汽车零部件的失效机理及其分析

合集下载

汽车零部件的失效机理及其分析教材

汽车零部件的失效机理及其分析教材

第五节 汽车零部件变形失效机理
零件在使用过程中,由于承载或内部应力的作 用,使零件的尺寸和形状改变的现象称为零件的变形。 零件变形失效的类型有:

弹性变形失效
塑性变形失效 蛹变失效
第六节 汽车零部件失效分析方法
一.失效分析的基本思路
按分析检验项目进行失效分析
按失效模式进行分析 系统工程分析方法

影响因素 防治措施
思考题
1. 气缸-活塞环的磨损规律是什么? 为什么? 2. 零件磨损量如何测定?
参考答案
1. 气缸-活塞环的磨损规律是什么?为什么?
规律:高度方向,上大下小;圆周方向不规则
影响因素:磨料、工作气体压力、润滑和腐蚀 物质。 2. 零件磨损量如何测定?

直接测量法:表面测量法、称重法、刻痕法和 快速磨损法; 间接测量法:光谱分析法和同位素法。
四.提高汽车零件抗疲劳断裂的方法
延续疲劳裂纹萌生时间 降低疲劳裂纹扩展的速率 提高疲劳裂纹门槛值△km长度
思考题
1.
疲劳断裂与磨损的区别
损伤形式 比较因素 损坏形式 受力情况 表面变形 初始裂纹 疲劳磨损 疲劳断裂
第四节 汽车零部件腐蚀失效及其机 理
零件受周围介质作用而引起的损坏称为零件的 腐蚀。按腐蚀机理可分为化学腐蚀和电化学腐蚀, 汽车上约20%的零件因腐蚀而失效。

第一节 汽车零部件失效的概念及分 类
一.失效的概念

汽车零部件失去原设计所规定的功能称为失 效。 失效不仅是指完全丧失原定功能,而且还包 含功能降低和有严重损伤或隐患、继续使用 会失去可靠性及安全性的零部件。

二、失效的基本类型
三.零件失效的基本原因

汽车零部件失效概述

汽车零部件失效概述
油、气、电及机械间隙调整不当
阻漏型失效模式
不畅、堵塞、气阻、漏油、漏气、漏风、漏电、漏雨、渗水、渗 油等
漏气漏油装置失效、密封件失效、 气候环境
功能型失效
功能失效、性能不稳、性能下降、性能失效、启动困难、干涉、 卡滞、转向过度、转向沉重、转向不回位、离合器分离不彻底、 离合器分不开、制动跑偏、流动不畅、指示失灵、参数输出不 准、失调、抖动、漂移、接触不良、公害超标、异响、过热等
曲轴断裂、齿轮轮齿折断
橡胶轮胎、塑料器件的老化
湿式气缸套外壁麻点、孔穴
第一节 汽车零部件失效概述
失效模式
表现形式
诱发因素
损坏型失效模式
裂痕、裂纹、破裂、断裂、破碎、开裂、弯坏、扭坏、变形过 大、塑性变形、卡死、烤蚀、点蚀、烧蚀、击穿、蠕变、剥落、 短路、开路、断路、错位、压痕等
汽车维修工程
汽车零部件的失效理论
第二章 汽车零部件的失效理论
本章重点:
了解汽车零件失效类型和原因
熟悉磨损失效的形式和机理
掌握汽车零件磨损的因素及磨损规律
了解汽车零件的疲劳断裂失效和汽车零件的腐蚀失效
熟悉汽车零件的变形失效形式和机理
掌握汽车零部件失效的综合分析的方法
第一节 汽车零部件失效概述
应力冲击、电冲击、疲劳、磨损、 材质问题、腐蚀
退化型失效模式
老化、变色、变质、表面保护层剥落、侵蚀、腐蚀、正常磨损、 积碳、发卡等
自然磨损、老化及环境诱发
松脱型失效模式
松矿、松动、脱落、脱焊等
紧固件、焊接件出现问题
失调型失效模式
间隙不适、流量不当、压力不当、电压不符、电流偏值、行程失 调、间隙过大或过小等
(2)压力

汽车零部件的失效模式及分析

汽车零部件的失效模式及分析

汽车零部件的失效模式及分析专业:班级学号:姓名:指导教师:年月摘要汽车零件失效分析,是研究汽车零件丧失其规定功能的原因、特征和规律;研究其失效分析技术和预防技术,其目的在与分析零部件失效的原因,找出导致失效的责任,并提出改进和预防措施,从而提高汽车可靠性和使用寿命。

目录第一章汽车零部件失效的概念及分类 (1)一、失效的概念 (1)二、失效的基本分类型 (1)三、零件失效的基本原因 (2)第二章汽车零部件磨损失效模式与失效机理 (3)一、磨料磨损及其失效机理 (3)二、粘着磨损及其失效机理 (4)三、表面疲劳磨损及其失效机理 (5)四、腐蚀磨损及其失效机理 (5)五、微动磨损及其失效机理 (6)第三章汽车零部件疲劳断裂失效及其机理 (8)第四章汽车零部件腐蚀失效及其机理 (9)第五章汽车零部件变形失效机理 (10)参考文献 (11)第一章汽车零部件失效的概念及分类一、失效的概念汽车零部件失去原设计所规定的功能称为失效。

失效不仅是指完全丧失原定功能,而且功能降低和严重损伤或隐患、继续使用会失去可靠性及安全性的零部件。

机械设备发生失效事故,往往会造成不同程度的经济损失,而且还会危及人们的生命安全。

汽车作为重要的交通运输工具,其可靠性和安全性越来越受到重视。

因此,在汽车维修工程中开展失效分析工作,不仅可以提高汽车维修质量,而且可为汽车制造部门提供反馈信息,以便改进汽车设计和制造工艺。

二、失效的基本分类型按失效模式和失效机理对是小进行分类是研究失效的重要内容之一。

失效模式是失效件的宏观特征,而失效机理则是导致零部件失效的物理、化学或机械的变化原因,并依零件的种类、使用环境而异。

汽车零部件按失效模式分类可分为磨损、疲劳断裂、变形、腐蚀及老化等五类。

汽车零件失效分类一个零件可能同时存在几种失效模式或失效机理。

研究失效原因,找出主要失效模式,提出改进和预防措施,从而提高汽车零部件的可靠性和使用寿命。

三、零件失效的基本原因引起零件是小的原因很多,主要可分为工作条件(包括零件的受力状况和工作环境)、设计制造(设计不合理、选材不当、制造工艺不当等)以及使用与维修等三个方面。

汽车主要失效形式

汽车主要失效形式

汽车零件失效的五种形式:一、磨损:零件摩擦表面的金属在相对运动过程中不断损失的现象称为磨损,它包括物理的、化学的、机械的、冶金的综合作用。

对于一个表面的磨损,可能是由于单独的磨损机理造成的,也可能是由于综合的磨损机理造成的。

磨损的发生将造成零件形状、尺寸及表面性质的变化,使零件的工作性能逐渐降低。

二、腐蚀:金属零件的腐蚀是指表面与周围介质起化学或电化学作用而发生的表面破坏现象。

腐蚀损伤总是从金属表面开始,然后或快或慢地往里深入,并使表面的外形发生变化,出现不规则形状的凹洞、斑点等破坏区域。

腐蚀的结果使金属表面产生新物质,时间长久将导致零件被破坏。

三、穴蚀:穴蚀是一种比较复杂的破坏现象,它是机械、化学、电化学等共同作用的结果。

当液体中含有杂质或磨料时会加速破坏过程。

穴蚀常发生在柴油机缸套的外壁、水泵零件、水轮机叶片、液压泵等处。

四、断裂断裂是零件在机械力、热、磁、声响、腐蚀等单独或联合作用下,发生局部开裂或分成几部分的现象。

断裂是零件破坏的重要原因致意,它是金属材料在不同情况下,当局部裂纹发展到零件裂缝尺寸时,剩余截面所承受的外载荷超过其强度极限而导致的完全断裂。

断裂是零件使用过程中的一种最危险的破坏形式。

断裂往往会造成重大事故,产生严重后果。

五、变形多年的维修实践证实,虽然将磨损的零件进行修复,恢复了原来的尺寸、形状和配合性质,但装配皇后仍达不到预期的效果。

出现这种情况,通常是由于零件变形,特别是基础零件变形,使零部件之间的相互位置精度遭到破坏,影响了各组成零件之间的相互关系。

在高科技迅速发展的今天,变形问题将越来越突出,它已成为维修质量低、大修周期短的一个重要原因。

汽车各类易损件:一、发动损件:(1)气缸体:除气缸正常磨损可进行镗磨加大尺寸予以修理外,在冬季因缸体未放尽积水被冻裂,运行中因气缸缺少冷缺冷却水被过热膨胀裂缝漏水,以及在行车事故中被碰撞损坏和孔孔径数次镗销扩大至极限。

(2)气缸套:常见故障有缸孔自然磨损、外径压配不当漏水(湿式缸套)、缸壁因敲缸损伤,或在突发情况下如连杆螺栓松脱被连杆击穿等。

汽车零部件的失效机理及其分析分析32页PPT

汽车零部件的失效机理及其分析分析32页PPT
汽车零部件的失效机理及其分析分析
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
ቤተ መጻሕፍቲ ባይዱ

第二章 汽车零部件失效理论

第二章 汽车零部件失效理论

汽车维修工程习题第二章汽车零部件的失效模式及分析一、名词解释1.汽车零件失效:指汽车在运行过程中,零部件逐渐丧失原有的性能或技术文件所要求的的性能,从而引起汽车技术状况变差,直至不能履行规定的功能。

2.混合摩擦:两摩擦表面间干摩擦、液体摩擦和边界摩擦混合存在的摩擦,称为混合摩擦。

3.磨料磨损:摩擦表面间存在的硬质颗粒引起的磨损,称为磨料磨损。

4.边界摩擦:两摩擦表面被一层极薄的边界膜隔开的摩擦,称为边界摩擦。

5.磨损:零件摩擦表面的金属在相对运动过程中不断损失的现象,称为零件的磨损。

6.穴蚀:与液体相对运动的固体表面,因气泡破裂产生的局部高温及冲击高压所引起的疲劳剥落现象。

7.疲劳断裂:零件在交变载荷作用下,经过较长时间工作而发生的断裂现象。

8.失效度:产品在规定的条件下,在规定的时间内丧失规定功能(即发生故障)的概率。

9。

粘着磨损:摩擦副相对运动时由于固相焊合接触表面的材料发生转移的现象。

二、填空题1、汽车早期失效期的基本特征是开始时失效率( )。

2、汽车失效类型有(磨损)、(疲劳断裂)、腐蚀、变形、老化。

3、微动磨损一般发生在交变载荷或振动作用的()配合表面部位。

4、腐蚀按机理不同,可分为()腐蚀、()腐蚀。

5、润滑油中加入适量的活性添加剂,可以()磨合过程,提高磨合质量。

6、引起零件失效的原因分为工作条件、设计制造以及()。

7、粘接剂的种类有环氧树脂胶、酚醛树脂胶和( )。

8、汽车零部件腐蚀失效分为化学腐蚀失效和( )失效。

9、影响汽车零件磨损的因素有()、()、()。

三、判断题1、低温条件下随着温度下降,汽油粘度、相对密度增加,发动机启动困难()四、简答题1、什么是干摩擦?其磨损特征是什么?在汽车上,一般将摩擦副表面间完全没有润滑油或其他润滑介质时的摩擦称为干摩擦。

其特征是:摩擦表面直接接触,产生强烈地阻碍摩擦副表面相对运动的分子吸引和机械啮合作用,消耗动力,转化为有害的摩擦热。

伴随着强烈的摩擦副表面磨损。

最新-chapter 6 汽车零部件的失效机理及其分析-PPT文档资料

最新-chapter 6 汽车零部件的失效机理及其分析-PPT文档资料
零件受周围介质作用而引起的损坏称为零件的腐蚀。按腐蚀机理 可分为化学腐蚀和电化学腐蚀,汽车上约20%的零件因腐蚀而失效。
一. 化学腐蚀失效机理 金属零件与介质直接发生化学作用面引起的损伤称为化学腐蚀。
二. 电化学腐蚀失效机理 电化学腐蚀是两个不同的金属在一个导电溶液中形成一对电极,
产生电化学反应而发生腐蚀的作用,使充当阳极的金属被腐蚀。
第六章 汽车零部件的 失效机理及其分析 (2)
目录
导言 第一节 汽车零部件失效的概念及分类 第二节 汽车零部件磨损失效模式 第三节 汽车零部件疲劳断裂失效及其机理 第四节 汽车零部件腐蚀失效及其机理 第五节 汽车零部件变形失效机理 第六节 汽车零部件失效分析方法
第四节 汽车零部件腐蚀失效及其机理
三. 汽车零件的老化 橡胶、塑科制品和电子元件等汽车用零件,随着时间的增长,
原有的性能会逐渐衰退称为老化现象。
第五节 汽车零部件变形失效机理
零件在使用过程中,由于承载或内部应力的作 用,使零件的尺寸和形状改变的现象称为零件的变形。
零件变形失效的类型有:
弹性变形失效 塑性变形失效 蛹变失效
第六节 汽车零部件失效分析方法
一.失效分析的基本思路 按分析检验项目进行失效分析 按失效模式进行分析 系统工程分析方法 故障(失效)树分析法 特征因素图分析法 摩擦学系统失效分析法
二.金属的断裂断口分析技术 一次加载断裂断口 延性断裂断口 脆性断裂断口 混合断口 宏观断裂断口分析程序 微观断口分析
三.失效分析的步骤
1. 收集原始资料 2. 收集失效零件的残骸 3. 确定和分析失效模式 4. 对一些重要零件或在一些工况下不可能回收磨 屑时,
可将零件材料在仿效运行工况下进行模拟试验,以验证 初步判断

16432汽车维修工程第2章-PPT文档资料

16432汽车维修工程第2章-PPT文档资料
(3)腐蚀 包括化学腐蚀、电化学腐蚀、穴蚀、如气缸套 外壁麻点、孔穴等。
(4)变形 包括弹性变形、塑性变形,如曲轴的弯曲、扭 曲,基础件(气缸体、变速器壳体、驱动桥壳)变形等。 (5)老化 包括龟裂、变硬、如橡胶轮胎、塑料器件的老 化等。
二、汽车零件磨损
1.汽车零件的摩擦 (1)概念:两物体相对运动使其接触表面间产生运动阻力的 现象称为摩擦,该阻力称为摩擦力。 (2)种类:按零件表面润滑状态的不同,摩擦可分: 干摩擦、液体摩擦、边界摩擦和混合摩擦四类。
三、汽车失效的主要原因
1.汽车零件的耗损 2.使用条件对汽车技术状况的影响
(1)道路条件的影响。道路状况和断面形状等决定了汽车及 总成的工况(载荷和速度域、传递的扭矩、曲轴转速、换档次数, 以及道路不平所引起的动载荷)从而决定汽车零部件和机构的磨 损况,影响汽车的工作能力。 (2)运行条件的影响。主要指交通流量对汽车运行工况的影 响,如载货汽车在城市街道上速度较郊区要降低50%以上,发动 机曲轴转速反而升高35%左右;换档次数增加2~2.5倍。显然, 这种工况必然加速汽车技术状况的恶化进程。 (3)运输条件的影响。城市公共汽车经常处于频繁起步、加 速、减速、制动和停车为主的典型的非稳 定工况下工作、如曲 轴转速和润滑系油压不能与载荷协调一致地变化,恶化了配合副 的润滑条件使零件的磨损较稳定工况大大加剧。
1)干摩擦:摩擦表面间无任何润滑介质隔开时的摩擦称为 干摩擦。
2)液体摩擦:两摩擦表面被润滑油完全隔开时的摩擦称为 液体摩擦。

3)边界摩擦:两摩擦表面被一层极薄润滑油膜隔开时的摩 称为边界摩擦。
4)混合摩擦:两摩擦表面间干摩擦、液体摩擦和边界摩擦 混合存在时的摩擦称为混合摩擦。 2.汽车零件的磨损 (1)概念:零件摩擦表面的金属在相对运动过程中不断损 失的现象称为零件的磨损。磨损的发生将造成零件形状尺寸及表 面性质的变化,使零件的工作性能逐渐降低,但磨损有时也是有 益的,如:磨合

汽车维修工程第二章 汽车零部件损伤机理分析(动画4个)

汽车维修工程第二章  汽车零部件损伤机理分析(动画4个)

第五节 零件的腐蚀与气蚀
腐蚀是指金属受周围介质的作用而引起破坏的现象。 一、零件的腐蚀 零件腐蚀按其机理可分为化学腐蚀和电化学腐蚀。 电化学腐蚀:金属表面与周围介质发生电化学作用而 有电流产生的腐蚀。 二、零件的气蚀 1. 气蚀的含义 气蚀(亦称穴蚀)是当零件与液体接触并有相 对运动时,零件表面出现的一种破坏现象。
四、表面疲劳磨损 1. 定义及分类
两接触面作滚动或滚动滑动复合摩擦时,在循环接触应力的作用 下,使材料表面疲劳而产生物质损耗的现象叫作表面疲劳磨损。 分为非扩展性和扩展性两类。
2. 表面疲劳磨损的机理
表面疲劳磨损是疲劳和摩擦共同作用的结果,其失效过程可分为两个阶段: ⑴疲劳核心裂纹的形成; ⑵疲劳裂纹的发展直至材料微粒的脱落。 对表面疲劳磨损初始裂纹的形成,有下述几种理论: 最大剪应力理论 - 裂纹起源于次表层; 油楔理论 - 裂纹起源于摩擦表面;(滚动带滑动的接触) 硬化过渡层破坏理论-裂纹起源于硬化层与芯部过度区;
7. 疲劳裂纹的产生和发展阶段及断口的三个区域;
8. 理解气蚀产生的机理; 9. 掌握电子元件的损伤类型及其故障的特点。
第一节
摩擦学基础
一、固体表面性质及接触面积 宏观形状误差 1. 表面形貌 表面波纹度 表面粗超度 2. 金属表面物质
3. 表面接触面积
二、摩擦的定义和分类
表面形貌两个相互接触的物体在外力作用下发生相对运动或具有相对运动趋势 时在接触面间产生切向运动阻力,这种阻力叫摩擦阻力,而这种现象称之为摩擦。 摩擦的分类,如下表:
分类依据类型举例按摩擦副运动状态静摩擦动摩擦按摩擦副运动形式滑动摩擦活塞与活塞环在汽缸孔的往复运动滚动摩擦滚动轴承滚柱滚珠与内外圈滚道表面间的摩擦按摩擦副表面的润滑状况固体摩擦干摩擦汽车离合器制动器液体摩擦桶面活塞环与汽缸壁轴颈与轴瓦边界摩擦发动机活塞环与缸套上部配汽机构凸轮与挺杆齿轮传动副的齿面混合摩擦凸轮轴凸轮与气门挺杆表面间齿轮传动机构轮齿表面所发生的摩擦1

汽车零部件的失效理论

汽车零部件的失效理论

04
详细描述
提高材料的抗疲劳性能可 以增强材料抵抗疲劳裂纹 扩展的能力。优化设计可 以减少应力集中区域,降 低交变应力幅值。采用抗 疲劳制造工艺可以改善材 料内部组织结构,提高抗 疲劳性能。
腐蚀失效
• 总结词:腐蚀失效是指汽车零部件受到化学腐蚀或电化学腐蚀而失效的现象。 • 详细描述:腐蚀失效通常发生在与腐蚀介质接触的零部件上,如发动机气缸、排气管、燃油系统等。在腐蚀介
失效理论的研究方法包括实验研究、仿真分析和 理论建模等,这些方法可以相互补充,为汽车零 部件的失效分析提供更加全面和准确的信息。
通过研究汽车零部件的失效模式和机理,可以更 好地了解其性能和可靠性,从而优化设计、制造 和使用过程中的各种因素,提高零部件的可靠性 和寿命。
在实际应用中,失效理论的研究成果可以应用于 汽车零部件的设计、制造、使用和维护等各个环 节,提高汽车的安全性和可靠性。
05 汽车零部件失效的预防和 改进措施
材料选择与质量控制
总结词
材料选择与质量控制是预防汽车零部件失效的关键措施之一 。
详细描述
在材料选择方面,应优先选择具有高强度、耐腐蚀和耐磨性 能的材料,以确保零部件的可靠性和耐久性。同时,加强材 料质量控制,确保材料性能稳定,避免因材料缺陷导致的失 效问题。
总结词
提高使用和维护水平是预防汽车零部件 失效的重要措施之一。
VS
详细描述
通过提高驾驶员的驾驶技能和安全意识, 避免因操作不当导致的零部件损坏。同时 ,加强汽车维护保养,定期检查和更换易 损件,及时发现并解决潜在的失效问题, 延长汽车使用寿命。
06 案例分析
案例一:发动机活塞断裂失效分析
总结词
材料缺陷、热处理不当、机械疲劳

汽车零部件断裂失效分析简述(岑举

汽车零部件断裂失效分析简述(岑举
其中力学要素是断裂失效分析的第一要点。因为力学因素的变换、波 动、属性远比强度属性要活跃得多。例如占开裂问题绝大部分的疲劳 断裂(含脆性断裂)基本上是一个力学属性的表征;
结构和配合的特性、载荷的性质和幅值、大多的内在质量缺陷、工作 和运行的状态、应力状态等等,都属于力学分析的范畴。他们不仅决 定了是否开裂,还总体上决定了以什么形式或在什么部位开裂。
设计的使用应力(各种指标)和强度(各种指标)技术条件;
关注实际的使用应力(工况)及制造质量分布的偏移和变化; 两者分布曲线相交则产生失效。 目前的失效分析和认知程度、评价主要还是在定性的水平上。
技术条件 设计应力
制造质量 使用应力、工况
2.5 断裂分析要素
从可靠性理论中断裂的应力模型得知,应力和强度是断裂分析的两大 要素,两个要素中哪一个贡献较大?最为活跃?如何地感知和评价是 断裂分析中的一个焦点;
关于灰色系统
是对内部结构可以部分了解或可以综合运用逻辑推理的方法进行 分析的系统。
从人类实践的绝对性来看,人类可以穷尽对机电失效规律及其预 防的认识,但从对失效分析的个别实践和认识来看,又总是在有 限的空间内进行的。因此,对失效特点和规律的认识又往往是有 限的和相对的,这就决定了失效分析的研究和发展总是处于一 个灰色系统内。 (失效分析的持续性、阶段性、可认知性和无止境性) (失效分析的病理学研究方法和流行病学研究方法)
式等原因引发局部产生微动磨损现 象,导致疲劳开裂。这类问题在轴 孔配合结构中最多体现。
疲劳断裂
案例20、某连杆销孔疲劳开裂 在挤压载荷作用下的疲劳开裂; 表现出了对油孔边缘处应力集中
的敏感性。
疲劳断裂
案例22、剪切应力疲劳开裂
半轴、钢板弹簧等零件,产生在高强韧性的零件中; 属于应变疲劳的性质,也称为高应力低周疲劳; 扭转的应力状态更有部件及断裂失效特性

汽车零部件质量问题事例

汽车零部件质量问题事例

汽车零部件质量问题事例汽车零部件是汽车制造中不可或缺的重要组成部分,其质量直接关系到汽车的安全性、性能以及寿命。

然而,在现实生产过程中,汽车零部件质量问题时有发生。

本文通过介绍一些具体事例,分析汽车零部件质量问题的原因、影响以及解决方法,旨在引起对汽车零部件质量的重视,并为相关领域的从业人员提供参考和借鉴。

一、发动机故障引发的事故发动机作为汽车的核心部件之一,其质量问题一旦发生将给驾驶员和车辆带来巨大的安全风险。

例如,某品牌某型号汽车在市场上销售不久后,多起由发动机故障引发的车辆自燃事故开始频繁出现。

经调查发现,这一问题是由于该车型的发动机设计存在缺陷,导致部分发动机存在过度加热的情况,最终引发发动机故障。

由于该款车型销量较大,在问题暴露后,广大车主的安全问题引发了公众广泛关注,厂家不得不召回相关车辆进行更换和升级。

二、制动系统故障导致的事故制动系统是汽车中关键的安全系统之一,其质量问题将直接影响车辆的制动性能和驾驶员的操控安全。

例如,某车型在市场上备受好评,但后续出现多起由制动系统故障引发的事故。

经过调查,该车型的制动系统在设计和生产过程中存在缺陷,导致部分车辆的制动效果不稳定或失效,进而引发一系列交通事故。

该问题的曝光引起了公众的关注,并给厂家造成了不可忽视的声誉损失。

厂家不得不迅速处理该问题,召回相关车辆进行改进和维修,同时加强质量控制,以避免类似问题再次发生。

三、安全气囊故障引发的伤害安全气囊作为汽车被动安全系统的重要部分,一旦发生故障将无法发挥其应有的保护作用。

例如,某品牌某款车型出现了多起安全气囊故障导致的严重伤害事故。

经过调查,该车型的安全气囊制造商在生产过程中存在质量控制问题,导致部分车辆的安全气囊无法正常展开或存在误动作,进而造成车辆碰撞时驾驶员和乘客的安全受到威胁。

该问题的暴露引起了社会的关注和媒体的曝光,厂家不得不采取紧急措施召回相关车辆并进行维修、更换。

以上事例说明,汽车零部件质量问题严重影响着汽车的安全性和可靠性,甚至会导致严重的事故和人员伤亡。

设计失效分析DFMEA经典案例剖析

设计失效分析DFMEA经典案例剖析
抢占市场份额
优质的产品是企业赢得市场 份额的关键因素之一。通过 DFMEA分析优化产品设计, 可以提高产品的竞争力,帮
助企业抢占市场份额。
增加企业收益
提高产品质量、降低生产成 本和增强市场竞争力都可以 为企业带来更多的收益。
07
总结与展望
DFMEA应用现状及挑战
01
应用现状
02 广泛应用于产品设计阶段,以预防潜在的设计缺 陷。
根据风险等级划分结果,优先处 理高风险失效模式,制定相应的 改进措施。
02
改进措施实施与验 证
实施改进措施后,对产品进行重 新评估,确保改进措施的有效性。
03Βιβλιοθήκη 持续改进在产品生命周期中持续进行 DFMEA分析,不断优化产品设 计,提高产品质量和可靠性。
03
经典案例一:汽车零部件设计 失效分析
案例背景介绍
改进措施实施及效果验证
改进措施
针对识别出的失效模式和原因,采取了相应的改进措施,如优化散热设计、改进电源管理模块、修复软件编码错误和 内存泄漏等。
效果验证
在实施改进措施后,对设备进行了重新测试和验证。结果显示,电池温度明显降低,屏幕闪烁问题得到解决,应用程 序运行稳定且不再崩溃。
经验教训
该案例表明,在设计阶段充分考虑潜在失效模式和影响至关重要。通过DFMEA等方法进行预防性分析, 可以及早发现并解决潜在问题,提高产品的可靠性和安全性。同时,持续改进和优化设计也是提升产品 质量和用户满意度的关键所在。
探测度评估
评估现有控制措施在多大程度上能够探测到失效模式的发生。
风险优先数计算
计算风险优先数(RPN)
将严重度、频度、探测度的评估结果相乘,得到每种失效模式的风险优先数。

汽车制动主缸原理及失效案例分析

汽车制动主缸原理及失效案例分析

汽车制动主缸原理及失效案例分析汽车制动主缸是制动系统管路中重要零部件之一,作用是将自外界输入的机械能转换成液压能,从而液压能通过管路再输给制动轮缸。

制动主缸主要分为三类:补偿孔式、中心阀式和柱塞式。

制动主缸功能失效将会导致整个制动系统失去作用,从而造成汽车制动力减弱或丧失。

标签:压力;制动主缸;侧向力;密封作用1 制动主缸的工作原理帕斯卡定律:定义:根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。

这就是说,在密闭容器内,施加于静止液体上的压强将以等值同时传到各点。

这就是帕斯卡原理,或称静压传递原理。

制动主缸利用帕斯卡原理将真空助力器的输出力转化为液压输出到制动管路;将机械力转化为液压力过程。

2 制动主缸的类型特点2.1 补偿孔式主缸,不能承受高的压力冲击,因为它的第一密封圈位于扩张孔的后面,高的压力冲击会使密封圈脱落,同样,它的制动液流动能力也非常有限。

2.2 中心阀式主缸,结构较复杂,能满足ABS和ESP的要求,是这些年的主流。

2.3 柱塞式主缸,结构作了很大的改进,总长度缩短(节省空间),全行程更大,皮碗改为固定在缸体槽内,不再随活塞一起运动,缸体内部结构较复杂,加工难度偏大,能同时满足ABS和ESP的要求,耐久性提高,事故安全性更高。

3 常见失效案例分析3.1 柱塞式制动主缸3.1.1 失效模式失效现象为制动力减弱,制动液报警灯点亮,检查发现储液壶制动液不足。

确认制动主缸发现活塞偏磨、密封圈磨损导致配合不严泄漏。

3.1.2 失效机理助力器回位弹簧在安装后存在一定的初始压缩量,此状态下弹簧侧向力较大,一般在24N以上。

(如图1)助力器弹簧侧向力Fv导致初始状态时助力器输出推杆发生偏斜,偏斜的推杆与主缸活塞接触不同轴,在制动时输出推杆轴向力产生部分侧向分力,推杆轴向力Fa越大产生的侧向分力越大,从而产生的偏转力矩Mh越大,造成主缸活塞运动不同心与内壁发生严重摩擦,最终导致活塞、皮碗磨损。

2-2汽车零部件的磨损失效、疲劳断裂失效、腐蚀失效、变形失效 - 副本

2-2汽车零部件的磨损失效、疲劳断裂失效、腐蚀失效、变形失效 - 副本
电化学腐蚀失效机理 金属表面与介质之间的电化学作而引起的 。
在导电溶液里,充当阳极的金属不断被腐蚀,金属不断遭到腐蚀的 同时还有电流产生。
如:Fe - 2e → Fe2+ 2H + 2e → H2 ↑
阳极反应 阴极反应
其他腐蚀失效机理
异类电极电池 析氢腐蚀
浓差腐蚀电池 燃气腐蚀
微电池
第四节 汽车零件的腐蚀失效
高强度材料的疲劳扩展区小,而
瞬时断裂区大,塑性材料则相反
第三节 汽车零件的疲劳断裂失效
疲劳扩展区与瞬时断裂区所占面积的大小与材料 性质及所受应力水平有关。
疲劳断裂因载荷类型不同,其断口形态也不一样。 载荷的类型、应力集中和名义应力的大小对疲劳断口 宏观形态的影响如下表。
第三节 汽车零件的疲劳断裂失效
载荷类型
各种类型疲劳断口宏观特征
低名义应力
小应力集中.
大应力集中
高名义应力
小应力集中.
大应力集中
拉伸或单向弯曲
双向弯曲
旋转弯曲
第三节 汽车零件的疲劳断裂失效
4.提高汽车零件抗疲劳断裂的方法
延缓疲劳裂纹萌生时间 降低疲劳裂纹扩展的速率 提高疲劳裂纹门槛值△k长度
强化表面 控制不均匀滑移
细化材料晶粒 避免应力集中
热处理
提高纯洁度 夹杂物尺寸小
止裂孔法
表面完整性
扩孔清除法
刮磨修理法
疲劳裂纹不扩展(稳定)的最高应 力强度因子幅
第四节 汽车零件的腐蚀失效
1.腐蚀失效的类型及特点
定义: 零件受周围介质作用而引起的损坏 。
按金属与介质的作用性质
按腐蚀破坏形式
第四节 汽车零件的腐蚀失效
化学腐蚀:金属表面与介质发生化学作用引起,特点是 腐蚀过程中无电流的产生。

汽车零部件失效理论

汽车零部件失效理论

汽车零部件失效理论汽车是高度复杂的机械设备,由数百个零部件构成。

在车辆运行及使用过程中,由于各种原因,这些零部件可能会出现失效现象。

汽车零部件失效的原因有很多种,包括材料老化、磨损、疲劳、设计缺陷、生产工艺问题等。

本文将讨论汽车零部件失效的理论问题。

失效模式在研究汽车零部件失效理论之前,我们需要了解失效模式的概念。

失效模式是指零部件在服务中出现失效的方式和形式。

根据失效模式的不同,我们可以将零部件失效分为以下几种类型:突然失效突然失效是指零部件在使用中突然发生完全失效的现象。

比如,轮胎爆胎、驱动皮带断裂等。

逐渐失效逐渐失效是指零部件在使用中由于经过一段时间的磨损而逐渐失去功能的现象。

比如,制动片由于摩擦而磨损,最终失去制动效果。

稳定失效稳定失效是指零部件在使用中逐渐失效,但失效的速度相对较慢,最终达到一定的稳定状态。

比如,发动机气门和活塞环的磨损。

失效机理汽车零部件失效的机理是非常复杂的,但总体上可以分为以下几种:材料老化材料老化是指材料在使用过程中发生的不可逆变化,从而导致零部件性能下降或失效。

例如,汽车轮胎经过一段时间的使用后,橡胶会老化,导致轮胎爆胎的风险增加。

疲劳疲劳是指零部件长期反复受到应力作用后出现的失效现象。

比如,汽车发动机的曲轴经过长期的高速旋转,可能会出现疲劳裂纹,导致曲轴折断。

磨损磨损是指零部件在运行中逐渐消耗的现象。

比如,制动片在制动过程中与制动盘之间的摩擦会导致制动片表面的摩擦材料磨损。

腐蚀腐蚀是指零部件在潮湿、酸性或浓度过高的环境中受到腐蚀作用而失效的现象。

例如,汽车排气管在受到雨水和路面盐水的侵蚀后容易产生腐蚀。

设计缺陷设计缺陷是指零部件在设计阶段出现的缺陷,导致零部件失效的现象。

通常设计缺陷需要通过召回或改进来进行处理,以免造成安全事故。

失效预测为了降低汽车零部件失效带来的损失,我们需要对零部件失效进行预测和防范。

失效预测是通过分析零部件失效的机理、特点和条件,来预测零部件的失效时间和方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五.微动磨损及其失效机理
概念: 两接触表面间没有宏观相对运动,但在外 界变动负荷影响下,有小振幅的相对振动(一般小 于100微米),此时接触表面间产生大量的微小氧 化物磨损粉末,因此造成的磨损称为微动磨损。
过程
微动磨损是一种复合形式的磨损。包括: ➢ 粘着磨损 ➢ 氧化磨损 ➢ 磨料磨损
影响因素 防治措施
屑时,可将零件材料在仿效运行工况下进行模拟 试验,以验证初步判断
5. 在完成各项检验后,将所得原始数据和试验结果 汇总进行综合分析研究,然后从设计、选材、材 质、加工工艺、装配运行操作、维护及环境介质 等因素中找出失效零件的主要原因并提出改进意 见
四.失效分析举例
Байду номын сангаас内燃机摇臂杆断裂失效。
END
思考题
1. 气缸-活塞环的磨损规律是什么? 为什么?
2. 零件磨损量如何测定?
参考答案
1. 气缸-活塞环的磨损规律是什么?为什么? 规律:高度方向,上大下小;圆周方向不规则 影响因素:磨料、工作气体压力、润滑和腐蚀 物质。
2. 零件磨损量如何测定? 直接测量法:表面测量法、称重法、刻痕法和
快速磨损法; 间接测量法:光谱分析法和同位素法。
四.提高汽车零件抗疲劳断裂的方法
➢ 延续疲劳裂纹萌生时间 ➢ 降低疲劳裂纹扩展的速率
➢ 提高疲劳裂纹门槛值△km长度
思考题
1. 疲劳断裂与磨损的区别
损伤形式 比较因素
损坏形式
疲劳磨损
受力情况
表面变形
初始裂纹
疲劳断裂
第四节 汽车零部件腐蚀失效及其机 理
零件受周围介质作用而引起的损坏称为零件的 腐蚀。按腐蚀机理可分为化学腐蚀和电化学腐蚀, 汽车上约20%的零件因腐蚀而失效。
一. 化学腐蚀失效机理
金属零件与介质直接发生化学作用面引起 的损伤称为化学腐蚀。
二. 电化学腐蚀失效机理
电化学腐蚀是两个不同的金属在一个导电溶 液中形成一对电极,产生电化学反应而发生腐蚀 的作用,使充当阳极的金属被腐蚀。
三. 汽车零件的老化
橡胶、塑科制品和电子元件等汽车用零件, 随着时间的增长,原有的性能会逐渐衰退称为老 化现象。
故障(失效)树分析法 特征因素图分析法 摩擦学系统失效分析法
二.金属的断裂断口分析技术
➢ 一次加载断裂断口 延性断裂断口 脆性断裂断口 混合断口
➢ 宏观断裂断口分析程序 ➢ 微观断口分析
三.失效分析的步骤
1. 收集原始资料 2. 收集失效零件的残骸 3. 确定和分析失效模式 4. 对一些重要零件或在一些工况下不可能回收磨
第二节 汽车零部件磨损失效模式 与失效机理
一.磨料磨损及其失效机理
概念:物体表面与硬质颗粒或硬质凸出物(包括硬 金属)相互摩擦引起表面材料损失的现象称为磨料磨 损。
磨料磨损的四种假说: 以微量切削为主的假说 以疲劳破坏为主的假说 以压痕为主的假说 将断裂作为主要作用的假说
影响因素 防治措施
与可靠性分析比较,有何不同?
第一节 汽车零部件失效的概念及分 类
一.失效的概念
汽车零部件失去原设计所规定的功能称为失 效。
失效不仅是指完全丧失原定功能,而且还包 含功能降低和有严重损伤或隐患、继续使用 会失去可靠性及安全性的零部件。
二、失效的基本类型
三.零件失效的基本原因
工作条件 设计制造 使用与维修
跟进思考!
3. 哪一种零件磨损量测定方法适合于发动机车载 检测?
第三节 汽车零部件疲劳断裂失效 及其机理
零件在交变应力作用下,经过较长时间工作而 发生的断裂现象称为疲劳断裂。疲劳断裂是汽车零 部件中常见的失效方式之一,也是危害性最大的一 种失效方式。
一.疲劳断裂失效的分类
二.疲劳断裂失效机理
汽车零部件的失效机 理及其分析
主要内容: 一. 汽车零部件失效的概念及分类 二. 汽车零部件磨损失效模式 三. 汽车零部件疲劳断裂失效及其机理 四. 汽车零部件腐蚀失效及其机理 五. 汽车零部件变形失效机理 六. 汽车零部件失效分析方法
导言
汽车零部件失效分析,是研究汽车零部件 丧失其规定功能的原因。特征和规律;研 究其失效分析技术和预防技术,其目的在 十分析零部件失效的原因;提出改进和预 防措施,从而提高汽车可靠性和使用寿命。
第五节 汽车零部件变形失效机理
零件在使用过程中,由于承载或内部应力的作 用,使零件的尺寸和形状改变的现象称为零件的变形。
零件变形失效的类型有: ➢ 弹性变形失效 ➢ 塑性变形失效 ➢ 蛹变失效
第六节 汽车零部件失效分析方法
一.失效分析的基本思路
➢ 按分析检验项目进行失效分析 ➢ 按失效模式进行分析 ➢ 系统工程分析方法
金属零件疲劳断裂实质上是一个累积损伤过程。大 体上可划分为滑移、裂纹成核、微观裂纹扩展、宏 观裂纹扩展、最终断裂几个过程。 金属零件疲劳断裂实质上是一个累积损伤过程。 ➢ 疲劳裂纹的萌生 ➢ 疲劳裂纹的扩展
三.疲劳断口宏现形貌特征
典型宏观疲劳断口分为三个区域: ➢ 疲劳源区 ➢ 疲劳裂纹扩展区 ➢ 瞬时断裂区
二.粘着磨损及其失效机理
概念: 摩擦副相对运动时,由于固相焊合作用的结 果,造成接触面金属损耗的现象称为粘着磨损。
机理 影响因素 防治措施
三.表面疲劳磨损及其失效机理
概念: 两接触表面在交变接触压应力的作用下, 材料表面因疲劳而产生物质损失的现象称为表面 疲劳磨损。
表面疲劳磨损失效过程可分为两个阶段: 疲劳核心裂纹的形成; 疲劳裂纹的发展直至材料微粒的脱落。
3种理论 ➢ 最大剪应力理论--裂纹起源于次表层 ➢ 油楔理论--裂纹起源于摩擦表面 ➢ 裂纹起源于硬化层与芯部过渡区
影响因素 防治措施
四.腐蚀磨损及其失效机理
概念: 零件表面在摩擦过程中,表面金屑与周围 介质发生化学或电化学反应,因而出现物质损失 的现象称为腐蚀磨损。
腐蚀磨损通常分为: ➢ 氧化磨损 ➢ 特殊介质的腐蚀磨损 ➢ 气蚀(穴蚀) ➢ 氢致磨损
相关文档
最新文档