可靠性理论
生存分析与可靠性理论

生存分析与可靠性理论生存分析和可靠性理论是现代工程学和统计学中重要的分析方法。
生存分析旨在研究实物或系统在特定时间段内的可靠性,即其从初始状态到失效状态的时间。
而可靠性理论则更加广泛,旨在评估和优化系统的可靠性,以确保所设计的系统在实际运行中能够达到预期的要求。
1. 生存分析基础生存分析是通过对失效时间和失效发生的概率进行分析来评估物体或系统的可靠性。
在生存分析中,常用的基本概念是生存函数和失效函数。
生存函数描述了系统在特定时间段内仍然正常运行的概率,而失效函数描述了系统在特定时间段内失效的概率。
2. 生存分析方法生存分析的方法包括半参数方法和参数方法。
半参数方法主要包括Kaplan-Meier方法和Cox比例风险回归模型。
Kaplan-Meier方法用于估计生存函数,通过考虑被观测事件和被截尾事件来计算生存概率。
Cox 比例风险回归模型用于评估多个因素对生存函数的影响,并确定其相对风险。
3. 可靠性理论基础可靠性理论是一种定量评估系统可靠性的方法。
它基于概率统计和数学模型来预测系统的可靠性指标,如平均无故障时间(MTBF)和失效率(Failure Rate)。
可靠性理论包括可靠性分析、可靠性评估和可靠性设计等方面。
4. 可靠性分析方法可靠性分析方法包括失效模式和影响分析(FMEA)、失效树分析(FTA)和可靠性块图(RBD)等。
FMEA用于对系统的失效模式和失效原因进行分析,以评估系统的可靠性风险。
FTA用于通过构建失效树来分析系统失效的可能路径和原因。
RBD则用于描述系统的可靠性结构和各个子系统之间的关系。
5. 生存分析与可靠性理论的应用生存分析和可靠性理论在工程领域的应用非常广泛。
它们被广泛应用于电子设备、航空航天、能源系统、医疗设备等各个领域。
通过生存分析和可靠性理论,我们可以评估和改善系统的可靠性,并制定相应的维护和修复策略,从而提高系统的性能和可靠性。
结语生存分析与可靠性理论是现代工程学和统计学中不可或缺的分析方法。
可靠性理论和方法在机械设计中的应用

可靠性理论和方法在机械设计中的应用简介可靠性是指系统或产品在规定条件和时间内能够正常运行的能力。
在机械设计中,可靠性是一个重要的指标,因为机器的可靠性不仅影响产品质量,而且也影响企业的竞争力和市场份额。
因此,采用可靠性理论和方法对机械设计进行可靠性评估和分析是非常必要的。
可靠性理论可靠性理论是研究机器或系统可靠性的一门学科。
常用的可靠性理论有可靠性分析方法和可靠性模型。
可靠性分析方法可靠性分析方法是将机器或系统划分为若干功能单元,并对每个单元进行可靠性分析,从而分析整个机器或系统的可靠性。
通常采用FMEA(故障模式与影响分析法)对单元进行分析,确定每个单元的故障模式和影响,并制定措施来预防或减少故障。
可靠性模型可靠性模型是用来描述机器或系统的可靠性特性的数学模型。
常用的可靠性模型有三参数Weibull分布、指数分布和对数-正态分布等。
这些模型可以用来预测机器或系统的故障概率和寿命等指标。
可靠性方法可靠性方法包括寿命测试和质量控制。
寿命测试寿命测试是对机器或系统进行实验、观察等方法进行测试评估。
其目的是确定机器或系统的平均故障时间、失效模式、失效概率等,为机械设计提供实际数据参考。
质量控制质量控制是通过对机器或系统的开发和生产过程进行控制,以保证产品的质量,减少故障率。
常用的质量控制方法有质量保证、TQC(全面质量管理法)、SPC(统计质量控制法)等。
可靠性在机械设计中的应用零部件设计在机械设计中,零部件可靠性设计是保证机器可靠性的关键之一。
采用可靠性工程方法进行零部件的设计,可以从零部件的材料、加工工艺、性能测试等方面来提高零部件的可靠性,并从统计的角度进行风险评估。
机械结构设计机械结构设计是机械设计的重要环节,也是可靠性工程的重要应用领域。
通过结构分析和有限元分析等手段,对机械结构进行可靠性设计和优化,从而提高机械产品的可靠性和耐久性。
故障分析机械产品发生故障后,采用可靠性工程方法进行故障分析,可以找出故障的原因,从而制定有效的措施使产品的可靠性得到改进和提高。
可靠性理论基础知识

可靠性理论基础知识可靠性理论基础知识1.可靠性定义我国军用标准GIB 451A-2005《可靠性维修性保障性术语》中,可靠性定义为:产品在规定的条件下,规定的时间内,完成规定功能的能力。
“规定条件”包括使用时的环境条件和工作条件。
“规定时间”是指产品规定了的任务时间。
“规定功能”是指产品规定了的必须具备的功能及其技术指标。
可靠性的评价可以使用概率指标或时间指标,这些指标有:可靠度、失效率、平均无故障工作时间、平均失效前时间、有效度等。
典型的失效率曲线是浴盆曲线,其分为三个阶段:早期失效期、偶然失效期、耗损失效期。
早期失效期的失效率为递减形式,即新产品失效率很高,但经过磨合期,失效率会迅速下降。
偶然失效期的失效率为一个平稳值,意味着产品进入了一个稳定的使用期。
耗损失效期的失效率为递增形式,即产品进入老年期,失效率呈递增状态,产品需要更新。
1.1可靠性参数1、失效概率密度和失效分布函数失效分布函数就是寿命的分布函数,也称为不可靠度,记为)(t F 。
它是产品或系统在规定的条件下和规定的时间内失效的概率,通常表示为)()(t T P t F ≤=失效概率密度是累积失效概率对时间t 的倒数,记为f(t)。
它是产品在包含t 的单位时间内发生失效的概率,可表示为)()()('t F dtt dF t f ==。
2、可靠度可靠度是指产品或系统在规定的条件下,规定的时间内,完成规定功能的概率。
可靠度是时间的函数,可靠度是可靠性的定量指标。
可靠度是时间的函数,记为)(t R 。
通常表示为?∞=-=>=t dt t f t F t T P t R )()(1)()(式中t 为规定的时间,T 表示产品寿命。
3、失效率已工作到时刻t 的产品,在时刻t 后单位时间内发生失效的概率成为该产品时刻t 的失效率函数,简称失效率,记为)(t λ。
)(1)()()()()()(''t F t F t R t F t R t f t -===λ。
可靠性工程基本理论

可靠性工程基本理论1可靠性(Reliability)可靠性理论是从电子技术领域发展起来,近年发展到机械技术及现代工程管理领域,成为一门新兴的边缘学科。
可靠性与安全性有密切的关系,是系统的两大主要特性,它的很多理论已应用于安全管理。
可靠性的理论基础是概率论和数理统计,其任务是研究系统或产品的可靠程度,提高质量和经济效益,提高生产的安全性。
产品的可靠性是指产品在规定的条件下,在规定的时间内完成规定功能的能力。
产品可以是一个零件也可以是一个系统。
规定的条件包括使用条件、应力条件、环境条件和贮存条件。
可靠性与时间也有密切联系,随时间的延续,产品的可靠程度就会下降。
可靠性技术及其概念与系统工程、安全工程、质量管理、价值工程学、工程心理学、环境工程等都有十分密切的关系。
所以,可靠性工程学是一门综合性较强的工作技术。
2可靠度(Reliablity)是指产品在规定条件下,在规定时间内,完成规定功能的概率。
可靠度用字母R表示,它的取值范围为0≤R≤1。
因此,常用百分数表示。
若将产品在规定的条件下,在规定时间内丧失规定功能的概率记为F,则R=1-F。
其中F称为失效概率,亦称不可靠度。
设有N个产品,在规定的条件下,在规定的时间内,有n个产品失效,则F=n/NR=(N-n)/N=1-F可靠度与时间有关,如100个日光灯管,使用一年和使用两年,其损坏的数量是不同的,失效率和可靠度也都不同。
所以可靠度是时间的函数,记成R(t),称为可靠度函数。
图5-1是可靠度函数R(t)和失效概率F(t)变化曲线。
图5-1可靠度3失效率(Failurerate)失效率是指工作到某一时刻尚未失效的产品,在该时该后,单位时间内发生失效的概率。
在极值理论中,失效率称为“强度函数”;在经济学中,称它的倒数为“密尔(Mill)率”;在人寿保险事故中,称它为“死亡率强度”。
失效率是衡量产品在单位时间内失效次数的数量指标;它也是描述产品在单位时间内失效的可能性。
可靠性理论在工程管理中的应用研究

可靠性理论在工程管理中的应用研究随着科技的不断进步和应用,人们对于产品和服务的质量要求越来越高,尤其在工程领域中,制造商和服务提供商亟需确保其产品和服务的可靠性,以满足客户的需求。
可靠性理论在工程管理中的应用,已经发展成为一门重要的学科,对于提高产品和服务的质量、降低成本、提高效率等方面都有着重要的作用。
一、可靠性理论简介可靠性理论是一门研究什么情况下系统才能正常运行的学科。
它可以帮助人们确定产品和服务的可靠性水平,从而为产品和服务的设计、制造、测试、运行和维护等各个阶段提供了指导。
可靠性理论主要通过概率统计方法来描述系统的可靠性,并基于故障原理和故障树等方法来进行可靠性分析和可靠性设计。
二、可靠性理论在工程管理中的应用1. 可靠性分析在工程领域中,产品和服务的可靠性分析是一项非常重要的任务。
可靠性分析可以帮助制造商和服务提供商确定产品和服务的可靠性水平,并找出导致系统故障的原因。
通过可靠性分析,可以确定哪些系统部件是故障的主要来源,从而为设计更可靠的产品或服务提供灵感和指导。
2. 可靠性设计可靠性设计是指在产品和服务的设计和制造阶段,有效降低系统故障率和提高整个系统的可靠性水平。
可靠性设计要考虑各个子系统之间的相互影响,以确定风险,并寻找最佳平衡点,以确保整个系统的可靠性达到最佳水平。
可靠性设计一般采用优化方法,以寻求最佳的决策方案。
通过系统的可靠性分析和模拟,可以找出最优的组件数量、组件性能、维护间隔时间等系统参数,并使之达到成本和性能的平衡。
3. 可靠性测试可靠性测试是通过实验和测试来检测产品和服务的质量,以确保它们的可靠性水平。
在可靠性测试中,人们可以测试产品和服务的可靠性,以检测哪些部件和子系统是不可靠的。
可靠性测试可以使用加速环境测试、失效模式分析、可靠性策略分析等方法。
通过这些方法,可以评估出产品和服务的质量,提前发现潜在的故障和问题,并采取有效的措施加以解决。
三、结语作为一门重要的学科,可靠性理论在工程管理中的应用已经是不可或缺的。
(安全管理理论)可靠性工程基本理论

可靠性工程基本理论1可靠性(Reliability)可靠性理论是从电子技术领域发展起来,近年发展到机械技术及现代工程管理领域,成为一门新兴的边缘学科。
可靠性与安全性有密切的关系,是系统的两大主要特性,它的很多理论已应用于安全管理。
可靠性的理论基础是概率论和数理统计,其任务是研究系统或产品的可靠程度,提高质量和经济效益,提高生产的安全性。
产品的可靠性是指产品在规定的条件下,在规定的时间内完成规定功能的能力。
产品可以是一个零件也可以是一个系统。
规定的条件包括使用条件、应力条件、环境条件和贮存条件。
可靠性与时间也有密切联系,随时间的延续,产品的可靠程度就会下降。
可靠性技术及其概念与系统工程、安全工程、质量管理、价值工程学、工程心理学、环境工程等都有十分密切的关系。
所以,可靠性工程学是一门综合性较强的工作技术。
2可靠度(Reliablity)是指产品在规定条件下,在规定时间内,完成规定功能的概率。
可靠度用字母R表示,它的取值范围为0≤R≤1。
因此,常用百分数表示。
若将产品在规定的条件下,在规定时间内丧失规定功能的概率记为F,则R=1-F。
其中F称为失效概率,亦称不可靠度。
设有N个产品,在规定的条件下,在规定的时间内,有n个产品失效,则F=n/NR=(N-n)/N=1-F可靠度与时间有关,如100个日光灯管,使用一年和使用两年,其损坏的数量是不同的,失效率和可靠度也都不同。
所以可靠度是时间的函数,记成R(t),称为可靠度函数。
图5-1是可靠度函数R(t)和失效概率F(t)变化曲线。
图5-1可靠度3失效率(Failurerate)失效率是指工作到某一时刻尚未失效的产品,在该时该后,单位时间内发生失效的概率。
在极值理论中,失效率称为“强度函数”;在经济学中,称它的倒数为“密尔(Mill)率”;在人寿保险事故中,称它为“死亡率强度”。
失效率是衡量产品在单位时间内失效次数的数量指标;它也是描述产品在单位时间内失效的可能性。
可靠性理论、案例及应用

8
案例
长征系列火箭的可靠性(三)
对无法采取冗余 措施的系统,如液体 火箭发动机进行了以 提高可靠性为目的的 改进设计,箭体结构 提高了剩余强度系数, 特别是针对历史上火 箭飞行试验中出现的 问题和薄弱环节,重 点解决了防多余物、 防虚焊、防断压线、 防松动、防漏电、防 电磁干扰、防过负荷、 防不相容、防漏液漏 气、防局部环境放大、 防装配应力、防应力 集中等问题。
3
一、 可靠性概念(二)
可靠性的重要性
对可靠性的重视度,与地区的经济发达程度成正比。例如,英国电讯(BT)关于可靠性管理/指 标要求有产品寿命、MTBF报告、可靠性框图、失效树分析(FTA)、可靠性测试计划和测试报告等; 泰国只有MTBF和MTTF的要求;而厄瓜多尔则未提到,只是提出环境适应性和安全性的要求。 产品的可靠性很重要,它不仅影响生产公司的前途,而且影响到使用者的安全(前苏联的“联盟 11号”宇宙飞船返回时,因压力阀门提前打开而造成三名宇航员全部死亡)。可靠性好的产品,不但 可以减少公司的维修费用,而且可以很快就打出品牌,大幅度提升公司形象,增加公司收入。 随着市场经济的发展,竞争日趋激烈,人们不仅要求产品物美价廉,而且十分重视产品的可靠性 和安全性。日本的汽车、家用电器等产品能够占领美国以及国际市场。主要的原因就是日本的产品可 靠性胜过我国一筹。美国的康明斯、卡勃彼特柴油机,大修期为12000小时,而我国柴油机不过1000 小时,有的甚至几十小时、几百小时就出现故障。我国生产的电梯,平均使用寿命(指两次大修期的 间隔时期)为3年左右,而国外的电梯平均寿命在10年以上,是我们的3倍;故障率,国外平均为0.05 次,而我国为1次以上,高出20倍,这样的产品怎么有竞争力呢!因此要想在竞争中立于不败之地, 就要狠抓产品质量,特别是产品可靠性,没有可靠性就没有质量,企业就无法在激烈的竞争中生存和 发展。因此,可靠性问题必须引起政府和企业的高度重视,抓好可靠性工作,不仅是关系到企业生存 和发展的大问题,也是关系到国家经济兴衰的大问题。
统计学中的生存分析和可靠性理论

统计学中的生存分析和可靠性理论生存分析和可靠性理论是统计学中的两个重要概念,它们在研究事件发生的概率和持续时间上起着关键作用。
本文将介绍生存分析和可靠性理论的基本概念、应用领域以及相关统计方法,以及它们在实际问题中的应用。
一、生存分析生存分析是一种用来研究事件发生概率和持续时间的统计方法。
该方法主要用于分析个体在给定时间内发生某一事件的概率,例如疾病的发病率、产品的失效率等。
生存分析通常涉及到“生存函数”(Survival Function)和“风险函数”(Hazard Function)的计算和分析。
生存函数描述了个体在给定时间范围内存活下来的概率。
它通常用累积分布函数(Cumulative Distribution Function)来表示,记作S(t),其中t表示给定的时间点。
生存函数的数值范围为0到1,一般来说,随着时间的推移,生存函数的数值会逐渐减小。
风险函数描述了在给定时间点发生事件的概率。
它表示在给定时间点t发生事件的概率密度函数,记作h(t)。
如果事件的发生概率随着时间的推移而递增,那么风险函数的数值也会逐渐增加。
生存分析常用的统计方法包括“Kapla n-Meier生存估计法”(Kaplan-Meier Estimator)和“Cox比例风险模型”(Cox Proportional Hazards Model)。
Kaplan-Meier生存估计法用于估计给定时间范围内生存函数的数值,可以考虑到“截尾数据”(Censored Data)的影响。
Cox比例风险模型则用于研究因素对生存时间的影响,可以考虑到多个协变量的影响。
二、可靠性理论可靠性理论是一种用来研究产品、系统或者设备失效概率和寿命分布的统计方法。
该方法主要关注于评估和优化系统的可靠性,以提供合理的决策依据。
在可靠性理论中,通常使用“可靠度函数”(Reliability Function)和“失效率函数”(Failure Rate Function)来描述产品或系统的性能。
可靠性基本理论model

可靠性指标及其内在关系
故障分布密度函数 f (t)
f (t)
1
F (t )
f (t) F (t)
R(t)
f (t) R(t)
(t )
f
(t)
(t )
•
e
t 0பைடு நூலகம்
( x)dx
累积故障概率 F (t)
F (t )
t 0
f (t ) dF (t ) F ' (t ) dt
瞬时失效率 λ(t),(简称失效率)
定义:是在t时刻,还未失效旳产品,在 该时刻后旳单位时间内发生失效旳概率。
(t) lim F(t t) F(t) dF(t) 1
t0 R(t)t
dt R(t)
中位寿命和特征寿命
• 中位寿命:满足R(t0.5)=0.5旳t0.5称为中位寿 命,即寿命比它长和比它短旳产品各占二 分之一
元器件质量与可靠性旳表征
军用电子元器件原则和规范中要求旳可 靠性确保要求有两种表征方式,即失效率 等级和产品确保等级。前者用于大多数 (并非全部)电子元件可靠性水平旳评估, 后者则用来评价电子器件(涉及部分电子 元件)旳可靠性确保水平。
1 失效率等级
毋庸多言,失效率是量化表征产品可靠性水平旳 一种特征数,在以其为可靠性表征方式旳原则和规 范中要求有关从10-5/h和10-8/h旳四个等级。
维修性指标
对可维修产品还有平均维修时间,它是设备处 于故障状态时间旳平均值,或设备修复时间旳 平均值。记以MTTR,它是英文(Mean Time To Repair)旳缩写。
MTTR 0 t.m(t)dt 0 (1 M (t))dt
可靠性工程基本理论

可靠性工程基本理论可靠性工程是一种工程学科,主要涉及如何对产品和系统的可靠性进行评估、设计和管理等。
可靠性工程的基本理论包括可靠性的定义、可靠性的特征、可靠性的评估方法、可靠性的设计原则和可靠性预测方法等。
1. 可靠性的定义可靠性是指产品或系统在规定条件下保持正常运行的能力。
从概率学的角度来看,可靠性是指产品或系统在规定时间内不出现故障的概率。
具体来说,可靠性可以用以下公式来表示:可靠性= (正常运行时间)/(正常运行时间+故障时间)2. 可靠性的特征可靠性具有以下几个特征:(1)可度量性:可靠性可以通过概率和统计方法进行量化和评估。
(2)时效性:产品或系统的可靠性是随着时间变化的,需要及时进行检测和更新。
(3)风险性:可靠性与风险直接相关,风险越高,可靠性要求越高。
(4)系统性:可靠性需要从整个系统的角度考虑,而非单个组成部分的可靠性。
3. 可靠性的评估方法可靠性评估方法主要包括故障模式和效应分析(FMEA)、故障树分析(FTA)、可靠性增长法(RAM)和可靠性试验等。
(1)故障模式和效应分析(FMEA)是一种从设计阶段就开始进行的预防性可靠性评估方法。
其主要思想是通过对每个零部件的故障模式和故障后果进行识别、分类和评估,推断出产品或系统的可靠性并采取相应的预防措施。
(2)故障树分析(FTA)是一种基于逻辑的可靠性评估方法。
它将故障模式和事件之间的因果关系表示为一棵树状结构,通过逐层分析和推断出故障的原因,进而评估产品或系统的可靠性。
(3)可靠性增长法(RAM)是一种逐步提高产品或系统可靠性的方法。
通过在产品或系统的使用过程中收集和分析故障数据,以修正设计和制造过程中不足之处,最终提高产品或系统的可靠性。
(4)可靠性试验是通过对样品进行一系列可靠性测试,从而评估产品或系统的可靠性。
常见的可靠性试验方法包括加速寿命试验、高温试验、低温试验、振动试验、冲击试验等。
4.可靠性的设计原则可靠性的设计原则包括下列几个方面:(1)原则上应对可能引起故障的所有因素(如环境因素)进行评估和控制。
可靠性理论案例及应用

1 2
可靠性概念及意义 可靠性案例
3
滚动轴承的可靠性设计
1
一、 可靠性概念(一)
产品的可靠性是指:产品在规定的条件下、在规定的时间内完成规定的功 能的能力。 对产品而言,可靠性越高就越好。可靠性高的产品,可以长时间正 常工作(这正是所有消费者需要得到的);从专业术语上来说,就是产品的可 靠性越高,产品可以无故障工作的时间就越长。
5
案例 长征系列火箭的可靠性(一)
“神舟”号载人飞船的胜利飞天,托 举“神舟”号飞船胜利飞天的运载火箭是 号称“中华神箭”的“长征”-2号F型运载 火箭,其简写形式为“长征”-2F(CZ-2F) 运载火箭。 CZ-2F火箭由芯级、二级和4 个助推器、整流罩、逃逸塔等组成的火箭 全长58.34m,起飞质量479.8吨,芯级直 径3.35m,助推器直径2.25m,整流罩最大 直径3.8m,火箭的芯级和助推器发动机均 使用四氧化二氮和偏二甲肼作为推进剂, 它可把8t重的有效载荷送入近地点高度 200km,远地点高度350km的轨道。它由 箭体结构系统、动力装置系统、控制系统、 推进剂利用系统、故障检测系统、逃逸系 统、遥测系统、外测安全系统、附加系统、 地面设备系统共十个大小系统组成。
产品的可靠性很重要,它不仅影响生产公司的前途,而且影响到使用者的安全(前苏联的“联盟 11号”宇宙飞船返回时,因压力阀门提前打开而造成三名宇航员全部死亡)。可靠性好的产品,不但 可以减少公司的维修费用,而且可以很快就打出品牌,大幅度提升公司形象,增加公司收入。
随着市场经济的发展,竞争日趋激烈,人们不仅要求产品物美价廉,而且十分重视产品的可靠性 和安全性。日本的汽车、家用电器等产品能够占领美国以及国际市场。主要的原因就是日本的产品可 靠性胜过我国一筹。美国的康明斯、卡勃彼特柴油机,大修期为12000小时,而我国柴油机不过1000 小时,有的甚至几十小时、几百小时就出现故障。我国生产的电梯,平均使用寿命(指两次大修期的 间隔时期)为3年左右,而国外的电梯平均寿命在10年以上,是我们的3倍;故障率,国外平均为0.05 次,而我国为1次以上,高出20倍,这样的产品怎么有竞争力呢!因此要想在竞争中立于不败之地, 就要狠抓产品质量,特别是产品可靠性,没有可靠性就没有质量,企业就无法在激烈的竞争中生存和 发展。因此,可靠性问题必须引起政府和企业的高度重视,抓好可靠性工作,不仅是关系到企业生存 和发展的大问题,也是关系到国家经济兴衰的大问题。
可靠性基本理论

论证产品的可靠性指标
• 不能或难以维修产品例如:卫星、导弹和海缆等, 不言而喻,维修性方面的指标是无需考虑的,关键 是系统在规定工作期间的可靠度指标。平均工作时 间或平均寿命也不宜用作此类系统的可靠性指标, 除非有附加说明,因为具有相同平均工作时间指标 的系统,其实际可靠度可能差异很大。例如一套寿 命为复合指数分布的并联冗余双工系统与一套寿命 为指数分布的系统,假设具有相同的平均寿命,当 系统规定的工作时间为系统平均寿命的十分之一时, 后者的失效机会约比前者增大七倍多。
第一篇 可靠性基本理论
主要内容
1 概论 2 产品可靠性模型 3 可靠性指标论证 4 可靠性分配
产品的寿命特性
早期失效 失 效 率
使用寿命期
损耗失效期
寿命时间
产品的可靠性定义
• 产品的可靠性就是在规定的条件下,在规定的 时间内、产品完成规定功能的能力。
• 产品可靠性定义包括下列四要素: (1) 规定的时间;
(2) 规定的环境和使用条件; (3) 规定的任务和功能; (4) 具体的可靠性指标值。
• 对于一个具体的产品,应按上述各点分别给予 具体的明确的定义。
可靠性的特征量
• 可靠度
• 定义:是指产品在规定的条件下,在规定的时 间内、产品完成规定功能的概率。它是时间的 函数,记作R(t),也称为可靠度函数。
A MTBF MTBF MTTR
可靠性、维修性指标的论证和确定
可靠性是定量的概率统计指标 • 在设计中它必须是可预计的,在试验中它必须
是可测量的,在生产中它必须是可保证的及在 现场使用中它必须是可保持的。
系统可靠性与维修性指标可以从两方面论证: 一是研究被论证系统应该具有或侧重于哪些可 靠性和维修性指标;二是决定这些指标水平的 高低。
可靠性基础理论

有效性 availability-可以维修的产品在某时刻 具有或维持规定功能的能力。
耐久性 durability-产品在规定的使用和维修条 件下,达到某种技术或经济指标极限时,完 成规定功能的能力。
失效(故障) failure-产品丧失规定的功能。 对可修复产品通常也称故障。
失效模式 failure mode-失效的表现形式。
品寿命单位总数与该产品计划和非计划维修时间总 数之比)。
任务可靠性的定义:“产品在规定的任务剖面内完 成规定功能的能力”。它反映了产品的执行任务成 功的概率,它只统计危及任务成功的致命故障。常 见的任务可靠性参数有任务可靠性,MCSP (Mission Completion Success Probability,完成任 务的成功概率,其度量方法为:在规定的条件下和 规定的时间内系统完成规定任务的概率),MTBCF (Mission Time Between Critical Failure,致命故障 间的任务时间,其度量方法为:在规定的一系列任 务剖面中,产品任务总时间与致命性故障数之比) 等。
任何产品只要有可靠性要求就必须有故障判 据。故障判据需要根据下面的依据进行确定。 1)研制任务书;2)技术要求说明书;3)由 可靠性人员制定。
(2)可靠度
可靠度就是在规定的时间内和规定的条件下 系统完成规定功能的成功概率。一般记为R。 它是时间的函数,故也记为 R(t),称为可靠性 函数。
如果用随机变量 t 表示产品从开始工作到发生 失效或故障的时间,其概率密度为 f(t) 如下图 所示:
② 偶然失效期,也称随机失效期 (Random Failures) 。失效率曲线为恒定型,即t0到t1间 的失效率近似为常数。失效主要由非预期的
过载、误操作、意外的天灾以及一些尚不清
2 可靠性的基本理论讲解

特征寿命:当R (t) =e-1 =0.37 时对应的 Te1 寿命称特征寿命。
F
1000
nf
1000
53
/110
48.18%
n
三、失效概率密度f(t) 1、失效概率密度 2、失效概率密度的估计值
1、失效概率密度f(t)
失效概率密度是累积失效概率对时间的变化 率,记作f(t)。它表示产品寿命落在包含t的 单位时间内的概率,即产品在单位时间内失效的 概率。其表示式为:
f (t)=dF (t)/ dt =F′(t)
六、可靠寿命、特征寿命和中位寿命
前面已经提到可靠度函数R(t)是产品工作 时间t的函数,在t= 0 时,R(0)= 1,当工作 时间增加,R(t)逐渐减小。可靠度与工作时间 有一一对应的关系。有时需要知道可靠度等于给 定值r 时,产品的寿命是多少?
可靠寿命TR,就是给定可靠度R 时对应的TR寿命。即 R (TR)= R
即
F
t
t
0
f
t
dt
Rt
t
f
t dt
2、失效概率密度的估计值
f t
F t
t
t
F t
1 t
nf
t
n
t
n
f t
n
n f t
nt
式中Δn f (t) 在(t,t+Δt) 时间间隔内失效的产品数。
当产品的失效概率密度f(t)已确定时,由前 述可知,f(t)、F(t)、R (t)之间的关 系可用下图所示。
R
ns
t
n
nf
t
1
nf
t
n
n
n
n f t 为在规定时间区间内未完成规定功能的
交通事故致因理论可靠性理论详解分析

第三讲交通安全基本理论交通安全基本理论是揭示交通安全的本质和运动规律的学科知识体系,是交通安全研究的基础.包括事故致因理论、可靠性理论和事故预防理论。
一、事故致因理论为了防止事故,必须弄清楚事故为什么会发生,造成事故发生的原因因素——事故致因因素有哪些,在此基础上,研究如何通过消除、控制事故致因因素来防止事故发生。
1、事故产生原因分析1)人因素分析在交通运输系统中,由于人的因素造成的事故占到事故总数的70%以上。
在整个运输生产过程中,如果人不发生错误,即使其他方面某一环节或几个环节出了故障,也会由于人的调节和控制,可能避免事故的发生或降低事故的损失;但是如果人出了差错,除非装有自控保护装置,否则事故将是不可避免的。
因此对人员可靠性进行研究是现代社会生产安全事故发展规律的客观要求。
一方面,在大多数情况下,人机系统主要是通过人的操纵、调节和检查等方式来实现控制的,即使是高度自动化的人机系统,也不能完全离开人的监视以及对异常情况的处理;另一方面,随着科学技术的进步,设备可靠性不断提高,同工业化之初相比,设备的运行环境已得到了极大的改善,直接由硬件的原因导致事故的比例已经下降到比较低的水平,而人相对成为系统中更为不可靠的因素,人为失误诱发的故障或事件却呈上升趋势,成为导致重大事故发生的主要原因之一。
特别是当一个系统变的越来越复杂时,系统失效事故中人为失误的比率将会变得更高,人为失误将会严重地影响着系统的安全性、可靠性、经济性,人员可靠性分析就显得愈加重要。
许多研究业已表明:系统的可靠性与安全性在很大程度上取决于人的可靠性。
据文献统计,20%-90%的系统失效与人为失误有关,其中直接或间接肇发事故的比率为70%-90%,所以要研究人员系统的可靠性切入点就是人为失误。
人为失误,即人的行为失误,是指工作人员在生产、工作过程中导致实际要实现的功能与所要求的功能不一致,其结果可能以某种形式给生产、工作带来不良影响的行为。
可靠性数学理论

可靠性数学理论运用概率统计和运筹学的理论和方法对产品(单元或系统)的可靠性作定量研究。
它是可靠性理论的基础之一。
可靠性是指产品在一定条件下完成其预定功能的能力,丧失功能称为失效。
可靠性理论是以产品的寿命特征为研究对象的。
目录1简介2可靠性的数量指标3寿命数据统计分析4寿命分布及分布类5结构函数1简介运用概率统计和运筹学的理论和方法,对单元或系统的可靠性作定量研究。
它是可靠性理论的基础之一。
所谓可靠性,是指单元或由单元组成的系统在一定条件下完成其预定功能的能力。
单元是元件、器件、部件、设备等的泛称。
单元或系统的功能丧失,无论其能否修复,都称之为失效。
可靠性理论即以失效现象为其研究对象,因而涉及工程设计、失效机理的物理和化学分析、失效数据的收集和处理、可靠性的定量评定以及使用、维修和管理等范围。
可靠性问题的提出,是由于大工业生产及第二次世界大战中研制和使用复杂的军事装备的需要。
虽然单元的可靠性不断有很大的提高,但是由于大型系统的结构越来越复杂,要求其完成的功能也越来越广泛,因此定量评定和改善系统可靠性已成为一个重要课题。
通过数学模型定量研究系统的可靠性,并探讨它与系统性能、经济效益之间的关系,是可靠性数学理论的主要方法之一。
2可靠性的数量指标假定系统只有正常和失效两种状态。
系统在失效前的一段正常工作时间称为寿命。
由于失效是随机现象,因此,寿命可用非负随机变量X及其分布函数F(t)=P{X≤t}(见概率分布)来描述。
对失效后不加修复的单元,其可靠性用可靠度来刻画。
单元在时刻t的可靠度R(t)定义为:在一定的工作条件下在规定的时间【0,t】中完成其预定功能的概率。
因此,若单元的寿命为X,相应的寿命(或失效)分布函数为F(t),则R(t)=P{x>t}=1-F(t),其中t≥0。
根据上式的概率含义,可靠度R(t)又称为生存函数。
一个生存到时刻t的单元,称之为有年龄t。
在其后长度为x的区间中失效的条件概率为1若2存在,则r(t)称为时刻t的(条件)失效率。
可靠性理论 第二章

95 0.95 100
F (1000) F (1000)
f (1000 ) f (1000 )
5 0.05 100
1 5 10 5 / h 100 200
(1000 ) (1000 )
1 5.26 10 5 / h 95 200
(2-1-22)
式中的 R(t )1 (r ) 是R(t)的反函数。 当R=0.5时产品的寿命称为中位寿命,即:
t (0.5) R 5 (0.5)
(2-1-23)
当只0.368时产品的寿命称为特征寿命,即:
t (0.368) R 1 (0.368)
(2-1-24)
从定义可看出,产品工作到可靠寿命t(r),大约有100(1—r)%的产品 失效;产品工作到中位寿命t(0.5),大约有一半失效;产品工作到特 征寿命,大约有63.2%的产品失效,对于失效规律服从指数分布的一 批产品而言,其特征寿命就是平均寿命,因此约有63.2%的产品将在 达到平均寿命前失效,就是说,能够工作到平均寿命的产品仅占36.8 %左右。
对某不可修设备,投人100台进行试验,试验到1000h有5台 失效,继续试验到1200h,又有1台失效,至试验结束时所有 设备失效,总的工作时间为106h,试求R(1000),F(1000), 1000),f(1000)以及设备的平均寿命。 解:由题意知:N=100, n(1000)=5,t =1200—1000=200h, n(1000)=1,T=106h。 根据前面所讲的公式得:
dt
0
F(t)的估计值
到t时刻失效的产品数 n(t) F = 试验的产品总数 N
可靠性理论 第一章

1.2 可靠性的重要意义
(1)提高产品的可靠性,可以防止故障和事故的 发生,从而保证人民生命财产安全。 (2)提高可靠性,能使产品总的费用降低。 (3)提高可靠性,可以减少停机时间,提高产品 可用率。 (4) 提高可靠性,可以改善企业信誉,增强竞争 力,扩大产品销路,从而提高经济效益。 (5)提高可靠性,可以减少产品责任赔偿案件的 发生,避免不必要的经济损失。
Reliability deals with the behavior of failure rate over a long period of time. Quality control deals with percent out of specification, or percent of defectives at one point in time, (i.e. when receiving incoming components, or at a point during the product’s manufacture/assembly). Reliability is quality over time.
Product Cost vs. Reliability
可靠性的研究内容
1.可靠性工程 可靠性工程是指为了保证产品在设计、生产及使用过程 中达到预定的可靠性指标,应该采取的技术及组织管理措 施。可靠性技术在产品全寿命周期的各个阶段任务是: (1)可靠性设计:通过设计奠定产品可靠性基础。研究 在设计阶段如何预测和预防各种可能发生的故障和隐患, 以及确保产品的维修性。 (2)可靠性试验:通过试验测定和验证产品可靠性。研 究在有限的样本、时间和使用费用下,如何获得合理的评 定结果,找出薄弱环节,提出改进措施,提高产品可靠性。 (3)制造阶段的可靠性:通过制造实现产品的可靠性。 研究制造偏差的控制、缺陷的处理和早期故障的排除,保 证设计目标的实现。 (4)使用阶段的可靠性:通过使用维持产品的可靠性。 研究产品运行中的可靠性监视、诊断、预测,以及采用售 后服务与维修策略,防止可靠性劣化。
可靠性理论-第1章绪论

• “浴盆曲线”
• (a)早期故障期:产品早期故障反映了设计、制 造、加工、装配等质量薄弱环节。早期故障期又 称调整期或锻炼期,此种故障可用厂内试验的办 法来消除。
(b)正常工作期:在此期间产品故障率低而且稳 定,是设备工作的最好时期。在这期间内产品 发生故障大多出于偶然因素,如突然过载、碰 撞等,因此这个时期又叫偶然失效期。
பைடு நூலகம்可靠性理论
第1章 概论
一、可靠性工程的发展
• 1、起步阶段,1939~1949年,40年代 • 2、发展阶段,上世纪50年代 • 3、普及阶段,上世纪60年代 • 4、成熟阶段,上世纪70年代
二、提高产品可靠性的意义:
是用户的需要、企业生存的需要、产品发展的需要。
三、可靠性的基本概念
1、可靠性研究的内容
0.0202
3 3 6 94 0.03 0.06 0.94 0.031
4 5 11 89 5 7 18 82 6 9 27 73 7 12 …… … … 14 3 99 1 15 1 100 0
0.05 0.07 0.09
… 0.03 0.01
0.11 0.18 0.27
0.89 0.82 0.73
对于不可修复的产品,可靠度的观测值是指直到规定的时间区间 终了为止,能完成规定功能的产品数与在该区间开始时投入工作产品 数之比,即
式中:N——开始投入工作产品数,(R是当N趋于无穷大时的值) Ns(t)——到t时刻完成规定功能产品数,即残存数 Nf(t)——到t时刻未完成规定功能产品数,即失效数。目录
… 0.99 1.0
… 0.01
0
0.053 0.079 0.1100
… / 100
f (t), F(t)和R(t)之间的关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
串联结构
考虑一两独立单元的串联结构, 系统的可靠度为
潜在提高重要度度量法,串联系统中最 弱单元重要度最高
并联结构
系统可靠度
对于并联系统,利用潜在提高法,并联 结构的所有单元的重要度相同。
串联
独立的两个单元的串联系统, 系统可靠度为
并联
风险降低值法(RRW)
RRW为系统不可靠度与系统单元i被替换 为完美单元时系统不可靠度的比值。
式中: Ii ——第i个元、部件的重要度;
n ——系统所含元、部件的数量。
5
对单元i的关键路集向量 ,关键路集定义 为: 则单元i的关键路集集合个数为
Birnbaum结构重要性
例题
考虑2/3的表决系统
例题
利用最小割集或最小路集判定重要度
1 由单个基本事件组成的最小割集,该 基本事件的结构重要度最大。 2 仅在同一个最小割集中出现的基本事 件,而在其他最小割集中不再出现,则 所有基本事件的重要度相同。 3 若所有的最小割集的基本事件数目相 等,则在不同的最小割集中出现次数最 多的结构重要度大,出现次数相等者结 构重要度相同。
试求t=100h时各部件的概率重要度、 结构重要度和关键重要度。
X1
M
●
X2
X3
53
(1)概率重要度
其结构函数为:
Φ(X)=1-[(1-X1)(1-X2X3)]
系统故障的概率函数为:
g ( F ( t ) ) 1 [1 F 1 ( t ) ] [1 F 2 ( t ) F 3 ( t ) ]
E [X i (1i , X ) (1 X i ) (0i , X )] Fi(t )h(1i , F (t )) (1 Fi(t ))h(0i , F (t ))
g [F (t )] h(1i , F (t )) h(0 i , F (t )) Fi(t ) 可以看出单元i的概率重要度(Birnbaum) 与单元i的故障度无关
B
式中:
g i (t )
F i (t )
F s (t )
——概率重要度;
——元、部件不可靠度;
——系统不可靠度,
F s (t ) P (T t ) g [ F (t ) ]
例1 独立串联结构
两个独立单元1、2串联,可靠度分别为p1 和p2。假设 p1>p2, 则 于是第一个单元的概率重要度为:
g [ F ( t )] Fi ( t ) g [ F ( t )] Fi ( t ) g [ F {t )] I iCR ( t ) lim g i (t ) Fi ( t ) g [ F ( t )] Fi ( t ) F s (t ) Fi ( t ) 0 Fi ( t )
概率重要度和结构重要度的关系
设每个单元的可靠度为1/2时, 则随机向 量的每一个不同的路径概率为2^(n-1), 即 假定单元之间独立
潜在提高值法
一系统单元i换为一个完美的单元,系统 的可靠度如何提高? 单元i引起的潜在提 高记为
单元i换成完美单元后可靠度与没换之前的 区别。 为直线的斜率,可以用公式描述如 下:
当我们运用Birnbaum度量法,并联系统最重要的单 元是可靠度最高的单元。要想提高串联系统的可靠 度,我们要提高系统中最强的单元。
根据枢轴分解
这就表明
是
的线性函数
Birnbaum第二种表示法
按照上面的枢轴分解
可见单元i的Birnbaum重要度仅与其他单元 的可靠度有关,而与单元i自己的可靠度无 关,这可以看成是Birnbaum重要度不足之 处。第i个底事件的概率重要度等于该底事 件发生时顶事件发生的概率与它不发生时 顶事件依然发生的概率之差。
例如,某故障树有四个最小割集
G1={X1,X2,X3} G2={X1,X3,X5} G3={X1,X5,X6} G4={X1,X4,X7} 据此判断X2,X4, X6,X7在四个割集中 都只出现一次,所以重要度相同 因为X3,X5均出现2次,重要度相同 X1出现4次,重要度最大 I(1)>I(3)=I(5)>I(2)=I(4)=I(6)=I(7)
4 若故障树的各个最小割集所含基本事 件数目不等,则各基本事件的结构重要 度的大小,可按下列不同情况来确定:
若某几个基本事件在不同割集中重复出现 的次数相等,则在少事件的最小割集中出现 的基本事件结构重要度大,在多事件的最小 割集中出现的结构重要度小。 若遇到在少事件的最小割集中出现次数少 ,而在多事件的最小割集中出现次数多的基 本事件,或错综复杂的情况,可采用下式近 似比较。
g 2 (1 0 0 ) [1 F 1 (1 0 0 ) ] F 3 (1 0 0 ) 0 . 2 3 4 5
g 3 (1 0 0 ) [1 F 1 (1 0 0 ) ] F 2 (1 0 0 ) 0 . 1 6 4
显然,部件1最重要。
55
(2)结构重要度
该系统有三个部件,所以共有 2 3 8 种状态。
g [ F ( t )] F s ( t ) g 3 (t) [1 F1 ( t )] F 2 ( t ) F3 ( t ) F3 ( t )
54
g 1 (1 0 0 ) 1 F 2 (1 0 0 ) F 3 (1 0 0 ) 1 (1 e 0 . 0 0 21 0 0 )(1 e 0 . 0 0 31 0 0 ) 0 . 9 5 3
概率重要度
定义:第i个部件不可靠度的变化引起系统不可
靠度变化的程度。用数学公式表达为
概率重要 度越大的 底事件, 当其发生 的的概率 稍有变化 ,会引起 顶事件的 显著变化 ,可见这 种底事件 很重要。
25
g[F (t )] h[ p(t )] g i(t ) I (i | t ) Fi(t ) p i(t )
例子
某故障树共有5个最小割集
P1={X1,X3} P2={X1,X4} P3={X2,X3,X5} P4={X2,X4,X5} P5={X3,X6,X7} X1在最小割集(基本事件最少)出现2次 X2在包含3个基本事件的最小割集里出现2次 I(1)>I(2)=I(5) X3出现3次,X5出现两次
单元i引起的潜在提高值主要指用以完美 替代后系统可靠度发生的变化。在实际 工程应用中不可能把可靠度提高到1, 假设提高到一个新的水平 , 可以获 得可信潜在提高值
表示用一可靠度为 后系统的可靠度。
替代
5.4 风险业绩法
已知单元i处于失效状态时系统不可靠的 相对增长率。
故障树角度
第二个单元的概率重要度为
当我们运用Birnbaum度量法,串联系统最重要的单 元是可靠度最低的单元。要想提高串联系统的可靠 度,我们要提高系统中最薄弱的单元。
例1 独立并联结构
两个独立单元1、2并联联,可靠度分别为 p1和p2。假设 p1>p2, 则 于是第一个单元的概率重要度为:
第二个单元的概率重要度为
故障树求出底事件的结构重要度
2. 找出x1=1,正常工作的集合12个,x1=0,工作的 集合5个 3. x1的结构重要度为(12-5)/16
概率重要度分析
概率重要度分析表示第i个事件发生的概 率变化引起顶事件发生概率变化的程度。 由于顶事件发生的概率函数是n个基本事件 发生概率的多重线性函数。 所以对第i个 基本事件发生的概率求一次偏导,即可得 该基本事件的概率重要度系数
例题
考虑单元3的Birnbaum的重要度 3正常工作时: 3不正常工作: 此时
Birnbaum重要度第三种写法
因为
,我们可以写为
因为考虑的是一致系统(单调关联系统), 则 取值就1和0.因此
这就是说Brinbaum重要度就 单元i是关键路径向量。
就是时刻t时
通过枢轴分解,上式等价为
Fs(t ) g[F (t )] E (X )
可靠性理论
陈 昱
cyu@ 63600565
随着科学技术的发展,系统和设备的复杂程度 越来越高,设计工作不可能一次完成,从而对 系统,部件单元的可靠性分析越来越重要。对 于一个多部件的系统,我们对于设计,改进和 运行等方面会提出很多问题,例如
50
关键重要度
其中: I iCR 为关键重要度; 是i元、部件故障引发系统故
F i (t) g i (t)
障的概率,此数值越大表明i元部件引发系统故障 的概率越大。因此,对系统进行检修时应首先检 查关键重要度大的元部件。
51
例
故障树如图所示,
顶事件T
已知
1 0 . 0 0 1 / h , 2 0 . 0 0 2 / h , 3 0 . 0 0 3 / h . +
确定系统需要监测的部位
制定系统故障诊断时的核对清单等。
3
基本事件的结构重要度
不考虑基本事件发生的难易程度,或假 设各基本事件发生概率相同,仅从故障树的 结构上研究基本事件对顶事件的影响程度, 称为结构重要度分析。 只考虑当故障树中某个基本事件i的状 态由不发生变为发生,而其余基本事件的状 态保持不变时,顶事件状态也由不发生变为 发生的情况。此时
(1 i , X ) ( 0 i , X ) 1
此时基本事件Xi所对应的的பைடு நூலகம்集叫危险割集