高三数学三角函数经典练习题及答案精析
高中三角函数习题解析精选(含详细解答)

三角函数题解1.(2003上海春,15)把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( )A.(1-y )sin x +2y -3=0B.(y -1)sin x +2y -3=0C.(y +1)sin x +2y +1=0D.-(y +1)sin x +2y +1=0 2.(2002春北京、安徽,5)若角α满足条件sin2α<0,cos α-sin α<0,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(2002上海春,14)在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形4.(2002京皖春文,9)函数y =2sin x 的单调增区间是( ) A.[2k π-2π,2k π+2π](k ∈Z )B.[2k π+2π,2k π+23π](k ∈Z )C.[2k π-π,2k π](k ∈Z )D.[2k π,2k π+π](k ∈Z )5.(2002全国文5,理4)在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ) A.(4π,2π)∪(π,45π)B.(4π,π)C.(4π,45π)D.(4π,π)∪(45π,23π)6.(2002北京,11)已知f (x )是定义在(0,3)上的函数,f (x )的图象如图4—1所示,那么不等式f (x )cos x <0的解集是( )A.(0,1)∪(2,3)B.(1,2π)∪(2π,3)图4—1C.(0,1)∪(2π,3)D.(0,1)∪(1,3)7.(2002北京理,3)下列四个函数中,以π为最小正周期,且在区间(2π,π)上为减函数的是( )A.y =cos 2xB.y =2|sin x |C.y =(31)cos xD.y =-cot x8.(2002上海,15)函数y =x +sin|x |,x ∈[-π,π]的大致图象是( )9.(2001春季北京、安徽,8)若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )A.第一象限B.第二象限C.第三象限D.第四象限10.(2001全国文,1)tan300°+cot405°的值是( ) A.1+3B.1-3C.-1-3D.-1+311.(2000全国,4)已知sin α>sin β,那么下列命题成立的是( ) A.若α、β是第一象限角,则cos α>cos β B.若α、β是第二象限角,则tan α>tan β C.若α、β是第三象限角,则cos α>cos β D.若α、β是第四象限角,则tan α>tan β12.(2000全国,5)函数y =-x cos x 的部分图象是( )13.(1999全国,4)函数f (x )=M sin (ωx +ϕ)(ω>0),在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos (ωx +ϕ)在[a ,b ]上( )A.是增函数B.是减函数C.可以取得最大值-D.可以取得最小值-m14.(1999全国,11)若sin α>tan α>cot α(-2π<α<2π),则α∈( ) A.(-2π,-4π) B.(-4π,0)C.(0,4π) D.(4π,2π)15.(1999全国文、理,5)若f (x )sin x 是周期为π的奇函数,则f (x )可以是( ) A.sin x B.cos x C.sin2x D.cos2x16.(1998全国,6)已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内α的取值范围是( )A.(2π,43π)∪(π,45π) B.(4π,2π)∪(π,45π) C.(2π,43π)∪(45π,23π) D.(4π,2π)∪(43π,π) 17.(1997全国,3)函数y =tan (3121-x π)在一个周期内的图象是( )18.(1996全国)若sin 2x >cos 2x ,则x 的取值范围是( ) A.{x |2k π-43π<x <2k π+4π,k ∈Z }B.{x |2k π+4π<x <2k π+45π,k ∈Z }C.{x |k π-4π<x <k π+4π,k ∈Z }D.{x |k π+4π<x <k π+43π,k ∈Z }19.(1995全国文,7)使sin x ≤cos x 成立的x 的一个变化区间是( ) A.[-43π,4π] B.[-2π,2π]C.[-4π,43π] D.[0,π]20.(1995全国,3)函数y =4sin (3x +4π)+3cos (3x +4π)的最小正周期是( )A.6πB.2πC.32πD.3π21.(1995全国,9)已知θ是第三象限角,若sin 4θ+cos 4θ=95,那么sin2θ等于( ) A.322 B.-322 C.32D.-32 22.(1994全国文,14)如果函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,那么a等于( )A.2B.-2C.1D.-123.(1994全国,4)设θ是第二象限角,则必有( ) A.tan2θ>cot 2θ B.tan2θ<cot 2θC.sin2θ>cos 2θD.sin2θ-cos 2θ 24.(2002上海春,9)若f (x )=2sin ωx (0<ω<1)在区间[0,3π]上的最大值是2,则ω= .25.(2002北京文,13)sin 52π,cos 56π,tan 57π从小到大的顺序是 .26.(1997全国,18)︒︒-︒︒︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值为_____.27.(1996全国,18)tan20°+tan40°+3tan20°·tan40°的值是_____.28.(1995全国理,18)函数y =sin (x -6π)cos x 的最小值是 .29.(1995上海,17)函数y =sin 2x +cos 2x在(-2π,2π)内的递增区间是 .30.(1994全国,18)已知sin θ+cos θ=51,θ∈(0,π),则cot θ的值是 .31.(2000全国理,17)已知函数y =21cos 2x +23sin x cos x +1,x ∈R .(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图象可由y =sin x (x ∈R )的图象经过怎样的平移和伸缩变换得到?32.(2000全国文,17)已知函数y =3sin x +cos x ,x ∈R .(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图象可由y =sin x (x ∈R )的图象经过怎样的平移和伸缩变换得到?33.(1995全国理,22)求sin 220°+cos 250°+sin20°cos50°的值.34.(1994上海,21)已知sin α=53,α∈(2π,π),tan (π-β)=21,求tan (α-2β)的值.35.(1994全国理,22)已知函数f (x )=tan x ,x ∈(0,2π),若x 1、x 2∈(0,2π),且x 1≠x 2,证明21[f (x 1)+f (x 2)]>f (221x x +).36.已知函数12()log (sin cos )f x x x =-⑴求它的定义域和值域; ⑵求它的单调区间; ⑶判断它的奇偶性; ⑷判断它的周期性.37. 求函数f (x )=121log cos()34x π+的单调递增区间38. 已知f (x )=5sin x cos x -35cos 2x +325(x ∈R ) ⑴求f (x )的最小正周期; ⑵求f (x )单调区间;⑶求f (x )图象的对称轴,对称中心。
高三数学三角函数的图象与性质试题答案及解析

高三数学三角函数的图象与性质试题答案及解析1.将函数f(x)=sinωx(其中ω>0)的图象向右平移个单位长度,所得图象关于对称,则ω的最小值是( )A.6B.C.D.【答案】D【解析】将f(x)=sinωx的图象向左平移个单位,所得图象关于x=,说明原图象关于x=-对称,于是f(-)=sin(-)=±1,故(k∈Z),ω=3k+(k∈Z),由于ω>0,故当k=0时取得最小值.选D考点:三角函数的图象与性质2.已知函数的最大值是2,且.(1)求的值;(2)已知锐角的三个内角分别为,,,若,求的值.【答案】(1);(2)【解析】(1)先由辅助角公式将化为一个的三角函数,利用最大值为2求出A,再利用列出关于的方程,解出的值;(2)由(1)可得的解析式,由可求得和,再由同角三角函数基本关系式求出,将2C代入将用C表示出来,利用三角形内角和定理及诱导公式,将化为A,B的函数,再利用两角和与差的三角公式,化为A,B的三角函数,即可求出.试题解析:(1)∵函数的最大值是2,,∴ 2分∵又∵,∴ 4分(2)由(1)可知 6分,∴ 8分∵∴, 10分∴12分考点: 辅助角公式;三角函数图像与性质;诱导公式;两角和与差的三角公式;运算求解能力3.函数的部分图象如图所示,则的值分别是()A.B.C.D.【答案】A【解析】由图知在时取到最大值,且最小正周期满足,故,,∴,∵,∴,∴,∴,∴.【考点】由三角函数图象确定函数解析式.4.设则A.B.C.D.【答案】C.【解析】故选C.【考点】1.三角函数基本关系式(商关系);2. 三角函数的单调性.5.设函数.(1)求函数f(x)的最大值和最小正周期。
(2)设A、B、C为⊿ABC的三个内角,若,,且C为锐角,求.【答案】(1);(2)【解析】(1)利用领个角的和的余弦公式、二倍角化简整理得,由可求得函数的最大值,根据求出函数的最小正周期;(2)将代入,再利用倍角公式求得,从而得到角,由,根据,求得,由结合诱导公式、两个角的和的正弦公式求出结论.(1).∴当,即(k∈Z)时,,(4分)f(x)的最小正周期,故函数f(x)的最大值为,最小正周期为π.(6分)(2)由,即,解得.又C为锐角,∴.(8分)∵,∴.∴.(12分)【考点】三角函数的和差公式、二倍角公式.6.(12分)(2011•广东)已知函数f(x)=2sin(x﹣),x∈R.(1)求f(0)的值;(2)设α,β∈,f(3)=,f(3β+)=.求sin(α+β)的值.【答案】(1)﹣1(2)【解析】(1)把x=0代入函数解析式求解.(2)根据题意可分别求得sinα和sinβ的值,进而利用同角三角函数基本关系求得cosα和cosβ的值,最后利用正弦的两角和公式求得答案.解:(1)f(0)=2sin(﹣)=﹣1(2)f(3)=2sinα=,f(3β+)=2sinβ=.∴sinα=,sinβ=∵α,β∈,∴cosα==,cosβ==∴sin(α+β)=sinαcosβ+cosαsinβ=点评:本题主要考查了两角和与差的正弦函数.考查了对三角函数基础公式的熟练记忆.7.已知命题:函数是最小正周期为的周期函数,命题:函数在上单调递减,则下列命题为真命题的是()A.B.C.D.【答案】D【解析】函数的最小正周期为,故命题为真命题;结合正切函数图象可知,正切函数在区间上是增函数,因此函数在区间上是增函数,故命题为假命题,因此命题、、为假命题,为真命题,故选D.【考点】1.三角函数的基本性质;2.复合命题8.(2013•湖北)将函数的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.【答案】B【解析】y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选B9.已知函数,.(1)求函数的最小正周期;(2)若函数有零点,求实数的取值范围.【答案】(1);(2)实数的取值范围是.【解析】(1)求函数的最小正周期,需对函数化简,把它化为一个角的一个三角函数,利用来求,因此本题的关键是化简,由形式,需对三角函数降次,因此利用二倍角公式将函数化为,由,即可得,即可求出周期;(2)若函数有零点,即,有解,移项得,因此,方程有解,只要在函数的值域范围即可,因此只需求出即可.(1) 4分6分∴周期 7分(2)令,即, 8分则, 9分因为, 11分所以, 12分所以,若有零点,则实数的取值范围是. 13分【考点】三角恒等变化,三角函数的周期,值域.10.已知向量,设函数.(1)求f(x)的最小正周期;(2)求f(x)在[0,]上的最大值和最小值.【答案】(1)π(2)最大值是1,最小值是-【解析】(1)f(x)=a·b=(cosx,-)·(sinx,cos2x)=cosxsinx-cos2x=sin2x-cos2x=sin(2x-)f(x)的最小正周期为T=π,(2)∵0≤x≤,∴-≤2x-≤.由正弦函数的性质知,sin(2x-)∈[-,1]当2x-=,即x=时,f(x)取得最大值1.当2x-=-,即x=0时,f(0)=-,因此, f(x)在[0,]上的最大值是1,最小值是-.11.已知函数f(x)=(2cos2x-1)sin2x+cos4x(1)求f(x)的最小正周期及最大值。
(完整版)高考三角函数经典解答题及答案

1在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b=2,求△ABC 面积的最大值. 解:(1) 由余弦定理:conB=14sin22A B ++cos2B= -14(2)由.415sin ,41cos ==B B 得 ∵b=2, a2+c 2=12ac+4≥2ac,得ac ≤38,S △ABC =12acsinB ≤315(a=c 时取等号)故S △ABC 的最大值为3152在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cosB 的值;(II )若2=⋅BC BA ,且22=b ,求c a 和b 的值.解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,,0sin .cos sin 3sin ,cos sin 3)sin(,cos sin 3cos sin cos sin ,cos sin cos sin 3cos sin ,cos sin 2cos sin 6cos sin 2≠==+=+-=-=A B A A B A C B B A B C C B B C B A C B B C R B A R C B R 又可得即可得故则因此.31cos =B(II )解:由2cos ,2==⋅B a 可得,,,0)(,12,cos 2,6,31cos 222222c a c a c a B ac c a b ac B ==-=+-+===即所以可得由故又 所以a =c = 63已知向量m =()B B cos 1,sin -, 向量n = (2,0),且m 与n 所成角为π3,其中A 、B 、C 是ABC ∆的内角。
(1)求角B 的大小;(2)求 C A sin sin +的取值范围。
三角函数高三计算题解析

三角函数高三计算题解析一、单选题1.(2024·湖北·二模)若ππcos ,,tan 223sin αααα⎛⎫∈-= ⎪-⎝⎭,则πsin 23α⎛⎫-= ⎪⎝⎭()A .718-B .718-C .18-D .182.(23-24高三下·重庆·阶段练习)若,π2α⎛⎫∈ ⎪⎝⎭,且cos 13αα=,则sin 212α⎛⎫- ⎪⎝⎭的值为()A B .338C .D .3.(2024·全国·模拟预测)已知角θ的顶点为坐标原点,始边与x轴的正半轴重合,点2023π2023πsin,cos46P⎛⎫⎪⎝⎭在角θ的终边上,则sin21cos2θθ=+()AB.C D.4.(2024·陕西咸阳·二模)当函数3sin4cosy x x=+取得最小值时,sin6x⎛⎫+=⎪⎝⎭()A.4+-B.310+-C.310+D.410+5.(2024·安徽·模拟预测)已知()tan 4αβ-=,()()sin 3cos αβαβ-=+,则tan tan αβ-=()A .12B .35C .65D .536.(2024·山东泰安·一模)若2πcos 24sin 22αα⎛⎫+-=- ⎪⎝⎭,则tan2α=()A .2-B .12-C .2D .127.(2024·贵州毕节·模拟预测)已知sin 125α⎛⎫+= ⎪⎝⎭,0,2α⎛⎫∈ ⎪⎝⎭,则cos 3α⎛⎫+= ⎪⎝⎭()A .10-B .5-C .4D .34-8.(2024·福建泉州·模拟预测)若0,2α⎛⎫∈ ⎪⎝⎭,3sin 2cos 2sin cos 20αααα+=,则tan α=()A .4B .2C .12D .149.(2024·河北·模拟预测)已知1tan 22θ=-,则3cos sin cos θθθ=+()A .925-B .925C .2725-D .272510.(2024·江苏盐城·模拟预测)在ABC 中,已知tan tan tan tan 1A B A B ++=,则cos 2sin C C +的值为()A .2B .2C D .11.(2024·辽宁·一模)已知,αβ满足πππ2π,44αβ≤≤-≤≤,且553π32cos 5,962sin252ααββ⎛⎫-+=+=- ⎪⎝⎭,则24πsin 994αβ⎛⎫+-=⎪⎝⎭()A B C D12.(23-24高三下·内蒙古锡林郭勒盟·开学考试)若cos 20501)a -=,则=a ()A .12B .1C .32D .213.(23-24高三下·江苏扬州·阶段练习)已知()cos(),cos 35αβαβ+=-=,则2log (tan tan )αβ-=()A .12B .12-C .2D .2-【答案】D根据余弦的和差角公式求得tan tan αβ,再求结果即可.【详解】因为()11cos(),cos35αβαβ+=-=,14.(2024高三·全国·专题练习)已知sin 1523α︒⎛⎫-= ⎪⎝⎭,则()cos 30α︒-=()A .13B .13-C .23D .23-【答案】A 【详解】因为sin (15°-)=,所以cos (30°-α)=cos 2(15°-)=1-2sin2(15°-)=1-2×=.15.(2024·吉林白山·二模)若πcos 43πcos 4αα⎛⎫+ ⎪⎝⎭=⎛⎫- ⎪⎝⎭,则πtan 24α⎛⎫-= ⎪⎝⎭()A .7-B .7C .17-D .17【详解】因为πcos cos sin 1tan 43πcos sin 1tan cos 4αααααααα⎛⎫+ ⎪--⎝⎭===++⎛⎫- ⎪⎝⎭,故1tan 2α=-,则22122tan 42tan21tan 3112ααα⎛⎫⨯- ⎪⎝⎭===--⎛⎫-- ⎪⎝⎭,故4π1tan2tanπ34tan 27π441tan2tan 143ααα---⎛⎫-== ⎪⎝⎭+⋅-.故选:B.16.(23-24高三下·江西·开学考试)已知α为锐角,且πtan tan 14αα⎛⎫++= ⎪⎝⎭,则sin 21cos 2αα+=()A .12B .3-C .2-D .13【答案】C 【分析】根据已知条件结合两角和的正切公式可得出关于tan α的方程,由已知可得出tan 0α>,可得出关于tan α的方程,求出tan α的值,利用二倍角的正弦和余弦公式可求得所求代数式的值.【详解】因为α为锐角,则tan 0α>,则πtantan π4tan tan tan π41tan tan 4ααααα+⎛⎫++=+⎪⎝⎭-1tan tan 11tan ααα+=+=-,整理可得2tan 3tan 0αα-=,解得tan 3α=,所以,()()()22222cos sin sin 21cos 2sin cos sin cos 2cos sin cos sin cos sin αααααααααααααα++++==--+cos sin 1tan 132cos sin 1tan 13αααααα+++====----.故选:C.17.(2023·全国·高考真题)已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A .79B .19C .19-D .79-18.(2021·全国·高考真题)若tan 2θ=-,则sin 1sin 2sin cos θθ+=+()A .65-B .25-C .25D .6519.(2021·全国·高考真题)若0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A .15B C D20.(1995·全国·高考真题)已知θ是第三象限的角,且44sin cos 9+=θθ,那么sin 2θ的值为A B .C .23D .23-。
高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析1.在中,已知,若分别是角所对的边,则的最大值为.【答案】【解析】由正余弦定理得:,化简得因此即最大值为.【考点】正余弦定理,基本不等式2. sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【答案】A【解析】sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选A.3.三角形ABC是锐角三角形,若角θ终边上一点P的坐标为(sin A-cos B,cos A-sin C),则的值是( )A.1B.-1C.3D.4【答案】B【解析】因为三角形ABC是锐角三角形,所以A+B>90°,即A>90°-B,则sin A>sin(90°-B)=cos B,sin A-cos B>0,同理cos A-sin C<0,所以点P在第四象限,=-1+1-1=-1,故选B.4.已知函数则=【答案】【解析】因为函数由需要求的x都是整数,所以当x为奇数时的解析式为,当x为偶数时的解析式为.所以.所以.【考点】1.分段函数的性质.2.归纳推理的思想.3.三角函数的运算.4.等差数列的求和公式.5.若方程有实根,则实数的取值范围为【答案】【解析】由方程得,,即,因为,所以,若方程有实根,则,解得.【考点】方程的根.6.设,将函数在区间内的全部极值点按从小到大的顺序排成数列.(1)求数列的通项公式;(2)设,数列的前项和为,求.【答案】(1);(2).【解析】(1)先根据三角函数的恒等变换化简,得,再根据三角函数的性质找到极值点,利用等差数列的性质写出数列的通项公式;(2)先根据(1)中的结果写出的通项公式,然后写出的解析式,在构造出,利用错位相减法求,计算量比较大,要细心.试题解析:(1),其极值点为, 2分它在内的全部极值点构成以为首项,为公差的等差数列, 4分所以; 6分(2), 8分所以,,相减,得,所以. 12分【考点】1、三角函数的恒等变换及化简;2、三角函数的性质的应用;3、等差数列的通项公式;4、错位相减法求数列的前项和;5、等比数列的前项和.7.已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.(1)求函数的解析式及其对称轴;(2)若,求的值.【答案】(1),;(2).【解析】本题主要考查两角和与差的正弦公式、二倍角的余弦公式、诱导公式、三角函数的最小正周期、单调性等基础知识,考查运算能力.第一问,利用倍角公式化简表达式,先利用周期求出,再求最值,通过解方程求出,确定了解析式后求正弦函数的对称轴;第二问,通过角之间的关系转化角,考查诱导公式和倍角公式.试题解析:(1),由题意知:的周期为,由,知 2分由最大值为2,故,又, 4分∴ 5分令,解得的对称轴为 7分(2)由知,即, 8分∴ 10分12分【考点】1.倍角公式;2.两角和与差的三角函数;3.函数的周期;4.函数的对称轴.8.是偶函数,,则 .【答案】【解析】,,所以,因为为偶函数,所以对任意的,都有即成立,又,所以.【考点】三角函数的恒等变换,偶函数.9.已知方程在上有两个不同的解、,则下列结论正确的是()A.B.C.D.【答案】C【解析】由于方程在上有两个不同的解、,即方程在上有两个不同的解、,也就是说,直线与函数在轴右侧的图象有且仅有两个交点,由图象可知,当时,直线与曲线相切,且切点的横坐标为,当时,,则,故,在切点处有,即,,两边同时乘以得,,故选C.【考点】1.函数的零点;2.函数的图象;3.利用导数求切线的斜率10.将函数图像上各点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位,那么所得图像的一条对称轴方程为()A.B.C.D.【答案】B【解析】将函数的图像按题中要求变换后得到函数的图像,令,则,当时,.【考点】1.三角函数的变换;2.三角函数图象的对称轴.11.函数f(x)=sin+ACos(>0)的图像关于M(,0)对称,且在处函数有最小值,则的一个可能取值是( )A.0B.3C.6D.9【答案】D【解析】根据题意:相邻对称点与最小值之间可以相差也可以是不妨设为:=,可以为9,故选D.【考点】三角函数的最值;正弦函数的对称性.12.已知函数,(1)求的值;(2)若,且,求.【答案】(1);(2).【解析】(1)直接将代入计算即可;(2)用二倍角的正弦、余弦公式化简,再将正弦、余弦合为同一个的三角函数;根据已知条件,求出的值.试题解析:(1)(2)因为,且,所以,所以【考点】1、三角恒等变换;2、三角函数的基本运算.13.已知函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)讨论在区间上的单调性.【答案】(Ⅰ)(Ⅱ)当,即时,单调递增;当,即,单调递减.【解析】(1)由题意,所以由(1)知若,则当,即时,单调递增;当,即,单调递减.第(1)题根据三角函数的和差化简,二倍角公式以及辅助角公式,最后化成的形式,利用确定的值;第(2)题用整体法的思想确定的单调性,再反求出在指定范围内的单调性.本题属简单题.【考点】本题主要考查三角恒等变形、三角函数的图像及性质与三角函数图像的变换.考查逻辑推理和运算求解能力,中等难度.14.已知函数若方程有三个不同的实根,且从小到大依次成等比数列,则m的值为 .【答案】【解析】设三个根由小到大依次为,结合余弦函数图像可知关于直线对称,关于直线对称,代入计算得【考点】三角函数图像及性质点评:题目中主要结合三角函数图像的轴对称性找到三根之间的联系15.已知,则的值为()A.B.C.D.【答案】B【解析】因为,,即,,所以,=,故选B。
高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析1.设角的终边在第一象限,函数的定义域为,且,当时,有,则使等式成立的的集合为.【答案】【解析】令得:,令得:,由得:,又角的终边在第一象限,所以因而的集合为.【考点】抽象函数赋值法2. sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【答案】A【解析】sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选A.3.若点在函数的图象上,则的值为 .【答案】.【解析】由题意知,解得,所以.【考点】1.幂函数;2.三角函数求值4.已知函数则=【答案】【解析】因为函数由需要求的x都是整数,所以当x为奇数时的解析式为,当x为偶数时的解析式为.所以.所以.【考点】1.分段函数的性质.2.归纳推理的思想.3.三角函数的运算.4.等差数列的求和公式.5.已知向量,设函数.(1)求函数在上的单调递增区间;(2)在中,,,分别是角,,的对边,为锐角,若,,的面积为,求边的长.【答案】(1)函数在上的单调递增区间为,;(2)边的长为.【解析】(1)根据平面向量的数量积,应用和差倍半的三角函数公式,将化简为.通过研究的单调减区间得到函数在上的单调递增区间为,.(2)根据两角和的正弦公式,求得,利用三角形的面积,解得,结合,由余弦定理得从而得解.试题解析:(1)由题意得3分令,解得:,,,或所以函数在上的单调递增区间为, 6分(2)由得:化简得:又因为,解得: 9分由题意知:,解得,又,所以故所求边的长为. 12分【考点】平面向量的数量积,和差倍半的三角函数,三角函数的图像和性质,正弦定理、余弦定理的应用.6.函数的最小正周期为,若其图象向右平移个单位后关于y轴对称,则()A.B.C.D.【答案】B【解析】由题意可知:,得,函数关于对称,所以,,又因为,解得,故选B.【考点】的图像和性质7.已知函数的最小正周期为,将的图像向左平移个单位长度,所得图像关于轴对称,则的一个值是()A.B.C.D.【答案】D【解析】函数的最小正周期为,所以从而.将各选项代入验证可知选【考点】1、三角函数的周期;2、函数图象的变换8.若函数的一个对称中心是,则的最小值为()A.B.C.D.【答案】B【解析】由于正切函数的对称中心坐标为,且函数的一个对称中心是,所以,因此有,因为,所以当时,取最小值,故选B.【考点】三角函数的对称性9.在中,(1)求角B的大小;(2)求的取值范围.【答案】(1) ;(2) .【解析】(1)由正弦定理实现边角互化,再利用两角和与差的正余弦公式化简为,再求角的值;(2)二倍角公式降幂扩角,两角差余弦公式展开,同时注意隐含条件,即可化为一角一函数,再结合求其值域.求解时一定借助函数图象找其最低点与最高点的纵坐标.试题解析:(1)由已知得:,即∴∴ 5分(2)由(1)得:,故+又∴所以的取值范围是. 12分【考点】1.正余弦定理;2.三角函数值域;3.二倍角公式与两角和与差的正余弦公式.10.已知函数,(1)求的值;(2)若,且,求.【答案】(1);(2).【解析】(1)直接将代入计算即可;(2)用二倍角的正弦、余弦公式化简,再将正弦、余弦合为同一个的三角函数;根据已知条件,求出的值.试题解析:(1)(2)因为,且,所以,所以【考点】1、三角恒等变换;2、三角函数的基本运算.11.函数,,在上的部分图象如图所示,则的值为.【答案】【解析】根据题意,由于函数,,在上的部分图象可知周期为12,由此可知,A=5,将(5,0)代入可知,5sin(+)=0,可知=,故可知==,故答案为【考点】三角函数的解析式点评:主要是考查了三角函数的解析式的求解和运用,属于基础题。
(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。
解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。
由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。
2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。
(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。
解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。
又sinA≠0,因此 cosB=1/3。
3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。
(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。
解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。
高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析1.某广告公司设计一个凸八边形的商标,它的中间是一个正方形,外面是四个腰长为,顶角为的等腰三角形.(1)若角时,求该八边形的面积;(2)写出的取值范围,当取何值时该八边形的面积最大,并求出最大面积.【答案】(1);(2),当时,八边形的面积取最大值.【解析】(1)先利用结合余弦定理确定正方形的边长,然后将八边形分为一个正方形与四个等腰三角形求面积,最后将面积相加得到八边形的面积;(2)利用得到角的取值范围,利用正弦定理求出正方形的边长(利用含的代数式表示),然后利用面积公式求出八边形的面积关于的三角函数,结合降幂公式、辅助角公式将三角函数解析式进行化简,最后求出相应函数在区间的最大值.(1)由题可得正方形边长为,;(2)显然,所以,,,,故,,此时.【考点】1.三角形的面积;2.二倍角;3.辅助角公式;4.三角函数的最值2.“θ≠”是“cos θ≠”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】因为“cos θ=”是“θ=”的必要不充分条件,所以“θ≠”是“cos θ≠”的必要不充分条件,选B.3.已知函数,则一定在函数图象上的点是()A.B.C.D.【答案】C.【解析】根据的解析式,求出,判断函数的奇偶性,由函数的奇偶性去判断四个选项是否在图象上..为奇函数,在图象上.故选C.【考点】函数的奇偶性.4.据市场调查,某种商品一年中12个月的价格与月份的关系可以近似地用函数f(x)=A sin(ωx+φ)+7(A>0,ω>0,|φ|<)来表示(x为月份),已知3月份达到最高价9万元,7月份价格最低,为5万元,则国庆节期间的价格约为()A.4.2万元B.5.6万元C.7万元D.8.4万元【答案】D【解析】由题意得函数f(x)图象的最高点为(3,9),相邻的最低点为(7,5),则A==2,=7-3,∴T=8,又∵T=,∴ω=,∴f(x)=2sin+7,把点(3,9)代入上式,得sin=1,∵|φ|<,∴φ=-,则f(x)=2sin+7,∴当x=10时,f(10)=2sin+7=+7≈8.4.5.若向量m=(sinωx,0),n=(cosωx,-sinωx)(ω>0),在函数f(x)=m·(m+n)+t的图象中,对称中心到对称轴的最小距离为,且当x∈[0,]时,f(x)的最大值为1.(1)求函数f(x)的解析式.(2)求函数f(x)的单调递增区间.【答案】(1) f(x)=sin(2x-)-(2) [kπ-,kπ+π](k∈Z)【解析】(1)由题意得f(x)=m·(m+n)+t=m2+m·n+t=3sin2ωx+sinωx·cosωx+t=-cos2ωx+sin2ωx+t=sin(2ωx-)++t.∵对称中心到对称轴的最小距离为,∴f(x)的最小正周期为T=π.∴=π,∴ω=1.∴f(x)=sin(2x-)++t,当x∈[0,]时,2x-∈[-,],∴当2x-=,即x=时,f(x)取得最大值3+t.∵当x∈[0,]时,f(x)=1,max∴3+t=1,∴t=-2,∴f(x)=sin(2x-)-.(2)由(1)知f(x)=sin(2x-)-.2kπ-≤2x-≤2kπ+,k∈Z,2kπ-≤2x≤2kπ+π,kπ-≤x≤kπ+π,∴函数f(x)的单调递增区间为[kπ-,kπ+π](k∈Z).6.若方程有实根,则实数的取值范围为【答案】【解析】由方程得,,即,因为,所以,若方程有实根,则,解得.【考点】方程的根.7.已知函数f(x)=2sin xcos x+cos 2x(x∈R).(1)当x取什么值时,函数f(x)取得最大值,并求其最大值;(2)若θ为锐角,且f=,求tan θ的值.【答案】(1) x=kπ+ (k∈Z)时,函数f(x)取得最大值,其最大值为.(2)【解析】解:(1)f(x)=2sin xcos x+cos 2x=sin 2x+cos 2x==sin.∴当2x+=2kπ+ (k∈Z),即x=kπ+ (k∈Z)时,函数f(x)取得最大值,其最大值为.(2)∵f=,∴sin=,∴cos 2θ=.∵θ为锐角,即0<θ<,∴0<2θ<π,∴sin 2θ==,∴tan 2θ==2,∴=2,∴tan2θ+tan θ-=0,∴(tan θ-1)(tan θ+)=0,∴tan θ=或tan θ=- (不合题意,舍去),∴tan θ=.8.已知的三个内角所对的边分别为,且,则角的大小为 .【答案】【解析】根据正弦定理:,,即:,,【考点】1、正弦定理;2、两角和与差的三角函数公式.9.若函数的一个对称中心是,则的最小值为()A.B.C.D.【答案】B【解析】由于正切函数的对称中心坐标为,且函数的一个对称中心是,所以,因此有,因为,所以当时,取最小值,故选B.【考点】三角函数的对称性10.在锐角中,,,则的值等于;的取值范围为 .【答案】;【解析】,所以,由正弦定理得,即,所以,为锐角三角形,则,且,即,则有,且有,所以,故有,,所以,即,故的取值范围为.【考点】1.正弦定理;2.三角函数的取值范围11.已知函数时有极大值,且为奇函数,则的一组可能值依次为( )A.B.C.D.【答案】D【解析】,因为当时有极大值,所以=0,解得当k=0时,;因为=为奇函数,所以,当k=0时,,故选D.【考点】1.求函数的导数及其导数的性质;2.三角函数的性质.12.已知函数.(Ⅰ)求函数图像的对称中心;(Ⅱ)求函数在区间上的最小值和最大值.【答案】(Ⅰ),;(Ⅱ)最大值为,最小值为-2.【解析】(Ⅰ) 通过三角恒等变换化简函数,然后利用图形来求;(Ⅱ)分析函数的单调性,然后求最值.试题解析:(I)因此,函数图象的对称中心为,.(Ⅱ)因为在区间上为增函数,在区间上为减函数,又,,故函数在区间上的最大值为,最小值为-2.【考点】三角恒等变换、函数图象与性质,考查分析问题、解决问题的能力.13.在中,角的对边分别为向量,,且.(1)求的值;(2)若,,求角的大小及向量在方向上的投影.【答案】(1);(2),向量在方向上的投影.【解析】(1)由向量数量积坐标形式列式,可求得的值,再利用平方关系可求得的值;(2)先利用正弦定理可求得的值,再利用大边对大角可求得角的大小.由投影的定义可求得向量在方向上的投影.试题解析:(1)由,得, 1分, 2分.. 3分.4分(2)由正弦定理,有, 5分.6分,, 7分. 8分由余弦定理,有, 9分或(舍去). 10分故向量在方向上的投影为 11分. 12分【考点】1、向量数量积、投影;2、三角恒等变换;3、解三角形.14.已知四边形是矩形,,,是线段上的动点,是的中点.若为钝角,则线段长度的取值范围是 .【答案】.【解析】法一:如下图所示,设,则,由勾股定理易得,,,,,由于为钝角,则,则有,即,即,解得;法二:如下图所示,设,则,以点为坐标原点,、所在的直线分别为轴、轴建立平面直角坐标系,则,,,,,是钝角,则,即,整理得,解得,且、、三点不共线,故有,解得.【考点】余弦定理、勾股定理、平面向量的数量积15.已知函数的部分图象如图所示,设是图象的最高点,是图象与轴的交点,则()A.B.C.D.【答案】B【解析】函数周期由余弦定理得【考点】三角函数性质及解三角形点评:三角函数中,解三角形时常借助于正余弦定理实现边与角的互化,本题中由三边长度利用余弦定理求得三角形内角,进而利用同角间的三角函数关系式求得正切值16.已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)当时,求函数的最大值,最小值.【答案】(Ⅰ)(Ⅱ)的最大值为1,最小值【解析】(I).的最小正周期为.(II)..当时,函数的最大值为1,最小值.【考点】本小题主要考查三角函数的化简、求值和三角函数的性质.点评:求三角函数的性质(如周期、单调性、最值等),都必须把函数式画出或的形式再求解.17.已知,则A.B.C.D.【答案】A【解析】因为,则tan =-2,那么,故答案为A.【考点】二倍角的正切公式点评:主要是考查了同角公式和二倍角的公式的运用,属于基础题。
三角函数高考试题精选(含详细答案)

三角函数高考试题精选一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f ()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C26.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.48.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣ B.﹣ C.D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.513.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s >0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度 D.向下平行移动个单位长度17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+) D.y=2sin (x+)18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.22.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.三角函数2017高考试题精选(一)参考答案与试题解析一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π【解答】解:∵函数y=sin2x+cos2x=2sin(2x+),∵ω=2,∴T=π,故选:C2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f ()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.【解答】解:函数f(x)=sin(2x+)的最小正周期为:=π.故选:C.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C正确,D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D 错误,故选:D5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.6.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.【解答】解:函数f(x)=sin(x+)+cos(x﹣)=sin(x+)+cos(﹣x+)=sin(x+)+sin(x+)=sin(x+).故选:A.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.4【解答】解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x﹣)=sin(3x+b),此时b=﹣+2π=,若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin(3x ﹣b+π),则﹣=﹣b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(﹣3,),共有2组,故选:B.8.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.9.(2016•新课标Ⅲ)若ta nθ=﹣,则cos2θ=()A.﹣ B.﹣ C.D.【解答】解:由tanθ=﹣,得cos2θ=cos2θ﹣sin2θ==.故选:D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【解答】解:∵设函数f(x)=sin2x+bsinx+c,∴f(x)图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)【解答】解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B13.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x ﹣)=sin(2x﹣)的图象,故选:D.14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s >0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【解答】解:将x=代入得:t=sin=,将函数y=sin(2x﹣)图象上的点P向左平移s个单位,得到P′(+s,)点,若P′位于函数y=sin2x的图象上,则sin(+2s)=cos2s=,则2s=+2kπ,k∈Z,则s=+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度 D.向下平行移动个单位长度【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+) D.y=2sin (x+)【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7【解答】解:函数f(x)=cos2x+6cos(﹣x)=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1=﹣2(t﹣)2+,由∉[﹣1,1],可得函数在[﹣1,1]递增,即有t=1即x=2kπ+,k∈Z时,函数取得最大值5.故选:B.二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为.故答案为:.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是1.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:122.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.【解答】解:函数f(x)=2cosx+sinx=(cosx+sinx)=sin(x+θ),其中tanθ=2,可知函数的最大值为:.故答案为:.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为4.【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.【解答】解:∵y=sinx﹣cosx=2sin(x﹣),令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ)(φ>0),依题意可得2sin(x﹣φ)=2sin(x﹣),故﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ+(k∈Z),当k=0时,正数φmin=,故答案为:.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C 均为锐角.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:(1)f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx==.由T=,得ω=1;(2)由(1)得,f(x)=.再由,得.∴f(x)的单调递增区间为[](k∈Z).。
(完整版)高考大题-三角函数题型汇总精华(含答案解释)

【模拟演练】1、[2014·江西卷16] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值; (2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.2、[2014·北京卷16] 函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6的部分图像如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.3、[2014·福建卷18] 已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝ ⎛⎭⎪⎫5π4的值; (2)求函数f (x )的最小正周期及单调递增区间.4、( 06湖南)如图,D 是直角△ABC 斜边BC 上一点,AB=AD,记∠CAD=α,∠ABC=β.(1)证明 sin cos 20αβ+=; (2)若求β的值.BDCαβ A图5、(07福建)在ABC △中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小; (Ⅱ)若ABC △最大边的边长为17,求最小边的边长.6、(07浙江)已知ABC △的周长为21+,且sin sin 2sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数.7、(07山东)如图,甲船以每小时302海里的速度向正北 方向航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时, 乙船位于甲船的北偏西105︒的方向1B 处,此时两船相距20 海里.当甲船航行20分钟到达2A 处时,乙船航行到甲船的 北偏西120︒方向的2B 处,此时两船相距102海里, 问乙船每小时航行多少海里?8、(2013年全国新课标2)在ABC ∆中,c b a ,,C B A 所对的边分别为,,角,已知B cC b a sin cos +=(1)求B ;(2)若b=2, 求ABC S ∆的最大值。
高三数学三角函数综合试题答案及解析

高三数学三角函数综合试题答案及解析1.设函数f(x)=Asin(ωx+)(其中A>0,ω>0,-π<≤π)在x=处取得最大值2,其图象与x轴的相邻两个交点的距离为.(1)求f(x)的解析式;(2)求函数g(x)=的值域.【答案】(1) f(x)=2sin(2x+) (2) [1, ]∪(,]【解析】解:(1)由题设条件知f(x)的周期T=π,即=π,解得ω=2.因为f(x)在x=处取得最大值2,所以A=2,从而sin(2×+)=1,所以2×+=+2kπ,k∈Z.又由-π<≤π,得=.故f(x)的解析式为f(x)=2sin(2x+).(2)g(x)====cos2x+1(cos2x≠).因为cos2x∈[0,1],且cos2x≠,故g(x)的值域为[1,]∪(,].2.已知函数.(Ⅰ)求的值;(Ⅱ)求在区间上的最大值和最小值.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)可直接将角代入求值,也可先用正弦、余弦二倍角公式和化一公式将此函数化简为正弦型函数,再代入角求值。
(Ⅱ)根据的范围先求整体角的范围,再根据三角函数图像求其值域。
试题解析:解:(Ⅰ)由,得.所以. 8分(Ⅱ)因为,所以.当,即时,函数在区间上的最大值为.当,即时,函数在上的最小值为. 13分【考点】用二倍角公式、化一公式化简三角函数,考查三角函数图像。
3.已知,,则x= .(结果用反三角函数表示)【答案】【解析】本题关键是注意反三角函数值的取值范围,适当利用诱导公式,,,而,故,即.【考点】反正弦函数.4.函数的定义域为.【答案】【解析】函数的定义域是使函数式有意义的自变量的取值集合,当然我们要记住基本初等函数本身的定义域要求,如反正弦函数的定义域是,因此本题中有.【考点】反正弦函数的定义域.5.函数的部分图象如右图所示,设是图象的最高点,是图象与轴的交点,则()A.B.C.D.【答案】B【解析】过作的垂线,垂足为,∵,,,,,,∴.【考点】1.三角函数的周期;2.两角和的正切公式.6.已知以角为钝角的的三角形内角的对边分别为、、,,且与垂直.(1)求角的大小;(2)求的取值范围【答案】(1);(2).【解析】(1)观察要求的结论,易知要列出的边角之间的关系,题中只有与垂直提供的等量关系是,即,这正是我们需要的边角关系.因为要求角,故把等式中的边化为角,我们用正弦定理,,,代入上述等式得,得出,从而可求出角;(2)要求的范围,式子中有两个角不太好计算,可以先把两个角化为一个角,由(1),从而,再所其化为一个三角函数(这是解三角函数问题常用方法),下面只要注意这个范围即可.试题解析:1)∵垂直,∴(2分)由正弦定理得(4分)∵,∴,(6分)又∵∠B是钝角,∴∠B(7分)(2)(3分)由(1)知A∈(0,),, (4分),(6分)∴的取值范围是(7分)【考点】(1)向量的垂直,正弦定理;(2)三角函数的值域.7.已知,且,设,的图象相邻两对称轴之间的距离等于.(1)求函数的解析式;(2)在△ABC中,分别为角的对边,,,求△ABC面积的最大值.【答案】(1);(2).【解析】(1)运用向量的数量积,二倍角、辅助角公式把函数变成的形式,利用的图象相邻两对称轴之间的距离等于,再求出,从而得到;(2)用代替函数中的,求出,再利用三角形的面积公式,均值不等式求出面积的最大值,注意、何时能取得最大值.试题解析:(1)=依题意:,∴.(2)∵,∴,又,∴.,当且仅当等号成立,所以面积最大值为.【考点】向量的数量积,二倍角、辅助角公式,三角形面积,基本不等式.8.函数的最小值和最大值分别为()A.3,1B.2,2C.3,D.2,【答案】C.【解析】函数,则函数的最大值、最小值分别为.【考点】三角函数运算.9.已知,,则的值为________.【答案】.【解析】由,得,又,则,得.【考点】三角函数运算.10.已知中,,则()A.B.C.D.【答案】C【解析】由已知代入化简得【考点】三角函数的化简11.已知函数().(1)求函数的最小正周期;(2)求函数在区间上的值域.【答案】(1);(2).【解析】(1)利用三角函数公式化简为一个角的三角函数式,易得周期;(2)把x的取值范围代入(1)所求函数的解析式中,可得值域(注意函数的单调性).试题解析:(1)(4分)的最小正周期为; (6分)(2)由(1)知,在区间上单调递增,在区间上单调递减; (10分); (12分)又,;所以函数在区间上的值域是 (15分)【考点】1、和差化积公式及二倍角公式;2三角函数的单调性及值域.12.如图,已知点,,点为坐标原点,点在第二象限,且,记.(1)求的值;(2)若,求的面积.【答案】(1);(2).【解析】(1)先利用三角函数的定义求出和的值,然后利用二倍角公式求出的值;(2)先在中利用余弦定理求出的值,求出,再由面积公式求出的面积.试题解析:(1)由三角函数定义得,,;(2),且,,由余弦定理得,,所以,设点的坐标为,则,.【考点】1.三角函数的定义;2.二倍角公式;3.余弦定理;4.两角和的正弦公式;5.三角形的面积13.函数是()A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数【答案】C【解析】根据诱导公式将函数化简为,于是可判断其为最小正周期为的偶函数.【考点】本小题主要考查诱导公式、三角函数的奇偶性14.设函数.(1)求的最小正周期;(2)当时,求实数的值,使函数的值域恰为并求此时在上的对称中心.【答案】(1);(2).【解析】(1)将降次化一,可化为的形式,由此即可求得其周期.(2)在(1)中得,当时,可以得到.又,所以.这样.令,得,从而得对称中心为.试题解析:(1)∴函数的最小正周期T=。
高三数学两角和与差的三角函数试题答案及解析

高三数学两角和与差的三角函数试题答案及解析1.已知0<α<π,sin 2α=sin α,则tan=________.【答案】-2-【解析】由sin 2α=sinα,可得2sin αcos α=sin α,又0<α<π,所以cos α=.故sin α=,tan α=.所以tan===-2-.2.函数y=sin(+x)cos(-x)的最大值为()A.B.C.D.【答案】B【解析】∵sin(+x)cos(-x)=cosx(cos cosx+sin sinx)=cos2x+sinxcosx=(1+cos2x)+sin2x=+cos2x+sin2x=+(cos2x+sin2x)=+sin(2x+)∴函数y=sin(+x)cos(-x)的最大值为3.在中,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】(1)解三角形问题,通常利用正余弦定理进行边角转化.由正弦定理得:,.(2)由(1)及条件知三角形三边,故用余弦定理求角. 由,得,由同角三角函数关系,可得,再由二倍角公式得到,,因此=.试题解析:(1)因为 ,(2)=所以 ,【考点】正余弦定理, 同角三角函数关系, 二倍角公式4.已知,,则.【答案】3【解析】因为,所以【考点】两角和的正切公式5.已知,,则.【答案】3【解析】因为,所以【考点】两角和的正切公式6.已知向量,,,函数.(1)求函数的表达式;(2)求的值;(3)若,,求的值.【答案】(1) (2) (3)【解析】(1)利用两向量内积的坐标计算公式(两向量的横纵坐标对应相乘再相加)即可得到的函数解析式.(2)由(1)可得的函数解析式,把带入函数即可得到的值.(3)把等式带入,利用诱导公式(奇变偶不变符号看象限)化简等式即可得到的值,正余弦的关系即可求出的值,再把带入函数即可得到,再利用和差角和倍角公式展开并把的值带入即可得到的值.试题解析:(1)∵,,,∴,即函数. (3分)(2)(6分)(3)∵,又,∴,即. (7分)∵,∴. (8分)∴,(9分). (10分)∴(11分). (12分)【考点】正余弦和差角与倍角公式诱导公式内积公式7.若sinα=,sinβ=,且α、β为锐角,则α+β的值为__________.【答案】【解析】(解法1)依题意有cosα==,cosβ==,∴cos(α+β)=>0.∵α、β都是锐角,∴ 0<α+β<π,∴α+β=.(解法2)∵α、β都是锐角,且sinα=<,sinβ=<,∴ 0<α,β<,0<α+β<,∴cosα==,cosβ==,sin(α+β)=.∴α+β=.8.已知0<β<<α<π,cos(-α)=,sin(+β)=,求sin(α+β)的值.【答案】【解析】∵<α<,∴-<-α<-,∴-<-α<0.又cos(-α)=,∴ sin(-α)=-.∵ 0<β<,∴<+β<π.又sin(+β)=,∴ cos(+β)=-.∴sin(α+β)=-cos =-cos[(+β)-(-α)]=-cos cos-sin(+β)·sin=9.已知α、β∈,sinα=,tan(α-β)=-,求cosβ的值.【答案】【解析】∵ α、β∈,∴-<α-β<.又tan(α-β)=-<0,∴-<α-β<0.∴=1+tan2(α-β)=.∴ cos(α-β)=,sin(α-β)=-.又sinα=,∴ cosα=.∴ cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=×+×=10.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=________.【答案】-(x)=,【解析】f(x)=sin(x-φ),则fmax依题意sin θ-2cos θ=,即sin θ=+2cos θ,代入sin2θ+cos2θ=1,得(cos θ+2)2=0.∴cos θ=-.11.如图所示,A,B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),C点坐标为(-2,0),平行四边形OAQP的面积为S.(1)求·+S的最大值;(2)若CB∥OP,求sin的值.【答案】(1)+1(2)【解析】(1)由已知,得A(1,0),B(0,1),P(cos θ,sin θ),因为四边形OAQP是平行四边形,所以=+=(1,0)+(cos θ,sin θ)=(1+cos θ,sin θ).所以·=1+cos θ.又平行四边形OAQP的面积为S=||·| |sin θ=sin θ,所以·+S=1+cos θ+sin θ=sin +1.又0<θ<π,所以当θ=时,·+S的最大值为+1.(2)由题意,知=(2,1),=(cos θ,sin θ),因为CB∥OP,所以cos θ=2sin θ.又0<θ<π,cos2θ+sin2θ=1,解得sin θ=,cos θ=,所以sin2 θ=2sin θcos θ=,cos2θ=cos2θ-sin2θ=.所以sin=sin 2θcos-cos 2θsin=×-×=.12.若α,β∈(0,π),cos α=-,tan β=-,则α+2β=________.【答案】【解析】由条件得α∈,β∈,所以α+2β∈(2π,3π),且tan α=-,tan β=-,所以tan 2β==-,tan(α+2β)==-1,所以α+2β=.13.求证:(1)(2)【答案】证明见解析.【解析】三角恒等式的证明也遵循从繁化简的原则,当然三角函数还有函数名称的转化与角的转化.(1)本题从左向右变化,首先把左边分子用两角差的正弦公式展开,就能证明,当然也可从右向左转化(切化弦),;(2)这个证明要求我们善于联想,首先左边的和怎么求?能否变为两数的差(利用裂项相消的思想方法)?这个想法实际上在第(1)小题已经为我们做了,只要乘以(因为每个分母上的两角的差都是),每个分式都化为两数的差,而且恰好能够前后项相消.试题解析:证明:(1) 3分6分(2)由(1)得() 8分可得10分12分即. 14分【考点】两角差的正弦公式,同角三角函数关系.14.若对∀a∈(-∞,0),∃θ∈R,使asin θ≤a成立,则cos的值为 ().A.B.C.D.【答案】A【解析】∵asin θ≤a⇔a(sin θ-1)≤0,依题意,得∀a∈(-∞,0),有asin θ≤a.∴sin θ-1≥0,则sin θ≥1.又-1≤sin θ≤1,因此sin θ=1,cos θ=0.故cos=sin θsin+cos θcos=.15.已知向量,,函数(Ⅰ)求的最大值;(Ⅱ)在中,设角,的对边分别为,若,且,求角的大小.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由向量数量积的定义只需将其化为一个角的三角函数就能求出的最大值.(Ⅱ)由(Ⅰ)的结果和正弦定理:,又 ,所以,,由以上两式即可解出,.试题解析:(Ⅰ) 2分4分(注:也可以化为)所以的最大值为. 6分(注:没有化简或化简过程不全正确,但结论正确,给4分)(Ⅱ)因为,由(1)和正弦定理,得. 7分又,所以,即, 9分而是三角形的内角,所以,故,, 11分所以,,. 12分【考点】1.正弦定理;2、两角和与差的在角函数公式、倍角公式;3、三角函数的性质.16.已知是方程的两根,则=_______.【答案】1【解析】本题考查两角和的正切公式,,而与可由韦达定理得.【考点】韦达定理与两角和的正切公式.17.在中,角的对边分别为,已知:,且.(Ⅰ)若,求边;(Ⅱ)若,求的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)先由条件用和差公式化简,再根据三角形内角范围得到角.再由得到角,最后由正弦定理得到;(Ⅱ)先由余弦定理及条件得到,又因为,从而可知为直角三角形,其中角为直角.又,所以.既而得到三角形的面积.试题解析:(Ⅰ)由已知,所以,故,解得. (4分)由,且,得.由,即,解得. (7分)(Ⅱ)因为,所以,解得. (10分)由此得,故为直角三角形.其面积. (12分)【考点】1.两角和差公式;2.正弦定理;3.余弦定理.18.设向量,,其中,若,则.【答案】【解析】两边平方化简得,,又,是单位向量,所以即,又,所以.【考点】三角函数、平面向量.19.如图,在半径为、圆心角为60°的扇形的弧上任取一点,作扇形的内接矩形,使点在上,点在上,设矩形的面积为.(Ⅰ) 按下列要求写出函数关系式:①设,将表示成的函数关系式;②设,将表示成的函数关系式.(Ⅱ) 请你选用(Ⅰ)中的一个函数关系式,求的最大值.【答案】(Ⅰ)详见解析;(Ⅱ).【解析】(Ⅰ)①要用表示矩形的面积,关键是把用表示,在中可表示出,在中可表示出,即得;②在中,可用表示和,在在中可用即表示出,即得;(Ⅱ)对(Ⅰ)中函数,是常见的函数或三角函数问题,较为容易解答,求出其最大值.试题解析:(Ⅰ) ①因为,所以,又,所以 2分故() 4分②当时, ,则,又,所以6分故() 8分(Ⅱ)由②得= 12分故当时,取得最大值为 15分【考点】函数的应用、三角函数.20.设是锐角三角形,分别是内角所对边长,并且.(1)求角的值;(2)若,求(其中).【答案】(1) ;(2) .【解析】(1) 利用两角和与差的正弦公式展开化简得,又为锐角,所以;(2)由可得,即,然后利用余弦定理得的另一个关系,从而解出.试题解析:(1)因为,所以,又为锐角,所以.(2)由可得①由(1)知,所以②由余弦定理知,将及①代入,得③③+②×2,得,所以因此,是一元二次方程的两个根.解此方程并由知.【考点】两角和与差的正弦定理、平面向量的数量积、余弦定理.21.,,则的值为( )A.B.C.D.【答案】D【解析】,因为,所以,则.【考点】两角和与差的正余弦公式.22.设是方程的两个根,则的值为A.-3B.-1C.1D.3【答案】A【解析】因为是方程的两个根,所以由二次方程根与系数的关系可以得到,所以【考点】本题主要考查二次方程的根与系数的关系,以及两角和的正切公式。
高三数学三角函数综合试题答案及解析

高三数学三角函数综合试题答案及解析1.已知,则的值为 .【答案】【解析】设,即,则.【考点】三角函数的变形与求值.2.已知=,那么sin的值为 ,cos2的值为【答案】;【解析】∵()2=1+sin=∴sin=由倍角公式得cos2=1-2sin2=3.函数的值域为.【答案】【解析】令,则.【考点】1、三角函数;2、二次函数;3、换元法.4.函数(其中)的图象如图所示,把函数的图像向右平移个单位,再向下平移1个单位,得到函数的图像.(1)若直线与函数图像在时有两个公共点,其横坐标分别为,求的值;(2)已知内角的对边分别为,且.若向量与共线,求的值.【答案】(1);(2)【解析】本题主要考查三角函数的图像和性质,向量共线的充要条件以及解三角形中正弦定理余弦定理的应用,考查分析问题解决问题的能力和计算能力,考查数形结合思想和化归与转化思想.第一问,先由函数图像确定函数解析式,再通过函数图像的平移变换得到的解析式,由于与在上有2个公共点,根据函数图像的对称性得到2个交点的横坐标的中点为,所以得出函数值;第二问,先用在中解出角的值,再利用两向量共线的充要条件得到,从而利用正弦定理得出,最后利用余弦定理列出方程解出边的长.试题解析:(1)由函数的图象,,得,又,所以 2分由图像变换,得 4分由函数图像的对称性,有 6分(Ⅱ)∵,即∵,,∴,∴. 7分∵共线,∴.由正弦定理,得① 9分∵,由余弦定理,得,② 11分解方程组①②,得. 12分【考点】1.函数图像的平移变换;2.函数图像的对称性;3.正弦定理和余弦定理;4.函数的周期性;5.两向量共线的充要条件.5.在△ABC中,内角A,B,C所对边长分别为,,,.(1)求的最大值及的取值范围;(2)求函数的最大值和最小值.【答案】(Ⅰ)的最大值为16,及的取值范围0<;(Ⅱ)最大值为3,最小值为2.【解析】(Ⅰ)求的最大值及的取值范围,由向量的数量积,即,由此可想到利用余弦定理求出,通过基本不等式,可求得b•c的最大值,再结合,可求出的取值范围;(Ⅱ)求函数的最大值和最小值,可利用二倍角的正弦函数化简函数,这样化为一个角的一个三角函数的形式,通过角的范围0<,利用正弦函数的最值,从而求出函数的最大值和最小值.试题解析:(Ⅰ)即又所以,即的最大值为16即所以,又0<<所以0<(Ⅱ)因0<,所以<,当即时,当即时,【考点】正弦函数的图象;平面向量数量积的运算.6.函数.(1)求的周期;(2)在上的减区间;(3)若,,求的值.【答案】(1);(2) ;(3) .【解析】(1)先利用三角函数的诱导公式将函数化为形式,再利用辅助角公式将其化为的形式,则周期公式可求得周期.(2)先将看成一个整体,由解得正弦函数的减区间,再取值,可求得函数在上的减区间.(3)将代入(1)中的解析式可求得的值,又因为,根据同角三角函数的基本关系式、可求得、的值,再根据两角和的正切公式、二倍角公式可求得.试题解析:(1),(), 所以的周期.(2)由,得.又,令,得;令,得(舍去)∴在上的减区间是.(3)由,得,∴,∴又,∴∴,∴∴.【考点】1、三角函数的诱导公式、辅助角公式、同角三角函数的基关系式、两角和差公式、二倍角公式;2、三角函数的性质周期性、单调性.7.等于()A.B.C.D.【答案】D【解析】【考点】三角函数的诱导公式及三角函数值.8.已知向量,,(Ⅰ)若,求的值;(Ⅱ)在中,角的对边分别是,且满足,求函数的取值范围.【答案】(1);(2).【解析】本题主要考查两角和与差的正弦公式、二倍角公式、余弦定理、三角函数的值域等基础知识,考查运用三角公式进行三角变换的能力和基本的运算能力.第一问,利用向量的数量积将坐标代入得表达式,利用倍角公式、两角和的正弦公式化简表达式,因为,所以得到,而所求中的角是的2倍,利用二倍角公式计算;第二问,利用余弦定理将已知转化,得到,得到,得到角的范围,代入到中求值域.试题解析:(Ⅰ)∵,而,∴,∴,(Ⅱ)∵,∴,即,∴,又∵,∴,又∵,∴,∴.【考点】1.向量的数量积;2.倍角公式;3.两角和与差的正弦公式;4.余弦公式;5.三角函数的值域.9.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的函数值的取值范围.【答案】(1);(2).【解析】(1)函数.通过二倍角的逆运算将单角升为二倍角,再化为一个三角函数的形式,从而求出函数的周期.(2)x的范围是所以正弦函数在是递增的.所以f(x)的范围是本题考查三角函数的单调性,最值,三角函数的化一公式,涉及二倍角的逆运算等.三角函数的问题要关注角度的变化,角度统一,二次式化为一次的,三角函数名称相互转化.切化弦,弦化切等数学思想.试题解析:(1) 4分6分故的最小正周期为 8分(2)当时, 10分故所求的值域为 12分【考点】1.三角函数的化一公式.2.二倍角公式.3.函数的单调性最值问题.10.定义运算:,则的值是()A.B.C.D.【答案】D.【解析】根据题意.【考点】新定义及三角函数运算.11.已知函数f(x)=-ax(a∈R)既有最大值又有最小值,则f(x)值域为_______.【答案】【解析】若,则的值域为,会使无最大最小值,故,所以,令,则,即,故,解得,所以f(x)值域为.【考点】三角函数性质、函数值域的求法.12.若是纯虚数,则=()A.B.C.D.【答案】B【解析】依题意,,,.选 B.【考点】复数的概念,同角三角函数间的关系,两角差的正切公式.13.函数的最小正周期为()A.4B.2C.D.【答案】C【解析】;;则,函数的周期.所以本题答案选.【考点】1.诱导公式;2.正弦二倍角公式;3.三角函数的周期.14.设,其中. 若对一切恒成立,则①;②;③既不是奇函数也不是偶函数;④的单调递增区间是;⑤存在经过点的直线与函数的图象不相交.以上结论正确的是__________________(写出所有正确结论的编号).【答案】①②③【解析】,又,由题意对一切则恒成立,则是函数的对称轴位置,则,所以,从而,则.所以.①,故①正确;②,,所以<,②正确;③,所以③正确;④由①知,,由知,所以④不正确;⑤由①知,要经过点的直线与函数的图像不相交,则此直线与横轴平行,又的振幅为,所以直线必与图像有交点.⑤不正确.【考点】1.三角函数的性质应用;2.三角函数的辅助角.15.函数的最小正周期是()A.B.C.2πD.4π【答案】B【解析】,所以周期.【考点】三角变换及三角函数的周期.16.函数的最小正周期是()A.B.C.2πD.4π【答案】B【解析】,所以周期.【考点】三角变换及三角函数的周期.17.在中,已知内角,边.设内角,周长为.(1)求函数的解析式和定义域;(2)求的最大值.【答案】(1);(2)【解析】(1)已知两角一边,利用正弦定理将另外两条边用表示出来,即可表示,由及内角和,得;(2)将的解析式化为的形式,先由,得的范围,再结合的图象确定的范围,进而求的最大值.试题解析:(1)的内角和,由得,由正弦定理知,,∵,∴; 6分(2)因为,∴,所以,所以,当,即时,取得最大值. -----------12分【考点】1、正弦定理;2、型函数的最大值.18.若实数满足,则的最大值为()A.B.C.D.【答案】C【解析】根据实数满足,令,则=,所以其最大值为,故选C.【考点】椭圆的参数方程,三角函数同角公式、辅助角公式.19.如图所示,扇形AOB,圆心角AOB的大小等于,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.(1)若C是半径OA的中点,求线段PC的长;(2)设,求面积的最大值及此时的值.【答案】(1);(2)时,取得最大值为.【解析】本题考查解三角形中正弦定理、余弦定理的应用,三角形面积公式以及运用三角公式进行恒等变形,考查学生的分析能力和计算能力.第一问,在中,,,由余弦定理求边长;第二问,在中,利用正弦定理,得到,,三角形面积公式,将上面2个边长代入,利用二倍角公式、降幂公式、两角和与差的正弦公式化简表达式,再求三角函数的最值.试题解析:(1)在中,,,由,得,解得.(2)∵,∴,在中,由正弦定理得,即,∴,又,.记的面积为,则∴时,取得最大值为.【考点】1.余弦定理;2.正弦定理;3.二倍角公式;4.降幂公式;5.两角和与差的正弦公式.20.函数是()A.最小正周期为的偶函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的奇函数【答案】A【解析】,,故函数是最小正周期为的偶函数,故选A.【考点】1.诱导公式;2.三角函数的周期性;3.三角函数的奇偶性21.对任意实数,函数.如果函数,那么对于函数.对于下列五种说法:(1) 函数的值域是;(2) 当且仅当时,;(3) 当且仅当时,该函数取最大值1;(4)函数图象在上相邻两个最高点的距离是相邻两个最低点的距离的4倍;(5) 对任意实数x有恒成立.其中正确结论的序号是.【答案】(2)(4)(5)【解析】由已知得,.当时,;当时,.函数的值域是,所以(1)错误;(2)当时,,所以(2)正确;(3)该函数的最大值是,所以(3)错误;(4)在区间上,最高点对应的横坐标是和,最低点对应的横坐标是和,所以最高点间的距离是,最低点间的距离是,所以“函数图象在上相邻两个最高点的距离是相邻两个最低点的距离的4倍”是正确的;(5)因为,所以,,所以对任意实数x有恒成立.【考点】1.三角函数的积化和差公式;2.三角函数的最值;3.三角函数的诱导公式;4.三角函数的图像与性质22.已知角的顶点在坐标原点,始边与轴正半轴重合,终边在直线上,则()A.-2B.2C.0D.【答案】B【解析】由题意知:,所以原式.故选B.【考点】三角函数化简求值.23.已知函数(其中),、是函数的两个不同的零点,且的最小值为.(1)求的值;(2)若,求的值.【答案】(1);(2).【解析】(1)先将函数的解析式化为的形式,利用函数图象两个对称中心点之间距离的最小值与周期之间的关系求出函数的最小正周期,再利用公式即可求出的值;(2)先利用的值求出的值,然后将利用诱导公式转化为,最后再利用二倍角公式进行计算.试题解析:(1),,或(k>0)或∴.(2),由,得,∵.【考点】1.三角函数的周期;2.诱导公式;3.二倍角公式24.已知,则的值是( )A.B.C.D.【答案】C【解析】因为,所以.【考点】1、三角函数的积化和差公式的应用;2、特殊角的三角函数值.25.已知,其中向量,,.在中,角A、B、C的对边分别为,,.(1)如果三边,,依次成等比数列,试求角的取值范围及此时函数的值域;(2) 在中,若,边,,依次成等差数列,且,求的值.【答案】(1),;(2).【解析】(1)先根据向量的数量积的坐标运算和三角函数的积化和差公式,化简,然后根据三边关系结合余弦定理求得角的取值范围,再将代入化简后的,得到,根据三角函数在定区间上的值域求得函数的值域;(2)根据题中所给信息解得角的大小,由,得到,由已知条件得边,,依次成等差数列,结合余弦定理,得到两个等量关系,解得的值.试题解析:(1),2分由已知,所以,所以,,则,故函数f(B)的值域为; 6分(2)由已知得,所以, 8分所以或,解得或(舍去), 10分由,得,解得,由三边,,依次成等差数列得,则,由余弦定理得, 解得. 12分【考点】1、平面向量的数量积的运算;2、余弦定理;3、解三角形;4、等差数列的性质及应用;5、特殊角的三角函数值.26.已知函数,且函数的最小正周期为.(1)求的值和函数的单调增区间;(2)在中,角A、B、C所对的边分别是、、,又,,的面积等于,求边长的值.【答案】(1) 单调增区间为;(2).【解析】(1)先将化为一角一函数形式为,再根据最小正周期为求出,然后根据正弦函数的性质求单调增区间.(2) 由得,然后根据面积公式得出,再由余弦定理解得.试题解析:(1)因为 2分由的最小正周期为,得 3分即 5分所以,函数的增区间为 6分(2) 8分10分由余弦定理 12分【考点】1.三角函数;2.三角形面积公式;3.余弦定理.27.已知函数.(Ⅰ)若方程在上有解,求的取值范围;(Ⅱ)在中,分别是A,B,C所对的边,若,且,,求的最小值.【答案】(Ⅰ);(Ⅱ)的最小值为.【解析】(Ⅰ)利用倍角公式将角转化为的三角函数,然后利用可以得到,方程在有解,即有根问题,从而转化为求值域;(Ⅱ)由,且,代入,可求出的值,再由,可想到利用余弦定律来解.试题解析:(Ⅰ),方程在有解,即在有根,当时,,,,;(Ⅱ),且,代入,得,,或,而,解得,由余弦定律可得,,.,故.【考点】1、倍角公式,2、三角恒等变换,3、方程的根的问题,4、余弦定理,5、基本不等式.28.在中,角所对的边分别为,已知,(Ⅰ)求的大小;(Ⅱ)若,求的周长的取值范围.【答案】①. .②. .【解析】①运用正弦定理把边转化成角再求角,②方法一:利用第一问的结论及的条件,只要找到的取值范围即可,利用余弦定理建立的关系式,再求的取值范围,方法二,利用正弦定理建立与角的三角函数关系式,再利用减少变元,求范围.试题解析:(Ⅰ)由条件结合正弦定理得,从而,∵,∴ 5分(Ⅱ)法一:由已知:,由余弦定理得:(当且仅当时等号成立)∴(,又,∴,从而的周长的取值范围是 12分法二:由正弦定理得:.∴,,.∵∴,即(当且仅当时,等号成立)从而的周长的取值范围是 12分【考点】1.正弦定理;2.余弦定理;3.两角和的正弦公式;3.均值不等式.29.已知函数.(Ⅰ)求的值;(Ⅱ)求函数的最小正周期及单调递减区间.【答案】(Ⅰ);(Ⅱ)最小正周期为,单调递减区间为.【解析】(1)直接计算的值,若式子的结果较复杂时,一般将函数解析式先化简再求值;(2)求函数的最小正周期、单调区间等基本性质,一般先将函数解析式进行化简,即一般将三角函数解析式化为的形式,然后利用公式即可求出函数的最小正周期,利用复合函数法结合正弦函数的单调性即可求出函数相应的单调区间,但首先应该求函数的定义域.试题解析:解(Ⅰ)4分(Ⅱ)由故的定义域为因为所以的最小正周期为因为函数的单调递减区间为,由得所以的单调递减区间为13分【考点】三角函数的周期、单调区间、辅助角变换30.已知向量,,,设函数.(1)求函数的最大值;(2)在中,角为锐角,角、、的对边分别为、、,,且的面积为3,,求的值.【答案】(1);(2).【解析】(1)利用向量的数量积,二倍角公式,辅助角公式把化为的形式,再确定最大值;(2)根据三角形的面积公式,余弦定理求解.试题解析:(1)∴. (6分)(2)由(1)可得,∴,因为,所以,,∴,(8分)∵,∴,又,(10分)∴,∴. (12分)【考点】向量的数量积,二倍角公式,辅助角公式,余弦定理.31.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且.(Ⅰ)求sinA的值;(Ⅱ)若,b=5,求向量在方向上的投影.【答案】(Ⅰ)(Ⅱ)=ccosB=.【解析】(Ⅰ)由,可得,即,即,因为0<A<π,所以.(Ⅱ)由正弦定理,,所以=,由题意可知a>b,即A>B,所以B=,由余弦定理可知.解得c=1,c=﹣7(舍去).向量在方向上的投影:=ccosB=.32.已知函数,其中常数;(1)若在上单调递增,求的取值范围;(2)令,将函数的图像向左平移个单位,再向上平移1个单位,得到函数的图像,区间(且)满足:在上至少含有30个零点,在所有满足上述条件的中,求的最小值.【答案】(1)(2)【解析】(1)因为,根据题意有(2) ,或,即的零点相离间隔依次为和,故若在上至少含有30个零点,则的最小值为.【考点】考查三角函数的图象与性质,三角函数图象的平移变换,属中档题33.函数向左平移个单位后是奇函数,则函数在上的最小值为()A.B.C.D.【答案】A【解析】把函数y=sin(2x+φ)的图象向左平移个单位得到函数的图像,因为函数为奇函数,故,又,故的最小值为,所以函数,,所以,时,函数有最小值为,故选A.【考点】由y="A" sin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.点评:本题考查了三角函数的图象变换以及三角函数的奇偶性,三角函数的值域的应用,属于中档题.34.已知向量,,且求的值;求的值.【答案】(1) .(2)【解析】(1)得,即与联立得.∵∴.(2)由得,∴【考点】平面向量的垂直,平面向量的坐标运算,和差倍半的三角函数公式,诱导公式,同角公式。
高三数学两角和与差的三角函数试题答案及解析

高三数学两角和与差的三角函数试题答案及解析1.已知,,则()A.B.C.D.【答案】B【解析】∵,,,∴,∴,∴.【考点】平方关系、商数关系、两角差的正切.2. [2014·太原模拟]已知锐角α,β满足sinα=,cosβ=,则α+β等于() A.B.或C.D.2kπ+(k∈Z)【答案】C【解析】由sinα=,cosβ=且α,β为锐角,可知cosα=,sinβ=,故cos(α+β)=cosαcosβ-sinαsinβ=×-×=,又0<α+β<π,故α+β=.3.设,且.则的值为.【答案】【解析】由题意,又,∴且,由于,且,∴,∴,∴.【考点】三角函数的恒等变形与求值.4.函数y=sin(+x)cos(-x)的最大值为()A.B.C.D.【答案】B【解析】∵sin(+x)cos(-x)=cosx(cos cosx+sin sinx)=cos2x+sinxcosx=(1+cos2x)+sin2x=+cos2x+sin2x=+(cos2x+sin2x)=+sin(2x+)∴函数y=sin(+x)cos(-x)的最大值为5.已知,,且,则=.【答案】【解析】∵,∴,∴,,∴====.【考点】两角和与差的余弦.6.【答案】【解析】,.【考点】两角和与差的正切公式.7.已知,,则的值为.【答案】【解析】因为,所以.【考点】两角和与差正切8.计算:=________.【答案】2-【解析】sin7°=sin(15°-8°)=sin15°cos8°-cos15°sin8°,cos7°=cos(15°-8°)=cos15°cos8°+sin15°sin8°,∴原式=tan15°=tan(45°-30°)==2-9.已知α、β均为锐角,且tanβ=,则tan(α+β)=________.【答案】1【解析】∵tanβ=,∴tanβ==tan .又∵α、β均为锐角,∴β=-α,即α+β=,∴tan(α+β)=tan=1.10.设α∈,若tan=2cos 2α,则α=________.【答案】【解析】解析:∵tan=2cos 2α,∴=2(cos2α-sin2α),整理得=2(cos α+sin α)(cos α-sin α).因为α∈,所以sin α+cos α≠0.因此(cos α-sin α)2=,即sin 2α=.由α∈,得2α∈,所以2α=,即α=.11.若α,β∈,cos =,sin =-,则cos (α+β)=________.【答案】-【解析】∵α,β∈,∴-<α-<,-<-β<,由cos =和sin =-得α-=±,-β=-,当α-=-,-β=-时,α+β=0,与α,β∈矛盾;当α-=,-β=-时,α=β=,此时cos (α+β)=-.12.已知向量,,函数(Ⅰ)求的最大值;(Ⅱ)在中,设角,的对边分别为,若,且,求角的大小.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由向量数量积的定义只需将其化为一个角的三角函数就能求出的最大值.(Ⅱ)由(Ⅰ)的结果和正弦定理:,又 ,所以,,由以上两式即可解出,.试题解析:(Ⅰ) 2分4分(注:也可以化为)所以的最大值为. 6分(注:没有化简或化简过程不全正确,但结论正确,给4分)(Ⅱ)因为,由(1)和正弦定理,得. 7分又,所以,即, 9分而是三角形的内角,所以,故,, 11分所以,,. 12分【考点】1.正弦定理;2、两角和与差的在角函数公式、倍角公式;3、三角函数的性质.13.已知向量,.(1)若,求的值;(2)若,,求的值.【答案】(1);(2).【解析】(1)由易得,代入式子中可约去为求出其值;(2)先求出,再对两边平方化简可得关于和的关系式,联立正弦余弦的平方关系解方程组可得和的值,代入的展开式,就可求出其值.试题解析:⑴由可知,,所以, 2分所以. 6分(2)由可得,,即,① 10分又,且②,由①②可解得,, 12分所以. 14分【考点】向量的数量积、模的计算,同角三角函数的关系、两角和与差的正弦.14.已知是方程的两根,则=_______.【答案】1【解析】本题考查两角和的正切公式,,而与可由韦达定理得.【考点】韦达定理与两角和的正切公式.15.已知a,b,c分别为ABC的三个内角A,B,C的对边,=(sinA,1),=(cosA,),且//.(I)求角A的大小;(II)若a=2,b=2,求ABC的面积.【答案】(I).(II)ABC的面积为或.【解析】(I)根据//,可得到注意到,得到.(II)首先由正弦定理可得:通过讨论,得到,从而或.根据,,分别计算进一步确定ABC的面积.试题解析:(I)因为//,所以因为,所以.(II)由正弦定理可得:因为,所以,或.当时,所以;当时,所以.故ABC的面积为或.【考点】平面向量的坐标运算,两角和差的三角函数,正弦定理的应用,三角形面积公式.16.已知圆O的半径为R(R为常数),它的内接三角形ABC满足成立,其中分别为的对边,求三角形ABC面积S的最大值.【答案】【解析】本题主要考查解三角形中的正弦定理余弦定理的应用以及运用倍角公式、两角和与差的正弦公式等三角公式进行三角变换的能力和利用三角形面积求最值,考查基本运算能力.先利用正弦定理将角换成边,再利用余弦定理求出,得到特殊角的值,利用三角形面积公式列出表达式,利用正弦定理将边换成角,将用表示,利用两角和与差的正弦公式、倍角公式化简表达式,求三角函数的最值.试题解析:由,由正弦定理得代入得,由余弦定理---6分所以=当且仅当时, 12分【考点】1.正弦定理;2.余弦定理;3.两角和与差的正弦公式;4.三角形面积公式;5.三角函数最值.17.函数的最小正周期为.【答案】【解析】由,得函数的最小正周期为.【考点】三角函数的周期.18.已知函数,将函数的图象向左平移个单位后得到函数的图象,且,则( )A.B.C.D.【答案】D【解析】∵,∴,∵,∴ (),即 (),∵,∴.【考点】1.倍角公式;2.两角和与差的余弦公式;3.三角方程的解法.19.设是锐角三角形,分别是内角所对边长,并且.(1)求角的值;(2)若,求(其中).【答案】(1) ;(2) .【解析】(1) 利用两角和与差的正弦公式展开化简得,又为锐角,所以;(2)由可得,即,然后利用余弦定理得的另一个关系,从而解出.试题解析:(1)因为,所以,又为锐角,所以.(2)由可得①由(1)知,所以②由余弦定理知,将及①代入,得③③+②×2,得,所以因此,是一元二次方程的两个根.解此方程并由知.【考点】两角和与差的正弦定理、平面向量的数量积、余弦定理.20.已知,且,,则______.【答案】【解析】由,,得,所以,又由,知.【考点】同角三角函数的关系、两角和与差的三角函数.21.设的内角的对边分别为,且,则 ,的面积 .【答案】;.【解析】为的内角,且,,由正弦定理得,,.【考点】两角和的三角函数、正弦定理、三角形的面积22.在中,分别是角的对边,,,且(1)求角的大小;(2)设,且的最小正周期为,求在上的最大值和最小值,及相应的的值。
高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析1.已知函数,若数列满足,且的前项和为,则_____________.【答案】8042【解析】.因为,,,,,,,.所以8042.【考点】1.分段函数的问题.2.数列的思想.3.三角函数的周期性.4.分类列举的数学思想.2.若方程有实根,则实数的取值范围为【答案】【解析】由方程得,,即,因为,所以,若方程有实根,则,解得.【考点】方程的根.3.函数的最小正周期为,若其图象向右平移个单位后关于y轴对称,则()A.B.C.D.【答案】B【解析】由题意可知:,得,函数关于对称,所以,,又因为,解得,故选B.【考点】的图像和性质4.已知函数的最小正周期为,将的图像向左平移个单位长度,所得图像关于轴对称,则的一个值是()A.B.C.D.【答案】D【解析】函数的最小正周期为,所以从而.将各选项代入验证可知选【考点】1、三角函数的周期;2、函数图象的变换5.是偶函数,,则 .【答案】【解析】,,所以,因为为偶函数,所以对任意的,都有即成立,又,所以.【考点】三角函数的恒等变换,偶函数.6.已知向量,向量,函数·.(1)求的最小正周期T;(2)若方程在上有解,求实数的取值范围.【答案】(1);(2).【解析】(1)先列出的表达式,利用倍角公式将其化为一个复合角的三角函数,即可求得结果;(2)根据已知的范围,先求出的值域,从而得实数的取值范围.试题解析: 2分4分6分7分8分10分11分方程在上有解,实数的取值范围为 12分【考点】1.平面向量;2.三角恒等变换;3.三角函数的周期、值域.7.已知方程在上有两个不同的解、,则下列结论正确的是()A.B.C.D.【答案】C【解析】由于方程在上有两个不同的解、,即方程在上有两个不同的解、,也就是说,直线与函数在轴右侧的图象有且仅有两个交点,由图象可知,当时,直线与曲线相切,且切点的横坐标为,当时,,则,故,在切点处有,即,,两边同时乘以得,,故选C.【考点】1.函数的零点;2.函数的图象;3.利用导数求切线的斜率8.设=【答案】【解析】因为,所以,由,得,又,所以,所以【考点】同角三角函数关系.9.已知函数(Ⅰ)求的最小正周期及最大值;(Ⅱ)若,且,求的值.【答案】(Ⅰ)(Ⅱ)【解析】第(Ⅰ)题,化简函数解析式为最简形式,利用公式求出周期和最值。
高三数学三角函数经典练习题及答案精析

(1)求角 的大小;
(2)设 的中点为 ,且 ,求 的最大值.
32.已知函数 .
(1)求 的值;
(2)求使 成立的 的取值集合.
33.已知函数 .
(1)求函数 的最小正周期;
(2)求函数 取得最大值的所有 组成的集合.
参考答案
1.A
【解析】
试题分析:由题意得 ,因为 ,所以 ,选A.
9.如图是函数y=2sin(ωx+φ),φ< 的图象,那么
A.ω= ,φ=
B.ω= ,φ=-
C.ω=2,φ=
D.ω=2,φ=-
10.要得到函数 的图象,只需要将函数 的图象()
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位
11.要得到 的图象,只需将函数 的图象()
【解析】
试题分析:因为 ,故选B.
考点:三角函数的诱导公式.
【易错点睛】本题主要考查了三角函数的诱导公式.在对给定的式子进行化简或求值时,要注意给定的角之间存在的特定关系,充分利用给定的关系结合诱导公式来将角进行转化.特别要注意每一个角所在的象限,防止符号及三角函数名称搞错.诱导公式的应用是三角函数中的基本知识,主要体现在化简或求值,本题难度不大.
4. 的值为( )
A. B. C. D.
5.记 =( ).
A. B. C. D.
6.若 = - ,a是第三象限的角,则 =( )
(A)- (B) (C) (D)
7.若 ,且 ,则 的值为( )
A. B. C. D.
8.已知函数 ,则下列结论正确的是( )
A. 的周期为 B. 在 上单调递减
高三数学三角函数图象变换试题答案及解析

高三数学三角函数图象变换试题答案及解析1.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【答案】A【解析】,所以只需把的图象上所有的点向左平移个单位.选A.【考点】三角函数图象的变换.2.将函数的图像向左平移个单位,再向上平移个单位后得到的函数对应的表达式为,则函数的表达式可以是()A.B.C.D.【答案】C【解析】由可化为.依题意等价于将函数向下平移一个单位得到,再向右平移个单位即可得到.【考点】1.三角函数的平移.2.三角函数诱导公式.3.要得到函数y=sin的图象,只需将函数y=sin 2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】D【解析】要得到函数y=sin,只需将函数y=sin 2x中的x减去,即得到y=sin 2=sin.4.把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【答案】B【解析】把函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:,向左平移1个单位长度得:,再向下平移1个单位长度得:.令x=0,得:;x =,得:;观察即得答案.5.右图是函数y=Asin(ωx+φ)(,)图像的一部分.为了得到这个函数的图像,只要将y=sin x(x∈R)的图像上所有的点( ).向左平移个单位长度,再把所得各点的横坐标缩短到原来的,纵坐标不变..向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变..向左平移个单位长度,再把所得各点的横坐标缩短到原来的,纵坐标不变..向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.【答案】A【解析】此图周期,故,,.所以先向左平移个单位长度,然后所得各点的横坐标缩短为原理的,纵坐标不变,故选A.【考点】三角函数的图像变换6.将函数的图象向右平移个单位,再向上平移1个单位后得到的函数对应的表达式为,则函数的表达式可以是A.B.C.D.【答案】D【解析】由题意,选D.【考点】图象变换.7.函数的部分图象如图所示,为了得到的图象,只需将的图象( )A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【答案】B【解析】观察图象可知,,,∴,.将代入上式得,由已知得,故.由知,为了得到的图象,只需将的图象向右平移个单位.故选.【考点】正弦型函数,函数图象像的平移.8.已知函数的图象经过点.(1)求实数的值;(2)设,求函数的最小正周期与单调递增区间.【答案】(1);(2)最小正周期为,单调递增区间为.【解析】(1)将点代入函数的解析式即可求出实数的值;(2)根据(1)中的结果,先将函数的解析式进行化简,化简为或,再根据周期公式计算函数的最小正周期,再利用整体法对施加相应的限制条件,解出的取值范围,即可求出函数的单调递增区间.试题解析:(1)由于函数的图象经过点,因此,解得,所以;(2),因此函数的最小正周期,由,解得,故函数的单调递增区间为.【考点】1.二倍角公式;2.三角函数的周期性与单调性9.要得到函数y=cos(2x+1)的图像,只要将函数y=cos 2x的图像()A.向左平移1个单位B.向右平移1个单位C.向左平移个单位D.向右平移个单位【答案】C【解析】把函数y=cos 2x的图像向左平移个单位,得y=cos 2的图像,即y=cos(2x+1)的图像,因此选C.10.把函数y=2sin x,x∈R的图象上所有的点向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),则所得函数图象的解析式是________.【答案】y=2sin【解析】根据函数图象变换法则求解.把y=2sin x向左平移个单位长度后得到y=2sin,再把横坐标伸长到原来的2倍(纵坐标不变)得到y=2sin.11.已知函数,则要得到的图象,只需将函数的图象上所有的点()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】,根据左加右减的平移原理,所以应该向左平移个单位长度,故选A.【考点】的图像变换12.当x=时,函数f(x)=A sin (x+φ)(A>0)取得最小值,则函数y=f是().A.奇函数且图象关于点对称B.偶函数且图象关于点(π,0)对称C.奇函数且图象关于直线x=对称D.偶函数且图象关于点对称【答案】C【解析】当x=时,函数f(x)=A sin (x+φ)(A>0)取得最小值,即+φ=-+2kπ,k∈Z,即φ=-+2kπ,k∈Z,所以f(x)=A sin (A>0),所以y=f=A sin =-A sin x,所以函数为奇函数且图象关于直线x=对称.13.把函数的图象向右平移个单位,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是A.B.C.D.【答案】A【解析】把函数的图象向右平移个单位后,所得到函数为,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是,选A.【考点】三角函数图像的平移、伸缩变换.14.定义行列式运算,将函数的图象向左平移()个单位,所得图象对应的函数为奇函数,则的最小值为()A.B.C.D.【答案】A【解析】由行列式运算定义得:,把它的图象向左平移个单位后,得到的图象对应的函数为,,因为为奇函数,所以,∴的最小值为.【考点】新定义,三角函数图像变化,三角函数的对称性.15.将函数的图象向左平移个单位,若所得图象与原图象重合,则的值不可能等于()A.4B.6C.8D.12【答案】B【解析】当时,将函数的图象向左平移个单位,得与原函数相同.当时,将函数的图象向左平移个单位,得与原函数不相同.故选B.【考点】三角函数的变换及图象的变换.16.如图所示,图象为函数的部分图象(1)求的解析式(2)已知且求的值【答案】(1) ;(2)【解析】(1)首先由图像知图象在x轴上的相邻两交点间的距离为半个周期,由此可求出又由得,从而得函数的解析式(2)用三角函数的和差角公式可化简,再将其化为含的式子,再将代入即可试题解析:(1)由图像知, ,∴∴又得∴ 6分(2)∵∴= 10分∵∴ 12分【考点】1、三角函数及其图象;2、三角变换17.函数的部分图像如图,其中,且,则f(x)在下列哪个区间中是单调的()A.B.C.D.【答案】B【解析】当图像过原点时,即时,,在上为减函数,上为增函数当图像的最高点在轴上时,,在上是减函数,上为增函数,所以在上是单调的.【考点】1.三角函数的单调区间;2.三角函数图像.18.若函数的图象向左平移个单位得到的图象,则( )A.B.C.D.【答案】A【解析】将函数的图象向左平移个单位得到.【考点】三角函数图像的平移变换.19.若函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=________.【答案】【解析】由图可知,则,,,将点代入解析式得,所以,故,则.【考点】的图像.20.如果函数的图像关于直线对称,则()A.B.C.D.【答案】D【解析】由的图像关于直线对称,则在处取得最值,所以,而,所以,故选D.【考点】1.三角函数的性质;2.函数的最值求解.21.要得到函数的图象,只需将函数的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】B.【解析】函数,只需将函数向左平移个长度单位可得函数.【考点】三角函数的图像平移.22.要得到一个奇函数,只需将的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【答案】C【解析】,因为是奇函数,所以将的图象向左平移个单位,得到的图象,故答案为:向左平移个单位.【考点】三角函数图像变化,两角和与差的正弦,三角函数的奇偶性.23.如图是函数的图象,则其解析式是_________.【答案】【解析】由图可知,,,,,,解得,故所求解析式是.【考点】本题由三角函数的图象求解析式,学生数形结合的能力.24.函数(其中)的图像如图所示,为了得到的图像,则只要将的图像( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长【答案】B【解析】根据函数图象先确定参数值,由图像之函数周期为,故,图象经过,则,因为,故.根据图象平移的规律,可知图象向右平移可得到图象.【考点】1、根据图象求解析式 ; 2、图象的平移.25.在中产生区间上均匀随机数的函数为“( )”,在用计算机模拟估计函数的图像、直线和轴在区间上部分围成的图形面积时,随机点与该区域内的点的坐标变换公式为( )A.B.C.D.【答案】D【解析】由于,,而,,所以坐标变换公式为,. 故选D.【考点】均匀随机数的意义与简单应用.26.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为( )A.B.C.D.【答案】B【解析】得到的偶函数解析式为,显然【考点】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,选择合适的值通过诱导公式把转化为余弦函数是考查的最终目的.27.为了得到函数的图象,可以将函数的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】B【解析】将函数向右平移个单位长度得;将函数向右平移个单位长度得;将函数向左平移个单位长度得;将函数向左平移个单位长度得【考点】三角函数图像平移点评:三角函数向左平移个单位得向右平移个单位得28.将函数的图象向左平移个单位得到函数的图象,若在上为增函数,则最大值为.【答案】【解析】函数的图象向左平移个单位,得到函数y=g(x)=2sinωx,y=g(x)在上为增函数,所以,即:ω≤2,所以ω的最大值为:2.【考点】本题考查了图象的变换及周期的运用点评:熟练掌握三角函数图象变换及性质是解决此类问题的关键,属基础题29.为了得到函数的图像,只需将函数的图像()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【答案】B【解析】,比较两式可知只需将函数的图像向右平移个长度单位【考点】三角函数图像平移点评:三角函数向左平移个单位得;向右平移个单位得30.已知函数.(Ⅰ)求的定义域及最小正周期;(Ⅱ)求在区间上的最值.【答案】(Ⅰ)的定义域为R Z},最小正周期为(Ⅱ)最小值1,最大值2.【解析】(Ⅰ)由得(Z),故的定义域为R Z}因为,所以的最小正周期.(II)由当,当.【考点】三角函数的最值;三角函数的周期性及其求法.点评:本题考查三角函数的运算.考查的知识点有和差化积、周期与三角函数值域的求法、分类讨论的思想方法.近几年三角运算一直是考试所要求的基本题型之一,本题就是基于这一要求而制定的.,使得对任意的实数x,都有31.已知函数,如果存在实数x1成立,则的最小值为A.B.C.D.【答案】B【解析】,对任意的实数,都有成立,所以,分别为函数的最小值和最大值.要使得最小,只要周期最大,当,即时,周期最大,此时.【考点】两角和与差的正弦函数正弦函数的单调性点评:本题目主要考查了三角函数的辅助角公式的应用,三角函数的性质的应用,周期公式的应用,解题的关键是要由成立得到,分别为函数的最小值和最大值,属于中档题.32.为了得到函数的图象,可由函数的图象怎样平移得到A.向右平移B.向左平移C.向右平移D.向左平移【答案】A【解析】因为,所以的图象向右平移即得到的图像.【考点】函数y=Asin(ωx+φ)的图象变换.点评:本题考查三角函数图象的变换,本题解题的关键是看出是从哪一个图象向那一个图象平移,再把自变量的系数化成1,看出变化的大小即可.33.已知且有,则()A.B.1C.D.0【答案】D【解析】,故答案为D考点:三角函数的化简和计算点评:解决的关键是对于三角函数的性质的灵活变形和运用,属于中档题。
高考数学专题《三角函数的图象与性质》习题含答案解析

专题5.3 三角函数的图象与性质1.(2021·北京市大兴区精华培训学校高三三模)下列函数中,既是奇函数又以π为最小正周期的函数是()A .cos 2y x =B .sin2y x=C .sin cos y x x=+D .tan 2y x=【答案】B 【解析】由三角函数的奇偶性和周期性判断即可得出答案.【详解】解:A 选项:cos 2y x =是周期为π的偶函数,故A 不正确;B 选项:sin2y x =是周期为π的奇函数,故B 正确;C选项:sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭,周期为2π且非奇非偶函数,故C 不正确;D 选项:tan 2y x =是周期为2π的奇函数,故D 不正确.故选:B.2.(2021·海南高三其他模拟)下列函数中,既是偶函数又存在零点的是( )A .ln y x =B .21y x =+C .sin y x=D .cos y x=【答案】D 【解析】根据题意,依次分析选项中函数的奇偶性以及是否存在零点,综合即可得答案.【详解】解:根据题意,依次分析选项:对于A ,y lnx =,为对数函数,不是奇函数,不符合题意,对于B ,21y x =+,为二次函数,是偶函数,但不存在零点,不符合题意,对于C ,sin y x =,为正弦函数,是奇函数,不符合题意,对于D ,cos y x =,为余弦函数,既是偶函数又存在零点,符合题意,故选:D .练基础3.(2021·浙江高三其他模拟)函数y =sin tan x e xx在[-2,2]上的图像可能是( )A .B .C .D .【答案】B 【解析】利用同角三角函数的商数关系并注意利用正切函数的性质求得函数的定义域,可以化简得到()cos ,2x k f x e x x k Z π⎛⎫=≠∈ ⎪⎝⎭,考察当x 趋近于0时,函数的变化趋势,可以排除A,考察端点值的正负可以评出CD.【详解】()sin cos ,tan 2x x e x k f x e x x k Z x π⎛⎫==≠∈ ⎪⎝⎭,当x 趋近于0时,函数值趋近于0cos 01e =,故排除A;()22cos 20f e =<,故排除CD,故选:B4.(2021·全国高三其他模拟(理))函数y =tan(3x +6π)的一个对称中心是( )A .(0,0)B .(6π,0)C .(49π,0)D .以上选项都不对【答案】C 【解析】根据正切函数y =tan x 图象的对称中心是(2k π,0)求出函数y =tan(3x +6π)图象的对称中心,即可得到选项.【详解】解:因为正切函数y =tan x 图象的对称中心是(2k π,0),k ∈Z ;令3x +6π=2k π,解得618k x ππ=-,k ∈Z ;所以函数y =tan(3x +6π)的图象的对称中心为(618k ππ-,0),k ∈Z ;当k =3时,C 正确,故选:C.5.(2019年高考全国Ⅱ卷文)若x 1=,x 2=是函数f (x )=(>0)两个相邻的极值点,则=( )A .2B .C .1D .【答案】A【解析】由题意知,的周期,解得.故选A .6.(2021·临川一中实验学校高三其他模拟(文))若函数cos (0)y x ωω=>的图象在区间,24ππ⎛⎫- ⎪⎝⎭上只有一个对称中心,则ω的取范围为( )A .12ω<≤B .ω1≤<2C .13ω<≤D .13ω≤<【答案】A 【解析】根据题意可得422πππω≤<,即可求出.【详解】4π43πsin x ωωω3212()sin f x x ω=232()44T ωπππ==-=π2ω=由题可知,cos (0)y x ωω=>在,42ππ⎡⎫⎪⎢⎣⎭上只有一个零点,又2x πω=,2x πω=,所以422πππω≤<,即12ω<≤.故选:A.7.(2019年高考北京卷文)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】时,,为偶函数;为偶函数时,对任意的恒成立,即,,得对任意的恒成立,从而.从而“”是“为偶函数”的充分必要条件,故选C.8.(2021·青海西宁市·高三二模(文))函数()cos 218f x x π⎛⎫=-- ⎪⎝⎭图象的一个对称中心为( )A .,14π⎛⎫-- ⎪⎝⎭B .,14π⎛⎫-⎪⎝⎭C .,116π⎛⎫-- ⎪⎝⎭D .3,116π⎛⎫-- ⎪⎝⎭【答案】D 【解析】根据余弦函数的对称中心整体代换求解即可.【详解】令2()82x k k πππ-=+∈Z ,可得5()216k x k ππ=+∈Z .所以当1k =-时,316x π=-,故3,116π⎛⎫-- ⎪⎝⎭满足条件,当0k =时,516x π=,故5,116π⎛⎫-⎪⎝⎭满足条件;故选:D0b =()cos sin cos f x x b x x =+=()f x ()f x ()=()f x f x -x ()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=-sin 0b x =x 0b =0b =()f x9.(2021·全国高一专题练习)设函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的最小正周期为2πB .()f x 的图象关于直线23x π=对称C .()f x 在,2ππ⎛⎫⎪⎝⎭单调递减D .()f x 的一个零点为6x π=【答案】C 【解析】根据解析式结合余弦函数的性质依次判断每个选项的正误即可.【详解】函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,()f x ∴的最小正周期为2π,故A 正确;22(cos 1333f πππ⎛⎫=+=- ⎪⎝⎭,∴()f x 的图象关于直线23x π=对称,故B 正确;当x ∈,2ππ⎛⎫⎪⎝⎭时,54,363πππx ⎛⎫+∈ ⎪⎝⎭,()f x 没有单调性,故C 错误;()cos 0663f πππ⎛⎫=+= ⎪⎝⎭,∴()f x 的一个零点为6x π=,故D 正确.综上,错误的选项为C.故选:C.10.(2017·全国高考真题(理))函数f (x )=s in 2x +3cosx ―34(x ∈0,__________.【答案】1【解析】化简三角函数的解析式,则f (x )=1―cos 2x+3cos x ―34=―cos 2x +3cos x +14= ―(cos x ―32)2+1,由x ∈[0,π2]可得cos x ∈[0,1],当cos x =32时,函数f (x )取得最大值1.练提升1.(2021·河南高二月考(文))已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+ ⎪⎝⎭><<的相邻的两个零点之间的距离是6π,且直线18x π=是()f x 图象的一条对称轴,则12f π⎛⎫=⎪⎝⎭( )A.B .12-C .12D【答案】D 【解析】由相邻两个零点的距离确定周期求出6ω=,再由对称轴确定6π=ϕ,代入12x π=可求出结果.【详解】解:因为相邻的两个零点之间的距离是6π,所以26T π=,23T ππω==,所以6ω=,又sin 6sin 118183f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且02πϕ<<,则6π=ϕ,所以()sin 66f x x π⎛⎫=+ ⎪⎝⎭,则sin 612126f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.故选:D.2.(2020·山东潍坊�高一期末)若函数的最小正周期为,则( )A .B .C .D .【答案】C 【解析】由题意,函数的最小正周期为,可得,解得,即,()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭π(2)(0)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭(0)(2)5f f f π⎛⎫->> ⎪⎝⎭()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭πwππ=1w =()tan()4f x x π=+令,即,当时,,即函数在上单调递增,又由,又由,所以.故选:C.3.(2021·广东佛山市·高三二模)设()0,θπ∈,则“6πθ<”是“1sin 2θ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】由条件即06πθ<<,由06πθ<<,得1sin 2θ<;反之不成立,可举反例.再由充分必要条件的判定得答案.【详解】由()0,θπ∈,则6πθ<,即06πθ<<所以当06πθ<<时,由正弦函数sin y x =的单调性可得1sin sin62πθ<=,即由6πθ<可以得到1sin 2θ<.反之不成立,例如当56πθπ<<时,也有1sin 2θ<成立,但6πθ<不成立.故“6πθ<”是“1sin 2θ<”的充分不必要条件故选:A4.(2021·四川省华蓥中学高三其他模拟(理))已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的最,242k x k k Z πππππ-+<+<+∈3,44k x k k Z ππππ-+<<+∈1k =544x ππ<<()f x 5(,)44ππ4(0)(),()()()555f f f f f πππππ=-=-+=425ππ>>(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭大值为2,其图象相邻两条对称轴之间的距离为2π且()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,则下列判断不正确的是()A .要得到函数()f x 的图象,只需将2cos 2y x =的图象向右平移12π个单位B .函数()f x 的图象关于直线712x π=对称C .,126x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x D .函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减【答案】C 【解析】根据最大值为2,可得A ,根据正弦型函数的周期性,可求得ω,根据对称性,可求得ϕ,即可得()f x 解析式,根据正弦型函数的单调性、值域的求法,逐一分析选项,即可得答案.【详解】由题意得A =2,因为其图象相邻两条对称轴之间的距离为2π,所以22Tπ=,可得2T ππω==,所以2ω=,所以()2sin(2)f x x ϕ=+,因为,06π⎛⎫-⎪⎝⎭为对称中心,所以2,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭,因为||2ϕπ<,令k =0,可得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭.对于A :将2cos 2y x =的图象向右平移12π个单位,可得2cos 22cos 22cos 22sin 22sin 21266263y x x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=--=+ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故A 正确;对于B :令2,32x k k Z πππ+=+∈,解得,212k x k Z ππ=+∈,令k =1,可得712x π=,所以函数()f x 的图象关于直线712x π=对称,故B 正确;对于C :因为,126x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,363x πππ⎡⎤+∈⎢⎥⎣⎦,所以当236x ππ+=时,min ()2sin16f x π==,故C 错误;对于D :令3222,232k x k k Z πππππ+≤+≤+∈,解得7,1212k x k k Z ππππ+≤≤+∈,令k =0,可得一个单调减区间为7,1212ππ⎡⎤⎢⎥⎣⎦,因为57,,6121212ππππ⎡⎤⎡⎤⊂⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故D 正确.故选:C5.(2021·玉林市第十一中学高三其他模拟(文))已知函数()sin (0)f x x ωω=>的图象向右平移4π个单位长度得y =g (x )的图象,若函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则a 的取值范围是( )A .[416,)39B .1620,[)99C .[208,93D .[8,4)3【答案】B 【解析】由函数的平移可得()sin 4g x x πωω⎛⎫=- ⎪⎝⎭,结合三角函数的图象与性质可得ω满足的不等式,即可得解.【详解】由题意,()sin sin 44g x x x ππωωω⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,3,444x πωπωπωω⎡⎤-∈-⎢⎥⎣⎦,因为函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则3542,2433122,2433k k k k πωπππππωππππ⎧⎛⎤-∈-+-+ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩或3412,2433272,2433k k k k πωπππππωππππ⎧⎛⎤-∈-++ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩,k Z ∈,又0>ω,所以1620,99ω⎡∈⎫⎪⎢⎣⎭.故选:B.6.(2020·北京四中高三其他模拟)函数tan 42y x ππ⎛⎫=- ⎪⎝⎭ 的部分图象如图所示,则 ()OA OB AB +⋅=( )A .6B .5C .4D .3【答案】A 【解析】根据正切函数的图象求出A 、B 两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果.【详解】由图象得,令tan 42y x ππ⎛⎫=- ⎪⎝⎭=0,即42x ππ-=kπ,k Z∈k =0时解得x =2,令tan 42y x ππ⎛⎫=-⎪⎝⎭=1,即424x πππ-=,解得x =3,∴A (2,0),B (3,1),∴()()()2,0,3,1,1,1OA OB AB ===,∴()()()5,11,1516OA OB AB +⋅=⋅=+=.故选:A .7.(2020·全国高三其他模拟(文))若函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆222:O x y n +=上,则()1f =( )A B .C .-D .【答案】A 【解析】首先由题意判断该正弦型函数的大概图象及相邻最高点和最低点与圆的交点情况.从而解得n 的取值,再代入1x =求解.【详解】解:设两交点坐标分别为()11,x y ,()22,x y ,则1y =,2y =-又函数()(0)xf x n nπ=>为奇函数,∴12x x =-,当22xnx n ππ=⇒=时,函数取得最大值,∴12n x =-,22nx =,由题,函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆22: O x y n +=上,∴22242n n n ⎛⎫+=⇒= ⎪⎝⎭,则(1)4f π==.故选:A.8.【多选题】(2021·全国高三其他模拟)已知函数()2sin(),(0,0)f x x ωϕωϕπ=+><<图象的一条对称轴为23x π=,4⎛⎫= ⎪⎝⎭f π,且()f x 在2,43ππ⎛⎫ ⎪⎝⎭内单调递减,则以下说法正确的是( )A .7,012π⎛⎫-⎪⎝⎭是其中一个对称中心B .145ω=C .()f x 在5,012π⎛⎫- ⎪⎝⎭单増D .16f π⎛⎫-=- ⎪⎝⎭【答案】AD 【解析】先根据条件求解函数的解析式,然后根据选项验证可得答案.【详解】∵f (x )关23x π=对称,4⎛⎫= ⎪⎝⎭f π,f (x )在2,43ππ⎛⎫ ⎪⎝⎭单调递减,232232,22643k k ωπωϕπππππϕωϕπ⎧=+=+⎧⎪⎪⎪∴∴⎨⎨=⎪⎪+=+⎩⎪⎩,B 错误;()2sin 2,6f x x π⎛⎫=+ ⎪⎝⎭令2,6x k k ππ+=∈Z ,可得,,122k x k ππ=-+∈Z 当1k =-时,7,12x π=-即()f x 关于7,012π⎛⎫- ⎪⎝⎭对称,A 正确;令222,262k x k πππππ-+<+<+得,312k x k ππππ-+<<+∴()f x 在,312ππ⎡⎤-⎢⎥⎣⎦单调递増,即C 错误;2sin 2sin 16366f ππππ⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,D 正确,故选:AD.9.【多选题】(2021·重庆市蜀都中学校高三月考)已知函数()f x 满足x R ∀∈,有()(6)f x f x =-,且(2)(2)f x f x +=-,当[1,1]x ∈-时,)()lnf x x =-,则下列说法正确的是( )A .(2021)0f =B .(2020,2022)x ∈时,()f x 单调递增C .()f x 关于点(1010,0)对称D .(1,11)x ∈-时,方程()sin 2f x x π⎛⎫=⎪⎝⎭的所有根的和为30【答案】CD 【解析】利用已知条件可知()f x 在[1,1]x ∈-上为奇函数且单调递减,关于21x k =+、(2,0)k ,k Z ∈对称,且周期为4,即可判断各选项的正误.【详解】由题设知:()))()f x x x f x -===-=-,故()f x 在[1,1]x ∈-上为奇函数且单调递减,又(2)(4)(2)f x f x f x +=-=-,即关于21x k =+、(2,0)k ,k Z ∈对称,且最小周期为4,A :(2021)(50541)(1)1)0f f f =⨯+==-≠,错误;B :(2020,2022)x ∈等价于(0,2)x ∈,由上易知:(0,1)上递减,(1,2)上递增,故()f x 不单调,错误;C :由上知:()f x 关于(2,0)k 对称且k Z ∈,所以()f x 关于(1010,0)对称,正确;D :由题意,只需确定()f x 与sin 2xy π=在(1,11)x ∈-的交点,判断交点横坐标的对称情况即可求和,如下图示,∴共有6个交点且关于5x =对称,则16253410x x x x x x +=+=+=,∴所有根的和为30,正确.故选:CD10.(2021·浙江杭州市·杭州高级中学高三其他模拟)设函数sin 3xy π=在[,1]t t +上的最大值为()M t ,最小值为()N t ,则()()M t N t -在3722t ≤≤上最大值为________.【答案】1【解析】依题意可得函数在39,22⎡⎤⎢⎥⎣⎦上单调递减,则39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦,所以()()cos 36t M t N t ππ⎛⎫-=-+⎪⎝⎭,即可求出函数的最大值;【详解】解:函数sin3xy π=的周期为6,函数sin3xy π=在39,22⎡⎤⎢⎥⎣⎦上单调递减,当3722t ≤≤时,39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦(1)()()sinsin2cos sin cos 3336636tt t t M t N t πππππππ+⎛⎫⎛⎫⎛⎫-=-=+-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为3722t ≤≤,所以243363t ππππ≤+≤,所以11cos 362t ππ⎛⎫-≤+≤-⎪⎝⎭所以1()()12M t N t ≤-≤当52t =时取最大值1故答案为:11.(2021·全国高考真题(理))已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( )A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A 【解析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .2.(2021·全国高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是( )练真题A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A 【解析】解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈,取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件.故选:A.3.(2019年高考全国Ⅰ卷文)函数f (x )=在的图象大致为( )A .B .C .D .【答案】D2sin cos ++x xx x[,]-ππ【解析】由,得是奇函数,其图象关于原点对称,排除A .又,排除B ,C ,故选D .4.(2020·全国高考真题(理))设函数()cos π(6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+()f x 22π1π42π2(1,π2π()2f ++==>2π(π)01πf =>-+5.(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.6.(2018·北京高考真题(理))设函数f (x )=cos(ωx ―π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为f (x )≤f (π4)对任意的实数x 都成立,所以f (π4)取最大值,所以π4ω―π6=2k π(k ∈Z ),∴ω=8k +23(k∈Z ),因为ω>0,所以当k =0时,ω取最小值为23.。
高中三角函数习题解析精选含详细解答

三角函数题解1.2003上海春;15把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位;再沿y 轴向下平移1个单位;得到的曲线方程是A.1-y sin x +2y -3=0B.y -1sin x +2y -3=0C.y +1sin x +2y +1=0D.-y +1sin x +2y +1=02.2002春北京、安徽;5若角α满足条件sin2α<0;cos α-sin α<0;则α在 A.第一象限 B.第二象限 C.第三象限 D.第四象限3.2002上海春;14在△ABC 中;若2cos B sin A =sinC;则△ABC 的形状一定是 A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形4.2002京皖春文;9函数y =2sin x 的单调增区间是 A.2k π-2π;2k π+2πk ∈ZB.2k π+2π;2k π+23πk ∈Z C.2k π-π;2k πk ∈Z D.2k π;2k π+πk ∈Z5.2002全国文5;理4在0;2π内;使sin x >cos x 成立的x 取值范围为 A.4π;2π∪π;45πB.4π;π C.4π;45πD.4π;π∪45π;23π6.2002北京;11已知fx 是定义在0;3上的函数;fx 的图象如图4—1所示;那么不等式fx cos x <0的解集是A.0;1∪2;3B.1;2π∪2π;3图4—1C.0;1∪2π;3D.0;1∪1;37.2002北京理;3下列四个函数中;以π为最小正周期;且在区间2π;π上为减函数的是 A.y =cos 2xB.y =2|sin x |C.y =31cos xD.y =-cot x8.2002上海;15函数y =x +sin|x |;x ∈-π;π的大致图象是9.2001春季北京、安徽;8若A 、B 是锐角△ABC 的两个内角;则点P cos B -sin A ;sin B -cos A 在A.第一象限B.第二象限C.第三象限D.第四象限10.2001全国文;1tan300°+cot405°的值是 A.1+3B.1-3C.-1-3D.-1+311.2000全国;4已知sin α>sin β;那么下列命题成立的是 A.若α、β是第一象限角;则cos α>cos β B.若α、β是第二象限角;则tan α>tan β C.若α、β是第三象限角;则cos α>cos β D.若α、β是第四象限角;则tan α>tan β12.2000全国;5函数y =-x cos x 的部分图象是13.1999全国;4函数fx =M sin ωx +ϕω>0;在区间a ;b 上是增函数;且fa =-M ;fb =M ;则函数gx =M cos ωx +ϕ在a ;b 上A.是增函数B.是减函数C.可以取得最大值-D.可以取得最小值-m14.1999全国;11若sin α>tan α>cot α-2π<α<2π);则α∈A.-2π;-4π B.-4π;0C.0;4πD.4π;2π15.1999全国文、理;5若fx sin x 是周期为π的奇函数;则fx 可以是 A.sin x B.cos x C.sin2x D.cos2x16.1998全国;6已知点P sin α-cos α;tan α在第一象限;则在0;2π内α的取值范围是 A.2π;43π∪π;45πB.4π;2π∪π;45π C.2π;43π∪45π;23πD.4π;2π∪43π;π 17.1997全国;3函数y =tan 3121-x π在一个周期内的图象是18.1996全国若sin 2x >cos 2x ;则x 的取值范围是 A.{x |2k π-43π<x <2k π+4π;k ∈Z } B.{x |2k π+4π<x <2k π+45π;k ∈Z }C.{x |k π-4π<x <k π+4π;k ∈Z }D.{x |k π+4π<x <k π+43π;k ∈Z }19.1995全国文;7使sin x ≤cos x 成立的x 的一个变化区间是A.-43π;4πB.-2π;2πC.-4π;43πD.0;π20.1995全国;3函数y =4sin3x +4π+3cos3x +4π的最小正周期是A.6πB.2πC.32πD.3π21.1995全国;9已知θ是第三象限角;若sin 4θ+cos 4θ=95;那么sin2θ等于 A.322 B.-322 C.32D.-32 22.1994全国文;14如果函数y =sin2x +a cos2x 的图象关于直线x =-8π对称;那么a 等于A.2B.-2C.1D.-123.1994全国;4设θ是第二象限角;则必有 A.tan2θ>cot 2θ B.tan2θ<cot 2θC.sin2θ>cos 2θ D.sin2θ-cos 2θ 24.2002上海春;9若fx =2sin ωx 0<ω<1)在区间0;3π上的最大值是2;则ω= .25.2002北京文;13sin 52π;cos 56π;tan 57π从小到大的顺序是 .26.1997全国;18︒︒-︒︒︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值为_____.27.1996全国;18tan20°+tan40°+3tan20°·tan40°的值是_____.28.1995全国理;18函数y =sin x -6πcos x 的最小值是 .29.1995上海;17函数y =sin 2x +cos 2x在-2π;2π内的递增区间是 .30.1994全国;18已知sin θ+cos θ=51;θ∈0;π;则cot θ的值是 .31.2000全国理;17已知函数y =21cos 2x +23sin x cos x +1;x ∈R .1当函数y 取得最大值时;求自变量x 的集合;2该函数的图象可由y =sin xx ∈R 的图象经过怎样的平移和伸缩变换得到32.2000全国文;17已知函数y =3sin x +cos x ;x ∈R .1当函数y 取得最大值时;求自变量x 的集合;2该函数的图象可由y =sin xx ∈R 的图象经过怎样的平移和伸缩变换得到33.1995全国理;22求sin 220°+cos 250°+sin20°cos50°的值. 34.1994上海;21已知sin α=53;α∈2π;π;tan π-β=21; 求tan α-2β的值.35.1994全国理;22已知函数fx =tan x ;x ∈0;2π;若x 1、x 2∈0;2π;且x 1≠x 2;证明21fx 1+fx 2>f 221x x +.36.已知函数12()log (sin cos )f x x x =-⑴求它的定义域和值域; ⑵求它的单调区间; ⑶判断它的奇偶性; ⑷判断它的周期性.37. 求函数f x =121log cos()34x π+的单调递增区间38. 已知fx =5sin x cos x -35cos 2x +325x ∈R ⑴求fx 的最小正周期; ⑵求fx 单调区间;⑶求fx 图象的对称轴;对称中心..39若关于x 的方程2cos 2π + x - sin x + a = 0 有实根;求实数a 的取值范围..参考答案1.答案:C解析:将原方程整理为:y =x cos 21+;因为要将原曲线向右、向下分别移动2π个单位和1个单位;因此可得y =)2cos(21π-+x -1为所求方程.整理得y +1sin x +2y +1=0.评述:本题考查了曲线平移的基本方法及三角函数中的诱导公式.如果对平移有深刻理解;可直接化为:y +1cos x -2π+2y +1-1=0;即得C 选项.2.答案:B解析:sin2α=2sin αcos α<0 ∴sin αcos α<0 即sin α与cos α异号;∴α在二、四象限; 又cos α-sin α<0 ∴cos α<sin α由图4—5;满足题意的角α应在第二象限3.答案:C解析:2sin A cos B =sin A +B +sin A -B 又∵2sin A cos B =sin C ; ∴sin A -B =0;∴A =B 4.答案:A解析:函数y =2x 为增函数;因此求函数y =2sin x 的单调增区间即求函数y =sin x 的单调增区间.5.答案:C解法一:作出在0;2π区间上正弦和余弦函数的图象;解出两交点的横坐标4π和45π;由图4—6可得C 答案.图4—6 图4—7解法二:在单位圆上作出一、三象限的对角线;由正弦线、余弦线知应选C.如图4—7 6.答案:C图4—5解析:解不等式fx cos x <0⎪⎩⎪⎨⎧<<><⎪⎩⎪⎨⎧<<<>⇒300cos 0)(300cos 0)(x x x f x x x f 或∴⎩⎨⎧<<<<⎪⎩⎪⎨⎧<<<<1010231x x x x 或ππ ∴0<x <1或2π<x <3 7.答案:B解析:A 项:y =cos 2x =22cos 1x+;x =π;但在区间2π;π上为增函数.B 项:作其图象4—8;由图象可得T =π且在区间2π;π上为减函数.C 项:函数y =cos x 在2π;π区间上为减函数;数y =31x 为减函数.因此y =31cos x 在2π;π区间上为增函数.D 项:函数y =-cot x 在区间2π;π上为增函数. 8.答案:C解析:由奇偶性定义可知函数y =x +sin|x |;x ∈-π;π为非奇非偶函数. 选项A 、D 为奇函数;B 为偶函数;C 为非奇非偶函数. 9.答案:B解析:∵A 、B 是锐角三角形的两个内角;∴A +B >90°; ∴B >90°-A ;∴cos B <sin A ;sin B >cos A ;故选B. 10.答案:B 解析:tan300°+cot405°=tan360°-60°+cot360°+45°=-tan60°+cot45°=1-3.11.答案:D解析:因为在第一、三象限内正弦函数与余弦函数的增减性相反;所以可排除A 、C;在第二象限内正弦函数与正切函数的增减性也相反;所以排除B.只有在第四象限内;正弦函数与正切函数的增减性相同.12.答案:D解析:因为函数y =-x cos x 是奇函数;它的图象关于原点对称;所以排除A 、C;当 x ∈0;2π时;y =-x cos x <0.13.答案:C图4—8解法一:由已知得M >0;-2π+2k π≤ωx +ϕ≤2π+2k πk ∈Z ;故有gx 在a ;b 上不是增函数;也不是减函数;且当ωx +ϕ=2k π时gx 可取到最大值M ;答案为C.解法二:由题意知;可令ω=1;ϕ=0;区间a ;b 为-2π;2π;M =1;则gx 为cos x ;由基本余弦函数的性质得答案为C.评述:本题主要考查函数y =A sin ωx +ϕ的性质;兼考分析思维能力.要求对基本函数的性质能熟练运用正用逆用;解法二取特殊值可降低难度;简化命题. 14.答案:B解法一:取α=±3π;±6π代入求出sin α、tan α、cot α之值;易知α=-6π适合;又只有-6π∈-4π;0;故答案为B.解法二:先由sin α>tan α得:α∈-2π;0;再由tan α>cot α得:α∈-4π;0评述:本题主要考查基本的三角函数的性质及相互关系;1995年、1997年曾出现此类题型;运用特殊值法求解较好.15.答案:B解析:取fx =cos x ;则fx ·sin x =21sin2x 为奇函数;且T =π. 评述:本题主要考查三角函数的奇偶与倍角公式. 16.答案:B解法一:P sin α-cos α;tan α在第一象限;有tan α>0; A 、C 、D 中都存在使tan α<0的α;故答案为B.解法二:取α=3π∈2,4ππ;验证知P 在第一象限;排除A 、C;取α=65π∈43π;π;则P 点不在第一象限;排除D;选B.解法三:画出单位圆如图4—10使sin α-cos α>0是图中阴影部分;又tan α>0可得24παπ<<或π<α<45π;故选B. 评述:本题主要考查三角函数基础知识的灵活运用;突出考查了转化思想和转化方法的选择;采用排除法不失为一个好办法.17.答案:A解析:y =tan 3121-x π=tan 21x -32π;显然函数周期为T =2π;且x =32π时;y =0;故选A.评述:本题主要考查正切函数性质及图象变换;抓住周期和特值点是快速解题的关键.18.答案:D解析一:由已知可得cos2x =cos 2x -sin 2x <0;所以2k π+2π<2x <2k π+23π;k ∈Z .解得k π+4π<x <k π+43π;k ∈Z 注:此题也可用降幂公式转化为cos2x <0. 解析二:由sin 2x >cos 2x 得sin 2x >1-sin 2x ;sin 2x >21.因此有sin x >22或sin x <-22.由正弦函数的图象或单位圆得2k π+4π<x <2k π+43π或2k π+45π<x <2k π+47πk ∈Z ;2k π+45π<x <2k π+47π可写作2k +1π+4π<x <2k +1π+43π;2k 为偶数;2k +1为奇数;不等式的解可以写作n π+4π<x <n π+43π;n ∈Z . 评述:本题考查三角函数的图象和基本性质;应注意三角公式的逆向使用. 19.答案:A 解法一:由已知得:2 sin x -4π≤0;所以2k π+π≤x -4π≤2k π+2π;2k π+45π≤x ≤2k π+49π;令k =-1得-43π≤x ≤4π;选A. 解法二:取x =32π;有sin 2132cos ,2332-==ππ;排除C 、D;取x =3π;有sin3π=213cos ,23=π;排除B;故选A. 解法三:设y =sin x ;y =cos x .在同一坐标系中作出两函数图象如图4—11;观察知答案为A.解法四:画出单位圆;如图4—12;若sin x ≤cos x ;显然应是图中阴影部分;故应选A.评述:本题主要考查正弦函数、余弦函数的性质和图象;属基本求范围题;入手容易;方法较灵活;排除、数形结合皆可运用.20.答案:C图4—12图4—11解析:y =4sin3x +4π+3cos3x +4π=554sin3x +4π+53cos3x +4π=5sin3x +4π+ϕ其中tan ϕ=43所以函数y =sin3x +4π+3cos3x +4π的最小正周期是T =32π. 故应选C.评述:本题考查了a sin α+b cos α=22b a +sin α+ϕ;其中sinϕ=22ba b +;cos ϕ=22ba a +;及正弦函数的周期性.21.答案:A解法一:将原式配方得sin 2θ+cos 2θ2-2sin 2θcos 2θ=95 于是1-21sin 22θ=95;sin 22θ=98;由已知;θ在第三象限; 故2k π+π<θ<2k π+23π从而4k π+2π<2θ<4k π+3π 故2θ在第一、二象限;所以sin2θ=322;故应选A. 解法二:由2k π+π<θ<2k π+23π;有4k π+2π<4k π+3πk ∈Z ;知sin2θ>0;应排除B 、D;验证A 、C;由sin2θ=322;得2sin 2θcos 2θ=94;并与sin 4θ+cos 4θ=95相加得sin 2θ+cos 2θ2=1成立;故选A.评述:本题考查了学生应用正余弦的平方关系配方的能力及正弦函数值在各象限的符号的判别.22.答案:D解析:函数y =sin2x +a cos2x 的图象关于直线x =-8π对称;表明:当x =-8π时;函数取得最大值12+a ;或取得最小值-12+a ;所以有sin -4π+a ·cos -4π2=a 2+1;解得a =-1.评述:本题主要考查函数y =a sin x +b cos x 的图象的对称性及其最值公式.23.答案:A解法一:因为θ为第二象限角;则2k π+2π<θ<2k π+πk ∈Z ;即2θ为第一象限角或第三象限角;从单位圆看是靠近轴的部分如图4—13;所以tan2θ>cot 2θ. 解法二:由已知得:2k π+2π<θ<2k π+π;k π+4π<2θ< k π+2π;k 为奇数时;2n π+45π<2θ<2n π+23πn ∈Z ; k为偶数时;2n π+4π<2θ<2n π+2πn ∈Z ;都有tan 2θ>cot 2θ;选A.评述:本题主要考查象限角的概念和三角函数概念;高于课本.24.答案:43 解析:∵0<ω<1 ∴T =ωπ2>2π ∴fx 在0;3π区间上为单调递增函数∴fx max =f3π即2sin23=ωπ又∵0<ω<1 ∴解得ω=4325.答案:cos56π<sin 52π<tan 57π 解析:cos56π<0;tan 57π=tan 52π ∵0<x <2π时;tan x >x >sin x >0 ∴tan 52π>sin 52π>0 ∴tan 57π>sin 52π>cos 56π26.答案:2-3解析:︒︒︒︒=︒︒-︒-︒︒︒+︒-︒=︒︒-︒︒︒+︒8cos 15cos 8cos 15sin 8sin 15sin )815cos(8sin 15cos )815sin(8sin 15sin 7cos 8sin 15cos 7sin图4—133230sin 30cos 115tan -=︒︒-=︒=.评述:本题重点考查两角差的三角公式、积化和差公式、半角公式等多个知识点.27.答案:3解析:tan60°=︒︒-︒+︒40tan 20tan 140tan 20tan ;∴tan20°+tan40°=3-3tan20°tan40°;∴tan20°+tan40°+3tan20°tan40°=3.28.答案:-43 解析:y =sin x -6πcos x =21sin2x -6π-sin 6π=21sin2x -6π-21当sin2x -6π=-1时;函数有最小值;y 最小=21-1-21=-43. 评述:本题考查了积化和差公式和正弦函数有界性或值域.29.答案:2,23ππ-解析:y =sin2x +cos 2x =2sin 42π+x ;当2k π-2π≤2x +4π≤2k π+2πk ∈Z 时;函数递增;此时4k π-23π≤x ≤4k π+2πk ∈Z ;只有k =0时;-23π;2π-2π;2π. 30.答案:-43 解法一:设法求出sin θ和cos θ;cot θ便可求了;为此先求出sin θ-cos θ的值. 将已知等式两边平方得1+2sin θcos θ=251 变形得1-2sin θcos θ=2-251;即sin θ-cos θ2=2549 又sin θ+cos θ=51;θ∈0;π 则2π<θ<43π;如图4—14 所以sin θ-cos θ=57;于是 sin θ=54;cos θ=-53;cot θ=-43. 解法二:将已知等式平方变形得sin θ·cos θ=-2512;又θ∈0;π;有cos θ<0<sin θ;且cos θ、sin θ是二次方程x 2-51x -2512=0的两个根;故有cos θ=-53; sin θ=54;得cot θ=-43. 评述:本题通过考查三角函数的求值考查思维能力和运算能力;方法较灵活. 31.解:1y =21cos 2x +23sin x cos x +1=412cos 2x -1+41+432sin x cos x +1 =41cos2x +43sin2x +45=21cos2x ·sin 6π+sin2x ·cos 6π+45=21sin2x +6π+45y 取得最大值必须且只需2x +6π=2π+2k π;k ∈Z ;图4—14即x =6π+k π;k ∈Z .所以当函数y 取得最大值时;自变量x 的集合为{x |x =6π+k π;k ∈Z }.2将函数y =sin x 依次进行如下变换: ①把函数y =sin x 的图象向左平移6π;得到函数y =sin x +6π的图象;②把得到的图象上各点横坐标缩短到原来的21倍纵坐标不变;得到函数 y =sin2x +6π的图象;③把得到的图象上各点纵坐标缩短到原来的21倍横坐标不变;得到函数 y =21sin2x +6π的图象;④把得到的图象向上平移45个单位长度;得到函数y =21sin2x +6π+45的图象;综上得到函数y =21cos 2x +23sin x cos x +1的图象.评述:本题主要考查三角函数的图象和性质;考查利用三角公式进行恒等变形的技能以及运算能力.32.解:1y =3sin x +cos x =2sin x cos6π+cos x sin6π=2sin x +6π;x ∈Ry 取得最大值必须且只需x +6π=2π+2k π;k ∈Z ;即x =3π+2k π;k ∈Z .所以;当函数y 取得最大值时;自变量x 的集合为{x |x =3π+2k π;k ∈Z }2变换的步骤是:①把函数y =sin x 的图象向左平移6π;得到函数y =sin x +6π的图象;②令所得到的图象上各点横坐标不变;把纵坐标伸长到原来的2倍;得到函数 y =2sin x +6π的图象;经过这样的变换就得到函数y =3sin x +cos x 的图象.评述:本题主要考查三角函数的图象和性质;利用三角公式进行恒等变形的技能及运算能力.33.解:原式=211-cos40°+211+cos100°+21sin70°-sin30° =1+21cos100°-cos40°+21sin70°-41=43-sin70°sin30°+21sin70° =43-21sin70°+21sin70°=43. 评述:本题考查三角恒等式和运算能力.34.解:由题设sin α=53;α∈2π;π; 可知cos α=-54;tan α=-43又因tan π-β=21;tan β=-21;所以tan2β=34tan 1tan 22-=-ββtan α-2β=2471134432tan tan 12tan tan =++-=+-βαβα 35.证明:tan x 1+tan x 2=2121212211cos cos sin cos cos sin cos sin cos sin x x x x x x x x x x +=+ 2121cos cos )sin(x x x x +=)cos()cos()sin(2212121x x x x x x -+++=因为x 1;x 2∈0;2π;x 1≠x 2;所以2sin x 1+x 2>0;cos x 1cos x 2>0;且0<cos x 1-x 2<1; 从而有0<cos x 1+x 2+cos x 1-x 2<1+cos x 1+x 2; 由此得tan x 1+tan x 2>)cos(1)sin(22121x x x x +++;所以21tan x 1+tan x 2>tan 221x x +即21fx 1+fx 2>f 221x x +.36.解1x 必须满足sin x -cos x >0;利用单位圆中的三角函数线及52244k x k ππππ+<<+;k ∈Z ∴函数定义域为)45k 2,4k 2(π+ππ+π;k ∈Z ∵sin cos )4x x x π--∴当x ∈5(2,2)44k k ππππ++时;0sin()14x π<-≤∴0sin cos x x <-∴121log 2y -≥∴ 函数值域为+∞-,213∵()f x 定义域在数轴上对应的点关于原点不对称;∴()f x 不具备奇偶性4∵ fx+2π=fx ∴ 函数fx 最小正周期为2π 注;利用单位圆中的三角函数线可知;以Ⅰ、Ⅱ象限角平分线为标准;可区分sin x -cos x 的符号;以Ⅱ、Ⅲ象限角平分线为标准;可区分sin x +cos x 的符号37.解:∵f x =121log cos()34x π+令431π+=x t ;∴y=t cos log 21;t 是x 的增函数;又∵0<21<1;∴当y=t cos log 21为单调递增时;cost 为单调递减 且cost>0;∴2k π≤t<2k π+2πk ∈Z;∴2k π≤431π+x <2k π+2π k ∈Z ;6k π-43π≤x<6k π+43π k ∈Z;∴f x =)431cos(log 21π+x 的单调递减区间是6k π-43π;6k π+43πk ∈Z38.解: 1T=π 2增区间k π-12π;k π+125π;减区间k π+]1211k ,125π+ππ 3对称中心62k π+π;0;对称轴π+π=1252k x ;k ∈Z39.解:原方程变形为:2cos 2x - sin x + a = 0 即 2 - 2sin 2x - sin x + a = 0;∴817)41(sin 22sin sin 222-+=-+=x x x a ;∵- 1≤sin x ≤1 ;∴81741sin m in -=-=a x 时,当; 11sin m ax ==a x 时,当; ∴a 的取值范围是1,817-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C. D.
14.若 ,则 =( )
A. B. C.-2 D.2
15.已知 ,那么 的值是( )
A. B. C. D.
16.已知tan(α﹣ )= ,则 的值为( )
A. B.2 C.2 D.﹣2
17. 的值等于( )
A. B. C.1 D.2
18.已知角α的终边上一点的坐标为(sin ,cos ),则角α值为
9.C
【解析】
试题分析:因为函数图像过(0,1),所以 , ,
,故函数 ,又因为函数图像过点( ,0),
,由五点法作图的过程可知, , ,
,所以选C.
考点:三角函数图像;五点作图法.
10.D
【解析】
试题分析:由题; ,即向右平移 个单位.
考点:三角函数求角
【思路点睛】在求角的某个三角函数值时,应注意根据条件选择恰当的函数,尽量做到所选函数在确定角的范围内为一对一函数。
①已知正切函数值,选正切函数;
②已知正、余弦函数值,选正弦或余弦函数;若角的范围是 ,选正、余弦函数皆可;若角的范围是(0,π),选余弦函数较好;若角的范围为 ,选正弦函数较好
4. 的值为( )
A. B. C. D.
5.记 =( ).
A. B. C. D.
6.若 = - ,a是第三象限的角,则 =( )
(A)- (B) (C) (D)
7.若 ,且 ,则 的值为( )
A. B. C. D.
8.已知函数 ,则下列结论正确的是( )
A. 的周期为 B. 在 上单调递减
C. 的最大值为 D. 的图象关于直线 对称
考点:三角函数的性质.
【名师点睛】本题考查复合函数的性质,考查命题真假的判断,由于是选择题,我们可以利用特值法说明一些选择支是错误的(排除法),如A、C,而要说明命题是正确的只能通过证明,如D.对B,可以象题中一样由导数证明单调性,也可由复合函数的单调性确定,正弦函数与余弦函数在 上都是增函数,复合函数仍然是增函数,因此可知 是增不是减.从而确定B错.选择题解法多样、灵活,掌握它的解法与技巧有利于我们快速、正确地解答.
A. B. C. D.
19.已知 ,则 ( )
A. B. C. D.
20.已知 ,则 的值为( )
A. B. C. D.
21.已知锐角 满足 ,则 的值为( )
A. B. C. D.
22.已知 为锐角,若 ,则 ( )
A.3 B.2 C. D.
23.已知 , ,那么 等于( )
A. B. C. D.
24.若 , ,则 等于( )
A. B. C. D.
25.钝角三角形 的面积是 ,则 ( )
A.5 B. C.2 D.1
26.在 ABC中,记角A,B,C的对边为a,b,c,角A为锐角,设向量 ,且 .
(1)求角A的大小及向量 与 的夹角;
(2)若 ,求 ABC面积的最大值.
27.已知函数 .
(Ⅰ)求函数 的单调递减区间;
则:
考点:同角三角函数的平方关系及求值.
7.B
【解析】
试题分析: ,则 ,两边平方,得 ,由于 ,可得 ,所以 ,则 .
考点:三角函数求值.
8.D
【解析】
试题分析: , ,因此周期不是 ,A错;
,当 时, , 递增,B错;
当 时, , 递减,显然 ,C错;
,因此 的图象关于直线 对称,D正确.
故选D.
2.B
【解析】
试题分析: ,所以只需将 的图象向右平移 个长度单位得到 的图象,选B.
考点:三角函数图像变换
【思路点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x而言. 函数y=Asin(ωx+φ),x∈R是奇函数⇔φ=kπ(k∈Z);函数y=Asin(ωx+φ),x∈R是偶函数⇔φ=kπ+ (k∈Z);函数y=Acos(ωx+φ),x∈R是奇函数⇔φ=+ (k∈Z);函数y=Acos(ωx+φ),x∈R是偶函数⇔φ=kπ(k∈Z);
A.向右平移 个单位,再向上平移 个单位
B.向左平移 个单位,再向下平移 个单位
C.向右平移 个单位,再向上平移 个单位
D.向左平移 个单位,再向下平移 个单位
12.将函数 向右平移 个单位,得到函数 的图象,则 等于( )
A. B. C. D.
13.同时具有性质①最小正周期是 ;②图象关于直线 对称;③在 上是增函数的一个函数为( )
3.A
【解析】
试题分析: , ,两边平方得 , ,因为 ,所以 .故选A.
考点:三角函数的同角关系.
4.C
【解析】
试题分析: ,选C.
考点:三角函数的诱导公式.
5.A.
【解析】
试题分析:由题意可知 ,而 .
考点:诱导公式,同角三角函数的基本关系(平方关系,商数关系).
6.A
【解析】
试题分析:由题 在第三象限的角;
31.在 中,角 的对边分别为 ,向量 ,向量 ,且 .
(1)求角 的大小;
(2)设 的中点为 ,且 ,求 的最大值.
32.已知函数 .
(1)求 的值;
(2)求使 成立的 的取值集合.
33.已知函数 .
(1)求函数 的最小正周期;
(2)求函数 取得最大值的所有 组成的集合.
参考答案
1.A
【解析】
试题分析:由题意得 ,因为 ,所以 ,选A.
1.将函数 的图象向右移动 个单位长度,所得的部分图象如右图所示,则 的值为( )
A. B. C. D.
2.已知函数 ,为了得到 的图象,则只需将 的图象( )
A.向右平移 个长度单位 B.向右平移 个长度单位
C.向左平移 个长度单位 D.向左平移 个长度单位
3.若 ,则 ( )
A. B. C. 或1 D. 或-1
9.如图是函数y=2sin(ωx+φ),φ< 的图象,那么
A.ω= ,φ=
B.ω= ,φ=-
C.ω=2,φ=
D.ω=2,φ=-
10.要得到函数 的图象,只需要将函数 的图象()
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位
11.要得到 的图象,只需将函数 的图象()
(Ⅱ)求函数 在区间 上的最大值及最小值.
28.已知向量 ,记 .
(1)若 ,求 的值;
(2)在锐角 中,角 的对边分别是 ,且满足 ,求 的取值范围.
29.在 中,角 对边分别为 ,若 .
(1)求角 的大小;
(2)若 ,且 的面积为 ,求边 的长.
30.在锐角△ 中, .
(1)求角 的值;
(2)若 ,求△ 的面积.