在时,l的方程为x=0,此时|MN|=1,符合题意;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当l的斜率存在时,设l的方程为y=kx+2,由题意得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣故直线l的方程为,即3x﹣4y+8=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综上,直线l的方程为x=0或3x﹣4y+8=0.16.如图,在正四棱锥P﹣ABCD中,点M为侧棱PA的中点.(Ⅰ)求证:PC∥平面BDM;(Ⅱ)若PA⊥PC,求证:PA⊥平面BDM.【考点】直线与平面垂直的判定;直线与平面平行的判定.【分析】(Ⅰ)连接AC,设AC∩BD=O,连接MO,推导出MO∥PC,由此能证明PC∥平面BDM.(Ⅱ)连接PO,推导出PO⊥BD,BD⊥AC,从而BD⊥平面PAC,进而BD⊥PA,再推导出MO⊥PA,由此能证明PA⊥平面BDM.【解答】证明:(Ⅰ)如图,在正四棱锥P﹣ABCD中,连接AC,设AC∩BD=O,连接MO.因为ABCD为正方形,则O为AC中点.又因为M为侧棱PA的中点,所以MO∥PC.又因为PC⊄面BDM,MO⊂面BDM,所以PC∥平面BDM.(Ⅱ)连接PO,在正四棱锥P﹣ABCD中,PO⊥平面ABCD,BD⊂平面ABCD,所以PO⊥BD.又因为BD⊥AC,AC∩PO=O,且AC⊂平面PAC,PO⊂平面PAC,所以BD⊥平面PAC,又因为PA⊂平面PAC,所以BD⊥PA.由(Ⅰ)得MO∥PC,又因为PA⊥PC,则MO⊥PA.又MO∩BD=O,且MO⊂平面BDM,BD⊂平面BDM,所以PA⊥平面BDM.17.顶点在原点的抛物线C关于x轴对称,点P(1,2)在此抛物线上.(Ⅰ)写出该抛物线C的方程及其准线方程;(Ⅱ)若直线y=x与抛物线C交于A,B两点,求△ABP的面积.【考点】抛物线的简单性质.【分析】(Ⅰ)设抛物线方程为y2=2px(p>0),由抛物线经过P(1,2)可得p,即可写出该抛物线C的方程及其准线方程;(Ⅱ)若直线y=x与抛物线C交于A,B两点,求出|AB|,点P到直线y=x的距离,即可求△ABP的面积.【解答】解:(Ⅰ)因为抛物线的顶点在原点,且关于x轴对称,可设抛物线方程为y2=2px(p>0),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由抛物线经过P(1,2)可得p=2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以抛物线方程为y2=4x,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣准线方程为x=﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)由﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣得或﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣可得)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣点P到直线y=x的距离﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣18.已知椭圆经过点D(0,1),一个焦点与短轴的两端点连线互相垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过的直线l交椭圆C于A,B两点,判断点D与以AB为直径的圆的位置关系,并说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)由椭圆经过D(0,1),一个焦点与短轴的两端点连线互相垂直,求出a,b,由此能求出椭圆C的方程.(Ⅱ)以AB为直径的圆经过点D.当直线AB与x轴垂直时,D在圆上;当直线AB不与x轴垂直时,设直线AB 的方程为,由,得9(2k 2+1)x 2﹣12kx ﹣16=0,由此利用根的判别式、韦达定理、向量数量积公式,结合已知条件能推导出点D 在圆上.【解答】解:(Ⅰ)∵椭圆经过D (0,1),∴b=1.∵一个焦点与短轴的两端点连线互相垂直,∴a=.所以椭圆C 的方程为=1. (Ⅱ)以AB 为直径的圆经过点D ,理由如下:当直线AB 与x 轴垂直时,由题意知D 在圆上,当直线AB 不与x 轴垂直时,设直线AB 的方程为.设A (x 1,y 1),B (x 2,y 2),由, 得9(2k 2+1)x 2﹣12kx ﹣16=0,△=144k 2+64×9(2k 2+1)>0,,,,.∴==(1+k 2)x 1x 2﹣(x 1+x 2)+=(1+k 2)[﹣]﹣•+=0,∴DA ⊥DB ,∴点D 在圆上.综上所述,点D 一定在以AB 为直径的圆上.。

北京市海淀区2019-2020学年高二第二学期期末数学经典试题

北京市海淀区2019-2020学年高二第二学期期末数学经典试题

同步练习一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数21ii=+( ) A .2i +B .1i -C .1i +D .2i -2.通过随机询问100名性别不同的小学生是否爱吃零食,得到如下的列联表:由()()()()()22n ad bc K a b c d a c b d -=++++算得()2210010302040 4.76250503070K ⨯-⨯=≈⨯⨯⨯参照附表,得到的正确结论( )A .我们有95%以上的把握,认为“是否爱吃零食与性别有关”B .我们有95%以上的把握,认为“是否爱吃零食与性别无关”C .在犯错误的概率不超过2.5%的前提下,认为“是否爱吃零食与性别有关”D .在犯错误的概率不超过2.5%的前提下,认为“是否爱吃零食与性别无关”3.已知经过(A ,40B (,)两点的直线AB 与直线l 垂直,则直线l 的倾斜角是() A .30°B .60°C .120°D .150°4.已知函数2()2aln f x x x x=--在12x =处取得极值,则()f x 的图象在(1,0)处的切线方程为( )A .10x y +-=B .10x y ++=C .10x y -+=D .10x y --=5.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是 ( )A .各月的平均最低气温都在0℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20℃的月份有5个6.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则 A .r 2<r 1<0B .r 2<0<r 1C .0<r 2<r 1D .r 2=r 17.某同学将收集到的六组数据制作成散点图如图所示,并得到其回归直线的方程为,计算其相关系数为,相关指数为.经过分析确定点为“离群点”,把它去掉后,再利用剩下的5组数据计算得到回归直线的方程为,相关系数为,相关指数为.以下结论中,不正确...的是A .B .C .D .8.已知,x y 满足2ln y x x =-,其中1,x e e⎡⎤∈⎢⎥⎣⎦,则x y -的最小值为( )A .2111e e++ B .21e e +- C .3ln 24+ D .19.是的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.已知函数()()()10xf x e ax ax a a =--+≥,若有且仅有两个整数()1,2i x i =,使得()0i f x <,则a 的取值范围为( )A .1,121e ⎡⎫⎪⎢-⎣⎭ B .21,12e -⎡⎫⎪⎢-⎣⎭C .211,22e -⎛⎤ ⎥-⎝⎦D .11,212e ⎛⎤⎥-⎝⎦11.若函数()()22xf x x ax e =++在R 上单调递增,则a 的取值范围是( )A .()(),22,-∞-⋃+∞B .][(),22,-∞-⋃+∞ C .()2,2- D .[]2,2-12. “若12a ≥,则0x ∀≥,都有()0f x ≥成立”的逆否命题是( ) A .0x ∃<有()0f x <成立,则12a < B .0x ∃<有()0f x ≥成立,则12a <C .0x ∀≥有()0f x <成立,则12a <D .0x ∃≥有()0f x <成立,则12a <二、填空题:本题共4小题13.已知复数11i()z a a =+∈R ,212i z =+,若12z z 为纯虚数,则a =_____. 14.已知复数z =1+mi (i 是虚数单位,m ∈R ),且z ⋅(3+i )为纯虚数(z 是z 的共轭复数)则z =_____15.设实数3AD =满足101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,则2x y -的最小值为______16.已知函数,其中为实数,为的导函数,若,则的值为_________.三、解答题:解答应写出文字说明、证明过程或演算步骤。

北京市海淀区2018-2019学年高二上学期期末考试数学(文)试题Word版含解析

北京市海淀区2018-2019学年高二上学期期末考试数学(文)试题Word版含解析

北京市海淀区2018-2019学年高二上学期期末考试数学(文)试题一、选择题共8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 直线在y轴上的截距为A. B. C. D.【答案】D【解析】∵令,此时∴在轴上的截距为1故选D2. 双曲线的渐近线方程为A. B. C. D.【答案】A【解析】∵由双曲线的方程可知∴渐近线的方程为故选A3. 已知圆经过原点,则实数等于A. B. C. D.【答案】B【解析】∵圆经过原点∴代入可得∴故选B4. 鲁班锁是曾广泛流传与民间的智力玩具,它起源于中国古代建筑中首创的榫卯结构,不用钉子和绳子,完全靠自身机构的连接支撑,它看似简单,却凝结着不平凡的智慧.下图为鲁班锁的其中一个零件的三视图,则该零件的体积为()A. B. C. D.【答案】C【解析】∵由图可知要计算鲁班锁的体积,可将其分解为求三个长方体的体积左右两个长方体的长宽高分别为,中间的长方体长宽高为∴零件的体积为故选C5. 椭圆:的焦点为,,若点在上且满足,则中最大角为()A. B. C. D.【答案】A【解析】∵椭圆∴焦点∵点在上∴∵∴,∵∴中最大角为∴∴故选A点睛:本题考查椭圆的简单的性质的应用,根据三边求最大角,先求出最大边,根据“大边对大角”可以判断最大角,再利用余弦定理求出余弦值即可得角.6. “”是“方程表示双曲线”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】若方程为双曲线,则∴是方程表示双曲线的充分必要条件故选C7. 已知两条直线,两个平面,下面说法正确的是A. B.C. D.【答案】D【解析】对于,,则两条直线可以平行,可以相交,故错误;对于,,则两条直线可以相交,故错误;对于,若,直线与平面可以平行,或者相交,故错误;对于,若,则平面内任意一条直线平行于,因为,所以,故正确故选D点睛:本题主要考查线面平行的判定与性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等.8. 在正方体的中,点是的中点,点为线段(与不重合)上一动点.给出如下四个推断:①对任意的点,平面;②存在点,使得;③对任意的点,则上面推断中所有正确..的为A. ①②B. ②③C. ①③D. ①②③【答案】D【解析】对于①,∵由题可知平面∥平面∴平面内任意一条直线平行于平面∵∴∥平面,故①正确对于②,作的中点,由题可知∥当且仅当点位于与的交点时∥,故②正确对于③,∵四方体为正方体∴平面∵平面∴同理可证得∵与相交于点∴平面∵点为线段(与不重合)上一动点∴对任意的点,,故③正确故选D二、填空题共6小题,每小题4分,共24分。

北京海淀区教师进修学校附属实验学校 2018-2019学年高二数学文下学期期末试题含解析

北京海淀区教师进修学校附属实验学校 2018-2019学年高二数学文下学期期末试题含解析

北京海淀区教师进修学校附属实验学校 2018-2019学年高二数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列说法正确的是( )A.函数y=x+的最小值为2B.函数y=sinx+(0<x<π)的最小值为2C.函数y=|x|+的最小值为2D.函数y=lgx+的最小值为2参考答案:C【考点】基本不等式.【专题】导数的综合应用;不等式的解法及应用.【分析】A.x<0时无最小值;B.令sinx=t,由0<x<π,可得sinx∈(0,1),即t∈(0,1],令f(t)=t+,利用导数研究函数的单调性极值与最值即可得出;C.令|x|=t>0,令f(t)=t+,利用导数研究函数的单调性极值与最值即可得出;D.当0<x<1时,lgx<0,无最小值.【解答】解:A.x<0时无最小值;B.令sinx=t,∵0<x<π,∴sinx∈(0,1),即t∈(0,1],令f(t)=t+,f′(t)=1﹣=<0,∴函数f(t)在t∈(0,1]上单调递减,∴f(t)≥f(1)=3.因此不正确.C.令|x|=t>0,令f(t)=t+,f′(t)=1﹣==,∴函数f(t)在t∈(0,]上单调递减.2. 设函数f(x)的图象如图,则函数y=f′(x)的图象可能是下图中的()A.B.C.D.参考答案:D【考点】利用导数研究函数的单调性.【专题】导数的概念及应用.【分析】由题意可知,导函数y=f′(x)的图象应有两个零点,且在区间(﹣∞,0)上导函数f′(x)>0,结合选项可得答案.【解答】解:由函数f(x)的图象可知,函数有两个极值点,故导函数y=f′(x)的图象应有两个零点,即与x轴有两个交点,故可排除A、B,又由函数在(﹣∞,0)上单调递增,可得导函数f′(x)>0,即图象在x轴上方,结合图象可排除C,故选D【点评】本题考查函数的单调性和导函数的正负的关系,属基础题.3. 从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=()A.B.C.D.参考答案:B【考点】相互独立事件的概率乘法公式.【分析】利用互斥事件的概率及古典概型概率计算公式求出事件A的概率,同样利用古典概型概率计算公式求出事件AB的概率,然后直接利用条件概率公式求解.【解答】解:P(A)==,P(AB)==.由条件概率公式得P(B|A)==.故选:B.4. 已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)<,则f(x)<+的解集为()A.{x|﹣1<x<1} B.{x|<﹣1} C.{x|x<﹣1或x>1} D.{x|x>1}参考答案:D【考点】利用导数研究函数的单调性.【分析】根据条件,构造函数g(x)=f(x)﹣﹣,求函数的导数,利用函数的单调性即可得到结论.【解答】解:设g(x)=f(x)﹣﹣,则函数的g(x)的导数g′(x)=f′(x)﹣,∵f(x)的导函数f′(x)<,∴g′(x)=f′(x)﹣<0,则函数g(x)单调递减,∵f(1)=1,∴g(1)=f(1)﹣﹣=1﹣1=0,则不等式f(x)<+,等价为g(x)<0,即g(x)<g(1),则x>1,即f(x)<+的解集{x|x>1},故选:D5. 不等式的解集为,则的值为()A. B. C. D.参考答案:B6. a>b的一个充分不必要条件是()A.a=1,b=0 B.<C.a2>b2 D.a3>b3参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:A.当a=1,b=0时,满足a>b,反之不成立,则a=1,b=0是a>b的一个充分不必要条件.B.当a<0,b>0时,满足<,但a>b不成立,即充分性不成立,C.当a=﹣2,b=1时,满足a2>b2,但a>b不成立,即充分性不成立,D.由a3>b3得a>b,即a3>b3是a>b成立的充要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.7. 圆M与圆内切,且经过点A(3,2),则圆心M在()A.一个椭圆上B.双曲线的一支上C.一条抛物上D.一个圆上参考答案:A略8. 已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(?U B)∩A={9},则A等于A.{1,3}B.{3,7,9} C.{3,5,9} D.{3,9}参考答案:D9. 函数在点处的切线斜率为2,则的最小值是()A. 10B. 9C. 8D.参考答案:B对函数求导可得,根据导数的几何意义,,即==()·)=+5≥2+5=4+5=9,当且仅当即时,取等号.所以最小值是9.故选B.10. 若直线的参数方程为(t为参数),则直线的倾斜角为( )A. 30°B. 60°C. 120°D. 150°参考答案:D【分析】将直线的参数方程化为普通方程,求出斜率,进而得到倾斜角。

2019年北京101中学 高二数学文下学期期末试卷含解析

2019年北京101中学 高二数学文下学期期末试卷含解析

2019年北京101中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 如果奇函数在区间上是增函数且最大值为,那么在区间上是()A.增函数且最小值是 B.增函数且最大值是C.减函数且最大值是 D.减函数且最小值是参考答案:A2. 根据右边给出的数塔猜测1234569+8=()A .1111110 19+2=11B. 1111111 129+3=111C. 1111112 1239+4=1111D. 1111113 12349+5=11111参考答案:C略3. 双曲线的左、右焦点分别为F1、F2离心率为e.过F2的直线与双曲线的右支交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2的值是()A.1+2B.3+2C.4﹣2D.5﹣2参考答案:D【考点】双曲线的简单性质.【专题】计算题;压轴题.【分析】设|AF1|=|AB|=m,计算出|AF2|=(1﹣)m,再利用勾股定理,即可建立a,c 的关系,从而求出e2的值.【解答】解:设|AF1|=|AB|=m,则|BF1|=m,|AF2|=m﹣2a,|BF2|=m﹣2a,∵|AB|=|AF2|+|BF2|=m,∴m﹣2a+m﹣2a=m,∴4a=m,∴|AF2|=(1﹣)m,∵△AF1F2为Rt三角形,∴|F1F2|2=|AF1|2+|AF2|2∴4c2=(﹣)m2,∵4a=m∴4c2=(﹣)×8a2,∴e2=5﹣2故选D.【点评】本题考查双曲线的标准方程与性质,考查双曲线的定义,解题的关键是确定|AF2|,从而利用勾股定理求解.4. 设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=,类比这个结论可知:四面体S—ABC的四个面的面积分别为S1,S2,S3,S4,内切球半径为R,四面体S—ABC的体积为V,则R等于A. B.C. D.参考答案:A5. 设复数z满足i(z﹣2)=3(i为虚数单位),则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i参考答案:B【考点】A5:复数代数形式的乘除运算.【分析】把复数z看作未知数,解方程即可.【解答】解:复数z满足i(z﹣2)=3(i为虚数单位),∴z﹣2=,∴z=2+=2﹣3i.故选:B.【点评】本题考查了复数的化简与运算问题,是基础题.6. 已知曲线的一条切线的斜率为,则切点的横坐标为()A.1 B.2 C.3 D.4参考答案:A【考点】62:导数的几何意义.【分析】利用导数的几何意义,列出关于斜率的等式,进而得到切点横坐标.【解答】解:已知曲线的一条切线的斜率为,∵=,∴x=1,则切点的横坐标为1,故选A.7. 在极坐标系中,已知点,则过点P且平行于极轴的直线的方程是( )A.B.C.D.参考答案:A【分析】将点化为直角坐标的点,求出过点且平行于轴的直线的方程,再转化为极坐标方程,属于简单题.【详解】因为点的直角坐标为,此点到轴的距离是,则过点且平行于轴的直线的方程是,化为极坐标方程是故选A.【点睛】本题考查极坐标与直角坐标的互化,属于简单题.8. 在正方体中,直线与平面所成的角的大小为()A. 900 B.600 C.450 D.300参考答案:D略9. 如图,为测量塔高AB,选取与塔底B在同一水平面内的两点C、D,在C、D两点处测得塔顶A的仰角分别为45°,30°,又测得∠CBD=30°,CD=50米,则塔高AB=()A.50米B.25米C.25米D.50米参考答案:A【考点】解三角形的实际应用.【分析】设AB=am,则BC=am,BD=am,根据∠CBD=30°,CD=50米,利用余弦定理建立方程,即可得出结论.【解答】解:设AB=am,则BC=am,BD=am,∵∠CBD=30°,CD=50米,∴2500=a2+3a2﹣2a,∴a=50m.故选A.10. 已知等比数列{a n}满足,a3a5=4(a4﹣1),则a2=()A.2 B.1 C.D.参考答案:C【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 已知AC、BD为圆的两条相互垂直的弦,垂足为,则四边形ABCD的面积的最大值为.参考答案:512. 若函数有一个零点,则实数的取值范围为.参考答案:略13. (1)已知圆的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,()则直线与圆的交点的极坐标为______________.参考答案:略14. 已知条件“”;条件“”,是的充分不必要条件,则实数的取值范围是_____________.参考答案:略15. 已知函数,它在处的切线方程为,则的取值范围是__________.参考答案:[0,+∞)【分析】由题可先求出,再令,则,根据单调性求出的最小值,从而得到答案。

北京市海淀区2019-2020学年新高考高二数学下学期期末经典试题

北京市海淀区2019-2020学年新高考高二数学下学期期末经典试题
, ,
, ,


(2)证明: 的所有可能取值为 , , ,…, ,… ( 且 ),
( 且 ),


两式相加即得

所以 .
点睛:(1)离散型随机变量的分布列,根据题意,搞清随机变量 的最小值和最大值,其它值随之确定。
.
故选:A.
点睛:本题重点考查导数的应用,函数的几何性质等知识,注意分离参数在求解中的灵活运用,属于中档题.
9.C
【解析】
分析:从 名外国游客中选取 人进行采访,共有 种不同的选法,其中这 人中至少有 人来过洛阳的共有 种不同选法,由古典概型的概率计算公式即可求解.
详解:由题意,从 名外国游客中选取 人进行采访,共有 种不同的选法,
11.D
【解析】
【分析】
设点 位于第一象限,点 ,并设直线 的方程为 ,将该直线方程与抛物线方程联立,利用韦达定理得出 ,由抛物线的定义得出点 的坐标,可得出点 的纵坐标 的值,最后得出 的面积与 的面积之比为 的值.
【详解】
设点 位于第一象限,点 ,设直线 的方程为 ,
将该直线方程与抛物线方程联立 ,得 , ,
【详解】
由题知, ,所以类比推理,猜想, ,因为 ,
所以 ,故选B。
【点睛】
本题主要考查学生的归纳和类比推理能力。
3.B
【解析】
【分析】
【详解】
试题分析: ,
所以 .
考点:集合的交集、补集运算.
4.C
【解析】
分析:利用离散型随机变量分布列的性质求得到 ,进而得到随机变量 的均值
详解:由已知得 ,解得:
16.
【解析】
【分析】
【详解】
函数f(x)的周期T= ,

北京市海淀区重点名校2019-2020学年高二下学期期末综合测试数学试题含解析.docx

北京市海淀区重点名校2019-2020学年高二下学期期末综合测试数学试题含解析.docx

北京市海淀区重点名校2019-2020学年高二下学期期末综合测试数学试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若me N*,m<27 ,则(27-w)(28-w) (34-m)等于( )A p8R p27—m c pl n p8八. L Tl-m °- 134-m—234-m 134-m【答案】D【解析】【分析】(27-/77)>(28-m)> 、(34-/力)中最大的数为(34 - 冲,(27-/力)、(28-》7)、、(34-/力)包含(34 — 27 + 1) = 8个数据,且8个数据是连续的正整数,由此可得到(27-W)(28-/77) (34-W)的表示.【详解】因为(27 — m)(28 —m) (34 — m) = (34 —m) (28 — m)(27 — m),所以表示从(34 - m)连乘到(27 -m),一共是8个正整数连乘,所以(27 5)(28 -闵(34-m)=.故选:D.【点睛】p n g本题考查排列数的表示,难度较易.注意公式:P;;' = , "~ 的运用.^n — my. ^n — my.2.由数字0, 1, 2, 3组成的无重复数字且能被3整除的非一位数的个数为( )A. 12B. 20C. 30D. 31【答案】D【解析】【分析】分成两位数、三位数、四位数三种情况,利用所有数字之和是3的倍数,计算出每种情况下的方法数然后相加,求得所求的方法总数.【详解】两位数:含数字1, 2的数有定个,或含数字3, 0的数有1个.三位数:含数字0, 1, 2的数有C;总个,含数字1, 2, 3有定个.四位数:有个.所以共有1 + &+C;出+g + C;定=31个.故选D.【点睛】本小题主要考查分类加法计数原理,考查一个数能被3整除的数字特征,考查简单的排列组合计算,属于基础题.3.若关于X的不等式甘刀|>|x-2|恰好有4个整数解,则实数k的范围为()B. 2 35J5C. D.【答案】C【解析】【分析】依题意可得,0<k<l,结合函数y=k|x|与y=-|x-2|的图象可得4个整数解是2, 3, 4, 5,由y = kx2/i 3 2cnx = rc(5,6],即可得y — x— 2 1 — k 5 3【详解】解:依题意可得,0<k<l,函数y=k|x|与y= - |x- 2|的图象如下,由0<k<l,可得x A>l, A关于X的不等式k|x| - |x- 2|> 0恰好有4个整数解,他们是2, 3, 4, 5, \y = kx 2 / 1 3 2由{=>x B = -— c(5,6],故—< k< —;y — x— 2 1 — k 5 3故选:c【点睛】本题主要考查根据含参绝对值不等式的整数解的个数,求参数范围问题,着重考查了数形结合思想,属于中档题.4.对于椭圆。

2019海淀区高二文科数学期末试卷及答案

2019海淀区高二文科数学期末试卷及答案

海淀区高二年级第一学期期末练习数学(文科)第一部分(选择题 共40分)一、选择题共8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)直线210x y +-=在轴上的截距为A. 2-B. 1-C. 12- D. 1(2)双曲线22:1169x y C -=的渐近线方程为A. 34y x =±B. 43y x =±C. 916y x =±D. 169y x =±(3)已知圆22310x y x m +-++=经过原点,则实数m 等于A. 32-B. 1-C. 1D. 32(4)鲁班锁是曾广泛流传于民间的智力玩具,它起源于中国古代建筑中首创的榫卯结构,不用钉子和绳子,完全靠自身结构的连接支撑.它看似简单,却凝结着不平凡的智慧.下图为鲁班锁的其中一个零件的三视图,则该零件的体积为A.32B.34C.36D.40(5)椭圆22:11612x y C +=的焦点为12,F F ,若点M 在C 上且满足122MF MF -=,则12F MF ∆中最大角为A. 090B. 0105C. 0120D. 0150 (6)“0m ”是“方程22x my m +=表示双曲线”的 A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(7)已知两条直线,m n ,两个平面,αβ,下面说法正确的是A.m m n n αβαβ⊥⎫⎪⊂⇒⊥⎬⎪⊂⎭B. ////m m n n αβαβ⎫⎪⊂⇒⎬⎪⊂⎭ C.m m αββα⊥⎫⇒⊥⎬⊂⎭ D. ////m m αββα⎫⇒⎬⊂⎭(8)在正方体的1111ABCD A B C D -中,点P 是BC 的中点,点Q 为线段1AD (与1AD 不重合)上一动点.给出如下四个推断:①对任意的点Q ,1//AQ 平面11B BCC ; ②存在点Q ,使得1//AQ 1B P ; ③对任意的点Q ,11B Q A C ⊥则上面推断中所有正确..的为 A. ①② B. ②③ C. ①③ D. ①②③第二部分(非选择题 共110分)二、填空题共6小题,每小题4分,共24分。

2019届-海淀期末-文科-答案

2019届-海淀期末-文科-答案

海淀区高三年级第一学期期末练习参考答案数 学 (文科) 2019.01一、选择题:本大题共8小题,每小题5分,共40分.1. A2. C3. D4.B5. A6. C7.C8.B二、填空题:本大题共6小题,每小题5分,共30分.9. 1x =- 10.8 11.4312.π4, 13. 0 14. e 1t <-,说明:第11,14题第一空3分,第二空2分三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)因为12a =,112(2)n n n a a n ---=≥所以2124a a =+=,3248a a =+=,43816a a =+=因为112(2)n n n a a n ---=≥2122n n n a a ----= 3232n n n a a ----=……2322a a -=1212a a -=把上面1n -个等式叠加,得到21122...222n n n a a --=+++=-所以2(2)nn a n =≥又1n =时,12a =符合上式,所以2nn a = (Ⅱ)因为222log 12log 2121nn n b a n =-=-=-所以1(21)(23)2n n b b n n --=---= 所以{}n b 是首项为11b =,公差为2的等差数列所以21()2n n n b b S n +== 16. 解:(Ⅰ)因为π1π(),()16222a f f a =-=+所以ππ13()()(1)()262222a a f f a -=+--=+当3a =-时,ππ()()26f f =当3a >-时,ππ()()26f f >当3a <-时,ππ()()26f f <(Ⅱ)当6a =-时,()f x ==-== 设sin ,t x =所以t 所以232()2y t =-因为312t =>, 所以当1t =17. 解:所以所求概率()P A 约为730(Ⅱ)设从图中考核成绩满足[80,89]X ∈的学生中任取2人,至少有一人考核成绩优秀为事件B 因为表中成绩在[80,89]的6人中有2个人考核为优 所以基本事件空间Ω包含15个基本事件,事件B 包含9 个基本事件所以93()155P B ==(Ⅲ)根据表格中的数据,满足85110X -≤的成绩有16个, 所以8516810.5103015X P ⎛⎫-≤==>⎪⎝⎭所以可以认为此次冰雪培训活动有效 18.证明: (Ⅰ)因为ABCDCD ⊂平面PCDAB ⊄平面PCD所以AB平面PCD(Ⅱ)法一:因为平面ABCD ⊥平面PCD 平面ABCD平面PCD CD =AD ⊥CD ,AD ⊂平面ABCD所以AD ⊥平面PCD 法二:在平面PCD 中过点D 作DH CD ⊥,交PC 于H 因为平面ABCD ⊥平面PCD 平面ABCD平面PCD CD =DH ⊂平面PCD所以DH ⊥平面ABCD 因为AD ⊂平面ABCD 所以DH AD ⊥ 又AD PC ⊥,PCDH H =所以AD ⊥平面PCD (Ⅲ)法一:假设存在棱BC 上点F ,使得MF PC连接AC ,取其中点N在PAC ∆中,因为,M N 分别为,PA CA 的中点,所以MNPC因为过直线外一点只有一条直线和已知直线平行,所以MF 与MN 重合 所以点F 在线段AC 上,所以F 是AC ,BC 的交点C即MF 就是MC而MC 与PC 相交,矛盾,所以假设错误,问题得证 法二:假设存在棱BC 上点F ,使得MFPC ,显然F 与点C 不同所以,,,P M F C 四点在同一个平面α中 所以FC ⊂α,PM ⊂α 所以B FC ∈⊂α,A PM ∈⊂α所以α就是点,,A B C 确定的平面ABCD ,且P ∈α这与P ABCD -为四棱锥矛盾,所以假设错误,问题得证 19.解:(Ⅰ)因为,a b ==2242所以离心率c e a =(Ⅱ)设11(,P x y 若k =12,则直线由x y y x ⎧+=⎪⎪⎨⎪=+⎪⎩22142112 解得 ,x x =-=122设(0,1)A ,则 S ∆(Ⅲ)法一: 设点33(,)C x y ,因为11(,)P x y ,(0,2)B -,所以1313222x x y y ⎧=⎪⎪⎨-+⎪=⎪⎩又点11(,)P x y ,33(,)C x y 都在椭圆上,所以221122111422()()22142x y x y ⎧+=⎪⎪⎨-+⎪+=⎪⎩解得1112x y ⎧=⎪⎪⎨⎪=-⎪⎩或1112x y ⎧=⎪⎪⎨⎪=-⎪⎩ 所以14k =-或14k =法二: 设33(,)C x y显然直线由x y y k x ⎧+⎪⎨⎪=⎩22142 所以x x x x ⎧⎪∆=⎪⎪⎪+⎨⎪⎪=⎪⎪⎩113又x x =3112解得1114x k ⎧=⎪⎪⎨⎪=-⎪⎩或 1114x k ⎧=⎪⎪⎨⎪=⎪⎩所以 1112x y ⎧=⎪⎪⎨⎪=-⎪⎩ 或 1112x y ⎧=⎪⎪⎨⎪=-⎪⎩所以 14k =或14k =-20.解:(Ⅰ)因为()xa x f x -=e 2所以'()xx x af x --=e 22当a =3时,'()xx x f x --=e 223所以'()f -=10,而()f -=e 12 曲线()y f x =在(1,(1))f --处的切线方程为2e y = (Ⅱ)法一:因为'()xx x af x --=e22,令'()f x =0 得x2e2因为x x a --=22220,所以()a x x f x --==e e2222222 设()x xF x -=e2,其中2x >所以()()'()xxx x F x --=-=e e 2121 当x >2时,'()F x >0,所以()F x 在区间(,)+∞2单调递增,因为 x >22,所以()())(F x x F f >-==e2221,问题得证 法二:因为a >0,所以当x >0时,()x x a x x f x --=>e e22设()x x F x -=e2,其中0x >所以()'()x xx x x x F x -=-=e e 222 所以x ,'()F x ,()F x 的变化情况如下表:” 设所以'()2e 2e xg x x =-设()'()h x g x =,'()2e 2e xh x =-,令'()0h x =,得1x =所以x ,'()h x ,()h x 的变化情况如下表:所以()h x 在1x =处取得极小值,而(1)2e 2e 0h =-= 所以()0h x ≥所以x >0时,'()0g x ≥,所以()g x 在(,)+∞0上单调递增,得g()(0)x g > 而(0)20g =>,所以()0g x > 问题得证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区高二年级第一学期期末练习数学(文科)第一部分(选择题 共40分)一、选择题共8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)直线210x y +-=在轴上的截距为A. 2-B. 1-C. 12- D. 1(2)双曲线22:1169x y C -=的渐近线方程为A. 34y x =±B. 43y x =±C. 916y x =±D. 169y x =±(3)已知圆22310x y x m +-++=经过原点,则实数m 等于A. 32-B. 1-C. 1D. 32(4)鲁班锁是曾广泛流传于民间的智力玩具,它起源于中国古代建筑中首创的榫卯结构,不用钉子和绳子,完全靠自身结构的连接支撑.它看似简单,却凝结着不平凡的智慧.下图为鲁班锁的其中一个零件的三视图,则该零件的体积为A.32B.34C.36D.40(5)椭圆22:11612x y C +=的焦点为12,F F ,若点M 在C 上且满足122MF MF -=,则12F MF ∆中最大角为A. 090B. 0105C. 0120D. 0150 (6)“0m ”是“方程22x my m +=表示双曲线”的 A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(7)已知两条直线,m n ,两个平面,αβ,下面说法正确的是A.m m n n αβαβ⊥⎫⎪⊂⇒⊥⎬⎪⊂⎭B. ////m m n n αβαβ⎫⎪⊂⇒⎬⎪⊂⎭ C.m m αββα⊥⎫⇒⊥⎬⊂⎭ D. ////m m αββα⎫⇒⎬⊂⎭(8)在正方体的1111ABCD A B C D -中,点P 是BC 的中点,点Q 为线段1AD (与1AD 不重合)上一动点.给出如下四个推断:①对任意的点Q ,1//AQ 平面11B BCC ; ②存在点Q ,使得1//AQ 1B P ; ③对任意的点Q ,11B Q A C ⊥则上面推断中所有正确..的为 A. ①② B. ②③ C. ①③ D. ①②③第二部分(非选择题 共110分)二、填空题共6小题,每小题4分,共24分。

(9)直线:10l x y +-=的倾斜角为 ,经过点(1,1)且与直线l 平行的直线方程为 . (10)抛物线24y x =的焦点坐标为 ,点(4,4)到其准线的距离为 .(11)请从正方体1111ABCD A B C D -的8个顶点中,找出4个点构成一个三棱锥,使得这个三棱锥的4个面都是直角三角形,则这4个点 可以是 .(只需写出一组)(12)直线10x y +-=被圆221x y +=所截得的弦长为 .(13)已知椭圆1C 和双曲线2C 的中心均在原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标(14)曲线W3=①请写出曲线W 的一条对称轴方程 ; ②请写出曲线W 上的两个点的坐标 ; ③曲线W 上的点的纵坐标的取值范围是 .三、解答题共4小题,共44分。

解答应写出文字说明,演算步骤或证明过程。

(15)(本小题10分)在平面直角坐标系xOy 中,圆C 的半径为1,其圆心在射线(0)y x x =≥上,且OC =. (Ⅰ)求圆C 的方程;(Ⅱ)若直线l 过点(1,0)P ,且与圆C 相切,求直线l 的方程.(16)(本小题10分)如图,在三棱锥P ABC -中,,PB PC =AB AC =,且点,D E 分别是,BC PB 的中点. (Ⅰ)求证://DE 平面PAC ; (Ⅱ)求证:BC ⊥PA .(17)(本小题12分)如图,平面ABCF ⊥平面FCDE ,四边形ABCF 和FCDE 是全等的等腰梯形,其中////AB FC ED ,且122AB BC FC ===,点O 为FC 的中点,点G 是AB 的中点.(Ⅰ)求证:OG ⊥平面FCDE ;(Ⅱ)请在图中所给的点中找出两个点,使得这两点所在的直线与平面EGO 垂直,并给出证明..; (Ⅲ)在线段CD 上是否存在点,使得//BH 平面EGO ?如果存在,求出DH 的长度;如果不存在,请说明理由.(18)(本小题12分)已知椭圆2222:1(0)x y C aba b+=的左,右焦点分别为12,F F ,上顶点为A ,12AF F ∆是斜边长为腰直角三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y x m =+与椭圆C 交于不同两点,P Q .(1ⅰ)当1m =时,求线段PQ 的长度; (2ⅱ)是否存在m ,使得43OPQ S ∆=?若存在,求出m 的值;若不存在,请说明理由.海淀区高二年级第一学期期末练习数 学(文科)参考答案及评分标准一. 选择题:本大题共8小题, 每小题4分,共32分.二.填空题:本大题共6小题, 每小题4分, 共24分.9.3π4,20x y +-= 10. (1,0),5 11. 1,,,A A B C (此答案不唯一)12.14. ① 0x =(或0y =) ② (0,2),(0,2)- 此答案不唯一 ③ [2,2]-说明:9,10题每空2分, 14题中 ① ②空 各给1分,③给2分 三. 解答题:本大题共4小题,共44分. 15.(本小题满分10分)解: (I )设圆心(,)C a a ,则 OC = …………………1分解得2a =,2a =-(舍掉) …………………2分 所以圆22:(2)(2)1C x y -+-= …………………4分 (Ⅱ)① 若直线l 的斜率不存在,直线l :1x =,符合题意 …………………5分 ② 若直线l 的斜率存在,设直线l 为(1)y k x =-,即 0kx y k --= …………………6分由题意,圆心到直线的距离1d ==, …………………8分解得34k =…………………9分 所以直线l 的方程为3430x y --= …………………10分综上所述,所求直线l 的方程为1x =或3430x y --=.16.(本小题满分10分)解: (Ⅰ)证明:在PBC ∆中,因为D ,E 分别是BC ,PB 的中点 ,所以 //DE PC …………………1分 因为 DE ⊄平面PAC ,PC ⊂平面PAC …………………3分说明:上面两个必须有,少一个扣1分.所以 //DE 平面PAC . …………………4分 (Ⅱ)证明:因为 PB PC =,AB AC =,D 是BC 的中点,所以 PD BC ⊥,AD BC ⊥ …………………6分 因为 PDAD D =,,PD AD ⊂平面PAD …………………8分所以 BC ⊥平面PAD …………………9分 因为 BC ⊂平面ABC所以 平面ABC ⊥平面PAD …………………10分17.(本小题满分12分)解:(Ⅰ) 因为四边形ABCF 是等腰梯形,点O 为FC 的中点,点G 是AB 的中点所以OG FC ⊥ …………………1分 又平面ABCF ⊥平面FCDE ,平面ABCF平面FCDE FC =………………3分所以OG ⊥平面FCDE …………………4分 (II ) ,F D 点为所求的点因为FD ⊂平面FCDE , 所以OG ⊥FD …………………5分又EDFO ,且EF ED =,所以EFOD 为菱形 …………………6分所以FD EO ⊥ …………………7分 因为EO OG O =,所以FD ⊥平面EGO …………………8分 (Ⅲ)假设存在点H ,使得BH 平面EOG …………………9分由EDOC ,所以EOCD 为平行四边形,所以EO DC …………………10分因为EO ⊂平面EOG 所以 DC 平面EOG …………………11分又BH DC H =,所以平面EOG平面BCD ,所以BC平面EOG ,所以BCOG ,所以GBCO 为平行四边形,所以 GB CO = ,矛盾, 所以不存在点H ,使得BH平面EOG …………………12分18.(本小题满分12分)解: (I )由题意,12F F =b c = …………………1分所以2b c a === …………………3分椭圆C 的标准方程为22142x y += …………………4分 (II )把直线1l 和椭圆的方程联立22142x y y x m⎧+=⎪⎨⎪=+⎩ 2234240x mx m ++-= …………………5分当1m =时,有23420x x +-=,1243x x +=-, 1223x x =-…………………6分 所以12|||PQ x x =-=…………………8分 (Ⅲ)假设存在m ,使得43OPQ S ∆=.因为12|||PQ x x =-=…………………9分 点O 到直线y x m =+的距离为d = …………………10分所以114||223OPQ S PQ d ∆=⋅== 所以42680m m -+=,解得2,m =± …………………11分 代入221612(24)0,m m ∆=-->所以2,m =±均符合题意 …………………12分 说明:解答题有其它正确解法的请酌情给分.。

相关文档
最新文档