立体几何问题的题型与方法.

合集下载

立体几何题型与方法

立体几何题型与方法

立体几何题型与方法立体几何是数学中的一个重要分支,主要研究三维空间中的图形、体积、表面积等性质。

在理科学习中,立体几何占据了很大的比重,是一个重要的考点。

下面将介绍一些常见的立体几何题型以及解题方法。

1.直线与平面的关系:直线与平面的关系是立体几何中的基础知识。

常见的题型有求直线与平面的交点、直线在平面上的投影等。

解决这类题目主要依靠平面几何的知识,并运用相关的理论和定理。

2.空间图形的周长和面积:空间图形的周长和面积多种多样,包括立方体、正方体、棱柱、棱锥、圆柱、圆锥等。

解决这类题目需要着重掌握各种图形的特征和性质,熟练运用计算周长和面积的公式,并运用相关的几何知识进行推理和计算。

3.体积和表面积的计算:体积和表面积是立体几何中的重要概念。

对于各种空间图形,求解其体积和表面积需要根据图形的特征和性质,运用相应的计算公式或方法进行计算。

例如,立方体的体积等于边长的立方,表面积等于边长的平方乘以6;圆锥的体积等于1/3×底面积×高,表面积等于底面积加上底面积和侧面积之和。

4.空间图形的相似性:空间图形的相似性是对于形状相似但大小不同的图形之间的关系进行研究。

解决这类题目需要根据相似性的定义和性质,进行比较和计算。

常见的题型包括求相似立体的体积比、表面积比等。

5.立体图形的旋转体与截面:立体图形的旋转体和截面是立体几何中的重要概念。

解决这类题目需要根据旋转体的定义和性质,进行几何关系的推导和计算。

例如,旋转体的体积等于截面面积与旋转轴的长度之积。

以上五个方面是立体几何中的主要内容,解题的方法主要有以下几点:1.分析问题:首先要明确题目中所给出的条件和所要求解的目标,分析问题的关键点和主要难点。

2.运用几何公式和性质:根据题目所给的条件和已知的几何知识,运用相应的公式和性质进行计算和推理。

3.利用图形特征:对于立体图形而言,其形状和特征是解决问题的关键。

通过观察图形的性质和特征,找出解题的思路和方法。

-立体几何问题的题型与方法

-立体几何问题的题型与方法

第21-24课时:立体几何问题的题型与方法一.复习目标:1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.二.考试要求:(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

(2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)。

立体几何题型及解题方法

立体几何题型及解题方法

立体几何题型及解题方法
立体几何是数学中研究三维空间几何图形的学科。

以下是一些常见的立体几何题型及其解题方法:
1. 计算体积和表面积:这类题目通常涉及到三维空间中的几何形状,如长方体、圆柱体、圆锥体等。

解题方法包括使用体积和表面积的公式,以及根据题目描述建立数学模型。

2. 证明定理和性质:这类题目通常涉及到几何图形的性质和定理,如平行线性质、勾股定理等。

解题方法包括使用已知定理和性质进行推导,以及通过构造辅助线或辅助图形来证明。

3. 求解最值问题:这类题目通常涉及到求几何图形中的最值,如最短路径、最大面积等。

解题方法包括使用不等式、极值定理和优化方法等。

4. 判定和性质应用:这类题目通常涉及到判定几何图形是否满足某个性质,或应用某个性质到实际场景中。

解题方法包括根据性质进行推导和判断,以及根据实际场景建立数学模型。

以上是一些常见的立体几何题型及其解题方法,当然还有其他的题型和解题方法。

在解决立体几何问题时,需要灵活运用几何知识和方法,多做练习,提高自己的解题能力。

四类立体几何题型-新高考数学大题秒杀技巧(解析版)

四类立体几何题型-新高考数学大题秒杀技巧(解析版)

四类立体几何题型-高考数学大题秒杀技巧立体几何问题一般分为四类:类型1:线面平行问题类型2:线面垂直问题类型3:点面距离问题类型4:线面及面面夹角问题下面给大家对每一个类型进行秒杀处理.技巧:法向量的求算待定系数法:步骤如下:①设出平面的法向量为n =x ,y ,z .②找出(求出)平面内的两个不共线的向量a =a 1,b 1,c 1 ,b =a 2,b 2,c 2 .③根据法向量的定义建立关于x ,y ,z 的方程组n ⋅a =0n ⋅b =0④解方程组,取其中的一个解,即得法向量.注意:在利用上述步骤求解平面的法向量时,方程组n ⋅a =0n ⋅b =0有无数多个解,只需给x ,y ,z 中的一个变量赋于一个值,即可确定平面的一个法向量;赋的值不同,所求平面的法向量就不同,但它们是共线向量.秒杀:口诀:求谁不看谁,积差很崩溃(求外用外减,求内用内减)向量a =x 1,y 1,z 1 ,b =x 2,y 2,z 2 是平面α内的两个不共线向量,则向量n =y 1z 2−y 2z 1,x 2z 1−x 1z 2,x 1y 2−x 2y 1 是平面α的一个法向量.特别注意:空间点不容易表示出来时直接设空间点的坐标,然后利用距离列三个方程求解.类型1:线面平行问题方法一:中位线型:如图⑴,在底面为平行四边形的四棱锥P -ABCD 中,点E 是PD 的中点.求证:PB ⎳平面AEC .分析:方法二:构造平行四边形如图⑵, 平行四边形ABCD 和梯形BEFC 所在平面相交,BE ⎳CF ,求证:AE ⎳平面DCF .分析:过点E作EG⎳AD交FC于G,DG就是平面AEGD与平面DCF的交线,那么只要证明AE⎳DG即可。

方法三:作辅助面使两个平面是平行如图⑶,在四棱锥O-ABCD中,底面ABCD为菱形,M为OA的中点,N为BC的中点,证明:直线MN‖平面OCD分析::取OB中点E,连接ME,NE,只需证平面MEN∥平面OCD。

高中立体几何证明方法及例题

高中立体几何证明方法及例题

1.空间角与空间距离在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。

2.立体几体的探索性问题立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。

近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。

对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。

对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。

(一)平行与垂直关系的论证由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。

1.线线、线面、面面平行关系的转化:面面平行性质α//βαI γ=a ,βI γ⎫⎬⇒a =b ⎭//baa //b⎫⎬ba ⊄α,b ⊂α⎭α⇒a //αa ⊂α,b ⊂αAb a I b =Aαaa //β,b //ββ⎫⎪⎬⎪⎭(a//b,b//c线线∥⇒a //c)公理4线面平行判定线面平行性质线面∥⇒α//β面面平行判定1面面∥面面平行性质面面平行性质1α//γ⎫β//γ⎭⎫⎪a ⊂β⎬αI β=b ⎪⎭a //α⇒a //bα//β⎫a ⊂α⎭⎬⎬⇒α//β⇒a //β2.线线、线面、面面垂直关系的转化:⎫⎪a Ib =O ⎬l ⊥a ,l ⊥b ⎪⎭a ,b ⊂α⇒l ⊥α⎫⎬⇒α⊥βa ⊂β⎭a ⊥α面面⊥三垂线定理、逆定理线线⊥PA ⊥α,AO 为PO 在α内射影a ⊂α则a ⊥OA ⇒a ⊥PO a ⊥PO ⇒a ⊥AOl ⊥α线面垂直判定1线面垂直定义线面⊥α⊥β面面垂直判定面面垂直性质,推论2⎫⎬a ⊂α⎭⇒l ⊥a⎫⎪αI β=b ⎬⇒a ⊥αa ⊂β,a ⊥b ⎪⎭α⊥γβ⊥γαI β⎫⎪⎬⇒a ⊥γ=a ⎪⎭面面垂直定义αI β=l ,且二面角α-l -β⎫成直二面角⎬⇒α⊥β⎭3.平行与垂直关系的转化:a //b ⎫a ⊥αa ⊥α⎫⇒b ⊥αa⎬⎭⎬⇒αa ⊥β⎭//β线线∥线面垂直判定2线面垂直性质2a ⊥α⎫线面⊥面面平行判定2面面平行性质3面面∥⎬⇒a //b b ⊥α⎭α//β⎫a ⊥α⎬a ⊥β⎭4.应用以上“转化”的基本思路——“由求证想判定,由已知想性质。

高中数学高考专题(5)立体几何的高考解答题型及求解策略

高中数学高考专题(5)立体几何的高考解答题型及求解策略

高中数学高考专题(5)立体几何的高考解答题型及求解策略立体几何的解答题型主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再计算几何体的体积.试题背景有折叠问题、探索性问题等,考查空间想象能力、逻辑思维能力及转化与化归思想的应用能力.题型一线面位置关系的证明题型概览:空间中线面的平行与垂直的证明有两种思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量法来论证,应用向量证明线、面的位置关系的关键是把空间线面位置关系的判定定理和性质定理与空间向量建立对应关系,把空间位置关系的证明转化为空间向量的运算,通过运算解决证明问题.这里以传统方法为例建立审题程序与答题模板,向量方法参照本专题题型二.如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN⊥平面ABCD,E、F分别为MA、DC的中点,求证:(1)EF∥平面MNCB;(2)平面MAC⊥平面BND.[审题程序]第一步:利用中位线、平行四边形的性质在四边形MNCB内确定与EF平行的直线;第二步:在平面MAC和平面BND中寻找与另一平面垂直的直线;第三步:应用面面垂直、菱形的性质,由线线垂直解决.[规范解答](1)如图,取NC的中点G,连接FG,MG.因为ME∥ND且ME=12ND,F、G分别为DC、NC的中点,FG∥ND且FG=12ND,所以FG与ME平行且相等,所以四边形MEFG是平行四边形,所以EF∥MG,又MG⊂平面MNCB,EF⊄平面MNCB,所以EF∥平面MNCB.(2)如图,连接BD、MC.因为四边形MADN是矩形,所以ND⊥AD.因为平面MADN⊥平面ABCD,平面ABCD∩平面MADN=AD,DN⊂平面MADN,所以ND⊥平面ABCD,所以ND⊥AC.因为四边形ABCD是菱形,所以AC⊥BD.因为BD∩ND=D,所以AC⊥平面BDN.又AC⊂平面MAC,所以平面MAC⊥平面BDN.[答题模板]解决这类问题的答题模板如下:1.(2016·北京西城区高三期末)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G,H分别是CE,CF的中点.(1)求证:AC⊥平面BDEF;(2)求证:平面BDGH∥平面AEF;(3)求多面体ABCDEF的体积.[解](1)证明:因为四边形ABCD是正方形,所以AC⊥BD.又平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,所以AC⊥平面BDEF.(2)证明:在△CEF中,因为G,H分别是CE,CF的中点,所以GH∥EF.又GH⊄平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC∩BD=O,连接OH.在△ACF中,因为OA=OC,CH=HF,所以OH∥AF.因为OH⊄平面AEF,AF⊂平面AEF,所以OH∥平面AEF.因为OH∩GH=H,OH,GH⊂平面BDGH,所以平面BDGH∥平面AEF.(3)由(1)得AC⊥平面BDEF.因为AO=2,四边形BDEF的面积S▱BDEF=3×22=62,=4.所以四棱锥A-BDEF的体积V1=13×AO×S▱BDEF同理,四棱锥C-BDEF的体积V2=4.所以多面体ABCDEF的体积V=V1+V2=8.题型二求空间几何体的体积题型概览:计算几何体的体积,关键是根据条件找出相应的底面和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题.(1)直接法:对于规则几何体,直接利用公式计算即可.(2)割补法:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.(3)等体积法:一般利用三棱锥的“等积性”求三棱锥体积,可以把任何一个面作为三棱锥的底面.注意两点:一是求体积时,可选择“容易计算”的方式来计算;二是利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.(2016·全国卷Ⅲ)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求四面体N-BCM的体积.[审题程序]第一步:由线线平行或面面平行证明(1);第二步:由N 为PC 中点,推证四面体N -BCM 的高与P A 的关系; 第三步:利用直接法求四面体的体积.[规范解答] (1)由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形, 于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. [答题模板] 解决这类问题的答题模板如下:2.(2016·深圳一模)如图所示,在四棱锥S-ABCD中,底面ABCD是平行四边形,侧面SBC是正三角形,E是SB的中点,且AE⊥平面SBC.(1)证明:SD∥平面ACE;(2)若AB⊥AS,BC=2,求点S到平面ABC的距离.[解](1)证明:连接BD,交AC于点F,连接EF.∵四边形ABCD是平行四边形,∴F是BD的中点,又∵E是SB的中点,∴EF∥SD.∵SD⊄平面ACE,EF⊂平面ACE,∴SD∥平面ACE.(2)∵AB⊥AS,BC=BS=2,且E是SB的中点,∴AE=1.∵AE⊥平面SBC,BS、CE⊂平面SBC,∴AE⊥BS,AE⊥CE.∴AB=AE2+BE2= 2.又侧面SBC 是正三角形,∴CE =3, ∴AC =AE 2+CE 2=2,∴△ABC 是底边长为2,腰长为2的等腰三角形, ∴S △ABC =12×2×4-12=72.设点S 到平面ABC 的距离为h .由V 三棱锥S -ABC =V 三棱锥A -SBC ,得13h ·S △ABC =13AE ·S △SBC ,∴h =AE ·S △SBC S △ABC =237=2217.题型三 立体几何中的探索性问题题型概览:如果知道的是试题的结论,而要求的却是试题的某一个存在性条件(如存在某个定点、定直线、定值等),这种试题称为存在探索型试题.解题策略一般是先假设结论成立,然后以该结论作为一个已知条件,再结合题目中的其他已知条件,逆推(即从后往前推),一步一步推出所要求的特殊条件,即要求的存在性条件.若能求出,则存在;若不能求出,则不存在.(2016·石家庄调研)如图,在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,AC ⊥BC ,E 在线段B 1C 1上,B 1E =3EC 1,AC =BC =CC 1=4.(1)求证:BC ⊥AC 1;(2)试探究:在AC 上是否存在点F ,满足EF ∥平面A 1ABB 1?若存在,请指出点F 的位置,并给出证明;若不存在,请说明理由.[审题程序]第一步:由B 1E =3EC 1及EF ∥平面A 1ABB 1猜想点F 的位置;第二步:在平面A 1ABB 1内探求与EF 平行的直线或寻找经过EF 与平面A 1ABB 1平行的平面; 第三步:由线线平行或面面平行推理论证.[规范解答] (1)证明:∵AA 1⊥平面ABC ,BC ⊂平面ABC ,∴BC ⊥AA 1. 又∵BC ⊥AC ,AA 1∩AC =A ,∴BC ⊥平面AA 1C 1C . 又AC 1⊂平面AA 1C 1C ,∴BC ⊥AC 1.(2)解法一:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图1,在平面A1B1C1内过点E作EG∥A1C1交A1B1于点G,连接AG.∵B1E=3EC1,∴EG=34A1C1.又AF∥A1C1且AF=3,4A1C1∴AF∥EG且AF=EG,∴四边形AFEG为平行四边形,∴EF∥AG.又EF⊄平面A1ABB1,AG⊂平面A1ABB1,∴EF∥平面A1ABB1.解法二:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图2,在平面BCC1B1内过点E作EG∥BB1交BC于点G,连接FG. ∵EG∥BB1,EG⊄平面A1ABB1,BB1⊂平面A1ABB1,∴EG∥平面A1ABB1.∵B1E=3EC1,∴BG=3GC,∴FG∥AB.又AB⊂平面A1ABB1,FG⊄平面A1ABB1,∴FG∥平面A1ABB1.又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面A1ABB1.∵EF⊂平面EFG,∴EF∥平面A1ABB1.[答题模板]解决这类问题的答题模板如下:3.如图,三棱柱ABC-A1B1C1的底面是边长为4的正三角形,侧棱AA1⊥底面ABC,M为A1B1的中点.(1)证明:MC⊥AB;(2)若AA1=26,侧棱CC1上是否存在点P,使得MC⊥平面ABP?若存在,求PC的长;若不存在,请说明理由.[解](1)证明:取AB的中点N,连接MN,CN,则MN⊥底面ABC,MN⊥AB.因为△ABC是正三角形,所以NC⊥AB.因为MN∩NC=N,MN⊂平面MNC,NC⊂平面MNC,所以AB⊥平面MNC,所以AB⊥MC.(2)由(1)知MC⊥AB,若存在点P使得MC⊥平面ABP,则必有MC⊥BP.过M作MQ⊥B1C1,垂足为Q,连接QC,则QC是MC在平面BCC1B1内的射影,只需QC⊥BP即可,此时Rt△QC1C与Rt△PCB相似,QC1C1C =PCCB,所以PC=QC1·CBC1C=3×426=6,点P恰好是CC1的中点.。

立体几何题型与方法(理科)

立体几何题型与方法(理科)

立体几何题型与方法2.如图,已知矩形ABCD和矩形ADEF所在平面互相垂直,点M,N分别在对角线BD,AE上,且13BM BD=,13AN AE=.求证://MN平面CDE.解析:要证明//MN平面CDE,只要证明向量NM可以用平面CDE内的两个不共线的向量DE和DC线性表示.例题:已知ABCD,从平面AC外一点O引向量,,,OE kOA OF kOB OG kOC OH kOD====,(1)求证:四点,,,E F G H共面;(2)平面AC//平面EG.例题:已知正方体1111ABCD A B C D-中,E,F分别为11D C,11C B的中点,AC BD P=,11AC EF Q=.求证:(1)D,B,F,E四点共面;(2)若1A C交平面DBFE于R点,则P,Q,R三点共线.例题:如图,O1是正方体ABCD—A1B1C1D1的上底面的中心,G是对角线A1C和截面B1D1A的交点,求证:O1、G、A三点共线。

OA BCDHFE1AADE1CQ1BRPBCF考点二 证明空间线面平行与垂直3. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点, (I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行.4. (2007武汉3月)如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点。

(1)求证:BM ∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ;(3)求直线PC 与平面PBD 所成角的正弦。

解析:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力.点评:(1)证明线面平行只需证明直线与平面内一条直线平行即可;(2)求斜线与平面所成的角只需在斜线上找一点作已知平面的垂线,斜线和射影所成的角,即为所求角;(3)证明线面垂直只需证此直线与平面内两条相交直线垂直变可.这些从证法中都能十分明显地体现出来例题:如图,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别是AB 、PC 的中点(1)求证:MN //平面PAD ;(2)若4M N BC ==,PA =PA 与MN 所成的角的大小例题:如右图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、P 分别是C 1C 、B 1C 1、C 1D 1的中点,求证:平面MNP ∥平面A 1BD.例题:已知四棱锥P-ABCD 中, 底面ABCD 为平行四边形. 点M 、N 、Q 分别在PA 、BD 、PD 上, 且PM :MA =BN :ND =PQ :QD . 求证:平面MNQ ∥平面PBC .例题:如图,在正方体1111ABCD A B C D -中,E 是1CC 的中点,F 是AC ,BD 的交点,求证:1A F BED ⊥平面.GFE DCB AD 1C 1B 1A 1例题:如图, 在空间四边形ABCD 中,,,AB BC CD DA == ,,E F G 分别是,,CD DA AC 的中点,求证:平面BEF ⊥平面BGD .异面直线夹角3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA =2π,M 、N 分别是AB和SC 的中点.求异面直线SM 与BN 所成的角的余弦值.BM AN CS5 ,A 1B 1C 1—ABC 是直三棱柱,∠BCA=90°,点D 1、F 1 分别是A 1B 1、A 1C 1BC=CA=CC 1,求BD 1与AF 1所成角的余弦值是9.如图,四面体ABCD 中,AB ⊥BC ,AB ⊥BD ,BC ⊥CD ,且AB =BC =6,BD =8,E 是AD 中点,求BE 与CD 所成角的余弦值57点到平面的距离例1、如图,在梯形ABCD 中,AD ∥BC, ∠ABC =90°,AB =BC =1∕3AD =a,PA ⊥平面ABCD,且PA =a,点F 在AD 上,且CF ⊥PC.求点A 到平面PCF 的距离;求AD 与平面PBC 间的距离。

立体几何大题15种题型全归纳

立体几何大题15种题型全归纳

【题型一】 平行1:四边形法证线面平行【典例分析】如图,在正方体中,E ,F 分别是,CD 的中点.(1)求证:平面;(2)求异面直线与所成角的余弦值.【答案】(1)证明见解析;(2(1)在正方体中,取中点G ,连接FG ,,如图,而F 是CD 的中点,则,,又E 是的中点,则,, 因此,,,四边形是平行四边形,有,而平面,平面,平面.【经验总结】基本规律1.利用平移法做出平行四边形2.利用中位线做出平行四边形【变式演练】1.如图所示,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,,,,E 是PB 的中点.(1)求证:平面PAD ;(2)若,求三棱锥P -ACE 的体积.【答案】(1)证明见解析(2) 【分析】(1)取PA 的中点F ,连接EF ,DF ,利用平行四边形证明,再由线面平行的判定定理即可得证;(2)根据等体积法知,即可由棱锥体积公式求解.(1)取PA 的中点F ,连接EF ,DF ,∵点E ,F 分别为PB ,PA 的中点,1111ABCD A B C D -1AA //EF 11A CD 1ED 1A C 1111ABCD A B C D -1CD 1GA 1//FG DD 112FG DD =1AA 11//A E DD 1112A E DD =1//A E FG 1A E FG =1FGA E 1//EF GA EF ⊄11A CD 1GA ⊂11A CD //EF 11A CD AB AD ⊥//AB CD 222AB AD CD ===//CE 2PC =13//EC DF P ACE E ACP V V --=∴,,∴四边形EFDC 是平行四边形,∴,又∵平面PAD ,平面PAD ,∴平面PAD ;2.如图,在四棱锥中,面,,且,,,,为的中点.(1)求证:平面;(2)求平面与平面所成二面角的余弦值;(3)在线段上是否存在一点,使得直线与平面若存在求出的值,若不存在说明理由. 【答案】(1)证明见解析(2)(3)存在, (1)证明:取CP 中点F ,连接NF 、BF ,因为F ,N 分为PC ,PD 的中点,则,且, 又,且,,所以四边形NABF 是平行四边形, ,又面PBC ,面PBC 。

高考数学-立体几何知识点与例题讲解-题型方法

高考数学-立体几何知识点与例题讲解-题型方法

立体几何知识点例题讲解一、知识点 <一>常用结论1.证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行. 2.证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行. 3.证明平面与平面平行的思考途径:(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直. 4.证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直.5.证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直. 6.证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直.7.夹角公式 :设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉=112233222222123123a b a b a b a a ab b b++++++.8.异面直线所成角:cos |cos ,|a b θ=r r=121212222222111222||||||||x x y y z z a b a b x y z x y z ++⋅=⋅++⋅++r rr r(其中θ(090θ<≤o o)为异面直线a b ,所成角,,a b r r 分别表示异面直线a b,的方向向量)9.直线AB 与平面所成角:sin ||||AB marc AB m β⋅=(m 为平面α的法向量). 10、空间四点A 、B 、C 、P 共面OC z OB y OA x OP ++=⇔,且 x + y + z = 1 11.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).12.三余弦定理:设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.13.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB =⋅ 222212121()()()x x y y z z =-+-+-. 14.异面直线间的距离: ||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).15.点B 到平面α的距离:||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈).16.三个向量和的平方公式:2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅ 17. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=. (立体几何中长方体对角线长的公式是其特例).18. 面积射影定理 'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的θ).19. 球的组合体(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.(3) 球与正四面体的组合体: 棱长为a 的正四面体的内切球的半径为612a ,外接球的半径为64a . 20. 求点到面的距离的常规方法是什么?(直接法、体积法) 21. 求多面体体积的常规方法是什么?(割补法、等积变换法) 〈二〉温馨提示:1.在用反三角函数表示直线的倾斜角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围及义?① 异面直线所成的角、直线与平面所成的角、二面角的取值范围依次.② 直线的倾斜角、到的角、与的夹角的取值范围依次是.③反正弦、反余弦、反正切函数的取值范围分别是.〈三〉解题思路:1、平行垂直的证明主要利用线面关系的转化:线∥线线∥面面∥面判定线⊥线线⊥面面⊥面性质线∥线线⊥面面∥面←→−←→−−→−−←→−←→−←−−−←→−←→−线面平行的判定: a b b a a ∥,面,∥面⊂⊄⇒αααabα线面平行的性质:αααβαβ∥面,面,∥⊂=⇒ b a b三垂线定理(及逆定理):P A A O P O ⊥面,为在内射影,面,则αααa ⊂a OA a PO a PO a AO⊥⊥;⊥⊥⇒⇒αaPO线面垂直:a b a c b c b c O a ⊥,⊥,,,⊥⊂=⇒ααaO α b c面面垂直:a a ⊥面,面⊥αββα⊂⇒ 面⊥面,,,⊥⊥αβαβαβ=⊂⇒l l aaaα alβa b a b ⊥面,⊥面∥αα⇒面⊥,面⊥∥αβαβa a ⇒ a bα2、三类角的定义及求法(1)异面直线所成的角θ,0°<θ≤90°(2)直线与平面所成的角θ,0°≤θ≤90°θαα=时,∥或0bo b⊂()二面角:二面角的平面角,3018αβθθ--<≤l o o(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。

立体几何练习题

立体几何练习题

立体几何题型一、平行与垂直的证明例1.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F . (1)证明PA //平面EDB ;(2)证明PB ⊥平面EFD例2.四棱锥S A B C D -中,底面ABCD 为平行四边形,侧面SB C ⊥底面ABCD ,已知45A B C ∠=︒,2A B =,BC =SA SB ==(Ⅰ)证明:SA B C ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小. 变式:已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90底面ABCD ,且PA =AD =DC =21AB =1,M 是PB 的中点.(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小.ACDBCASOE A DCBNM EP题型二、空间角与距离例3.如图,在四棱锥O A B C D -中,底面A B C D 四边长为1的 菱形,4A B C π∠=, OA ABCD ⊥底面, 2O A =,M 为O A 的中点。

(Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离。

例4. 如图,四面体ABCD 中,O 、E 分别BD 、BC 的中点,CA =CB =CD =BD =2 (Ⅰ)求证:AO ⊥平面BCD ;(Ⅱ)求异面直线AB 与CD 所成角的大小; (Ⅲ)求点E 到平面的距离. 变式:如图,正三棱锥O A B C -的三条侧棱O A 、O B 、O C 两两垂直,且长度均为2.E 、F 分别是A B 、A C 的中点,H 是E F 的中点,过E F 的平面与侧棱O A 、O B 、O C 或其延长线分别相交于1A 、1B 、1C ,已知132O A =.(1)求证:11B C ⊥面O A H ; (2)求二面角111O A BC --的大小.1C 1A题型三、探索性问题例5.在四棱锥P-ABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,E 、F 分别是AB 、PC 的中点.(1)求证://EF 平面PAD ;(2)当平面PCD 与平面ABCD 成多大二面角时,⊥EF 平面PCD ?变式:如图,在三棱锥A -BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD ,BD =CD =1,另一个侧面是正三角形 (1)求证:AD ⊥BC(2)求二面角B -AC -D 的大小(3)在直线AC 上是否存在一点E ,使ED 与面BCD 成30︒角?若存在,确定E 的位置;若不存在,说明理由.DC题型四、折叠、展开问题例6.已知正方形A B C D E 、F 分别是A B 、C D 的中点,将AD E 沿D E 折起,如图所示,记二面角A D E C --的大小为(0)θθπ<< (1) 证明//B F 平面ADE ;(2)若A C D 为正三角形,试判断点A 在平面B C D E 内的射影G 是否在直线E F 上,证明你的结论,并求角θ的余弦值。

立体几何题型与解题方法

立体几何题型与解题方法
立体几何重点题型与解题方法
1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 , 推出点在面内), 这样可根据公理 2 证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的 公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证 明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没 有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点 和直线等)
组成一个直角三角形.
c.特殊棱锥的顶点在底面的射影位置:
①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.
②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.
③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.
④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.
分线上。
4. 平面平行与平面垂直.
(1). 空间两个平面的位置关系:相交、平行.
(2). 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
(“线面平行 面面平行”)
推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.
[注]:一平面内的任一直线平行于另一平面.

高中数学立体几何的相关题型及解题思路

高中数学立体几何的相关题型及解题思路

高中数学立体几何的相关题型及解题思路在高中数学中,立体几何是一个重要的考点,也是许多学生感到困惑和头疼的地方。

本文将介绍一些常见的立体几何题型,并给出相应的解题思路和技巧,希望能够帮助高中学生和他们的父母更好地应对这一考点。

一、体积计算题体积计算题是立体几何中最基础的题型之一,常见的题目有计算立方体、长方体、圆柱体、圆锥体、球体等的体积。

解决这类题目的关键在于熟练掌握各种几何体的体积公式,并能够根据题目给出的条件灵活运用。

例如,某题给出一个长方体的底面积为12平方厘米,高为5厘米,要求计算其体积。

我们可以直接应用长方体的体积公式V=底面积×高,代入已知数据计算得出答案为60立方厘米。

二、表面积计算题表面积计算题也是立体几何中常见的题型之一,常见的题目有计算立方体、长方体、圆柱体、圆锥体、球体等的表面积。

解决这类题目的关键在于熟练掌握各种几何体的表面积公式,并能够根据题目给出的条件灵活运用。

例如,某题给出一个正方体的边长为3厘米,要求计算其表面积。

我们可以直接应用正方体的表面积公式S=6a^2,其中a为边长,代入已知数据计算得出答案为54平方厘米。

三、立体图形的相似题立体图形的相似题是立体几何中较为复杂的题型之一,常见的题目有判断两个立体图形是否相似、计算相似立体图形的比例等。

解决这类题目的关键在于观察立体图形的形状和比例关系,并能够利用相似三角形的性质进行推理。

例如,某题给出一个正方体ABCDA'B'C'D',另一个正方体EFGHE'F'G'与之相似,要求计算两个正方体的体积比。

我们可以观察到两个正方体的边长比为AE/AA'=EF/EE'=FG/FF'=...=1/2,而体积与边长的关系为V=k^3,其中k为边长的比值。

因此,两个正方体的体积比为(1/2)^3=1/8。

四、立体图形的投影题立体图形的投影题是立体几何中较为抽象的题型之一,常见的题目有计算某个立体图形在某个平面上的投影面积或投影长度等。

专题:立体几何题型与方法

专题:立体几何题型与方法

专题:立体几何题型与方法. 空间向量.(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.(2)空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使cz b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 OCz OB y OA x OP++=(这里隐含x+y+z≠1).注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31c b a AQ++=用MQ AM AQ +=即证.对空间任一点O 和不共线的三点A 、B 、C ,满足O P xO A y O B z O C =++ ,则四点P 、A 、B 、C 是共面⇔1x y z ++=(3)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标).①令a =(a 1,a 2,a 3),),,(321b b b b =,则),,(332211b a b a b a b a ±±±=+,))(,,(321R a a a a ∈=λλλλλ,332211b a b a b a b a ++=⋅ ,a∥)(,,332211R b a b a b a b∈===⇔λλλλ332211b a b a b a ==⇔。

0332211=++⇔⊥b a b a b a b a 。

222321aaa++==(用到常用的向量模与向量之间的转化:a a =⇒⋅=)空间两个向量的夹角公式232221232221332211||||,cos b b b a a a b a b a b a b a ba b a ++⋅++++=⋅⋅>=<(a =123(,,)a a a ,b =123(,,)b b b )。

高考数学中的立体几何问题及解题方法

高考数学中的立体几何问题及解题方法

高考数学中的立体几何问题及解题方法高考数学中,立体几何是一项重要的考试题型。

相比于平面几何、代数和概率统计等内容,立体几何更为抽象,对学生的空间想象力和逻辑能力要求更高。

本文旨在探讨高考数学中的立体几何问题及其解题方法。

一、立体几何常考题型常见的立体几何问题包括立体几何图形的性质、体积、表面积等问题。

下面列举一些高考中经常出现的立体几何考点。

1. 立体图形的名字和性质高考中经常出现的立体图形包括正方体、长方体、棱柱、棱锥、圆柱、圆锥、球等。

学生需要掌握这些图形的属性,比如正方体的六个面都是正方形、长方体的所有面都是矩形等等,只要掌握了它们的基本属性,在解决题目时就能做到心中有数。

2. 体积求立体图形的体积是立体几何中比较基础和常见的题型。

学生需要清楚掌握各种常见图形的体积公式,例如:①正方体的体积公式:V=a³②长方体的体积公式:V=lxwxh③棱柱的体积公式:V=Ah④圆柱的体积公式:V=πr²h⑤球的体积公式:V=4/3πr³⑥棱锥的体积公式:V=1/3Ah注意,这些公式必须要掌握,不要在考试中还在纠结于公式的推导方法。

3. 表面积求立体图形的表面积也是数学中的一大题型。

常见的几何图形表面积的计算方式有如下几种公式:①正方体的表面积公式:S=6a²②长方体的表面积公式:S=2(lw+lh+wh)③棱柱的表面积公式:S=2B+Ph④圆柱的表面积公式:S=2πr²+2πrh⑤球的表面积公式:S=4πr²⑥棱锥的表面积公式:S=B+1/2Pl其中B表示底面积,P表示底面外接多边形的周长,l表示斜几何。

上面列举的是一些常见的立体几何题目,还有一些特殊题目需要学生掌握,例如“平行四边形体积定理”、“曲面半径定理”等等。

二、举例分析解题方法1. 体积题例题:某学校花坛为正方形,长和宽之和为25米,现在将花坛增加5个方块,每个方块边长为2米,求增加的花坛的体积。

立体几何题型及解题方法总结

立体几何题型及解题方法总结

立体几何题型及解题方法总结1. 立体几何题型啊,那可是个神奇的领域!有求各种立体图形体积的题型,就像求一个装满水的古怪形状瓶子能装多少水一样。

比如说正方体,正方体的体积公式就是边长的立方。

要是有个正方体边长是3厘米,那它的体积就是3×3×3 = 27立方厘米,简单吧!这类型的题就像是数糖果,一个一个数清楚就行。

2. 还有求立体图形表面积的题型呢。

这就好比给一个形状奇怪的礼物包装纸,得算出需要多少纸才能把它包起来。

像长方体,表面积就是六个面的面积之和。

假如一个长方体长4厘米、宽3厘米、高2厘米,那表面积就是2×(4×3 + 4×2 + 3×2) = 52平方厘米。

哎呀,可别小瞧这表面积,有时候算错一点就像给礼物包了个破纸一样难看。

3. 立体几何里关于线面关系的题型也不少。

这就像在一个迷宫里找路,线和面的关系复杂得很。

比如说直线和平面平行的判定,就像在一个方方正正的房间里,一根直直的杆子和地面平行,只要杆子和地面内的一条直线平行就行。

像有个三棱柱,一条棱和底面的一条棱平行,那这条棱就和底面平行啦,是不是很有趣呢?4. 线面垂直的题型也很重要哦。

这就像是建房子时的柱子和地面的关系,必须垂直才稳当。

判断一条直线和一个平面垂直,就看这条直线是不是和平面内两条相交直线都垂直。

就像搭帐篷,中间那根杆子要和地面上交叉的两根绳子都垂直,帐篷才能稳稳地立起来。

比如一个正四棱锥,它的高就和底面垂直,因为高和底面两条相交的对角线都垂直呢。

5. 面面平行的题型有点像照镜子。

两个平面就像两面镜子,要想平行,得看一个平面内的两条相交直线和另一个平面内的两条相交直线分别平行。

就像有两个一样的盒子,一个盒子里面两条交叉的边和另一个盒子里面对应的两条交叉边平行,那这两个盒子的面就是平行的关系。

想象一下,如果两个平行的黑板,是不是很有画面感?6. 面面垂直的题型就像是打开的书页。

高中数学立体几何解题技巧及常见题型详解

高中数学立体几何解题技巧及常见题型详解

高中数学立体几何解题技巧及常见题型详解立体几何是数学中的一个重要分支,它研究的是空间中的图形和体积。

在高中数学中,立体几何是一个重要的考点,也是考试中难度较大的部分之一。

本文将介绍一些高中数学立体几何解题技巧,并详细解析几种常见的立体几何题型,帮助读者更好地应对这一考点。

一、平行六面体的体积计算平行六面体是高中数学中常见的立体几何题型之一。

解决这类题目的关键是确定底面积和高,进而计算体积。

例如,有一平行六面体的底面积为A,高为h,求其体积。

解题技巧:首先,我们需要明确平行六面体的定义,即六个面都是平行的。

其次,根据平行六面体的性质,我们可以将其看作一个长方体,因为长方体是一种特殊的平行六面体。

因此,平行六面体的体积可以通过底面积乘以高来计算,即V = Ah。

举例说明:假设有一个平行六面体,其底面积为5平方厘米,高为10厘米。

那么,它的体积可以通过计算5乘以10得到,即V = 5 × 10 = 50立方厘米。

二、正方体的表面积计算正方体是高中数学中常见的立体几何题型之一。

解决这类题目的关键是确定正方体的边长,进而计算表面积。

例如,有一个正方体的边长为a,求其表面积。

解题技巧:首先,我们需要明确正方体的定义,即六个面都是正方形。

其次,根据正方体的性质,我们可以将其看作一个立方体,因为立方体是一种特殊的正方体。

因此,正方体的表面积可以通过边长的平方乘以6来计算,即S = 6a²。

举例说明:假设有一个正方体,其边长为3厘米。

那么,它的表面积可以通过计算6乘以3的平方得到,即S = 6 × 3² = 54平方厘米。

三、棱柱的体积计算棱柱是高中数学中常见的立体几何题型之一。

解决这类题目的关键是确定底面积和高,进而计算体积。

例如,有一个棱柱的底面积为A,高为h,求其体积。

解题技巧:首先,我们需要明确棱柱的定义,即底面是一个多边形,顶面与底面的对应点通过直线相连。

其次,根据棱柱的性质,我们可以将其看作一个长方体,因为长方体是一种特殊的棱柱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题六立体几何问题的题型与方法【考点审视】高考试卷中立体几何把考查的立足点放在空间图形上,突出对空间观念和空间想象能力的考查•立体几何的基础是对点、线、面的各种位置关系的讨论和研究,进而讨论几何体。

因此高考命题时,突出空间图形的特点,侧重于直线与直线、直线与平面、平面与平面的各种位置关系的考查,以便审核考生立体几何的知识水平和能力。

多面体和棱柱、棱锥、正多面体、球是空间直线与平面问题的延续和深化。

要熟练掌握概念、性质以及它们的体积公式,同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题来解,会运用“割补法”等求解。

本章主要考查平面的性质、空间两直线、直线和平面、两个平面的位置关系以及空间角和距离、面积及体积。

考试要求(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图。

能够画出空间两条直线、直线和平面的各种位置关系的图形。

能够根据图形想象它们的位置关系。

(2)掌握两条直线平行与垂直的判定、性质定理。

掌握两条直线所成的角和距离的概念。

(3)掌握直线和平面平行、垂直的判定、性质定理。

掌握直线和平面所成的角、距离的概念。

了解三垂线定理及其逆定理。

(4)掌握两个平面平行、垂直的判定、性质定理。

掌握二面角、二面角的平面角、两平面间的距离的概念。

(5)会用反证法证明简单的问题。

了解多面体的概念,了解凸多面体的概念。

(6)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。

(7)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。

(8)了解正多面体的概念,了解多面体的欧拉公式。

(9)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。

【疑难点拔】立体几何问题的题型与方法1、立体几何高考命题及考查重点、难点稳定:高考始终把空间直线与直线、直线与平面、平面与平面的平行与垂直的性质与判定、线面间的角与距离的计算作为考查的重点,尤其是以多面体和旋转体为载体的线面位置关系的论证,更是年年反复进行考查,在难度上也始终以中等偏难为主。

2、高考直接考查线面位置关系,以多面体为载体考查线面间位置关系是今后命题的一种趋势。

3、求二面角高考中每年必考,复习时必须高度重视。

4、由于近年考题常立足于棱柱、棱锥和正方体,因此复习时应注意多面体的依托作用,熟练多面体性质的应用,才能发现隐蔽条件,利用隐含条件,达到快速准确解题的目的。

5、立体几何的证明与计算的书写格式要求非常严格,因此在平时的训练中要多加注意书写的格式的严密性。

【教学过程】一.基础知识详析1 •有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律一一充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.2.判定两个平面平行的方法:(1)根据定义一一证明两平面没有公共点;(2)判定定理一一证明一个平面内的两条相交直线都平行于另一个平面;3)证明两平面同垂直于一条直线。

3 .两个平面平行的主要性质:⑴由定义知:“两平行平面没有公共点”。

⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”。

⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⑸夹在两个平行平面间的平行线段相等。

⑹经过平面外一点只有一个平面和已知平面平行。

以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过程中均可立体几何问题的题型与方法直接作为性质定理引用。

4 •空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等•解这类问题的基本思路是把空间问题转化为平面问题去解决.空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角张(0,],直线与平面所成的角灰0,,二面角的大小,可用它们的平面角来2 2度量,其平面角(0, n ] •对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用•通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力.如求异面直线所成的角常用平移法(转化为相交直线);求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角一l -的平面角(记作)通常有以下几种方法:⑴根据定义;(2)过棱I上任一点O作棱I的垂面,设门 =OA, n = OB,则/ AOB =(图1);(3)利用三垂线定理或逆定理,过一个半平面内一点A,分别作另一个平面的垂线AB(垂足为B),或棱I的垂线AC(垂足为C),连结AC,则/ ACB = 或/ ACB =—(图2);(4)设A为平面外任一点,AB丄,垂足为B, AC丄,垂足为C,则/ BAC =或 / BAC =—(图3);(5)利用面积射影定理,设平面内的平面图形F的面积为S, F 在平面内的射影图I 形的面积为S,则cos = S .S5.空间的距离问题,主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线段的)、平面和它的平行直线、以及两个平行平面之间的距离.求距离的一般方法和步骤是:一作一一作出表示距离的线段;二证一一证明它就是所要求的距离;三算一一计算其值•此外,我们还常用体积法求点到平面的距离.6 .棱柱的概念和性质⑴理解并掌握棱柱的定义及相关概念是学好这部分知识的关键,要明确“棱柱一直棱柱正棱柱”这一系列中各类几何体的内在联系和区别。

⑵平行六面体是棱柱中的一类重要的几何体,要理解并掌握“平行六面体直平行六面体长方体正四棱柱正方体”这一系列中各类几何体的内在联系和区别。

⑶须从棱柱的定义出发,根据第一章的相关定理对棱柱的基本性质进行分析推导,以立体几何问题的题型与方法立体几何问题的题型与方法求更好地理解、掌握并能正确地运用这些性质。

⑷关于平行六面体,在掌握其所具有的棱柱的一般性质外,还须掌握由其定义导出的 一些其特有的性质,如长方体的对角线长定理是一个重要定理并能很好地掌握和应用。

还 须注意,平行六面体具有一些与平面几何中的平行四边形相对应的性质,恰当地运用平行 四边形的性质及解题思路去解平行六面体的问题是一常用的解题方法。

⑸多面体与旋转体的问题离不开构成几何体的基本要素点、线、面及其相互关系,因 此,很多问题实质上就是在研究点、线、面的位置关系,与《直线、平面、简单几何体》 第一部分的问题相比,唯一的差别就是多了一些概念,比如面积与体积的度量等•从这个 角度来看,点、线、面及其位置关系仍是我们研究的重点•多面体与旋转体的体积问题是 《直线、平面、简单几何体》课程当中相对独立的课题•体积和面积、长度一样,都是度 量问题•常用“分割与补形”,算出了这些几何体的体积.7 .欧拉公式:如果简单多面体的顶点数为 V,面数F ,棱数E ,那么V+F-E = 2. 计算棱数E 常见方法: ⑴E = V+F-2 ;(2) E =各面多边形边数和的一半; (3) E =顶点数与共顶点棱数积的一半。

&经纬度及球面距离⑴根据经线和纬线的意义可知,某地的经度是一个二面角的度数,某地的纬度是一个 线面角的度数,设球 0的地轴为NS ,圆0是0°纬线,半圆 NAS 是0°经线,若某地 P 是在东紐120°,北纬40°,我们可以作出过 P 的经线N PS 交赤道于B ,过P 的纬线圈圆 O i 交NAS 于A ,那么则应有:/ AO i P=120° (二面角的平面角),/ POB=40 ° (线面角)。

⑵两点间的球面距离就是连结球面上两点的大圆的劣弧的长,因此,求两点间的球面 距离的关键就在于求出过这两点的球半径的夹角。

例如,可以循着如下的程序求 A 、P 两点的球面距离。

线段AP 的长| 匕AOP 的弧度数 9 .球的表面积及体积公式V 球=-n R 33⑴球的体积公式可以这样来考虑:我们把球面分成若干个边是曲线的小“曲边三角形”;以球心为顶点,以这些小曲边三角形的顶点为底面三角形的顶点,得到若干个小三 棱锥,所有这些小三棱锥的体积和可以看作是球体积的近似值 •当小三棱锥的个数无限增 加,且所有这些小三棱锥的底面积无限变小时,小三棱锥的体积和就变成球体积,同时小 三棱锥底面面积的和就变成球面面积,小三棱锥高变成球半径•由于第n 个小三棱锥的体积1 1 12=-Sh n ( S n 为该小三棱锥的底面积,h n 为小三棱锥高),所以V 球=-S 球面・R =— -4 n R -R3 3 3=-n R 3.⑵在应用球体积公式时要注意公式中给出的是球半径 外径(直径)•⑶球与其它几何体的切接问题,要仔细观察、分析、弄清相关元素的位置关系和数量 关系,选择最佳角度作出截面,以使空间问题平面化。

S 球表=4 n R 2R ,而在实际问题中常给出球的立体几何问题的题型与方法10 .主要题型:⑴以棱柱、棱锥为载体,考查线面平行、垂直,夹角与距离等问题。

⑵利用欧拉公式求解多面体顶点个数、面数、棱数。

⑶求球的体积、表面积和球面距离。

解题方法:求球面距离一般作出相应的大圆,转 化为平面图形求解。

11.注意事项⑴须明确《直线、平面、简单几何体》中所述的两个平面是指两个不重合的平面。

⑵与“直线与直线平行”、“直线与平面平行”的概念一样“平面与平面平行”是 指“二平面没有公共点”。

由此可知,空间两个几何元素(点、直线、平面称为空间三个 几何元素)间“没有公共点”时,它们间的关系均称为“互相平行” 。

要善于运用平面与 平面平行的定义所给定的两平面平行的最基本的判定方法和性质。

⑶注意两个平行平面的画法一一直观地反映两平面没有公共点, 将表示两个平面的平 行四边形画成对应边平行。

两个平面平行的写法与线、线平行,线、面平行的写法一议, 即将“平面 平行于平面 ”,记为“ // ”。

⑷空间两个平面的位置关系有且只有“两平面平行”和“两平面相交”两种关系。

相关文档
最新文档