数据结构期末考点总结

合集下载

数据结构总结期末总结报告

数据结构总结期末总结报告

数据结构总结期末总结报告数据结构是计算机科学中一个非常重要的基础课程,它研究的是计算机中数据的组织方式和存储结构,为算法和程序的设计提供了基础。

本报告将对我在本学期学习数据结构课程的收获进行总结。

一、知识框架梳理本学期学习的数据结构课程主要包括线性结构、树形结构、图形结构等内容。

在学习过程中,我首先对每一种数据结构的基本原理进行了学习和理解,通过课堂讲解、教材阅读以及与同学交流,我逐渐形成了对数据结构的整体框架。

1. 线性结构(数组、链表、栈、队列)线性结构是最简单的数据结构之一,它的特点是数据元素之间只存在一对一的关系。

在本学期的学习中,我了解了数组、链表、栈和队列等线性结构的基本原理和实现方式。

数组是一种具有固定大小的数据结构,它的特点是内存连续、随机访问,但插入和删除操作比较低效。

链表是一种动态的数据结构,它的特点是内存不连续、插入和删除操作高效,但随机访问效率较低。

栈和队列都是基于线性结构的特殊形式,栈是后进先出(LIFO)的结构,而队列是先进先出(FIFO)的结构。

通过对这些线性结构的学习,我进一步提高了对数据的组织和操作的理解。

2. 树形结构(二叉树、堆、哈希表)树形结构是线性结构的扩展,它的特点是数据元素之间存在一对多的关系。

在本学期的学习中,我了解了二叉树、堆和哈希表等树形结构的基本原理和实现方式。

二叉树是一种每个节点最多有两个子节点的树形结构,它的特点是插入、删除操作高效,但查找操作效率较低。

堆是一种特殊的二叉树结构,它的特点是每个节点的值都大于等于(或小于等于)其子节点的值。

堆主要用于实现优先队列,通过堆的调整(上滤和下滤)可以实现高效的插入和删除操作。

哈希表是一种通过哈希函数将数据映射到固定大小的数组中的数据结构,它的特点是查找操作效率很高,但插入和删除操作的效率较低。

通过对这些树形结构的学习,我进一步提高了对数据的组织和操作的理解,并学到了一些高效的算法和技巧。

3. 图形结构(图、邻接表、邻接矩阵)图形结构是一种多对多的数据结构,它的特点是数据元素之间存在多对多的关系。

数据结构期末复习汇总

数据结构期末复习汇总

数据结构期末复习汇总数据结构是计算机科学中十分重要的概念之一,它是指数据对象以及数据对象之间的关系、操作和操作规则的集合。

在计算机科学的学习中,掌握数据结构是至关重要的一步。

为了帮助大家复习期末考试,以下是一些数据结构的重要知识点的总结。

一、线性表线性表是最简单的一种数据结构,它是一种有序的数据元素集合。

线性表的特点是元素之间的关系是一对一的关系,每个元素都与它的前驱和后继相连接。

1.数组:数组是最常见的线性表结构,它由相同类型的数据元素组成,这些元素通过索引来访问。

2.链表:链表是另一种常见的线性表结构,它由节点组成,每个节点包含了数据以及一个指向下一个节点的指针。

二、栈和队列栈和队列是常用的线性结构,它们在操作上有一些限制。

1.栈:栈是一种具有后进先出(LIFO)特性的线性表。

栈中的元素只能在栈顶进行插入和删除操作。

2.队列:队列是一种具有先进先出(FIFO)特性的线性表。

队列中的元素只能在队尾进行插入操作,在队头进行删除操作。

三、树和二叉树树是一种非线性的数据结构,它由节点和边组成。

树的一个节点可以有多个子节点,但是每个节点只能有一个父节点。

1.二叉树:二叉树是一种特殊的树结构,每个节点最多只能有两个子节点。

2.二叉树:二叉树是一种特殊的二叉树,它满足左子树的所有节点的值都小于根节点的值,右子树的所有节点的值都大于根节点的值。

四、图图是一种非常重要的非线性结构,它由节点和边组成。

图的节点之间可以有多种不同的关系。

1.有向图:有向图是一种图结构,图的边有方向,从一个节点到另一个节点。

2.无向图:无向图是一种图结构,图的边没有方向。

五、排序和算法排序算法是对一组数据进行排序的算法,算法是找到目标元素在一组数据中的位置的算法。

1.冒泡排序:冒泡排序是一种交换排序算法,其核心思想是比较相邻的元素并进行交换,将最大(或最小)元素逐渐“冒泡”到数组的末尾。

2.快速排序:快速排序是一种分治排序算法,其核心思想是通过选择一个基准元素,将数组划分为两个子数组,其中一个子数组的所有元素都小于基准元素,另一个子数组的所有元素都大于基准元素,然后对两个子数组进行递归排序。

数据结构期末复习重点知识点总结

数据结构期末复习重点知识点总结

数据结构期末复习重点知识点总结一、数据结构概述数据结构是计算机科学中一门关于数据组织、存储和管理的学科。

它涉及到各种数据类型和它们之间的关系,以及对这些数据类型进行有效操作和处理的算法。

二、基本数据结构1. 数组- 数组是一种线性数据结构,用于存储相同类型的数据元素。

- 数组的特点是随机访问和连续存储。

- 数组的插入和删除操作需要移动其他元素,时间复杂度为O(n)。

2. 链表- 链表是一种线性数据结构,通过节点之间的指针链接来组织数据。

- 链表的特点是插入和删除操作简单,时间复杂度为O(1)。

- 链表分为单链表、双向链表和循环链表等不同类型。

3. 栈- 栈是一种具有后进先出(LIFO)特性的数据结构。

- 栈的操作主要包括压栈(Push)和弹栈(Pop)两个操作。

- 栈常用于表达式求值、递归算法的实现等场景。

4. 队列- 队列是一种具有先进先出(FIFO)特性的数据结构。

- 队列的操作主要包括入队(Enqueue)和出队(Dequeue)两个操作。

- 队列常用于实现缓冲区、消息队列等场景。

5. 树- 树是一种非线性的数据结构,由节点和边组成。

- 树的节点具有层级关系,由根节点、子节点和叶节点等组成。

- 常见的树结构有二叉树、红黑树、B树等。

6. 图- 图是一种非线性的数据结构,由节点和边组成。

- 图的节点之间可以有多对多的关系。

- 图的遍历方式有深度优先搜索(DFS)和广度优先搜索(BFS)。

三、常见的数据结构算法1. 排序算法- 冒泡排序、插入排序、选择排序等简单但效率较低的排序算法。

- 快速排序、归并排序、堆排序等高效的排序算法。

- 基数排序、桶排序等适用于特定场景的排序算法。

2. 查找算法- 顺序查找、二分查找等常用的查找算法。

- 树结构相关的查找算法,如二叉搜索树、红黑树等。

- 哈希查找、索引查找等高效的查找算法。

3. 图算法- Dijkstra算法、Bellman-Ford算法等最短路径算法。

数据结构笔记期末总结

数据结构笔记期末总结

数据结构笔记期末总结一、概述在本学期的学习中,我们主要学习了数据结构及其相关的算法。

数据结构是计算机科学的基础,是任何程序设计的基础。

它研究如何组织和存储数据,以及如何高效地访问和操作数据。

在学习过程中,我们通过理论讲解、实验操作、编程实践等方式加深了对数据结构的理解和应用能力的提升。

本文将对本学期所学的内容进行总结,以期对数据结构的学习有一个全面的回顾与总结。

二、线性结构1. 数组数组是一种线性结构,它将相同数据类型的元素按照一定的顺序排列,并按照一定的规则访问这些元素。

在数组中,每个元素都有一个索引,通过索引可以快速地访问数组中的元素。

数组的优点是存储效率高,支持随机访问;缺点是插入和删除操作比较低效。

2. 链表链表是由一系列节点组成的线性结构,每个节点包含一个数据元素和一个指向下一个节点的指针。

链表分为单向链表和双向链表,单向链表的每个节点只有一个指针,指向下一个节点;双向链表的每个节点有两个指针,一个指向前一个节点,一个指向后一个节点。

链表的优点是插入和删除操作高效,支持动态扩容;缺点是访问元素的效率较低。

3. 栈栈是一种具有特定操作规则的线性结构,它的特点是先进后出。

栈有两个基本操作:入栈和出栈。

入栈操作将一个元素放入栈顶,出栈操作将栈顶元素移除。

栈的应用场景很多,比如函数调用栈、表达式求值等。

4. 队列队列是一种具有特定操作规则的线性结构,它的特点是先进先出。

队列有两个基本操作:入队和出队。

入队操作将一个元素放入队尾,出队操作将队头元素移除。

队列的应用场景很多,比如任务调度、消息传递等。

三、非线性结构1. 树树是一种非线性结构,它由节点组成,节点之间存在一对多的层次关系。

树的基本概念包括根节点、叶子节点、父节点、子节点等。

树的应用场景很多,比如文件系统、数据库索引等。

2. 二叉树二叉树是一种特殊的树,它的每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树的遍历方式有前序遍历、中序遍历和后序遍历。

数据结构期末复习总结

数据结构期末复习总结

第1章绪论1.数据(Data) :是描述客观事物的数字、字符以及所有能输入到计算机中并能被计算机接受的各种符号集合的统称。

包括数值数据和非数值数据(字符串、图形、图像、音频、视频)。

2.数据元素(Data Element) :表示一个事物的一组数据称为一个数据元素(结点顶点、记录);数据元素是数据的基本单位。

3.数据项(Data Item):是数据元素中有独立含义的、不可分割的最小标识单位(字段、域、属性)。

一个数据元素可由若干个数据项组成。

4.数据对象(Data Object):是性质相同的数据元素的集合,是数据的一个子集。

如字符集合C ={A,B,C,…} 。

数据(Data) :是描述客观事物的数字、字符以及所有能输入到计算机中并能被计算机接受的各种符号集合的统称。

包括数值数据和非数值数据(字符串、图形、图像、音频、视频)。

数据元素(Data Element) :表示一个事物的一组数据称为一个数据元素(结点、顶点、记录);数据元素是数据的基本单位。

数据项(Data Item):是数据元素中有独立含义的、不可分割的最小标识单位(字段、域、属性)。

一个数据元素可由若干个数据项组成。

数据对象(Data Object):是性质相同的数据元素的集合,是数据的一个子集。

如字符集合C ={A,B,C,…} 。

●数据的逻辑结构指数据元素之间的逻辑关系,用一个数据元素的集合和定义在此集合上的若干关系来表示。

●四种逻辑结构:集合、线性结构、树型结构、图状结构。

●数据结构的形式定义是一个二元组:Data-Structure=(D,S)其中:D是数据元素的有限集,S是D上关系的有限集。

例1:设数据逻辑结构B=(K,R)K={k1, k2, …, k9}R={ <k1, k3>,<k1, k8>,<k2, k3>,<k2, k4>,<k2, k5>,<k3, k9>,<k5, k6>,<k8, k9>,<k9, k7>,<k4, k7>,<k4, k6>有时候关系图不唯一(一般是无向图)●数据结构在计算机内存中的存储包括数据元素的存储和元素之间的关系的表示。

数据结构期末概念总结

数据结构期末概念总结

数据结构期末概念总结第一部分:基本概念和算法复杂度分析1. 数据结构的定义和分类2. 算法的定义和特性3. 算法复杂度分析的方法和技巧4. 时间复杂度和空间复杂度的计算和比较5. 最坏情况、平均情况和最好情况的复杂度分析6. Big-O符号和渐进记号法的使用和解读第二部分:线性数据结构1. 数组和链表的定义、特性和比较2. 栈和队列的定义、特性和应用3. 双向链表和循环链表的定义、特性和应用4. 线性数据结构的遍历和操作算法5. 线性数据结构的实现和优化技巧第三部分:树和二叉树1. 树的定义、特性和应用2. 二叉树的定义、特性和分类3. 二叉树的遍历算法(前序、中序、后序、层序)4. 二叉搜索树的定义、特性和操作算法5. 平衡二叉树和AVL树的定义、特性和操作算法6. 堆和二叉堆的定义、特性和应用第四部分:图1. 图的定义、特性和分类2. 图的表示方法(邻接矩阵、邻接表、哈希表)3. 图的遍历算法(深度优先搜索、广度优先搜索)4. 最短路径算法(Dijkstra算法、Floyd-Warshall算法)5. 最小生成树算法(Prim算法、Kruskal算法)第五部分:高级数据结构1. 哈希表的定义、特性和应用2. 字典树的定义、特性和应用3. 线段树的定义、特性和应用4. 并查集的定义、特性和应用第六部分:高级算法思想1. 分治算法和递归思想2. 动态规划算法和状态转移方程3. 贪心算法和贪心选择策略4. 回溯算法和剪枝技巧在本篇文章中,我从基本概念和算法复杂度分析开始,系统地总结了数据结构课程的内容。

通过对线性数据结构(数组、链表、栈、队列)、树和二叉树、图、高级数据结构(哈希表、字典树、线段树、并查集)以及高级算法思想的介绍,读者们可以对数据结构的主要概念有一个全面的了解。

当然,数据结构不仅仅是掌握概念,更重要的是能够灵活运用这些概念解决实际问题。

因此,读者们在学习数据结构的过程中,一定要多做练习和实践,深入理解每种数据结构的应用场景和实现细节。

期末数据结构复习总结

期末数据结构复习总结

数据结构第一章1、数据是描述客观事物的数和字符的集合2、数据项:是具有独立含义的数据最小单位,也称为字段或域3、数据对象:指性质相同的数据元数的集合,是数据的一个子集4、数据结构:指所有数据元素以及数据元素之间的关系5、数据的逻辑结构:由数据元素之间的逻辑关系构成6、数据的存储结构:数据元素及其关系在计算机存储器中的存储表示,称为物理结构逻辑结构的表达方式:1、图表表示:采用表格或图形直接描述数据的逻辑关系。

2、二元组表示:通用的数据逻辑结构表示方式:R={r},r={<010,021>,<021,027>,<027,029>}逻辑结构的类型:1、集合:指数据元素之间除了“同属于一个集合”的关系以外别无其他关系。

2、线性结构:一对一关系,只有一个前驱和一个后继元素。

3、树形结构:多对多关系,除了开始元素以外,都只有一个前驱和多个后继元素。

什么是算法:是问题求解步骤的描述,是指令的有限序列。

1、有穷性:执行有穷步后结束2、确定性:不能有二义性3、可行性:算法可以通过有限次的操作完成其功能,能够被重复地执行4、有输入:一个算法有0个或多个输入5、有输出:一个算法有一个或多个输出算法设计的目标:正确性(算法能正确执行)、可使用性(方便地使用)、可读性(算法易于理解)、健壮性(有好的容错性,不会异常中断或死机)、高效率与低存储量需求(算法的执行时间和存储空间)算法时间性分析方法:事后统计法(缺点:必须执行、存在很多因素掩盖算法本质)、事前估算法(仅考虑算法本身的效率高低、只依赖于问题的规模)第二章线性表:具有相同特性的数据元素的一个有限序列有序表:指线性表中的所有元素按递增或剃减方式有序排列顺序表:线性表的顺序存储结构简称为顺序表(下标从0开始),从逻辑上相邻的元素对应的物理存储位置也相邻,当进行插入或删除的操作时要平均移动半个表的元素,相当费时。

链表:线性表的链式存储结构称为链表,拥有唯一的标识头指针(head pointer),相应的指向开始结点(first pointer),指向尾结点的称为尾指针(tail pointer)。

(完整word版)大学数据结构期末知识点重点总结(考试专用)

(完整word版)大学数据结构期末知识点重点总结(考试专用)

第一章概论1。

数据结构描述的是按照一定逻辑关系组织起来的待处理数据元素的表示及相关操作,涉及数据的逻辑结构、存储结构和运算2。

数据的逻辑结构是从具体问题抽象出来的数学模型,反映了事物的组成结构及事物之间的逻辑关系可以用一组数据(结点集合K)以及这些数据之间的一组二元关系(关系集合R)来表示:(K, R)结点集K是由有限个结点组成的集合,每一个结点代表一个数据或一组有明确结构的数据关系集R是定义在集合K上的一组关系,其中每个关系r(r∈R)都是K×K上的二元关系3.数据类型a。

基本数据类型整数类型(integer)、实数类型(real)、布尔类型(boolean)、字符类型(char)、指针类型(pointer)b。

复合数据类型复合类型是由基本数据类型组合而成的数据类型;复合数据类型本身,又可参与定义结构更为复杂的结点类型4.数据结构的分类:线性结构(一对一)、树型结构(一对多)、图结构(多对多)5。

四种基本存储映射方法:顺序、链接、索引、散列6。

算法的特性:通用性、有效性、确定性、有穷性7.算法分析:目的是从解决同一个问题的不同算法中选择比较适合的一种,或者对原始算法进行改造、加工、使其优化8.渐进算法分析a.大Ο分析法:上限,表明最坏情况b.Ω分析法:下限,表明最好情况c.Θ分析法:当上限和下限相同时,表明平均情况第二章线性表1.线性结构的基本特征a.集合中必存在唯一的一个“第一元素”b。

集合中必存在唯一的一个“最后元素"c.除最后元素之外,均有唯一的后继d。

除第一元素之外,均有唯一的前驱2.线性结构的基本特点:均匀性、有序性3。

顺序表a.主要特性:元素的类型相同;元素顺序地存储在连续存储空间中,每一个元素唯一的索引值;使用常数作为向量长度b。

线性表中任意元素的存储位置:Loc(ki)= Loc(k0)+ i * L(设每个元素需占用L个存储单元)c. 线性表的优缺点:优点:逻辑结构与存储结构一致;属于随机存取方式,即查找每个元素所花时间基本一样缺点:空间难以扩充d.检索:ASL=【Ο(1)】e。

数据结构期末重点复习必过

数据结构期末重点复习必过

数据结构期末重点复习必过1.1 简述下列概念:数据、数据元素、数据类型、数据结构、逻辑结构、存储结构、线性结构、非线性结构。

◆ 数据:指能够被计算机识别、存储和加工处理的信息载体。

◆ 数据元素:就是数据的基本单位,在某些情况下数据项组成。

◆ 数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。

◆ 数据结构:指的是数据之间的相互关系,即数据的组织形式。

一般包括三个方面的内容:数据的逻辑结构、存储结构和数据的运算。

◆ 逻辑结构:指各数据元素之间的逻辑关系。

◆ 存储结构:就是数据的逻辑结构用计算机语言的实现。

◆ 线性结构:数据逻辑结构中的一类,它的特征是若结构为非空集,则该结构有且只有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继。

线性表就是一个典型的线性结构。

◆ 非线性结构:数据逻辑结构中的另一大类,它的逻辑特征是一个结点可能有多个直接前趋和直接后继。

1.2 试举一个数据结构的例子、叙述其逻辑结构、存储结构、运算三个方面的内容。

◆例如有一张学生成绩表,记录了一个班的学生各门课的成绩。

按学生的姓名为一行记成的表。

这个表就是一个数据结构。

每个记录(有姓名,学号,成绩等字段)就是一个结点,对于整个表来说,只有一个开始结点(它的前面无记录)和一个终端结点(它的后面无记录),其他的结点则各有一个也只有一个直接前趋和直接后继(它的前面和后面均有且只有一个记录)。

这几个关系就确定了这个表的逻辑结构。

那么我们怎样把这个表中的数据存储到计算机里呢? 用高级语言如何表示各结点之间的关系呢?是用一片连续的内存单元来存放这些记录(如用数组表示)还是随机存放各结点数据再用指针进行链接呢?这就是存储结构的问题,我们都是从高级语言的层次来讨论这个问题的。

(所以各位赶快学C语言吧)。

最后,我们有了这个表(数据结构),肯定要用它,那么就是要对这张表中的记录进行查询,修改,删除等操作,对这个表可以进行哪些操作以及如何实现这些操作就是数据的运算问题了。

数据结构期末考试复习总结

数据结构期末考试复习总结

数据结构期末考试复习总结《数据结构》期末考试题型及分值(1)简答题 6题*5分=30分简要回答要点(2)分析题 6题*5分=30分给出结果(3)设计题 1题*10分=10分设计思想及结果(4)编程题 1题*10分=10分完整代码(5)综合题 1题*20分=20分抽象数据类型的定义、表⽰、实现、算法分析{定义=功能(ADT)表⽰=存储结构体实现=算法(基本操作)算法分析=时间、空间复杂度}考试概念有:1.数据结构 {⼀、线性表(栈-队-列-串-数组-⼴义表-逻辑结构-存储结构-运算结构)⼆、⾮线性表(集合-树-图)}2.抽象数据类型数据对象-数据关系-基本操作3.算法性质-要求(设计)-效率(度量)4.实例查找:⾼效查找算法排序:⾼效的排序算法分析题考试题⽬参考(1)1-2-3-4-5-6顺序建BBST(2)6-5-4-3-2-1顺序建BBST简答题实例设计题:(1)(2)数据结构试卷(⼀)三、计算题(每题 6 分,共24分)1.在如下数组A中链接存储了⼀个线性表,表头指针为A [0].next,试写出该线性表。

data60 50 78 90 34 40next3 5 7 2 04 1线性表为:(78,50,40,60,34,90)?11111111111112.请画出下图的邻接矩阵和邻接表。

3.已知⼀个图的顶点集V和边集E分别为:V={1,2,3,4,5,6,7}; E={(1,2)3,(1,3)5,(1,4)8,(2,5)10,(2,3)6,(3,4)15,(3,5)12,(3,6)9,(4,6)4,(4,7)20,(5,6)18,(6,7)25};⽤克鲁斯卡尔算法得到最⼩⽣成树,试写出在最⼩⽣成树中依次得到的各条边。

⽤克鲁斯卡尔算法得到的最⼩⽣成树为:(1,2)3, (4,6)4, (1,3)5, (1,4)8, (2,5)10, (4,7)204.画出向⼩根堆中加⼊数据4, 2, 5, 8, 3时,每加⼊⼀个数据后堆的变化。

数据结构期末考试重点复习资料

数据结构期末考试重点复习资料

期末考试重点复习资料二、考试重点内容第一章绪论1、时间复杂度和空间复杂度的计算。

要求能够计算出程序的执行次数。

2、各种概念:数据结构、数据项、数据元素第二章线性表1、单链表的各种操作,包括单链表的建立、插入、删除结点的操作语句序列2、单链表(带头结点、不带头结点、循环单链表)的逆置运算。

3、双链表的插入和删除操作语句序列。

4、单链表的直接插入排序运算。

5、静态单链表的插入和删除操作。

6、二个有序单链表的合并、一个单链表拆分为多个单链表第三章栈和队列1、栈的输入序列和输出序列、递归函数的输出结果2、循环队列的入队、出队操作以及有效元素个数的计算第四章串1、KMP算法中的next和nextval值的计算第五章数组和广义表1、二维数组任意元素地址的计算2、稀疏矩阵的转置算法3、广义表的两个操作函数:取表头和表尾第六章树和二叉树1、二叉树的性质(特别是完全二叉树的性质,例如求完全二叉树的深度等)2、二叉树的遍历(特别是中序和先序遍历,要求能够使用堆栈完成非递归遍历编程和递归算法编程,在遍历基础上的各种操作,例如求二叉树的叶子数、二叉树结点数等操作,包括有编程算法和编程填空题)3、线索二叉树(特别是中序线索化二叉树和中序线索化二叉树的中序遍历,包括编程算法和编程填空题,希望大家着重研究)4、哈夫曼编码(主要是应用题,包括哈夫曼的编码与解码,也包括哈夫曼树的特点)5、树与森林在转化成二叉树时,左右子树的结点数有何特点)6、树的层次遍历(使用队列完成、借助树的层次遍历可以判断二叉树是否为完全二叉树)、判断二叉树是否为排序二叉树等,可能有编程题或编程填空题)补充:二叉树的物理存储结构(链式和顺序存储)*第七章图1、图的两种物理存储方式(邻接矩阵与邻接表存储表示)2、图的生成树与最小生成树(生成树特点)、图的遍历3、求最小生成树的两种算法(重点是PRIM 算法,特别会写出用PRIM算法求最小生成树的过程)4、使用迪杰斯特拉算法求单源最短路径,写出求解过程5、拓扑排序6、求关键路径,要求写出事件和活动的最早和最晚开始时间,深刻理解关键路径的含义。

数据结构期末复习要点

数据结构期末复习要点

数据结构期末复习要点第一章绪论1、数据结构主要包括哪三方面内容?2、什么是逻辑结构?什么是存储结构?两者有何关系?3、数据的逻辑结构主要分为哪几类?4、存储结构主要有那些方式?5、顺序存储方式是如何表示数据元素之间的关系?其存储地址一定连续吗?6、链式存储方式是如何表示数据元素之间的关系?其存储地址一定连续吗?7、逻辑结构与具体计算机有关吗?存储结构呢?8、什么是抽象数据类型?其主要特征是什么?9、算法与具体的计算机及计算机语言有关吗?10、算法与程序有何关联?11、算法分析主要从哪些方面考虑?12、常用算法复杂度的有哪些数量级别?(按递增排列)第二章线性表1、线性结构的逻辑关系是什么?2、顺序表是如何表示数据元素的逻辑关系的?3、顺序表如何定义数据类型?(计算存储地址)4、单链表带头结点与无头结点的操作比较有什么优势?举例说明。

5、单链表的操作特点是什么?单链表如何定义数据类型?6、循环链表的操作特点是什么?7、双向链表的操作特点是什么?双向链表如何定义数据类型?8、顺序表与链表比较各自的优缺点是什么?第三章栈、队列1、栈的操作原则是什么?2、两个栈共享空间时基本运算如何实现? (判断空或满的条件)3、递归与栈有何关系?递归算法有何优缺点?4、队列的操作原则是什么?5、顺序队列操作中的“假溢出”是什么?如何解决?6、循环队列是存储在循环链表中吗?7、循环队列的操作时如何判空、满以及求长度?8、栈和队列的共同点和不同点是什么?第四章串1、串的逻辑结构是什么?2、空串与空格串的区别是什么?3、两个串相等的充分必要条件是什么?4、什么是串的模式匹配?5、KMP改进算法的最大特点是什么?(求next[])第五章数组和广义表1、数组的逻辑结构是什么?2、数组的特点是什么?数组可以进行插入删除操作吗?3、数组通常以什么方式存储?多维数组存储常用哪两种排列方式?(计算存储地址)4、特殊矩阵的压缩存储基本思想是什么?5、对称矩阵、三角矩阵和对三角矩阵如何压缩存储?(画出压缩存储方式,计算存储地址)6、稀疏矩阵只需存储非零元素的值吗?(画出三元组表和十字链表的存储结构。

数据结构期末复习总结

数据结构期末复习总结

采用静态分配时的构造空线性表算法
# define ListSize 100 typedef int DataType; typedef struct { DataType data[ListSize]; int length; } Sqlist; Status InitList(Sqlist *L) { /*按静态分配空间方式,构造空线性表L*/ L->length=0; return OK; }
例、在链表上实现将两个单循环带头节点的线性表(a1,a2,a3,…an)和(b1, b2,b3,…bn)链接成一个线性表的运算。 linklist connect(linklist heada,linklist headb) { linknode *p=heada->next; linknode *q=headb->next; while (q->next!=headb) q=q->next; /*找到表b的尾结点*/ q->next=p; /*将表a接到表b的后面*/ while (p->next!=heada) p=p->next; /*找到表a的尾结点*/ p->next=headb; /*将表a的尾结点指向表b的头结点*/ free(heada); return(headb); }
顺序表—把线性表的结点按逻辑顺序依次存放在一组 地址连续的存储单元里. 这组连续的存储单元称为向量。 假设线性表的每个元素需占用L个存储单元,并以 所占的第一个单元的存储地址作为数据元素的存储位 置。 线性表中第i+1个数据元素的存储位置LOC( a i+1) : LOC(a i+1)=LOC(a 1)+L*i 线性表的第i个数据元素ai的存储位置为: LOC(ai)=LOC(a1)+(i-1)*L 通常称LOC(a 1)为线性表的开始地址。

数据结构期末总结范文通用10篇

数据结构期末总结范文通用10篇

数据结构期末总结范文通用10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、合同协议、条据文书、策划方案、句子大全、作文大全、诗词歌赋、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, contract agreements, doctrinal documents, planning plans, complete sentences, complete compositions, poems, songs, teaching materials, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!数据结构期末总结范文通用10篇数据结构期末总结范文第一篇- 将待排序的序列分到若干个桶中,每个桶内的元素再进行个别排序。

数据结构老师给的复习要点

数据结构老师给的复习要点

数据结构老师给的复习要点复习要点如下:1.数据结构介绍及基本概念-数据结构的定义和分类-数据结构的基本操作:插入、删除、查找、修改-数据结构的抽象数据类型(ADT)-数据结构的存储方式:顺序存储、链式存储-数据结构的复杂度分析:时间复杂度、空间复杂度2.线性数据结构-数组:定义、操作、应用场景、复杂度分析-链表:定义、操作、应用场景、复杂度分析-栈:定义、操作、应用场景、复杂度分析-队列:定义、操作、应用场景、复杂度分析3.非线性数据结构-树:定义、基本概念(根节点、叶节点、子树、深度、层次)、二叉树-二叉树:定义、特殊类型(满二叉树、完全二叉树、二叉查找树)-堆、优先队列:定义、操作、堆的复杂度分析-图:定义、基本概念(顶点、边、路径、连通图、有向图、带权图)、图的表示方式(邻接矩阵、邻接表)4.查找算法-顺序查找:定义、算法、复杂度分析-二分查找:定义、算法原理、复杂度分析-哈希查找:定义、哈希函数、冲突解决方法(开放寻址法、链表法)5.排序算法-冒泡排序:算法原理、复杂度分析-插入排序:算法原理、复杂度分析-选择排序:算法原理、复杂度分析-快速排序:算法原理、复杂度分析-归并排序:算法原理、复杂度分析-堆排序:算法原理、复杂度分析6.数据结构的应用-树的应用:二叉树的遍历、二叉树的建立、二叉树的等-图的应用:最短路径问题、最小生成树问题、拓扑排序等-栈和队列的应用:模拟计算器、迷宫求解、一些经典问题的求解等7.算法复杂度分析- 时间复杂度:大O表示法、常见的时间复杂度(O(1)、O(n)、O(log n)、O(n^2)等)-空间复杂度:空间复杂度与时间复杂度的关系、递归算法的空间复杂度分析8.数据结构的实现和优化-顺序存储结构的实现和优势-链式存储结构的实现和优势-空间优化:压缩存储、稀疏矩阵存储等-时间优化:算法改进、排序算法优化等9.数据结构的选择和应用-根据问题需求选择合适的数据结构-根据数据规模和要求选择合适的算法-理解数据结构和算法之间的关系,能够根据实际情况进行综合应用以上仅为大致的复习要点,具体内容可以根据老师给出的教材和课堂讲解进行深入学习和理解。

数据结构期末复习总结知识点归纳

数据结构期末复习总结知识点归纳

数据结构期末复习总结知识点归纳数据结构是计算机科学中非常重要的一门课程,它研究数据的组织、存储和访问方式,以及处理各种复杂问题的算法。

以下是数据结构期末复习的一些重要知识点的归纳总结:1.基本概念:-数据结构:数据元素之间的关系的集合。

-数据元素:数据的基本单位,可以是一个字符、一个整数或一个结构体。

-数据对象:具有相同性质的元素的集合。

-数据项:数据不可分割的最小单位。

2.数据结构的分类:-线性结构:数据元素之间存在一对一的关系,如数组、链表、堆栈和队列。

-非线性结构:数据元素之间存在一对多或多对多的关系,如树和图。

3.常见的数据结构:-数组:一组连续的内存空间,用于存储相同类型的数据。

-链表:由节点组成,每个节点包含数据元素和指向下一个节点的指针。

-栈:一种具有先进后出(LIFO)特点的线性数据结构。

-队列:一种具有先进先出(FIFO)特点的线性数据结构。

-树:由节点和边组成,每个节点可以有多个子节点。

-图:由顶点和边组成,顶点可以有多个边连接到其他顶点。

4.常见的算法:-查找算法:包括顺序查找和二分查找。

-排序算法:包括冒泡排序、选择排序、插入排序、快速排序和归并排序。

-遍历算法:包括深度优先(DFS)和广度优先(BFS)。

5.运算特性:-空间复杂度:算法在执行过程中所需的存储空间。

-时间复杂度:算法执行所需的时间量度,通常用大O表示法表示。

6.数据结构的应用:-图的应用:用于解决路径规划、社交网络分析等问题。

-树的应用:用于解决、排序等问题。

-队列的应用:用于解决任务调度、消息传递等问题。

7.数据结构的存储方式:-顺序存储:使用连续的内存空间存储数据。

-链式存储:使用节点和指针存储数据。

8.数据结构的性能评价:-空间效率:衡量数据结构存储空间的利用率。

-时间效率:衡量数据结构执行运算所需的时间。

-算法复杂度:衡量算法执行过程中所需的计算资源。

以上是数据结构期末复习的一些重要知识点的归纳总结。

数据结构期末复习资料

数据结构期末复习资料

数据结构复习资料第一章绪论1.1基本概念和术语1.数据是对客观事物的符号表示;数据元素是数据的基本单位,一个数据元素可由若干个数据项组成,数据项是数据的不可分割的最小单位;数据对象是性质相同的数据元素的集合,是数据的一个子集。

2.数据结构是相互之间存在一种或多种特定关系的数据元素的集合。

3.A.数据结构的三要素:①数据的逻辑结构②数据的存储结构③数据的运算(算法)B.任何一个算法的设计取决于选定的逻辑结构,而算法的实现依赖于采用的存储结构4.数据的逻辑结构:①集合②线性结构③树型结构④图状结构或网状结构1.2算法和算法分析1.算法的五个特性:①有穷性②确定性③可行性④输入⑤输出2.时间复杂度:时间复杂度是指执行算法所需要的计算工作量空间复杂度:空间复杂度是指执行这个算法所需要的内存空间第二章线性表2.1线性表的顺序表示和实现1.线性表的顺序表示指的是用一组地址连续的存储单元依次存储线性表的数据元素。

2.优点:线性表的顺序存储结构是一种随机存取的存储结构3.顺序线性表插入:顺序线性表删除:4.线性表的链式存储结构的特点是用一组任意的存储单元存储线性表的数据元素(可连续,可不连续)5.对数据元素来说,除了存储其自身的信息之外,还需存储一个指示其直接后继的信息(存储位置),这两部分信息组成数据元素的存储映像,称为结点。

他包括两个域:其中存储数据元素信息的域称为数据域;存储直接后继存储位置的域称为指针域。

指针域中存储的信息称为指针或域。

N个结点链结成一个链表,即为线性表的链式存储结构。

又由于此链表的每个结点中只包含一个指针域,故又称为线性链表或单链表。

6.链表的插入与删除7.双向链表的插入与删除第三章栈和队列3.1 栈1.栈是限定仅在表尾进行插入或删除操作的线性表。

因此,对栈来说,表尾端有其特殊含义,称为栈顶,相应的,表头端称为栈底。

不含元素的空表称为空栈。

2.栈又称为后进先出的线性表3.栈的进栈与出栈操作3.2队列1.队列是一种先进先出的线性表,它只允许在表的一段进行插入,而在另一端删除元素。

大二数据结构期末考点总结

大二数据结构期末考点总结

大二数据结构期末考点总结一、线性表1. 线性表的定义、特点及实现方式2. 线性表的顺序存储结构a. 顺序存储结构的定义和特点b. 顺序存储结构的插入、删除和获取元素操作c. 顺序存储结构的动态扩容和缩容d. 顺序存储结构的应用以及时间复杂度分析3. 线性表的链式存储结构a. 链式存储结构的定义和特点b. 链式存储结构的插入、删除和获取元素操作c. 单链表的反转和中间节点查找d. 单链表的应用以及时间复杂度分析4. 静态链表的概念和实现方式5. 循环链表的概念和实现方式6. 双向链表的概念和实现方式7. 线性表的应用实例及其代码实现二、栈和队列1. 栈的定义、特点及实现方式a. 栈的顺序存储结构b. 栈的链式存储结构c. 栈的入栈、出栈和获取栈顶元素操作d. 栈的应用以及时间复杂度分析2. 队列的定义、特点及实现方式a. 队列的顺序存储结构b. 队列的链式存储结构c. 队列的入队、出队和获取队头元素操作d. 队列的应用以及时间复杂度分析3. 循环队列的定义、特点及实现方式4. 栈和队列的应用实例及其代码实现三、串1. 串的定义、特点及实现方式2. 串的顺序存储结构a. 顺序存储结构的定义和特点b. 顺序存储结构的插入、删除和获取子串操作c. 顺序存储结构的应用以及时间复杂度分析3. 串的链式存储结构a. 链式存储结构的定义和特点b. 链式存储结构的插入、删除和获取子串操作c. 链式存储结构的应用以及时间复杂度分析4. 串的模式匹配算法a. 朴素模式匹配算法b. KMP模式匹配算法5. 串的应用实例及其代码实现四、树与二叉树1. 树的定义、特点及实现方式2. 树的存储结构a. 双亲表示法b. 孩子表示法c. 孩子兄弟表示法(二叉树的存储结构)3. 二叉树的定义、特点及实现方式a. 二叉树的遍历(前序、中序、后序)b. 二叉树的插入、删除和搜索操作c. 二叉树的线索化d. 二叉树的应用以及时间复杂度分析4. 二叉搜索树的定义、特点及实现方式a. 二叉搜索树的插入、删除和搜索操作b. 二叉搜索树的查找最大值和最小值c. 二叉搜索树的平衡操作(LL、RR、LR、RL)d. 二叉搜索树的应用以及时间复杂度分析5. 平衡二叉树(AVL树)的定义、特点及实现方式a. 平衡二叉树的插入、删除和搜索操作b. 平衡二叉树的平衡操作(LL、RR、LR、RL)c. 平衡二叉树的应用以及时间复杂度分析6. B树的定义、特点及实现方式a. B树的插入、删除和搜索操作b. B树的应用以及时间复杂度分析7. 树和二叉树的应用实例及其代码实现五、图1. 图的定义、特点及实现方式a. 图的存储结构(邻接矩阵、邻接表)b. 图的遍历(深度优先搜索、广度优先搜索)c. 图的生成树(连通图的最小生成树)d. 图的应用以及时间复杂度分析2. 最短路径算法a. Dijkstra算法b. Floyd-Warshall算法c. Bellman-Ford算法d. 最短路径算法的应用以及时间复杂度分析3. 最小生成树算法a. Prim算法b. Kruskal算法c. 最小生成树算法的应用以及时间复杂度分析4. 拓扑排序算法5. 关键路径算法6. 图的应用实例及其代码实现总结:本次期末考试的考点主要涵盖了线性表、栈和队列、串、树与二叉树以及图等数据结构相关的知识点。

数据结构期末复习重点知识点总结

数据结构期末复习重点知识点总结

第一章绪论一、数据结构包括:逻辑结构、存储结构、运算(操作)三方面内容。

二、线性结构特点是一对一。

树特点是一对多图特点是多对多三、数据结构的四种存储结构:顺序存储、链式存储、索引存储、散列存储顺序存储结构和链式存储结构的区别?线性结构的顺序存储结构是一种随机存取的存储结构。

线性结构的链式存储是一种顺序存取的存储结构。

逻辑结构分类:集合线性树图,各自的特点。

或者分为线性结构和非线性结构。

四、算法的特征P13五、时间复杂度(1) i=1; k=0;while(i<n){ k=k+10*i;i++;}分析:i=1; //1k=0; //1while(i<n) //n{ k=k+10*i; //n-1i++; //n-1}由以上列出的各语句的频度,可得该程序段的时间消耗:T(n)=1+1+n+(n-1)+(n-1)=3n可表示为T(n)=O(n)六、数据项和数据元素的概念。

第二章线性表一、线性表有两种存储结构:顺序存储和链式存储,各自的优、缺点。

二、线性表的特点。

三、顺序表的插入、思想、时间复杂度o(n)、理解算法中每条语句的含义。

(1)插入的条件:不管是静态实现还是动态实现,插入的过程都是从最后一个元素往后挪动,腾位置。

静态是利用数组实现,动态是利用指针实现。

不管静态还是动态,在表中第i个位置插入,移动次数都是n-i+1。

四、顺序表的删除、思想、时间复杂度o(n)、理解算法中每条语句的含义。

(1)删除的条件:不管是静态实现还是动态实现,删除的过程都是从被删元素的下一位置向前挪动。

静态是利用数组实现,动态是利用指针实现。

不管静态还是动态,删除表中第i个元素,移动次数都是n-i。

五、顺序表的优缺点?为什么要引入链表?答:顺序表的优点是可以随机存取,缺点是前提必须开辟连续的存储空间且在第一位置做插入和删除操作时,数据的移动量特别大。

如果有一个作业是100k,但是内存最大的连续存储空间是99K,那么这个作业就不能采用顺序存储方式,必须采用链式存储方式。

数据结构的期末总结

数据结构的期末总结

数据结构的期末总结首先,我学习了数据结构的基本概念和定义。

数据结构是计算机科学中用来组织和管理数据的方法和技术。

它定义了数据对象之间的关系,以及对数据对象进行操作和处理的方法。

通过学习数据结构的基本概念和定义,我能够准确地理解不同数据结构之间的差异和联系,以及它们各自的适用场景和优缺点。

其次,我学习了不同类型的数据结构。

在课程中,我学习了数组、链表、栈、队列、树、图等各种不同类型的数据结构。

每种数据结构都有不同的特点和用途。

例如,数组是一种有序的数据结构,它可以快速访问和修改任意位置的元素;链表是一种动态的数据结构,它可以提供高效的插入和删除操作;树是一种有层次结构的数据结构,它能够高效地进行搜索和排序等操作。

通过学习这些不同类型的数据结构,我能够更好地选择和应用适合问题的数据结构,提高程序的效率和性能。

此外,我学习了数据结构的操作和算法。

在课程中,我学习了各种不同类型的数据结构的基本操作和算法,例如插入、删除、查找、排序等。

通过学习这些操作和算法,我能够更好地理解和设计适合问题的算法,提高程序的效率和性能。

此外,我还学习了一些高级的数据结构和算法,例如平衡树、堆、散列表等。

通过学习这些高级的数据结构和算法,我能够解决更复杂的问题,提高程序的效率和性能。

最后,我学习了数据结构的应用和实践。

在课程中,我学习了数据结构在实际问题中的应用和实践。

例如,我学习了如何使用栈来实现字符匹配和括号匹配,以及如何使用队列来实现进程调度和任务管理等。

通过学习这些应用和实践,我能够更好地应用和使用数据结构解决实际问题。

综上所述,通过学习数据结构,我不仅掌握了数据结构的基本概念和定义,还学习了不同类型的数据结构、数据结构的操作和算法,以及数据结构的应用和实践。

这些知识和技能对于我在计算机科学领域的进一步学习和研究具有重要的意义和作用。

在今后的学习和工作中,我将继续深入研究和应用数据结构,提高程序的效率和性能,为计算机科学的发展做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
} 取对头 Status GetHead(sqqueue &Q,Qelemtype &e)
{ if (Q.front == Q.rear ) return ERROR; return Q.base[Q.front];
}
第四章
重点:串的比较、连接,了解串的插入,删除 定义 typedef struct { char *ch;
}
第五章 数组和广义表
重点:特殊矩阵,稀疏矩阵(明白思路)
对称矩阵 aij=aji 0≤i,j ≤n-1
SA[k]= aij
k=i(i+1)/2+j(i>=j)或 k=j(j+1)/2+i(i< j)
稀疏矩阵 一般采用三元组存储一个非零元素。
如:三元组
(1,5,a) (2,2,b) (3,4,c) (4,7,d)
} TSmatrix
第六章 树与二叉树
重点:1、二叉树的遍历和性质,
2、树的存储结构及遍历
3、哈夫曼树
基本概念
结点的度 : 结点拥有子树的数目
i
叶结点 : 结点的度为零的结点
分枝结点 : 结点的度非零的结点
树的度 : 树中各结点度的最大值
孩子
: j,k,l 称为 i 的孩子
j
k
l
双亲
: i 称为 j,k,l 的双亲
typedef struct Dublnode{ Elemtype data; struct Dublnode *prior ; struct Dublnode *next ;
}Dublnode,*Dublinklist ; 了解:有序表的合并
void Mergelist_L(Linklist &La, Linklist &Lb, Linklist &Lc) { pa=La->next; pb=Lb->next; Lc=pc=La; while (pa&&pb) { if ( pa->data<=pb->data) { pc->next=pa;pc=pa;pa=pa->next;} else { pc->next=pb;pc=pb;pb=pb->next;} } pc->next =pa?pa:pb; free(Lb); }
} 栈的插入 Status Push(Sqstack &s,Selemtype e)
{ if (s.top-s.base>=s.stacksize) { s.base=追加分配空间; s.stacksize+=Stackincrement; }
*s.top++=e; return Ok } 栈的删除栈顶 Status Pop(Sqstack &s,Selemtype &e) { if (s.top==s.base) return ERROR; e=*--s.top return Ok } 队列的顺序存储表示与实现 typedef struct{ Qelemtype *base; int front; 指向第一个元素(有数) int rear; 指向最后一个元素的下一位(为空) }Sqqueue; 队空条件: Q.front = Q.rear 队满条件: (Q.rear+1) % Maxsize= Q.front 队列长度:(Q.rear-Q.front+Maxsise)%Maxsize 队的插入: Status Enqueue(sqqueue &Q,Qelemtype e) { if ((Q.rear+1)%Maxsize==Q.front)
}
}
先序
Void preorder(bt)
{ if (bt)
{visit(bt->data);
preorder(bt->lchild);
} 线性表定位删除
Status Listdelete_Sq(Sqlist &L,int i, Elemtype &e) {
if (i<1‖i >L.length) return ERROR; e= L.elem[i-1]); for (j=i;j<L.length;++j)
L.elem[j-1]=L.elem[j]); --L.length; return OK; } 单链表定义:
int length; } Hstring ; 比较 status strcompare(S,T) { for (i=0;i<S.length &&i<T.length; ++i)
if ( S.ch[i]!=T.ch[i] ) return S.ch[i]-T.ch[i]; return S.length-T.length; } 连接 Status concat(&t,s1,s2)
return ERROR; Q.base[Q.rear]=e; Q.rear=(Q.rear+1)%Maxsize; return OK; } 队的删除 Status Dequeue(sqqueue &Q,Qelemtype &e)
{ if (Q.front == Q.rear ) return ERROR; e=Q.base[Q.front]; Q.front=(Q.front+1)%Maxsize; return OK;
第二章 线性表
重点: 1、链式和线性表两种方式的插入与删除 2、单双链表的定义 线性表的定义 #define List-Init-Size 100 #define Listincrement 10 typedef struct {
Elemtype *elem; int length; int listsize; } Sqlist; 线性表定位插入 Status Listinsert_Sq(Sqlist &L,int i, Elemtype e)
typedef struct Lnode { Elemtype data; struct Lnode *next;
} Lnode, *Linklist; 链式定位插入
Status Listinsert_L(Linklist &L,int i,Elemtype e) { p=L; j=0; while (p&&j<i-1) {p=p->next;++j } if ( !p ‖j>i-1) return ERROR; new(s); s->data=e; s->next=p->next; p->next=s; return OK; }
性质 2: 深度为 k 的二叉树,至多有 2k -1 个结点。(等比求和)
性质 3: 对任意二叉树 BT ,若叶结点数为 n0 ,度为 2 的结点数为 n2,则 n0 = n2 +1
性质 4:具有 n 个结点的完全二叉树深度为 [ log2n ]+1 (取整)
性质 5:对结点数为 n 的完全二叉树,第 i 个结点有如下特征:
兄弟
: j,k,l 互为兄弟
祖先
: 树的根结点到某结点 j 路径上的所有结点,为结点 j 的祖先
子孙
: 结点 i 下的所有结点,称为结点 i 的子孙
结点层次 : 从根结点到某结点 j 路径上结点的数目
树的深度 : 树中结点的最大层次
有序树 : 若树中结点的各子树从左到右是有次序的,称该树为有序树,否则为无序树
第一章 绪论
数据——所有输入计算机中并被计算机处理的符号。 数据元素——数据的基本单位,通常作为一个整体。 数据对象——性质相同的数据元素的集合。 数据结构——数据元素以及之间存在的关系。
1 、线性结构;2、集合结构 3、树形结构; 4、图结构 数据结构的形式定义:Data--Structure=(D,S) D——数据元素集合 S——关系集合 数据的逻辑结构——用形式化方式描述数据元素间的关系。 数据的物理结构——数据在计算机中的具体表示。 数据类型——一种数据结构和定义在其上的一组操作。可以形式化定义为: Data--Type=(D,S,P) 算法的定义 是对特定问题求解步骤的一种描述, 是指令的有限序列。 算法的特性 有穷性——算法必须在执行有穷步之后结束,而且每一步都可在有穷时间内完成。 确定性——每条指令无二义性。 可行性——算法中描述的每一操作,都可以通过已经实现的基本运算来实现。 输入——算法有零至多个输入。 输出——算法有一个至多个输出。 时间复杂度的等级 O(1) O(log n) O(n) O(n×log n) O (n2) O (nK) O(Xn )
0000a00

0b0000
0
000c000 m
000000 ×
d
n
三元组定义
#define Maxsize=1000
typedef struct
{ int
i , j;
elemtype e;
} triple
typedef struct
{ triple data[Maxsize+1]
int
m , n , num;
森林
: 由 m 棵互不相交的树构成 F=(T1,T2,.......Tm)
二叉树的性质
定义: 深度为 k 且有 2k -1 个结点的二叉树称为满二叉树
定义: 深度为 k 且有 n 个结点的二叉树,当且仅当 n 个结点都满足满二叉树的位置编号
的升序排列结构时,称为完全二叉树
性质 1: 在二叉树的 i 层上至多有 2i -1 个结点。(归纳法证明)

{ if (t.ch) free(t.ch); if ( ! (T.ch=(char*) malloc((s1.length+s2.lengrh)*sizeof(char)))) exit(overflow); t.ch[0..s1.length-1]=s1.ch[0..s1.length-1]; t.length=s1.length+s2.length; t.ch[s1.length..t.length-1]=s2.ch[0..s2.length-1]; return OK;
相关文档
最新文档