九年级数学上册第二十四章圆24.1圆的有关性质24.1.4圆周角教案新版新人教版
九年级数学上册 第二十四章 24.1 圆有关的性质 24.1.4 圆周角备课资料教案 (新版)新人教版
第二十四章 24.1.4圆周角知识点1:圆周角的概念顶点在圆上,且两边都与圆相交的角叫做圆周角.关键提醒:(1)圆周角必须具备两个特征:一是顶点在圆周上,二是角的两边都和圆相交;(2)圆周角与圆心角一样,在圆中经常出现,它们的相同点是角的两边都和圆相交,不同点是圆心角的顶点在圆心而圆周角的顶点在圆上.知识点2:圆周角定理及推论圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.圆周角定理的推论:(1)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径;(2)在同圆或等圆中,相等的圆周角所对的弧相等;(3)如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.关键提醒:(1)圆周角定理中,包含了两方面的意义:一是圆周角与圆心角存在关系的前提条件是同圆或等圆中它们对着同一条弧,二是对着同一条弧的圆周角是圆心角的一半,不能丢掉“同弧或等弧所对的圆周角和圆心角”这一条件,而简单地说成“圆周角等于圆心角的一半”;(2)“相等的圆周角所对的弧相等”的前提条件是“在同圆或等圆内”,离开这个前提条件,结论不一定成立;(3)圆的直径常与90°的圆周角联系在一起,有关直径问题,常作直径所对的圆周角构成直角;有关90°的圆周角所对的弦为直径;(4)在同圆或等圆中,两个圆周角、两个圆心角、两条弧和两条弦中有一组量相等,他们对应的其余各组量也相等.知识点3:圆的内接四边形概念和圆内接四边形的性质圆的内接多边形定义:如果一个多边形的所有顶点都在同一个圆上,那么这个多边形叫做圆的内接多边形,这个圆叫做多边形的外接圆.圆的内接四边形性质:圆的内接四边形的对角互补.关键提醒:根据圆的内接多边形性质不难得出:圆的内接四边形任何一个外角等于它的内对角.A. ①②B. ③C. ③④D. ③④⑤答案:B.点拨:由于图形①②中的角的顶点不在圆上,所以图形①②中的角不是圆周角.图形④中的角的只有图形③中的角符合圆周角的两个条件考点2AB=4,如图A B,由垂径定理可得AC=2,OC=OA,【例3】在圆内接四边形ABCD中,∠A、∠B、∠C的度数的比是3∶2∶7,求四边形各内角度数.解:设∠A、∠B、∠C的度数分别为3x,2x,7x.∵四边形ABCD是圆内接四边形,∴∠A+∠C=3x+7x=180°.解得x=18°.∴∠A=3x=54°,∠B=2x=36°,∠C=7x=126°.又∠B+∠D=180°,∴∠D=180°-36°=144°.点拨:根据圆的内接四边形性质,可知∠A+∠C=180°,再运用方程思想即可求出四边形各内角度数.。
人教版数学九年级上册第24章圆24.1.4圆周角教学设计
1.引入:通过复习已学的圆的相关知识,如圆心、半径、直径等,为新课的学习打下基础。
教师提问:“我们已经学习过圆的一些基本概念,那么大家知道圆周角吗?圆周角与圆心角有什么关系呢?”
2.导入:利用多媒体展示生活中常见的圆形物体,如车轮、时钟等,引导学生观察并思考圆周角的特点。
教师引导:“观察这些圆形物体,我们可以发现圆周角似乎与圆心角有一定的关系。今天我们就来学习圆周角的相关知识。”
(2)课本第24章第1节练习题5-8题,培养学生运用圆周角定理解决实际问题的能力;
(3)选取两道课堂练习中的解答题,要求学生重新做一遍,提高解题技能。
2.选做题:
(1)课本第24章第1节练习题9-10题,拓展学生对圆周角推论的理解;
(2)设计一道与生活相关的圆周角问题,鼓励学生运用所学知识解决。
3.小组作业:
-设计实际情境,让学生在实际操作中体会圆周角的应用,提高解决问题的能力。
2.教学步骤:
(1)导入新课:通过复习圆的相关知识,自然引入圆周角的概念。
(2)探究新知:组织学生分组讨论,探索圆周角的性质,引导学生发现并证明圆周角定理。
(3)巩固练习:设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题技能。
在教学过程中,教师要关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。同时,注重启发式教学,引导学生主动探究,培养学生的创新意识。通过本节课的学习,使学生真正理解和掌握圆周角的知识,为后续学习打下坚实基础。
二、学情分析
九年级学生在前两年的学习中,已经掌握了基本的几何知识和逻辑思维能力。在此基础上,学生对圆的相关性质有一定了解,为学习圆周角奠定了基础。然而,圆周角的概念及其性质较为抽象,学生可能在学习过程中遇到理解上的困难。此外,学生在解决实际问题时,可能缺乏将理论知识与实际情境相结合的能力。因此,在教学过程中,教师需关注以下几点:
九年级数学上册第二十四章圆24.1圆的有关性质24.1.4圆周角第1课时圆周角定理及其推论教案新版新人教版
24.1.4 第1课时圆周角定理及其推论01 教学目标1.理解圆周角的定义,会区分圆周角和圆心角.2.掌握圆周角定理及其两个推论,能在证明或计算中熟练的应用它们处理相关问题.02 预习反馈阅读教材P85~87,完成下列问题.1.顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.3.已知,如图所示,OA,OB是⊙O的两条半径,点C在⊙O上.若∠AOB=90°,则∠ACB 的度数为45°.4.圆周角定理的推论:同弧或等弧所对的圆周角相等.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.5.如图所示,点A,B,C在圆周上,∠A=65°,则∠D的度数为65°.6.如图,A,B,C均在⊙O上,且AB是⊙O的直径,AC=BC,则∠C=90°,∠A=45°.03 新课讲授知识点1 圆周角定理例1(教材补充例题)如图所示,点A,B,C在⊙O上,连接OA,OB,若∠ABO=25°,求∠C的度数.【解答】 ∵OA =OB ,∠ABO =25°, ∴∠BAO =∠ABO =25°. ∴∠AOB =130°. ∴∠C =12∠AOB =65°.【跟踪训练1】 如图,点A ,B ,C 在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 大小为60°.知识点2 圆周角定理的推论例2 (教材P87例4)如图,⊙O 的直径AB 为10 cm ,弦AC 为6 cm ,∠ACB 的平分线交⊙O 于D ,求BC ,AD ,BD 的长.【思路点拨】 根据AB 是直径的条件,得出△ABC ,△ABD 都是直角三角形,由于Rt△ABC 中AB ,AC 已知,根据勾股定理可求出BC .进一步,因为CD 平分∠ACB ,根据圆周角定理和弧、弦、圆心角之间的关系,可知AD =BD ,这样,在Rt△ABD 中可求出AD 和BD 的长.【解答】 连接OD . ∵AB 是直径,∴∠ACB =∠ADB =90°. 在Rt△ABC 中,BC =AB 2-AC 2=102-62=8(cm).∵CD 平分∠ACB ,∴∠ACD =∠BCD . ∴∠AOD =∠BOD .∴AD =BD . 又在Rt△ABD 中,AD 2+BD 2=AB 2,∴AD =BD =22AB =22×10=52(cm).例3 (教材补充例题)如图,△ABC 的顶点都在⊙O 上,AD 是⊙O 的直径,AD =2,∠B =∠DAC ,则AC =1.【归纳总结】 1.圆周角定理及其推论中的转化思想:(1)弧是圆周角、圆心角的中介,通过弧可实现圆周角、圆心角之间的转化; (2)在同圆或等圆中,90°的圆周角和直径之间可以相互转化. 2.圆周角定理及其推论中常用的辅助线:当题目中出现直径时,通常作出直径所对的圆周角,可得直角,然后结合直角三角形解决问题,即“见直径作直角”.3.利用圆周角定理及其推论进行证明时常用的思路:(1)在同圆或等圆中,若要证弧相等,则考虑证明这两条弧所对的圆周角相等; (2)在同圆或等圆中,若要证圆周角相等,则考虑证明这两个圆周角所对的弧相等; (3)当有直径时,常利用直径所对的圆周角为直角解决问题.【跟踪训练2】 如图所示,点A ,B ,C 在⊙O 上,已知∠B=60°,则∠CAO=30°.【点拨】 连接OC ,构造圆心角的同时构造等腰三角形.【跟踪训练3】 如图所示,AB 是⊙O 的直径,AC 是弦,若∠ACO=32°,则∠B=58°.04 巩固训练1.如图所示,已知圆心角∠BOC=100°,点A 为优弧BC ︵上一点,则圆周角∠BAC 的度数为50°.2.如图所示,OA 为⊙O 的半径,以OA 为直径的⊙C 与⊙O 的弦AB 相交于点D ,若OD =5 cm ,则BE =10__cm .【点拨】 利用两个直径构造两个垂直,从而构造平行,产生三角形的中位线. 3.如图所示,在⊙O 中,∠AOB=100°,C 为优弧AB ︵的中点,则∠CAB 的度数为65°.4.如图,OA ,OB ,OC 都是⊙O 的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC.证明:∵∠AOB 是劣弧AB ︵所对的圆心角,∠ACB 是劣弧AB ︵所对的圆周角,∴∠AOB=2∠ACB.同理∠BOC=2∠BAC. ∵∠AOB=2∠BOC, ∴∠ACB=2∠BAC.【点拨】 看圆周角一定先看它是哪条弧所对的圆周角,再看所对的圆心角.05 课堂小结圆周角的定义、定理及推论.。
人教版九年级数学上册第二十四章圆24.1圆的有关性质24.1.4圆周角教案设计
第二十四章圆24.1 圆的有关性质24.1.4 圆周角学习目标1.掌握圆内接四边形的概念及其性质,并能灵活运用.2.了解直角三角形的一种判定方法.学习过程设计一、设计问题,创设情境1.如图,AB是☉O的直径,C为圆上一点,则∠ACB= .2.如图,点A,B,C,D是☉O上的点,若∠BOD=100°,则∠A= ,∠C= .二、信息交流,揭示规律如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做,这个圆叫做这个.问题1:如图,四边形ABCD叫做☉O的内接四边形,而☉O叫做四边形ABCD的外接圆,猜想:∠A与∠C,∠B与∠D之间的关系为.由此得出圆内接四边形的性质: .三、运用规律,解决问题1.四边形ABCD是☉O的内接四边形,∠A与∠C是一对对角,且∠A=110°,∠B=80°,则∠C= ,∠D= .2.☉O的内接四边形ABCD中,∠A,∠C是一对对角,∠A∶∠B∶∠C=1∶2∶3,则∠D= .问题2:如图,CD是△ABC的中线,且CD=1AB.求证:∠ACB=90°.由此得直角三角形的判定方法:如果三角形,那么这个三角形是.四、变式训练,深化提高1.如图,四边形ABCD是☉O的内接四边形,且∠BOD=110°,则∠C= .2.☉O中,∠AOB=110°,则弦AB所对的圆周角的度数为.3.☉O的内接四边形ABCD中∠A∶∠B∶∠C∶∠D可能是()A.1∶2∶3∶4B.4∶1∶3∶2C.4∶3∶1∶2D.4∶1∶2∶44.已知,▱ABCD是☉O的内接四边形,求证:▱ABCD是矩形.课堂小结1.圆内接四边形的性质: .2.直角三角形的判定方法:.五、反思小结,观点提炼参考答案一、设计问题,创设情境1.90°2.50°130°二、信息交流,揭示规律圆的内接多边形多边形的外接圆问题1:∠A+∠C=180°;∠B+∠D=180°圆的内接四边形对角互补三、运用规律,解决问题1.70°100°2.90°问题2:证明:∵在△ABC中,CD是AB边上的中线, ∴AD=BD.又∵CD=1AB,∴AD=BD=CD,∴A,B,C在以点D为圆心,AB为直径的圆上.∴∠ACB=90°.一边上的中线等于这条边的一半直角三角形四、变式训练,深化提高1.1 5°2.55°或1 5°3.C4.证明:∵▱ABCD是☉O的内接四边形,∴∠A+∠C=180°,在▱ABCD中,∠A=∠C,∴∠A=∠C=90°,∴▱ABCD是矩形.课堂小结略五、反思小结,观点提炼略。
人教版九年级数学上册第二十四章24.1圆有关的性质24.1.4圆周角备课资料教案新版
第二十四章 24.1.4圆周角知识点1:圆周角的概念顶点在圆上,且两边都与圆相交的角叫做圆周角.关键提醒:(1)圆周角必须具备两个特征:一是顶点在圆周上,二是角的两边都和圆相交;(2)圆周角与圆心角一样,在圆中经常出现,它们的相同点是角的两边都和圆相交,不同点是圆心角的顶点在圆心而圆周角的顶点在圆上.知识点2:圆周角定理及推论圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.圆周角定理的推论:(1)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径;(2)在同圆或等圆中,相等的圆周角所对的弧相等;(3)如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.关键提醒:(1)圆周角定理中,包含了两方面的意义:一是圆周角与圆心角存在关系的前提条件是同圆或等圆中它们对着同一条弧,二是对着同一条弧的圆周角是圆心角的一半,不能丢掉“同弧或等弧所对的圆周角和圆心角”这一条件,而简单地说成“圆周角等于圆心角的一半”;(2)“相等的圆周角所对的弧相等”的前提条件是“在同圆或等圆内”,离开这个前提条件,结论不一定成立;(3)圆的直径常与90°的圆周角联系在一起,有关直径问题,常作直径所对的圆周角构成直角;有关90°的圆周角所对的弦为直径;(4)在同圆或等圆中,两个圆周角、两个圆心角、两条弧和两条弦中有一组量相等,他们对应的其余各组量也相等.知识点3:圆的内接四边形概念和圆内接四边形的性质圆的内接多边形定义A. ①②B. ③C. ③④D. ③④⑤答案:B.点拨:由于图形①②中的角的顶点不在圆上,所以图形①②中的角不是圆周角.图形只有图形③中的角符合圆周角的两个考点2AB=4,如图,过点O作OC⊥A B,连接OA、OB,由垂径定理可得AC=2,在Rt△OAC中,由于OC=OA,所以∠OAC=30°,可得AB所对的圆心角∠AOB=120°.①当点P在优弧上时,∠AP1B=60°;②当点P在劣弧上时,∠AP2B=120°.考点3:利用圆内接四边形的性质进行计算【例3】在圆内接四边形ABCD中,∠A、∠B、∠C的度数的比是3∶2∶7,求四边形各内角度数.解:设∠A、∠B、∠C的度数分别为3x,2x,7x.∵四边形ABCD是圆内接四边形,∴∠A+∠C=3x+7x=180°.解得x=18°.∴∠A=3x=54°,∠B=2x=36°,∠C=7x=126°.又∠B+∠D=180°,∴∠D=180°-36°=144°.点拨:根据圆的内接四边形性质,可知∠A+∠C=180°,再运用方程思想即可求出四边形各内角度数.。
人教版数学九年级上册24.1.4圆周角定理教学设计
(3)鼓励学生参加数学竞赛、课外活动,拓宽知识视野,提高数学素养。
四、教学内容与过的基本概念,如圆心、半径、直径等,为新课的学习做好铺垫。
(1)请学生回顾圆的定义及圆的基本性质。
(2)提问:圆心角和弧有什么关系?如何计算圆心角的度数?
(二)讲授新知
1.圆周角定理的推导:
(1)引导学生观察圆中的圆周角,尝试总结其性质。
(2)教师通过动画演示,直观展示圆周角定理的推导过程。
(3)讲解圆周角定理:圆周角等于其所对圆心角的一半。
2.圆周角定理的应用:
(1)结合实际例题,讲解如何运用圆周角定理解决问题。
(2)引导学生关注圆周角定理在解决角度、弧度等问题中的应用。
(二)过程与方法
1.通过观察、分析、归纳,培养学生发现问题的能力。
2.通过自主探究、合作交流,提高学生解决问题的能力。
3.通过实际操作,培养学生的动手能力和空间想象能力。
4.引导学生从不同角度思考问题,培养学生思维的灵活性和创新意识。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,提高学生对数学美的感受。
2.培养学生严谨、细致的学习态度,养成良好的学习习惯。
3.培养学生的团队协作精神,学会与人沟通交流。
4.通过圆周角定理的学习,使学生体会数学与生活的紧密联系,培养学生的应用意识。
1.导入:通过复习圆的基本概念,引导学生关注圆周角。
2.自主探究:让学生观察圆周角的特点,尝试总结圆周角定理。
3.合作交流:分组讨论,分享探究成果,互相学习,共同完善圆周角定理。
1.学生总结:请学生谈谈本节课的学习收获,对圆周角定理的理解和运用。
九年级数学上册第二十四章圆24.1圆的有关性质24.1.4圆周角(1)教案新人教版(2021年整理)
湖南省益阳市资阳区迎丰桥镇九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角(1)教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖南省益阳市资阳区迎丰桥镇九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角(1)教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖南省益阳市资阳区迎丰桥镇九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角(1)教案(新版)新人教版的全部内容。
圆周角课题:24.1.4 圆周角(1)课时 1 课时教学设计课标要求探索同弧所对的圆周角与圆心角之间的关系,了解并证明圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.教材及学情分析1、教材分析:学生在学习本章之前,已通过折叠、对称、平移、旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.2、学情分析九年级学生已具备一定知识储备和认知能力。
但学生的基础较差,中等、差等生较多,优等生较少。
课堂上,多数学生表现欲不强,发言不积极,怕回答错问题;学生应用知识灵活解决问题的能力较差,在几何证明题中,不会抓住已知条件进行论证推理。
人教版数学九年级上册24.1.4《圆周角定理》教学设计
人教版数学九年级上册24.1.4《圆周角定理》教学设计一. 教材分析人教版数学九年级上册24.1.4《圆周角定理》是本节课的主要内容。
圆周角定理是圆周角定理系列中的重要定理之一,也是后续学习圆的性质和圆的方程的基础。
本节课的内容包括圆周角定理的证明和应用。
教材通过丰富的例题和练习题,帮助学生理解和掌握圆周角定理,并能够运用到实际问题中。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质,对角的性质有一定的了解。
但是,对于圆周角定理的理解和运用还需要进一步引导和培养。
因此,在教学过程中,需要注重引导学生通过观察和操作,发现和总结圆周角定理的规律。
三. 教学目标1.了解圆周角定理的内容和证明过程。
2.能够运用圆周角定理解决实际问题。
3.培养学生的观察能力、操作能力和推理能力。
四. 教学重难点1.圆周角定理的证明过程。
2.圆周角定理在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察和操作,发现和总结圆周角定理的规律。
2.运用多媒体辅助教学,展示圆周角定理的证明过程,增强学生的直观感受。
3.通过例题和练习题,让学生在实际问题中运用圆周角定理,巩固所学知识。
六. 教学准备1.多媒体教学设备。
2.圆规、直尺等绘图工具。
3.相关例题和练习题。
七. 教学过程1.导入(5分钟)通过提问方式,引导学生回顾相似三角形的性质和角的性质。
让学生思考:在圆中,圆周角和圆心角之间有什么关系?2.呈现(10分钟)展示圆周角定理的证明过程,引导学生观察和理解证明方法。
通过多媒体动画演示,让学生更直观地感受圆周角定理的应用。
3.操练(10分钟)让学生分组讨论,尝试解决一些与圆周角定理相关的问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)呈现一些例题和练习题,让学生独立解答。
教师选取部分学生的解答进行讲解和分析,巩固所学知识。
5.拓展(10分钟)引导学生思考:圆周角定理在实际问题中的应用。
人教版九年级数学上册24.1.4圆周角定理教学设计
(1)运用多媒体演示或实物模型,帮助学生直观地理解弦所对圆周角与圆心角的关系。
(2)结合具体例题,引导学生总结解决圆周角定理相关问题的方法和技巧。
4.巩固练习:
设计具有梯度、层次的练习题,让学生在练习中巩固所学知识,提高解题能力。
5.课堂小结:
通过师生互动,引导学生回顾本节课所学内容,总结圆周角定理及其应用。
4.通过对圆周角定理的推导和应用,培养学生的空间想象能力和创新意识。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,使学生认识到数学在现实生活中的重要作用,提高学生的数学素养。
2.培养学生勇于探索、积极思考的精神,让学生在解决问题的过程中体验到数学学习的乐趣。
3.引导学生形成良好的学习习惯,如认真审题、规范答题、及时总结反思等,提高学生的学习效率。
(三)学生小组讨论
1.分组讨论:让学生分组讨论如何推导出圆周角定理。
师:请大家分组讨论,每个小组都要思考如何用几何方法推导出圆周角定理。
2.汇报交流:各小组汇报自己的推导过程,其他小组进行评价和补充。
师:现在请各小组派代表汇报你们的推导过程,其他小组认真听,看看有没有需要补充的地方。
3.教师点评:教师对学生的推导过程进行点评,给予肯定和指导。
1.完成作业时,请同学们认真审题,确保解答过程的规范性和准确性。
2.作业完成后,及时进行自我检查,对疑问的地方做好标记,以便在课堂上提问。
3.小组合作完成的开放性问题,鼓励大家积极参与讨论,发挥团队协作精神,共同解决问题。
师:大家的表现都非常棒!在推导过程中,我们要注意严谨的几何论证,确保每一步都合理。
(四)课堂练习
1.设计练习题:针对圆周角定理,设计不同难度的练习题,让学生在课堂上及时巩固所学知识。
人教版九年级数学上册24.1.4《圆周角》教学设计
人教版九年级数学上册24.1.4《圆周角》教学设计一. 教材分析《圆周角》是人民教育出版社九年级数学上册第24章《圆》的第四节内容。
本节主要让学生通过探究圆周角的性质,掌握圆周角定理及其推论,并能在实际问题中运用。
圆周角定理是圆的内接四边形定理的重要组成部分,对于学生理解圆的性质,解决与圆有关的问题具有重要意义。
二. 学情分析学生在学习本节内容前,已经掌握了圆的基本概念、圆的性质、圆的周长和面积等知识。
但学生对于圆周角的理解和应用还不够深入,需要通过本节内容的学习,进一步巩固和提高。
同时,学生对于几何图形的观察和分析能力有待提高,需要在教学过程中加强引导和培养。
三. 教学目标1.知识与技能目标:使学生掌握圆周角定理及其推论,能运用圆周角定理解决简单问题。
2.过程与方法目标:通过观察、分析、推理等方法,培养学生的几何思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:圆周角定理及其推论。
2.难点:圆周角定理的证明和应用。
五. 教学方法1.采用问题驱动法,引导学生观察、分析、推理,从而得出圆周角定理。
2.运用案例教学法,让学生通过实际问题,运用圆周角定理解决问题。
3.采用小组合作学习法,培养学生的团队合作意识。
六. 教学准备1.准备相关的几何模型和图片,以便于学生观察和分析。
2.准备一些实际问题,供学生练习和应用。
3.准备PPT,用于展示和讲解。
七. 教学过程1.导入(5分钟)利用PPT展示一些与圆有关的实际问题,引导学生思考圆周角的概念。
2.呈现(10分钟)利用PPT展示圆周角定理的内容,让学生初步了解圆周角定理。
3.操练(10分钟)让学生分组讨论,通过观察、分析、推理,证明圆周角定理。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生运用圆周角定理解决一些实际问题,巩固所学知识。
5.拓展(10分钟)让学生进一步探索圆周角定理的推论,了解圆周角定理在几何中的应用。
九年级数学上册第二十四章圆241圆的有关性质2414圆周角(2)教案(新版)新人教版.docx
圆周角
二、新知探究 (一)圆内接多边形
1、若一个多边形各顶点都在同一个圆上,那么, 这
个多边形叫做圆内「接多边形,这个圆叫做这个 多边形的外接圆。
(二)圆内接四边形对角之间的关系
如图是•一个圆内接四边形,’它的対角之间
有什么关系呢?
思考:圆内接四边形的四个角之间有什么关 系?
因为圆内接四边形的每一个角都是圆周角, 所以我们可以利用圆周角定理,来研究圆内接四
同理 Z 〃+Z 〃=180° .
圆内接四边形的性质:圆内接四边形的对角 互补.
三、实例探究:
二、探究圆内接四 边形对角的性质
1、圆内接多边形
认识圆内接多边 形
2、探究圆内接四边
教
形的性质
学
培养学生通过探
究获得知识的能
力
四、巩固练习:
1、如图、四边形ABCD内接与圆0, E为CD延
长向上一# A IB二100度,求ZADE的度数。
D
四、练习:
教
学
过
程
2•练习:如图AB是。
O的直径,C ,D是圆上
的两点,若ZABD=40°,则ZBCD= _______ .
培养学生应用
新知识解决问题
的能力。
24.1.4 圆周角 人教版数学九年级上册教案
24.1.4 圆周角一、【教材分析】知识技能1、理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2、掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明.过程方法1、培养学生观察、分析、想象、归纳和逻辑推理的能力;2、渗透由“特殊到一般”,由“一般到特殊”,体验分类讨论的数学思想方法.教学目标情感态度敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.教学重点圆周角定理及定理的三个推论的应用.教学难点圆周角定理的证明,三个推论的灵活应用.二、【教学流程】教学环节问题设计师生活动二次备课情景创设观察与思考:(教师边演示自制教具边介绍,其中底面圆片上标注好有关的字母、线条)假设这是一个圆柱形的房子,同学们可以站在房中通过圆弧形玻璃窗AB向外观看外面的风景,同学甲站在圆心O的位置,同学乙站在正创设问题情境,开展学习活动,引起学生学习的兴趣图图c图画出来.3、利用第2题的图形,分别证明图a、图b、图c中的∠B OC=2∠B AC.4、用自己的语言说出圆周角定理的内容是什么?(1)在同圆或等圆中,同弧或等弧所对的圆周角相等;动,归纳出:⑴在圆周角的一条边上(如图a);⑵在圆周角的内部(如图b);⑶在圆周角的外部(如图c).学生自己独立完成图a的证明.对于图b、图c两种情况的证明,我们可以先尝试让学生小组交流,寻找证题方法,教师可以参与小组讨论,及时给予引导、点拨,然后板书展示证明过程,最后全班进行点评,引导学生体会“转换化归”在解决从特殊到一般问题时的应用思路和方法.以小组为单位讨论、探索,教师参与其中,指导帮助学生完成问题的解答.最后归纳通过制作演示折纸,培养学生动手操作的能力,促进学生参与教学的意识的形成.学会分类讨论、转换化归是教学突破的关键通过观察、交流、归纳,锻炼学生的逻辑思维能力,体验分类讨论的数学思想方法C三、【板书设计】四、【教后反思】本节课首先设计了一个问题情境,展示了圆心角与圆周角的位置关系,引出圆周角的概念.然后通过测量、猜想,得出同弧所对的圆周角等于圆心角的一半的结论.接着通过让学生折纸,观察与思考,利用分类讨论的思想方法,分三种情况给出系统的证明及思维过程.至此我们利用迁移、转化的思想方法化未知为已知,将圆周角的问题转化为圆心角来求解.其后为进一步探索圆周角的其他性质,我们又以设置的问题为导线,将学生带入到教学活动中,同时再次通过交流、讨论、合作、归纳出圆周角定理的三个推论,并运用它们进行解题,实现从认识到应用的转化.。
九年级数学上册(人教版)24.1.4圆周角(第一课时)优秀教学案例
1. 引导探究:引导学生观察、分析圆周角与圆心角的关系,引导学生归纳总结圆周角定理;
2. 解决问题:让学生运用圆周角定理解决实际问题,提高解决问题的能力;
3. 拓展思考:设计拓展性问题,如“圆周角定理在其他几何图形中的应用”,引导学生深入思考,提高逻辑思维能力。
问题导向环节是本节课的核心部分。在这一环节,我会引导学生观察、分析圆周角与圆心角的关系,让学生通过自主探究,归纳总结出圆周角定理。在解决问题环节,我会设计不同难度的题目,让学生运用所学知识解决实际问题,提高解决问题的能力。此外,我还会设计拓展性问题,激发学生的思考兴趣,提高学生的逻辑思维能力。
2. 问题情境:设计具有启发性的问题,如“圆周角与圆心角有什么关系?”,引导学生主动探究,引发思考;
3. 实践情境:让学生亲自动手作图,体验圆周角定理的应用,提高实践能力。
在情景创设环节,我会注重引导学生观察生活中的圆形物体,让学生感受到数学与生活的紧密联系。通过设计具有启发性的问题,激发学生的求知欲,引导学生主动探究。同时,我会组织学生进行实践操作,让学生在动手实践中体验圆周角定理的应用,提高实践能力。
(三)学生小组讨论
1. 讨论问题:让学生分组讨论如何运用圆周角定理解决实际问题;
2. 分享讨论成果:鼓励学生分享讨论过程中的收获和感悟,互相学习;
3. 教师指导:针对学生的讨论情况进行点评,引导学生进一步思考。
在学生小组讨论环节,我会提出讨论问题,让学生分组讨论如何运用圆周角定理解决实际问题。在讨论过程中,我会巡回指导,关注学生的讨论情况。讨论结束后,鼓励学生分享讨论成果,互相学习。最后,我会针对学生的讨论情况进行点评,引导学生进一步思考。
2. 问题导向的教学方式:通过设计具有启发性的问题,如“圆周角与圆心角有什么关系?”引导学生主动探究,引发思考。这种问题导向的教学方式,能够有效地激发学生的求知欲,培养学生的逻辑思维能力,并且能够让学生在学习过程中始终保持积极的状态。
24.1.4圆周角(教案)九年级上册初三数学(人教版)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆周角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用量角器和直尺来测量圆周角,并观察其与圆心角的关系。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
在学生小组讨论环节,我发现学生们对于圆周角在实际生活中的应用提出了许多有趣的想法。这说明他们在思考问题时能够联系实际,这是一个很好的学习态度。但我也发现,有些学生的思考还不够深入,可能是因为他们对圆周角的理论知识掌握得不够扎实。因此,我需要加强对这部分学生的个别辅导,确保他们能够跟上课程进度。
最后,我意识到在总结回顾环节,我没有给予学生足够的时间来提问和表达疑惑。在今后的教学中,我会更加注意这一点,确保每个学生都有机会提出问题,及时解决他们的疑惑。
,则这两个圆周角相等。
3.应用圆周角性质解决实际问题,如测量弦长、计算圆周长等。
4.练习相关习题,加深对圆周角性质的理解和应用。
本节课将围绕以上内容,通过讲解、示范、练习等形式,使学生掌握圆周角的概念和性质,并能运用其解决实际问题。
二、核心素养目标
举例:
针对第一个难点,教师可以通过绘制多个不同大小和位置的圆周角,引导学生观察和总结规律,帮助他们理解圆周角与圆心角的关系。
对于第二个难点,教师可以设计一些包含多个圆周角和复杂弦关系的例题,逐步引导学生分析问题,明确解题步骤。
对于第三个难点,教师可以让学生通过小组讨论和展示,共同探索圆周角推论的应用场景,从而加深理解。
在讲授过程中,我尽量通过生动的例子和实际操作来帮助学生理解,但显然效果还有待提高。下次,我可以尝试使用更多的实物模型或动态图示,让学生更直观地感受圆周角的变化,从而加深他们的理解。
人教版九上数学第24章 圆 24.1.4 课时1 圆周角定理及其推论教案+学案
人教版九年级数学(上)第24章圆24.1圆的有关性质24.1.4圆周角课时1圆周角定理及其推论教案【教材内容】1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弦所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.【教学目标】知识与技能:1.了解圆周角的概念;2.理解圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半;3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径;【教学重点】圆周角的定理、圆周角的定理的推导.【教学难点】1.探究圆周角的定理的存在;2.运用数学分类思想证明圆周角的定理.【教学过程设计】一、情境导入进行中的足球比赛如图所示,甲队员在圆心O处,乙队员在圆上C处,丙队员带球突破防守到圆上C处,依然把球传给了甲,你知道为什么吗?你能用数学知识解释一下吗?二、合作探究知识点一:圆周角定理例1 如图,AB 是⊙O 的直径,C ,D 为圆上两点,∠AOC =130°,则∠D 等于( )A .25°B .30°C .35°D .50°解析:本题考查同弧所对圆周角与圆心角的关系.∵∠AOC =130°,∠AOB =180°,∴∠BOC =50°,∴∠D =25°.故选A.探究点二:圆周角定理的推论【类型一】利用圆周角定理的推论求角例2 如图,在⊙O 中,AB ︵=AC ︵,∠A =30°,则∠B =( ) A .150° B .75° C .60° D .15°解析:因为AB ︵=AC ︵,根据“同弧或等弧所对的圆周角相等”得到∠B =∠C ,因为∠A +∠B +∠C =180°,所以∠A +2∠B =180°,又因为∠A =30°,所以30°+2∠B =180°,解得∠B =75°,故选B.方法总结:解题的关键是掌握在同圆或等圆中,相等的两条弧所对的圆周角也相等.注意方程思想的应用.例3 如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为( ) A .30° B .45° C .60° D .75°解析:由BD 是直径得∠BCD =90°.∵∠CBD =30°,∴∠BDC =60°.∵∠A与∠BDC 是同弧所对的圆周角,∴∠A =∠BDC =60°.故选C.【类型二】利用圆周角定理的推论求线段长例4 如图所示,点C 在以AB 为直径的⊙O 上,AB =10cm ,∠A =30°,则BC 的长为________.解析:由AB 为⊙O 的直径得∠ACB =90°.在Rt △ABC 中,因为∠A =30°,所以BC =12AB =12×10=5cm.【类型三】利用圆周角定理的推论进行有关证明例5 如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD .解析:连接BE 构造Rt △ABE ,由AD 是△ABC 的高得Rt △ACD ,要证∠BAE =∠CAD ,只要证出它们的余角∠E 与∠C 相等,而∠E 与∠C 是同弧AB 所对的圆周角.证明:连接BE ,∵AE 是⊙O 的直径,∴∠ABE =90°,∴∠BAE +∠E =90°.∵AD 是△ABC 的高,∴∠ADC =90°,∴∠CAD +∠C =90°.∵AB ︵=AB ︵,∴∠E =∠C ,∵∠BAE +∠E =90°,∠CAD +∠C =90°,∴∠BAE =∠CAD .方法总结:涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.探究点三:圆的内接四边形及性质【类型一】利用圆的内接四边形的性质进行计算例6 如图,点A ,B ,C ,D 在⊙O 上,点O 在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD =________度.解析:∵四边形ABCD是圆内接四边形,∴∠B+∠ADC=180°.∵四边形OABC为平行四边形,∴∠AOC=∠B.又由题意可知∠AOC=2∠ADC.∴∠ADC =180°÷3=60°.连接OD,可得AO=OD,CO=OD.∴∠OAD=∠ODA,∠OCD =∠ODC.∴∠OAD+∠OCD=∠ODA+∠ODC=∠D=60°.【类型二】利用圆的内接四边形的性质进行证明例7如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.解析:由已知易得∠E=∠BCE,由同角的补角相等,得∠A=∠BCE,则∠E =∠A.证明:∵BC=BE,∴∠E=∠BCE.∵四边形ABCD是圆内接四边形,∴∠A +∠DCB=180°.∵∠BCE+∠DCB=180°,∴∠A=∠BCE.∴∠A=∠E.∴AD=DE.∴△ADE是等腰三角形.方法总结:圆内接四边形对角互补.三、教学小结教师引导学生总结本节所学知识:1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.【板书设计】24.1 圆的有关性质 24.1.4 圆周角课时1 圆周角定理及其推论1.圆周角的概念2.圆周角定理及推论3.圆内接四边形的性质4.应用圆周角定理及推论进行计算【课堂检测】C1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可. 解:BD=CD理由是:如图24-30,连接AD ∵AB 是⊙O 的直径 ∴∠ADB=90°即AD ⊥BC 又∵AC=AB ∴BD=CD2.如图,已知△ABC 内接于⊙O ,∠A 、∠B 、∠C 的对边分别设为a ,b ,c ,⊙O 半径为R ,求证:sin a A =sin b B =sin cC =2R . 分析:要证明sin a A =sin b B =sin c C =2R ,只要证明sin a A =2R ,sin bB=2R ,sin c C =2R ,即sinA=2a R ,sinB=2b R ,sinC=2c R ,因此,十分明显要在直角三角形中进行.证明:连接CO 并延长交⊙O 于D ,连接DB ∵CD 是直径 ∴∠DBC=90° 又∵∠A=∠D在Rt △DBC 中,sinD=BC DC ,即2R=sin a A同理可证:sin b B =2R ,sin cC=2R∴sin a A =sin b B =sin cC =2R教学过程中,强调圆周角定理得出的理论依据,使学生熟练掌握并会学以致用.在圆中,利用圆周定理及其推论求相关的角度时,注意辅助线的添加及多种可能情况的考虑.人教版九年级数学(上)第24章 圆 24.1 圆的有关性质 24.1.4 圆周角 课时1圆周角定理及其推论学案【学习目标】 知识与技能1.理解圆的轴对称性,掌握垂径定理及其推论;2.学会运用垂径定理及其推论解决一些有关证明、计算和作图问题; 3.了解拱高、弦心距等概念.过程与方法经历探索发现圆的对称性,证明垂径定理及其他结论的过程,锻炼思维品质,学习证明的方法.情感、态度与价值观在学生通过观察、操作、变换、探究出图形的性质后,还要求对发现的性质 进行证明,培养学生的创新意识. 【学习重点】垂径定理及其推论. 【学习难点】探索并证明垂径定理. 【自主学习】一、自学指导.(10分钟)自学:研读课本P 81~83内容,并完成下列问题.1.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,它也是中心对称图形,对称中心为圆心.2.垂直于弦的直径平分弦,并且平分弦所对的两条弧,即一条直线如果满足:①AB 经过圆心O 且与圆交于A ,B 两点;②AB ⊥CD 交CD 于E ,那么可以推出:③CE =DE ;④CB ︵=DB ︵;⑤CA ︵=DA ︵.3.平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧. 点拨精讲:(1)画图说明这里被平分的弦为什么不能是直径.(2)实际上,当一条直线满足过圆心、垂直弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,这五个条件中的任何两个,就可推出另外三个.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟) 1.在⊙O中,直径为10 cm,圆心O到AB的距离为3 cm,则弦AB的长为__8_cm__.2.在⊙O中,直径为10 cm,弦AB的长为8 cm,则圆心O到AB的距离为__3_cm__.点拨精讲:圆中已知半径、弦长、弦心距三者中的任何两个,即可求出另一个.3.⊙O的半径OA=5 cm,弦AB=8 cm,点C是AB的中点,则OC的长为__3_cm__.点拨精讲:已知弦的中点,连接圆心和中点构造垂线是常用的辅助线.4.某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为多少米?(8米)点拨精讲:圆中已知半径、弦长、弦心距或弓形高四者中的任何两个,即可求出另一个.【新知探究】一、小组合作1.AB是⊙O的直径,弦CD⊥AB,E为垂足,若AE=9,BE=1,求CD的长.解:6.点拨精讲:常用辅助线:连接半径,由半径、半弦、弦心距构造直角三角形.2.⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM的长的最小值为__3__,最大值为__5__.点拨精讲:当OM与AB垂直时,OM最小(为什么),M在A(或B)处时OM 最大.3.如图,线段AB与⊙O交于C,D两点,且OA=OB.求证:AC=BD.证明:作OE⊥AB于E.则CE=DE.∵OA=OB,OE⊥AB,∴AE=BE,∴AE-CE=BE-DE.即AC=BD.点拨精讲:过圆心作垂线是圆中常用辅助线.二、跟踪练习学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.在直径是20 cm的⊙O中,∠AOB的度数是60°,那么弦AB的弦心距是__53 __cm.点拨精讲:这里利用60°角构造等边三角形,从而得出弦长.2.弓形的弦长为6 cm,弓形的高为2 cm,则这个弓形所在的圆的半径为__134__cm.3.如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.求证:AC=BD.证明:过点O作OE⊥AB于点E.则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.点拨精讲:过圆心作垂径.4.已知⊙O的直径是50 cm,⊙O的两条平行弦AB=40 cm,CD=48 cm,求弦AB与CD之间的距离.解:过点O作直线OE⊥AB于点E,直线OE与CD交于点F.由AB∥CD,则OF⊥CD.(1)当AB,CD在点O两侧时,如图①.连接AO,CO,则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=15 cm,OF=7 cm.∴EF=OE+OF=22 (cm).即AB与CD之间距离为22 cm.(2)当AB,CD在点O同侧时,如图②,连接AO,CO.则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=15 cm,OF=7 cm.∴EF=OE-OF=8 (cm).即AB与CD之间距离为8 cm.由(1)(2)知AB与CD之间的距离为22 cm或8 cm.点拨精讲:分类讨论,①AB,CD在点O两侧,②AB,CD在点O同侧.【学习总结】学生总结本节课的收获与困惑.(2分钟)1.圆是轴对称图形,任何一条直径所在直线都是它的对称轴.2.垂径定理及其推论以及它们的应用.教师点拨:圆是轴对称图形,经过圆心的都是它的对称轴。
2023九年级数学上册第二十四章圆24.1圆的有关性质24.1.4圆周角教案(新版)新人教版
题目:已知一个圆的半径为10厘米,求该圆的周角和圆周角的大小。
解答:
周角:周角是指一个圆的360度角,所以该圆的周角大小为360度。
圆周角:圆周角是指顶点在圆上,并且两边分别与圆相交的角。由于圆的半径为10厘米,所以圆的周长为2πr = 2π × 10 = 20π厘米。圆周角的大小可以通过圆的周长和圆周角定理来求解。根据圆周角定理,圆周角等于其所对圆心角的一半。所以,如果圆周角的对径为d,则圆周角的大小为180°/d。
课堂小结,当堂检测
课堂小结:
本节课我们学习了圆周角的相关知识,主要包括圆周角的定义、圆周角定理、圆周角与圆心角的关系以及圆周角的应用。通过学习,学生能够准确理解圆周角的定义,掌握圆周角定理,并能够运用定理解决一些与圆相关的几何问题。同时,学生通过观察、分析和实践,提高了空间想象能力和逻辑推理能力。
当堂检测:
5.数学思维:通过探讨圆周角与圆心角的关系,培养学生运用数学思维发现问题、解决问题的能力。
6.数学交流:在课堂讨论和问题解答过程中,培养学生表达和交流的能力。
学情分析
九年级的学生已经掌握了初中阶段大部分数学知识,对于几何图形和角度的概念有了一定的理解。在学习本节课之前,学生应该已经学习了圆的基本概念、性质和圆的度量等知识,对于圆的相关概念和性质有一定的了解。此外,学生应该具备一定的逻辑推理能力和空间想象能力,能够理解和运用数学定理解决实际问题。
在素质方面,学生应该具备一定的自觉性和积极性。他们应该能够按时完成作业,认真听讲和参与课堂讨论。对于数学学习有浓厚的兴趣,能够主动探索和解决问题。然而,部分学生可能对于数学学习缺乏兴趣,导致学习效果不佳,需要老师通过激发学生的学习兴趣和动机来提高他们的学习积极性。
人教版九年级数学上册《24.1.4圆周角》教案
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆周角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示圆周角定理的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
此外,学生小组讨论环节,我发现大家在讨论“圆周角在实际生活中的应用”这一主题时,思路较为局限。为了拓宽学生的思维,我今后可以多提供一些与圆周角相关的实际案例,让他们在讨论时有更多的借鉴和启发。
最后,总结回顾环节,我希望通过提问的方式了解学生对课堂内容的掌握情况。但从学生的回答来看,他们对圆周角知识点的掌握还不够扎实。因此,我计划在接下来的课堂中,增加一些针对性的练习,帮助他们巩固所学知识。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆周角的定义、圆周角定理以及它们在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对圆周角的理解。我希望大家能够掌握这些知识点,并在解决与圆相关的问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆周角的基本概念。圆周角是由圆上两条半径或弦所夹的角。它是研究圆的重要几何性质之一,对于解决与圆相关的问题具有重要意义。
2018-2019学年九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.4 圆周角教案 (新版)新人教版
24.1.4 圆周角※教学目标※【知识与技能】理解圆周角的概念,掌握圆周角定理,并会通过它进行证明和计算.【过程与方法】经历圆周角定理的发现、探究与证明,使学生感悟分类讨论的数学思想,体会数学知识的一般形成过程.【情感态度】通过学生自主探究圆周角的概念及定理,合作交流的学习过程,体验实现自身价值的愉悦和数学的应用.【教学重点】圆周角定理的理解与应用.【教学难点】运用分类讨论思想证明圆周角的定理.※教学过程※一、情境导入(课件展示海洋馆图片)在海洋馆里,人们可以通过圆弧形玻璃窗观看其中的海洋动物.问题1如图,AB为圆弧形玻璃窗,同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?问题2如果同学丙,丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB) 和同学乙的视角相同吗?(相同,2∠ACB=2∠AEB=2∠ADB=∠AOB)二、探索新知1.圆周角的定义顶点在圆上,并且两边都与圆相交的角叫做圆周角.探究1判别下列各图形中的角是不是圆周角.归纳总结圆周角必须具备的两个条件:(1)顶点在圆上;(2)两边都要圆相交.2.圆周角定理探究2 分别量一下图中AB所对的两个圆周角的度数,比较一下,再变动点C在圆周上的位置,圆周角的度数有没有变化?你能发现什么规律?再分别量出图中AB 所对的圆周角和圆心角的度数,比较一下,你有什么发现?归纳总结 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.动手操作 学生先动手画圆周角,将圆对折,使折痕经过圆心和圆周角的顶点,再相互交流,比较探究圆心与圆周角的位置关系,并请学生代表上讲台展示交流成果,教师再利电脑动画展示圆心与圆周角可能具有的不同的位置关系,并由学生归纳圆心与圆周角具有的三种不同的位置关系.(1)圆心在圆周角的一边上.(2)圆心在圆周角的内角.(3)圆心在圆周角的外部.分析第(1)种情况:圆心在∠BAC 的一条边上.12OA OC A C A BOC BOC A C =⇒∠=∠⎫⇒∠=∠⎬∠=∠+∠⎭. 归纳总结圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.注意 (1)定理运用的条件是“同圆或等圆中”,而且必须是“同弧或等弧”;(2)若将定理中的“同弧或等弧”改为“同弦或等弦”结论就不一定成立了,因为一条弧所对的圆周角有两种情况,它们一般不相等,而是互补.3.圆周角定理的推论议一议 (1)特殊的弧——半圆,它所对的圆周角是多少度?(2)如果一条弧所对的圆周角是直角,那么这条弧所对的圆心角是多少度?归纳总结圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4.圆内接四边形如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.探究 圆内接四边形的角之间有何关系?如图,连接OB ,OD .∵∠A 所对的弧为BCD ,∠C 所对的弧为BAD ,又BCD 和BAD 所对的圆心角的和是周角,∴∠A +∠C =3602°=180°.同理 ∠B +∠D =180°.由此可知圆内接四边形的性质:圆内接四边形的对角互补.三、掌握新知例1 如图,圆O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交圆O 于D .求BC ,AD ,BD 的长.分析:根据直径所对的角是90°,判断出△ABC 和△ABD 是直角三角形,根据圆周角∠ACB 的平分线交⊙O 于D ,判断出△ADB 为等腰直角三角形,然后根据勾股定理求出具体值.∴∠ACD=∠BCD,∴A D DB=.∴AD=BD.例2 如图,AB为圆O的直径,点C,D在圆O上,∠AOD=30°,求∠BCD的度数.∴∠BCD=180°-75°=105°.四、巩固练习1.如图,∠A=50°,∠AOC=60°,BD是⊙O的直径,则∠AEB等于()A.70°B.110°C.90°D.120°.2.如图,△ABC的顶点A,B,C都在⊙O上,∠C=30°,AB=2,则⊙O的半径是多少?答案:1.B2.连接OA,OB.∵∠C=30°,∴∠AOB=60°.又OA=OB,∴△AOB是等边三角形.∴OA=OB=AB=2,即半径为2.五、归纳小结本节课所学的知识点有哪些?常见的辅助线有哪些?※布置作业※从教材习题24.1中选取.※教学反思※本节课首先是类比圆心角得出圆周角的概念,在探索圆周角与圆心角关系过程中,要求学生会分类讨论,以及转化的数学思想解决问题,同时也培养了学生勇于探索的精神.其次,本节课还学习了圆内接四边形定义及圆内接四边形的性质,通过例题和习题训练,可以使学生在解答问题时灵活运用前面的一些基础知识,从中获取成功的经验,建立学习的自信心.。
九年级数学上册第二十四章圆24.1圆的有关性质24.1.4圆周角第2课时圆内接四边形教案新人教版(
2018-2019学年九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角第2课时圆内接四边形教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角第2课时圆内接四边形教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角第2课时圆内接四边形教案(新版)新人教版的全部内容。
第2课时圆内接四边形01 教学目标1.理解圆周角的定义,会区分圆周角和圆心角.2.理解同弧或等弧所对的圆心角和圆周角的关系,理解记忆各个推论,能在证明或计算中熟练的应用它们处理相关问题.02 预习反馈阅读教材P87~88,完成下列问题.1.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆.如图,四边形ABCD是⊙O的内接四边形,⊙O是四边形ABCD的外接圆.2.圆内接四边形的对角互补.如图,∠A+∠C=180°,∠B+∠D=180°.3.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠A=50°,∠BCD=130°.03 新课讲授例(24.1。
4第2课时习题变式)如图所示,已知AB是⊙O的直径,∠BAC=32°,D是错误!的中点,那么∠DAC的度数是多少?【解答】连接BC.∵AB是⊙O的直径,∴∠ACB=90°。
2020秋九年级数学上册第二十四章圆24.1圆的有关性质24.1.4圆周角教案1新版新人教版
COB ADoCBDA 24.1.4 圆周角圆内接四边形的性质及圆周角定理的综合运用教 学 目 标知 识 和 能 力过 程和 方 法1、通过观察、比较,分析了解并证明圆内接四边形对角,发展学生合情推理能力和演绎推理能力.2、通过观察图形,提高学生的识图能力.3、通过引导学生添加合理的辅助线,培养学生的创造力.情 感态 度价值观 在解决问题过程中使学生体会数学知识在生活中的普遍性. 教学重点 圆内接四边形对角互补的探索与运用. 教学难点论证圆内接四边形对角互补.教 学 设 计设计意图 一、复习引入,激发学生兴趣.(1)问题:你能设法确定一个圆形纸片的圆心吗?(P87练习2) 方法: ①利用对称性,两次对折纸片找到直径的交点;②利用“90度的圆周角所对的弦是直径”找到两条直径的交点。
(2)练习:如图,BD 是⊙O 的直径,∠ABC=130° 则∠ADC= °二、探究圆内接四边形的性质,培养学生的探究精神.1、圆内接多边形和多边形内接圆的概念,介绍圆内接四边形2、如图四边形ABCD 是⊙O 的内接四边形,那么其相对的两个内角之间有什么关系?(观察复习2,写出你的猜想)3、证明你的发现.解:发现:∠A+∠C=180°,∠B+∠D=180° 理由如下:连接OB,OD在⊙O 中,∠A 所对的弧为BCD ,∠C 所对的弧为 BAD , 又∵BCD 与BCD 所对的圆心角的度数之和为360°,∴∠A+∠C=12360°=180°.同理:∠B+∠D=180°. 4、得出结论:圆内接四边形对角互补. 5、几何语言:∵四边形ABCD 内接于⊙O∴∠A+∠C=180°,∠B+∠D=180°复习圆周角定理及其推论推导论证圆内接四边形的对角互补三、应用举例:例1、若四边形ABCD为圆内接四边形,则下列选项可能成立的是()A.∠A﹕∠B﹕∠C﹕∠D=1﹕2﹕3﹕4B.∠A﹕∠B﹕∠C﹕∠D=2﹕1﹕3﹕4C.∠A﹕∠B﹕∠C﹕∠D=3﹕2﹕1﹕4D.∠A﹕∠B﹕∠C﹕∠D=4﹕3﹕2﹕1例2、如图,点C、D是⊙O上不与点A、B重合的两点,(1)若∠AOB=70°,则∠ACB= °(2)若∠ACB=130°,求∠AOB的度数.(写出推理过程)练习:1、如图1,四边形ABCD内接于⊙O,则∠A+∠C= °,∠B+∠ADC= °,若∠B=80°,则∠ADC= ,∠CDE= ;2、如图2,四边形ABCD内接于⊙O,∠AOC=100°,则∠B= ,∠D= ;3、四边形ABCD内接于⊙O,∠A:∠C=1:3,则∠A= ;4、如图3,梯形ABCD内接于⊙O,AD∥BC,∠B=75°,则∠C= °。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.1.4 圆周角
【知识与技能】
理解圆周角的概念.探索圆周角与同弧所对的圆心角之间的关系,并会用圆周角定理及推论进行有关计算和证明.
【过程与方法】
经历探索圆周角定理的过程,初步体会分类讨论的数学思想,渗透解决不确定的探索型问题的思想和方法,提高学生的发散思维能力.
【情感态度】
通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验.
【教学重点】
圆周角定理及其推论的探究与应用.
【教学难点】
圆周角定理的证明中由一般到特殊的数学思想方法以及
圆周角定理及推论的应用.
一、情境导入,初步认识
如图是一个圆柱形的海洋馆的横截面示意图,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物,同学甲站在圆心O的位置.同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗?
[相同,2∠ACB=2∠AEB=2∠ADB=∠AOB]
【教学说明】教师出示海洋馆图片,引导学生思考,引出课题,学生观察图形、分析,初步
感知角的特征.
二、思考探究,获取新知
1.圆周角的定义
探究1 观察下列各图,图(1)中∠APB的顶点P在圆心O的位置,此时∠APB叫做圆心角,这是我们上节所学的内容.图(2)中∠APB的顶点P在⊙O上,角的两边都与⊙O相交,这样的角叫圆周角.请同学们分析(3)、(4)、(5)、(6)是圆心角还是圆周角.
【教学说明】设计这样的一个判断角的问题,是再次强调圆周角的定义,让学生深刻体会定义中的两个条件缺一不可.
【归纳结论】圆周角必须具备两个条件:①顶点在圆上;②角的两边都与圆相交.二者缺一不可.
2.圆周角定理
探究2如图,(1)指出⊙O中所有的圆心角与圆周角,并指出这些角所对的是哪一条弧?
(2)量一量∠D、∠C、∠AOB的度数,看看它们之间有什么样的关系?
(3)改变动点C在圆周上的位置,看看圆周角的度数有没有变化?你发现其中有规律吗?若有规律,请用语言叙述.
解:(1)圆心角有:∠AOB圆周角有:∠C、∠D,它们所对的都是AB
(2)∠C=∠D=1/2∠AOB
.(3)改变动点C在圆周上的位置,这些圆周角的度数没有变化,并且圆周角的度数恰好等于同弧所对圆心角度数的一半.
【教学说明】教师利用几何画板测量角的大小,移动点C,让学生观察当C点位置发生改变过程中,图中有哪些不变,从而交流总结,找出规律,同时引导学生观察圆心与圆周角的位置关系,为定理分情况证明作铺垫.
为了进一步研究上面发现的结论,如图,在⊙O上任取一个圆周角∠ACB,将圆对折,使折痕经过圆心O和∠ACB的顶点C.由于点C的位置的取法可能不同,这时折痕可能会:(1)在圆周角的一条边上;
(2)在圆周角的内部;
(3)在圆周角的外部.
已知:在⊙O中,AB所对的圆周角是∠ACB,圆心角是∠AOB,求证:∠ACB=1/2∠AOB.
[提示分析:我们可按上面三种图形、三种情况进行证明.]
如图(1),圆心O在∠ACB的边上,∵OB=OC,∴∠B=∠C,而∠BOA=∠B+∠C,
∴∠B=∠C=1/2∠AOB.
图(2)(3)的证明方法与图(1)不同,但可以转化成(1)的基本图形进行证明,证明过程请学生们讨论完成.
得出圆周角定理:
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.
注意:①定理应用的条件是“同圆或等圆中”,而且必须是“同弧或等弧”,如下图(1).
②若将定理中的“同弧或等弧”改为“同弦或等弦”结论就不成立了.因为一条弦所对的圆周角有两种情况,它们一般不相等(而是互补).如下图(2).
【教学说明】在定理的证明过程中,要使学生明确,要不要分情况来证明.若要分情况证明,必须要明白按什么标准来分情况,然后针对各种不同的情况逐个进行证明.在证明过程中,第(1)种情况是特殊情况,是比较容易证明的,经过添加直径这条辅助线将(2)、(3)种情况转化为第(1)种情况,体现由一般到特殊的思想方法。
对于后面要学生注意的两个问题,是为了加强学生对圆周角定理的理解,使学生能准确的掌握好圆周角定理。
3.圆周角定理的推论
议一议(1)特殊的弧——半圆,它所对的圆周角是多少度呢?
(2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是多少呢?
结论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(圆周角定理的推论)
【教学说明】这个推论是圆中很重要的性质,为在圆中确定直角,构成垂直关系创造了条件.同时这一结论为在圆中证明直径提供了重要依据.
4.圆内接四边形
定义:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.
如图,四边形ABCD是⊙O的内接四边形.
⊙O是四边形ABCD的外接圆.
连接OB、OD,由圆周角定理可知:
∠A=1/2∠1,∠C=1/2∠2
而∠1+∠2=360°,∴∠A+∠C=
∴∠A与∠C互补,同理可得∠ADC+∠ABC=180°.
由此可知在⊙O的内接四边形ABCD中,对角∠A与∠C,∠ADC与∠ABC互补.
若延长BC至E,使得四边形ABCD有一个外角∠DCE,则∠DCE+∠BCD=180°.
∴∠A=∠DCE.即:外角∠DCE与内对角∠A相等.
由此可知圆内接四边形有如下性质:
圆内接四边形的对角互补,外角等于内对角.
【教学说明】从圆内接四边形的定义出发,可知圆内接四边形的四个内角都是圆周角,再由圆周角定理,把圆周角与相应的圆心角联系起来,就很容易得出圆内接四边形的性质定理.对于这个性质,学生要能分清这个命题的题设和结论,并结合图形写出已知和求证.
三、典例精析,获取新知
例1如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.
求BC、AD、BD的长.
分析:由直径AB可知△ACB和△ADB为直角三角形,进而可用勾股定理求BC,又由CD平分∠ACB可知∠1=∠2,从而得到AD、BD.再次用勾股定理求出AD、BD的长.
解:∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∴△ACB和△ADB为直角三角形.
在Rt△ABC中,BC==8(cm).
∵CD平分∠ACB,∴∠1=∠2,∴AD=BD,∴AD BD
.又在Rt△ABD中22(cm)
【教学说明】利用圆周角定理及其推论,将求线段长的问题转化到解直角三角形的问题上来.
例2 如图.AB为⊙O的直径,点C、D在⊙O上,∠AOD=30°.求∠BCD的度数.
分析:这题有两种解答思路,可用圆周角定理,∠C=(180°+∠AOD)×1/2,也可由圆内接四边形的对角互补知:∠C+∠A=180°.而∠A=∠D,是等腰△OAD的两底角,从而可求出∠C.两种方法都不难求出∠C=105°.
【教学说明】教师提示,学生可自主选择方法,并由学生板书解答过程,发展学生的数学符号语言能力.
四、运用新知,深化理解
1.如图(1)所示,⊙O的直径AE=10cm.∠B=∠EAC,求AC的长.
2.如图(2)所示,AB是⊙O的直径,以AO为直径的⊙C与⊙O的弦AD相交于点E.(1)你认为图中有哪些相等的线段?(2)连接OE、BD.你认为OE与BD之间的关系是怎样的?
3.如图(3)所示,两圆相交于A、B两点,小圆经过大圆的圆心O,点C、D分别在两圆上,若∠ADB=100°,求∠ACB的度数.
【教学说明】让学生通过习题巩固本节知识点,同时体会这节常见题型及常见辅助线的作法.在解题过程中,教师要对没有找到方法的学生进行点拨.
【答案】1. 52cm
2.(1)OA=OB,AC=OC,AE=DE (2)OE=1/2BD且OE∥BD
3.40°
五、师生互动,课堂小结
师生共同回顾本节所学的知识点有哪些?常见的辅助线有哪些?
【教学说明】学生自主交流小结,教师加以补充和点评,营造轻松愉悦的氛围.
1.布置作业:从教材“习题24.1”中选取.
2.完成练习册中本课时练习的“课后作业”部分.
1.这节课首先是类比圆心角得出圆周角的概念.在探索圆周角与圆心角关系过程中,要求学生学会分类讨论,以及转化的数学思想解决问题,同时也培养了学生勇于探索的精神.其次,本节课还学习了圆内接四边形定义及圆内接四边形的性质,通过例题和习题训练,可以使学生在解答问题时灵活运用前面的一些基础知识,从中获取成功的经验,建立学习的自信心.
2.圆周角定理的证明分了三种情况探讨,这里蕴含着重要的数学思想——分类思想,教材中多处闪烁着分类思想的光环:三角形分类、方程的分类等,故教学过程中要整理相互交融的知识结构,加强分类思想的渗透.。