电磁场与微波技术实验指导书(新)

合集下载

最新微波技术实验指导书

最新微波技术实验指导书

微波技术实验指导书微波技术实验指导书实验一微波测量系统的了解与使用实验性质:验证性实验级别:选做开课单位:信息与通信工程学院学时:2学时一、实验目的:1.了解微波测量线系统的组成,认识各种微波器件。

2.学会测量设备的使用。

二、实验器材:1.3厘米固态信号源2.隔离器3.可变衰减器4.测量线5.选频放大器6.各种微波器件三、实验内容:1.了解微波测试系统2. 学习使用测量线四、基本原理:图1.1 微波测试系统组成1.信号源信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。

常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。

本实验采用DH1121A型3cm固态信号源。

2.选频放大器当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。

它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。

它具有极高的灵敏度和极低的噪声电平。

表头一般具有等刻度及分贝刻度。

要求有良好的接地和屏蔽。

选频放大器也叫测量放大器。

3.测量线3厘米波导测量线由开槽波导、不调谐探头和滑架组成。

开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。

4.可变衰减器为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。

衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。

实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。

一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。

五、实验步骤:1.了解微波测试系统1.1观看如图装置的的微波测试系统。

电磁场与微波技术实验报告.

电磁场与微波技术实验报告.

电磁场与微波技术实验报告班级:学号:姓名:目录目录 (2)实验2 微带分支线匹配器 (3)一、实验目的: (3)二、实验原理 (3)三、实验内容 (3)四、实验步骤 (3)实验三四分之一波长阻抗变换器 (15)实验目的 (15)实验原理 (15)单节4λ阻抗变换器 (16)多节4λ阻抗变换器 (16)实验内容 (17)实验步骤 (18)实验4 低通滤波器 (31)实验目的 (31)实验原理 (31)低通原型滤波电路 (32)Richards变换 (32)Kuroda变换 (33)实验内容 (33)实验步骤 (33)总结 (41)完成任务 (41)问题及解决 (41)心得与体会 (41)实验2 微带分支线匹配器一、实验目的:1.熟悉支节匹配器的匹配原理2. 了解微带线的工作原理和实际应用3.掌握Smith图解法设计微带线匹配网络二、实验原理支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。

单支节匹配器,调谐时主要有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。

匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是Y0+jB 形式。

然后,此短截线的电纳选择为-jB,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。

双支节匹配器,通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。

三、实验内容已知:输入阻抗Zin=75欧负载阻抗Zl=(64+j35)欧特性阻抗Z0=75欧介质基片εr=2.55,H=1mm假定负载在2G赫兹时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=四分之一波长,两分支线之间的距离为d2=八分之一波长。

画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz 的变化四、实验步骤(一):单支节匹配在史密斯圆图上找到等反射系数圆和g=1圆的交点,有两个点与其匹配。

电磁场与微波实验实验

电磁场与微波实验实验

λg/mm
41.6
38.9
39.5
40
λg/mm 均值
40.0
λ0/mm
30.1
6. 用直接发测量计算电压驻波比(实际测量时,读取的是电压值)
1
2
3
4
Vmax/mV
210
208
200
200
Vmin/mV
50
48
50
40
ρ
2.09
7. 按照实验原理测量计算 lmin,并求出归一化阻抗值和实际阻抗值。
DT DA l������������������ 电长度
ρ
=
Emax ������min
=
√������������mmainx
在电压驻波系数1 < ρ < 1.5时,可以测量几个节点,取平均值。
ρ = √������m������amxi1n1++������m������maxin22++⋯⋯+������m������minanxn
当驻波系数1.5 < ρ < 5,直接读出������max和������min即可。 3. 测量阻抗
2. 预热信号源。设置信号源。载波设置:频率 10GHz,功率 15dBm;调制方式设置:AM,1KHz 方 波调制,调制深度>90%。
3. 预热选频放大器。
4. 插入驻波测量线探针,将探针移到两个波节点的中点,调节谐振回路使测量放大器指示最大。
5. 将波导测量线插入终端短路,用两点法测量导波波长
1
99.25 107.60 8.35 0.208
归一化阻抗
1.54 − 0.7i
实际阻抗
77 − 35i

电磁场微波实验指导书(电子专业)(1)中国民航大学,cauc

电磁场微波实验指导书(电子专业)(1)中国民航大学,cauc

电磁场、微波测量实验指导书(电子专业适用)范懿、许明妍编班级:111044C班学号:111044309姓名:贾二超中国民航大学电子信息工程学院二零一三年十二月实验一 电磁波参量的测量一、实验目的(1)在学习均匀平面电磁波特性的基础上,观察电磁波传播特性如E 、 H 和 S 互相垂直。

(2)熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波的相位常数β 和波速υ。

(3)了解电磁波的其他参量,如波阻抗η等。

二、实验仪器 (1) DH1211型3cm 固态源1台(2) DH926A 型电磁 波综合测试仪1套 (3) XF-01选频放大器1台 (4)PX-16型频率计三、实验原理两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同,它们相互干涉的结果,在传播路径上形成驻波分布。

通过测定驻波场节点的分布,求得波长λ的值,由2πβλ=、f υλ=得到电磁波的主要参数:β、υ。

设0r P 入射波为:0j i i E E e βγ-=当入射波以入射角θ向介质板斜投射时,在分界面上产生反射波r E 和折射波i E 。

设入射波为垂直极化波,用R ⊥表示介质板的反射系数,用0T ⊥和T ε⊥表示由空气进入介质板和由介质板进入空气的折射系数。

可动板2r P 和固定板1r P 都是金属板,其电场反射系数为-1,则3r P 处的相干波分别为:110j r i E R T T E e φε-⊥⊥⊥=- 1131()r r L L L φββ=+= 220j r i E R T T E e φε-⊥⊥⊥=- 22331()()r r r r L L L L L φββ=+=++其中,21L L L ∆=-因为1L 是固定值,2L 则随可动板位移L 而变化。

当2r P 移动L 值时,使3r P 具有最大输出指示时,则有1r E 和2r E 为同相叠加;当2r P 移动L 值,使3r P 具有零值输出指示时,必有1r E 和2r E 反相。

最新(最新)电磁场与电磁波实验指导书

最新(最新)电磁场与电磁波实验指导书

(最新)电磁场与电磁波实验指导书《电磁场与电磁波》实验指导说明书西华师范大学计算机学院仅供学习与交流,如有侵权请联系网站删除谢谢0目录第一部分产品说明 (2)一、系统简介 (2)二、系统特点 (2)三、系统组成 (3)四、性能指标 (4)五、系统主要部件的技术参数 (4)第二部分实验内容 (6)实验一电磁波的频率和功率测试 (6)2、完成数据运算及整理。

(9)实验二电磁波感应器的设计与制作 (9)一、实验目的 (9)实验三位移电流的测试及计算 (14)2、完成数据运算及整理。

(21)实验六电磁波的极化实验 (27)实验七电磁波的PIN调制特性 (32)实验八天线方向图的测试—电压测试法 (34)一、实验目的 (34)仅供学习与交流,如有侵权请联系网站删除谢谢1实验九同轴测量线的驻波测试 (39)实验十反射系数及驻波相位的测试 (42)第三部分射频连接器示意图 (46)第一部分产品说明一、系统简介电磁场电磁波及天线技术是通信工程、电子工程、电磁场与电磁波、微波技术、天线技术类专业必不可少的一门实验课程,本系统包含功率测试、频率测试、方波信号产生,电磁波产生器、功率放大器、选频放大器等,具有电磁波极化特性测试,天线方向图测试、静电场中位移电流测试等多种功能,加深学生对电磁波产生(调制)、发射、传输和接收(检波)过程及终端设备相关特性的认识,培养学生对电磁场电磁波及天线的理解、应用创新能力。

二、系统特点1、实验系统面向《电磁场与电磁波》的课程建设,紧密配合教学大纲,通过直观生动的实验现象及操作,完成对电磁场与电磁波相关特性的测试。

2、系统内置1kHz方波可调信号源、选频放大器,在完成对电磁波PIN调制功能的同时,可用于对天线方向图的测试,而无需选配其他实验装置。

3、本装置电磁波发射可选大功率或小功率2路输出,方便做不同实验时的自由切换,输出端口均为标准的N型接头。

仅供学习与交流,如有侵权请联系网站删除谢谢24、采用数字显示方式,在提高准确性的基础上,更能方便感应器在任何位置归零,直接读取数值。

电磁场与微波技术znjn完整版

电磁场与微波技术znjn完整版

电磁场与微波技术z n j n Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】——电磁场与微波技术实验报告班级:06姓名:张妮竞男学号:84序号: 31#日期:2014年5月31日邮箱实验二:分支线匹配器一、实验目的1、掌握支节匹配器的工作原理2、掌握微带线的基本概念和元件模型3、掌握微带分支线匹配器的设计与仿真二、实验原理1、支节匹配器随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。

因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。

常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。

支节匹配器分单支节、双支节和三支节匹配。

这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。

此电纳或电抗元件常用一终端短路或开路段构成。

2、微带线从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。

微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。

W为微带线导体带条的宽度;εr为介质的相对介电常数;T为导体带条厚度;H为介质层厚度,通常H远大于T。

L为微带线的长度。

微带线的严格场解是由混合TM-TE波组成,然而,在绝大多数实际应用中,介质基片非常薄(H<<λ),其场是准TEM波,因此可以用传输线理论分析微带线。

微带线的特性阻抗与其等效介电常数εr、基片厚度H和导体宽度W有关,计算公式较为复杂,故利用txline来计算。

微带线元件模型3、元器件库里包括有:MLIN:标准微带线MLEF:终端开路微带线MLSC:终端短路微带线MSUB:微带线衬底材料MSTEP:宽度阶梯变换MTEE:T型接头MBENDA:折弯微带线的不均匀性上述模型中,终端开路微带线MLEF、宽度阶梯变换MSTEP、T型接头MTEE 和折弯MBENDA,是针对微带线的不军训性而专门引入的。

电磁场与微波技术实验教程 第1章

电磁场与微波技术实验教程 第1章

如果入射波波长为λ, 两波的波程差为δ, 当δ=kλ(k=0, ±1, ±2, …)时, 接收天线检波后电流 表有极大指示; 当δ=(2k+1)/2λ(k=±1, ±2, ±3, …)时, 接收天线检 波后电流表有极小指示。
B板固定不变, 从端点移动A板改变波程差δ, 当出现 电流表指示极小时, A板位置在某处(由千分尺读出), 再同 方向继续移动A板又再次出现电流表指示极小时, A板的移 动位置改变恰好为λ/2。 继续同方向移动A板, 当出现m+1 个电流表指示极小时, 移动距离就为m/2个波长, 由此可测 出微波源的波长。
图1.1.2 静电场测试电路
五、 1.
2. 本实验方法很简单, 但它是工程上很有效的一种方法。 因此, 除测出所需点电位分布外, 还要深入理解有关的一 些问题。 在做实验报告时除一般要求内容数据外, 还要回 答下列问题: (1) 将平行板电容器的被测模型所测的数据画成距离- 电位图, 与平行板电容器理论上的距离-电位比较, 并解 释为什么在Y=0及Y=10 cm附近(“电极”附近)电位有急剧变 化。 (2) 若要模拟有边缘效应的情况, 其被测模型应如何改
(3) 调节可移动反射板A, 测出电流表指示极小点时A板 的位置S0、 S1、 S2、 S3、 S4, 求出电磁波的波长λ。
在实验时也可以测量其极大点, 但通常测量极小点比 测量极大点准确。
使用微波干涉仪也可以测量介质的相对介电常数Er。 在图1.2.1中, 固定反射板B前插入一块介电常数为Er、 厚度 为d的介质板。 这时在这一路径中电磁波传播的波程改变了, 由于插有介质板的这一路电磁波波程增加了Δδ, 即
Δ 2d ( r 1) (1.2.1)
(1.1.1)
在恒定电流场中, 电场强度E、 电流密度J及电位Ф满 足下列方程:

电磁场与微波技术实验报告(全)

电磁场与微波技术实验报告(全)

信息与通信工程学院电磁场与微波技术实验报告班级:姓名:学号序号:日期:1实验二:分支线匹配器一、实验目的掌握支节匹配器的工作原理;掌握微带线的基本概念和元件模型;掌握微带线分支线匹配器的设计和仿真。

二、实验原理支节匹配器支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。

单支节匹配器:调谐时,主要有两个可调参量:距离d 和分支线的长度l。

匹配的基本思想是选择d,使其在距离负载d 处向主线看去的导纳Y 是Y0 + jB 形式,即Y = Y0 +jB ,其中Y0 = 1/Z0。

并联开路或短路分支线的作用是抵消Y 的电纳部分,使总电纳为Y0,实现匹配,因此,并联开路或短路分支线提供的电纳为−jB ,根据该电纳值确定并联开路或短路分支线的长度l,这样就达到匹配条件。

双支节匹配器:通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(注意双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。

微带线微带线是有介质εr(εr > 1) 和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr,可以近似等效为均匀介质填充的传输线,等效介质电常数为εe ,介于1 和εr 之间,依赖于基片厚度H 和导体宽度W。

而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。

三、实验内容已知:输入阻抗Z in = 75 Ω 负载阻抗Z L = (64 + j35) Ω特性阻抗Z0 = 75 Ω介质基片εr = 2.55,H = 1mm,导体厚度T 远小于介质基片厚度H。

2假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1 = λ/4 ,两分支线之间的距离为d2 = λ/8。

画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。

电磁场与微波实验实验

电磁场与微波实验实验

电磁场与微波实验实验电磁场与微波实验一(一)动画演示:电磁波在矩形波导、平行双线、同轴线中的传播特性(二)自由空间电磁波波长的测量和矩形波导截止特性的研究一.实验目的1. 了解电磁波综合测试仪的结构,掌握其工作原理。

2. 在学习均匀平面电磁波特性的基础上,观察与了解电磁波传播特性。

3. 熟悉并利用相干波原理,测量自由空间内电磁波波长,并确定相位常数。

4. 研究电磁波在矩形波导中的截止特性。

二.实验原理1. 自由空间电磁波波长测量两路等幅、同频率的均匀平面电磁波,在自由空间内以相同或相反方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。

本实验利用相干波原理,使得接收喇叭处的两路电磁波分别为:Er1=T0??c??0ijΦ1,Er2=T0??c??0ijΦ2。

其中Φ1=KL1,Φ2=KL2。

通过移动一个活动金属板B,改变两路光线的光程差,看最后的合成光的强度变化。

当=??2(2??+1)时接受指示为0,则B0值。

一般测试4~5个接受零值,再求22πλ??出测量波长的平均值。

测量移动的距离即可获得自由空间电磁波波长λ值,再根据??=波的传播常数。

2. 矩形波导的截止特性研究得到电磁实验通过观察电磁波通过开缝金属板及开孔金属板的效果来研究矩形波导的截止特性。

将发射喇叭和接收喇叭调整到同一轴线上,在两个喇叭中间安装开缝金属板和开孔金属板,金属板的法线与喇叭轴线一致。

当发射喇叭的电磁波照射到开缝金属板时,开缝金属板对于电磁波来说,相当于多个矩形波导并列的口面。

设缝宽为a,相当于波导的宽边。

点磁场方向平行于缝隙。

根据矩形波导理论,当满足工作波长λ&lt;2a时,波能通过缝隙传播;当λ&gt;2a时,出现截止衰减,电磁波被反射。

a越小,截止衰减越明显,反射越大,同样,对于开孔金属板,当孔径a满足2&gt;a时,不用极化方向的电磁波截止衰减,被反射。

实验中,分别观察不同尺不同方向的开缝金属板及开孔金属板对电磁波的反射与透射效果。

南京理工“电磁场与电磁波”和“微波技术”实验大纲及指导说明书(研究生复试有用)

南京理工“电磁场与电磁波”和“微波技术”实验大纲及指导说明书(研究生复试有用)

实验一 电磁波参量的测定实验1.实验目的 a) 观察电磁波的传播特性。

b) 通过测定自由空间中电磁波的波长 ,来确定电磁波传播的相位常数k 和传播速度v 。

c) 了解用相干波的原理测量波长的方法。

2.实验内容 a) 了解并熟悉电磁波综合测试仪的工作特点、线路结构、使用方法。

b)测量信号源的工作波长(或频率)。

3. 实验原理与说明 a)所使用的实验仪器分度转台,晶体检波器,可变衰减器,喇叭天线,反射板,固态信号源,微安表图1 实验仪器布置图参阅图1。

固态信号源所产生的信号经可变衰减器至矩形喇叭天线,由喇叭天线辐射出去,在接收端用矩形喇叭天线接收,接收到的信号经晶体检波器后通过微安表指示。

b)原理本实验利用相干波原理,通过测得的电磁波的波长 ,再由关系式2,k v f kπωλλ===得到电磁波的主要参量k ,v 等。

实验示意图如图2所示。

图中0r P 、1r P 、2r P 和3r P 分别表示辐射喇叭、固定反射板、可动反射板和接收喇叭,图中介质板是一23030()mm ⨯的玻璃板,它对电磁波进行反射、折射后,可实现相干波测试。

设入射波为: jk r E Ee +-⋅=体检波器图1图2 实验示意图当入射波以入射角1θ向介质板斜投射时,在分界面上产生反射波E-和折射波E'。

设入射波为垂直极化波,用R⊥表示介质板的反射系数,用T⊥、eT⊥分别表示由空气进入介质板和由介质板进入空气的折射系数。

另外固定的和可动的金属反射板的反射系数均为-1。

在一次近似的条件下,接收喇叭3rP处的相干波分别为:110j E R T T E e ϕε--+⊥⊥⊥=-220j E R T T E e ϕε--+⊥⊥⊥=-即两者幅度相等,相位差为12()ϕϕ-,其中1011()r k L L kL ϕ=+=221012()()r r r k L L k L l L kL ϕ=+=+∆+=从而可得21L L L l ∆=-=∆因101r L L L =+为固定值,而21L L l =+∆是可改变的,改变可动反射板P r 2位置而取不同的2L 值,可使行程相位差为90。

电磁场微波实验指导书(电子专业)概要

电磁场微波实验指导书(电子专业)概要

电磁场、微波测量实验指导书(电子专业适用)实验一 电磁波参量的测量一、实验目的(1)在学习均匀平面电磁波特性的基础上,观察电磁波传播特性如E 、 H 和 S 互相垂直。

(2)熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波的相位常数β 和波速υ。

(3)了解电磁波的其他参量,如波阻抗η等。

二、实验仪器 (1) DH1211型3cm 固态源1台(2) DH926A 型电磁 波综合测试仪1套 (3) XF-01选频放大器1台 (4)PX-16型频率计三、实验原理两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同,它们相互干涉的结果,在传播路径上形成驻波分布。

通过测定驻波场节点的分布,求得波长λ的值,由2πβλ=、f υλ=得到电磁波的主要参数:β、υ。

设0r P 入射波为:0j i i E E e βγ-=当入射波以入射角θ向介质板斜投射时,在分界面上产生反射波r E 和折射波i E 。

设入射波为垂直极化波,用R ⊥表示介质板的反射系数,用0T ⊥和T ε⊥表示由空气进入介质板和由介质板进入空气的折射系数。

可动板2r P 和固定板1r P 都是金属板,其电场反射系数为-1,则3r P 处的相干波分别为:110j r i E R T T E e φε-⊥⊥⊥=- 1131()r r L L L φββ=+= 220j r i E R T T E e φε-⊥⊥⊥=- 22331()()r r r r L L L L L φββ=+=++ 其中,21L L L ∆=-因为1L 是固定值,2L 则随可动板位移L 而变化。

当2r P 移动L 值时,使3r P 具有最大输出指示时,则有1r E 和2r E 为同相叠加;当2r P 移动L 值,使3r P 具有零值输出指示时,必有1r E 和2r E 反相。

故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。

最新微波技术实验指导书1

最新微波技术实验指导书1

微波技术实验指导书1实验要求一、预习要求:实验前必须充分预习,完成指定的预习任务。

1.认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的计算。

2.复习实验中所用各仪器的使用方法及注意事项。

3.熟悉实验任务,完成各实验“预习要求”中指定的内容,写好预习报告。

二、实验要求:1.使用仪器前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。

2.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应立即关断电源,保持现场,报告指导教师。

找出原因、排除故障后,经指导教师同意再继续实验。

3.在进行微波测试时,终端尽量不要开口,以防止微波能量泄露。

4.实验过程中应仔细观察实验现象,认真纪录实验结果(数据、波形、现象)。

所纪录的实验结果经指导教师审阅签字后再拆除实验线路。

5.实验结束后,必须关断电源,并将仪器、设备、工具等按规定整理。

6.实验后每个同学必须按要求独立完成实验报告并按时上交。

实验一、微波传输线频率和波长的测量一、实验目的1.学会使用基本微波器件。

2.了解微波振荡源的基本工作特性和微波的传输特性。

3.学习利用吸收式测量频率和波长的方法;4.掌握用测量线来测量波长和频率的方法。

二、实验原理1.微波的传输特性为了避免导线辐射损耗和趋肤效应等的影响,采用标准矩形波导管为微波传输线,并用TE10波型。

波导管具有三种工作状态:①当终端接“匹配负载”时,反射波不存在,波导中呈行波状态;②当终端接“短路片”、开路或接纯电抗性负载时,终端全反射,波导中呈纯驻波状态;③一般情况下,终端是部分反射,波导中传输的既不是行波,也不是纯驻波,而是呈行驻波状态。

2.微波频率的测量用吸收式频率计PX16(直读式),测量范围8.2GHZ-12.4GHZ,误差≤±0.3%,当传输线中相当一部分功率进入频率计谐振腔内,而另一部分从耦合元件处反射回去。

当调节频率计,使其自身空腔的固有频率与微波信号频率相同时产生谐振,用选频放大器测量,信号源须用内方波,重复频率为1KHZ 左右,谐振时可从选放上观察到信号幅度明显减少,以减幅最大位置为判断频率测量值的论据。

电磁场与微波技术实验教程 第1章

电磁场与微波技术实验教程 第1章
一、 (1) (2) 学会判读线极化波和圆极化波的方法。
二、
平面电磁波沿轴线前进没有Ez分量, 一般情况下, 存 在Ex分量和Ey分量。 如果Ey分量为零, 只有Ex分量, 则称 其为x方向线极化; 如果只有Ey分量而没有Ex分量, 则称其 为y方向线极化。
一般情况下, Ex和Ey都存在, 在接收此电磁波时, 将 得到包含水平与垂直两个分量的电磁波。 当这两个分量的
(1.1.2)
J
E
E
因为方程组(1.1.1)与方程组(1.1.2)在形式上完全相似, 所以Φ′(静电场中的电位分布函数)与Φ(恒定电流场中的电位 分布函数)应满足同样形式的微分方程。 由方程组(1.1.1)和 方程组(1.1.2)很容易求得
( ) 0 ( ) 0
(1.1.3) (1.1.4)
图1.1.2 静电场测试电路
五、 1.
2. 本实验方法很简单, 但它是工程上很有效的一种方法。 因此, 除测出所需点电位分布外, 还要深入理解有关的一 些问题。 在做实验报告时除一般要求内容数据外, 还要回 答下列问题: (1) 将平行板电容器的被测模型所测的数据画成距离- 电位图, 与平行板电容器理论上的距离-电位比较, 并解 释为什么在Y=0及Y=10 cm附近(“电极”附近)电位有急剧变 化。 (2) 若要模拟有边缘效应的情况, 其被测模型应如何改
E
Ex2 Ey2
Ex2m
E
2 ym
cos(t
kz
1)
电场分量与x轴的夹角α为
(1.3.3)
arctan Ey arctan Eym 常数
Ez
Exm
(1.3.4)
(2) 如果φ1与φ2的相位差为90°或270°, 则

电磁场微波技术与天线实验指导书

电磁场微波技术与天线实验指导书

自编教材《电磁场微波技术与天线》实验指导书长沙学院电子与通信工程系二0一0年九月实验一谐振腔法测量微波频率一、实验目的1、熟悉和了解微波测试系统的基本组成和工作原理。

2、掌握微波测试系统各组件的调整和使用方法。

3、掌握谐振腔法测频率的原理。

二、实验框图及器材1、实验框图图一谐振腔法测频率框图2、实验仪器微波信号源一台3cm测量线一台隔离器一个定标衰减器一个波长计一个检波指示器一台晶体检波器一个选频放大器一台各种负载三、实验原理谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。

旋转波长表的测微头,当波长表与被测频率谐振时,将出现吸收峰。

反映在检波指示器上的指示是一跌落点,(参见图二)此时,读出波长表测微头的读数,再从波长表频率与刻度曲线上查出对应的频率。

检波指示器指示I图二波长表的谐振点曲线四、实验内容及步骤1、按图一所示的框图连接微波实验系统。

2、将检波器及检波指示器接到被测件位置上。

3、用波长表测出微波信号源的频率。

五、实验报告及要求1、实验目的与任务;2、正确画出微波测试系统的基本框图;3、说明用谐振腔法测频率的原理;4、记录实验数据,分析误差原因。

六、预习报告及要求1、实验目的与任务;2、实验所用仪器设备的功能;3、实验原理。

实验二微波功率的测量一、实验目的1、熟悉和了解微波测试系统的基本组成和工作原理。

2、掌握微波测试系统各组件的调整和使用方法。

3、掌握微波功率的测量原理,熟悉测量被测件的相对功率、绝对功率值的方法。

二、实验框图及器材1、实验框图图三功率测量微波系统框图2、实验仪器微波信号源一台3cm测量线一台隔离器一个定标衰减器一个波长计一个检波指示器一台晶体检波器一个选频放大器一台波导开关一个功率计一台功率头一个各种负载三、实验原理在波导管中传输的微波通过衰减器时,可以衰减部分传输功率,沿着宽边改变衰减器的移动吸收片可改变衰减量的大小。

电磁场与微波实验指导书(实验一)

电磁场与微波实验指导书(实验一)

实验一 微波基础计算器与MWO 软件熟悉一、 实验目的1. 掌握传输线(长线)基本理论;2. 熟练掌握Smith 圆图的工作原理;3. 熟练使用微波技术基础计算器计算单枝节线匹配。

4. 熟悉MWO 软件界面和基本操作。

二、 实验原理微波技术基础计算器是以微波计算为基础的进行专业计算的工具。

实现了微波技术基础理论中长线(传输线)理论、Smith 圆图、网络理论等部分的计算。

此计数器共包括:长线上任意点输入阻抗、反射系数、行波系数、驻波比的计算;smith 圆图的绘制;任意长线和负载的单枝节匹配;双口网络S 、Z 、Y 、A 参数的相互转换。

1、长线理论基础知识回顾:--微波传输线(长线)理论 (Q1: 传输线理论中基本物理量是什么?)电压波与电流波(入射与反射)关系:()()()1()()()[]ββββ+--+-+--+-=+=+=+=-j z j zj z j z V z V z V z V e V e I z I z I z V e V e Z 理想(无耗)均匀传输线的传输特性归结为两个实数:传播常数β和特性阻抗Z 0。

传输线理论三套参量:输入阻抗Z in ,反射系数Γ,驻波参量(驻波系数ρ和最小距离l min )三套参量间的换算关系:000tan()()()tan()()l in l Z jZ l V z Z z Z Z jZ l I z ββ+==+ 00()()()()()j in in Z z Z V z z e Z z Z V z θ-+-Γ==Γ=+ max min min min 11(0)442g ggl V V l l ρλλλθπ+Γ==-Γ=+≤≤三套参量同时一个单位圆内表示1)由横坐标表示反射系数实部,纵坐标表示反射系数虚部,构成反射系数复平面;2)对于一个无耗均匀传输线,其反射系数的模是不变的,变化的是位相(位置)构成反射系数同心圆;以负载为参考面向源移动时,位相角减少,顺时针转动3)驻波系数在反射系数复平面上也是同心圆,4) 阻抗在反射系数复平上表示时要归一化;某一点的阻抗由经过该点的等电阻圆与等电抗弧线确定。

电磁场与微波技术实验

电磁场与微波技术实验

实验三对称天线和天线阵的方向图实验目的:1、熟悉对称天线和天线阵的概念;2、熟悉不同长度对称天线的空间辐射方向图;3、理解天线阵的概念和空间辐射特性。

实验原理:天线阵就是将若干个单元天线按一定方式排列而成的天线系统。

排列方式可以是直线阵、平面阵和立体阵。

实际的天线阵多用相似元组成。

所谓相似元,是指各阵元的类型、尺寸相同,架设方位相同。

天线阵的辐射场是各单元天线辐射场的矢量和。

只要调整好各单元天线辐射场之间的相位差,就可以得到所需要的、更强的方向性方向图乘积定理f(θ,φ)=f1(θ,φ)×fa(θ,φ) 上式表明,天线阵的方向函数可以由两项相乘而得。

第一项f1(θ,φ)称为元因子(Primary Pattern),它与单元天线的结构及架设方位有关;第二项fa(θ,φ)称为阵因子(Array Pattern),取决于天线之间的电流比以及相对位置,与单元天线无关。

方向函数(或方向图)等于单元天线的方向函数(或方向图)与阵因子(或方向图)的乘积,这就是方向图乘积定理。

已知对称振子以波腹电流归算的方向函数为实验步骤:1、对称天线的二维极坐标空间辐射方向图(1)建立对称天线二维极坐标空间辐射方向函数的数学模型(2)利用matlab软件进行仿真(3)观察并分析仿真图中不同长度对称天线的空间辐射特性E面方向函数:2、天线阵—端射阵和边射阵(1)建立端射阵和边射阵空间辐射方向函数的数学模型(2)利用matlab软件进行仿真(3)观察并分析仿真图中两种天线阵的空间辐射特性实验报告要求:(1)抓仿真程序结果图(2)理论分析与讨论1、对称天线方向图01)clcclearlambda=1;%自由空间的波长L0=1; %改变L0值,得到不同长度对称阵子的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λk=2*pi/lambda;%自由空间的相移常数theta0=[::360];theta=theta0*pi/180;902700 L=λ时对称阵子天线的方向图for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 02)clc clear lambda=1;%自由空间的波长L0=1/4; %改变L0值,得到不同长度对称阵子的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λk=2*pi/lambda;%自由空间的相移常数theta0=[::360];theta=theta0*pi/180;for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 3)clc clearlambda=1;%自由空间的波长 L0=1/2; %改变L0值,得到不同长度对称阵子的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数theta0=[::360];theta=theta0*pi/180;for i=1:length(theta0) fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图 title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 4)clcclear lambda=1;%自由空间的波长L0=3/4; %改变L0值,得到不同长度对称阵子的方向图902700L=λ时对称阵子天线的方向图902700L=λ时对称阵子天线的方向图90270L=λ时对称阵子天线的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数 theta0=[::360];theta=theta0*pi/180; for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 5)clcclearlambda=1;%自由空间的波长 L0=3/2; %改变L0值,得到不同长度对称阵子的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λk=2*pi/lambda;%自由空间的相移常数 theta0=[::360]; theta=theta0*pi/180;for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos (k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 6)clc clearlambda=1;%自由空间的波长L0=2; %改变L0值,得到不同长度对称阵子的方向图 L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数theta0=[::360];theta=theta0*pi/180; for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 分析对称振子天线的方向图(以上图形)可以看出:902700L=λ时对称阵子天线的方向图902700L=λ时对称阵子天线的方向图①?l <λ时,随着振子长度的增加,其方向图波瓣变尖锐,其最大辐射方向在q =90o ,无副瓣;②当l >λ时,开始出现副瓣, 但最大辐射方向仍在q =90o 的方向上; ③当l >0.625l λ时,最大辐射方向将偏离q =90o 的方向;(当l >λ,出现反向电流,场为反向叠加); ④当l =l λ时,天线上的反向电流与正向电流相同,故在q =90o 上场将完全抵消,其总场为零,但在q =60o 的方向上,由于场的行程差引起的相位差和电流的相位差互相抵消,从而形成场的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场与微波技术实验指导书XXXXXXXXXXXXXXXXXXXXXXXX注意事项一、实验前应完成各项预习任务。

二、开启仪器前先熟悉实验仪器的使用方法。

三、实验过程中应仔细观察实验现象,认真做好实验结果记录。

四、培养踏实、严谨、实事求是的科学作风。

自主完成实验和报告。

五、爱护公共财产,当发生仪器设备损坏时,必须认真检查原因并按规定处理。

六、保持实验室内安静、整洁和良好的秩序,实验后应切断所用仪器的电源 ,并将仪器整理好。

协助保持实验室清洁卫生, 带出自己所产生的赃物。

七、不迟到,不早退,不无故缺席。

按时交实验报告。

八、实验报告中应包括:1、实验名称。

2、实验目的。

3、实验内容、步骤,实验数据记录和处理。

4、实验中实际使用的仪器型号、数量等。

5、实验结果与讨论,并得出结论,也可提出存在问题。

6、思考题。

实验仪器JMX-JY-002电磁波综合实验仪一、概述电磁波综合实验仪,提供了一种融验证与设计为一体的电磁波实验的新方法和装置。

它能使学生通过应用本发明方法和装置进行电磁场与电磁波实验,透彻地了解法拉第电磁感应定律、电偶极子、天线基本结构及其特性等重要知识点,使学生直观形象地认识时谐电磁场,深刻理解电磁感应的原理和作用,深刻理解电偶极子和电磁波辐射原理,掌握电磁场和电磁波测量技术的原理和方法,帮助学生建立电磁波的形象化思维方式,加深和加强学生对电磁波产生、发射、传输和接收过程及相关特性的认识,培养学生对电磁波分析和电磁波应用的创新能力。

《JMX-JY-002电磁波综合实验仪》在001型基础上,添加了对天线不同极化角度的测量,学生通过测量,可绘制不同极化天线的方向图,使得学生对电磁波的感受更加深刻。

二、特点1、理论与实践结合性强2、直接面向《电磁场与波》的课程建设与改革需要,紧密配合教学大纲,使课堂环节与实验环节紧密结合。

3、针对重要知识点“电磁场与电磁波”课堂教学环节长期存在难于直观表达的困难,形象地体验抽象的知识。

4、实验内容的设置,融综合性、设计性与验证性与一体,帮助学生建立一套电磁波的形象化思维方式,加深和加强对电磁波产生、发射、传输、接收过程及相关特性的认识。

5、培养学生对电磁波分析和电磁波应用的创新能力。

三、系统配置及工作原理(1)系统配置1、JMX-JY-002电磁波教学综合实验仪主机控制系统:通过常规控制仪表与微波功率信号发生器、功率信号放大器构成电磁波教学综合实验仪主机控制系统,实现了对被控电磁场与波信号发射控制。

2、测试支架平台:包括支撑臂、测试滑动导轨、测量尺、天线连接杆件、感应器连接杆件、反射板连接杆件、微安表等组件。

3、测试套件:包括多极化天线(垂直极化、水平极化、左右螺旋极化)、射频连接电缆套件、感应器、感应器连接电缆、极化尺、标准测试天线板、反射板等构成测试套件。

(2)工作原理实验仪主机控制系统的微波信号源产生微波信号,经由微波功率放大器放大后输出至OUTPUT端口,通过射频电缆将输出信号传送给发射天线向空间发射电磁波信号作为实验测试信号,通过信号接收单元上的感应器,可测量或直观观察到反映电磁波的波幅、波节以及极化等特征。

四、性能指标1、工作频率范围:800MHz~1GHz2、整机功耗:<50W3、标尺精度:1mm4、长度量程:1m5、旋转测量精度:1°6、极化测量量程:180°7、电源电压:AC220V±10%8、工作环境温度范围:0°~40°C五、操作使用1、连接电源,打开电源(POWER)开关,电源开关指示灯亮。

2、将发射天线架设在系统支架上,连接好发射电缆(射频电缆一端连接到实验仪主机控制系统的OUTPUT端口,另一端连接到发射天线的相应端点上)。

3、按下TX按钮,开始发射信号,信号指示灯亮,表明发射正常。

若ALM红灯亮,应立即停止发射,检查发射天线是否连接好。

红色告警指示灯亮时,表明发射信号输出通道反射过强,仍然持续发射会造成仪器损坏。

4、支架平台设有两个可滑动的支架滑块,根据不同实验要求安装测试天线(感应器)或反射板。

5、支架平台上的非金属方向调整机构用于手动调整接收天线的角度以确定电磁波的极化方向等。

六、注意事项1、按下TX按钮时,若ALM红色告警灯亮,应立即停止发射,检查高频N头是否对应连接牢固,发射天线是否接好,或请老师检查。

否则会损坏机仪器。

2、测试感应器时,不能将感应灯靠近发射天线的距离太小,否则会烧毁感应灯。

(置于15cm 以外,或视感应灯亮度而定)3、尽量减少按下TX按钮的时间,以免影响其它小组的测试准确性。

4、测试时尽量避免人员走动,以免人体反射影响测试结果。

实验一电磁波感应器的设计与制作一、预习要求1、什么是法拉第电磁感应定律?2、什么是电偶极子?3、了解天线基本结构及其特性。

二、实验目的1、认识时变电磁场,理解电磁感应的原理和作用。

2、通过电磁感应装置的设计,初步了解天线的特性及基本结构。

3、理解电磁波辐射原理。

三、实验原理随时间变化的电场要在空间产生磁场,同样,随时间变化的磁场也要在空间产生电场。

电场和磁场构成了统一的电磁场的两个不可分割的部分。

能够辐射电磁波的装置称为天线,用功率信号发生器作为发射源,通过发射天线产生电磁波。

图1 电磁感应装置如果将另一付天线置于电磁波中,就能在天线体上感生高频电流,我们可以称之为接收天线,接收天线离发射天线越近,电磁波功率越强,感应电动势越大。

如果用小功率的白炽灯泡接入天线馈电点,能量足够时就可使白炽灯发光。

接收天线和白炽灯构成一个完整的电磁感应装置,如图1所示。

电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。

电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等,如图2所示。

图2 接收天线本实验重点介绍其中的一种─—半波天线。

半波天线又称半波振子,是对称天线的一种最简单的模式。

对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。

这种天线是最通用的天线型式之一,又称为偶极子天线。

而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。

半波振子因其一臂长度为/4λ,全长为半波长而得名。

其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(/2=L λ)的远区场强有以下关系式:()cos(cos )sin I I E f r rθπθθ==60602 式中,()f θ为方向性函数,对称振子归一化方向性函数为:()()maxcos(cos )sin f F f θθπθθ==2 其中max f 是()f θ的最大值。

由上式可画出半波振子的方向图如图3所示。

图3 半波振子的方向图半波振子方向函数与φ无关,故在H 面上的方向图是以振子为中心的一个圆,即为全方向性的方向图。

在E 面的方向图为8字形,最大辐射方向为/θπ=2,且只要一臂长度不超过.λ0625,辐射的最大值始终在/θπ=2方向上;若继续增大L ,辐射的最大方向将偏离/θπ=2方向。

四、实验内容与步骤1、打开功率信号发生器电源开关,Signal 灯亮,机器工作正常,按下Tx 按钮,观察功率指示表有一定偏转,此时Standby 灯亮,说明发射正常。

2、用金属丝制作天线体,用螺丝固定于感应灯板(或电流表检波板)两端,并安放到测试支架上,调节感应板的角度,使其与发射天线的极化方向一致。

a. 测试谐振频率:调节测试支架滑块到20cm 处,调整发射频率(800MHz —1000MHz ,步长20MHz ),记录感应灯最亮时对应的频率。

b. 调节测试支架滑块到最右端,按下功率信号发生器上Tx 按钮,同时移动测试支架滑块,靠近发射天线,直到小灯刚刚发光时,记录下滑块与发射天线的距离。

3、改变天线振子的长度,重复上面过程,记录数据。

4、选用其它天线形式制作感应器,重复上面过程,记录数据。

次数 天线形式天线长度/直径谐振频率接收距离1 2 3 4五、注意事项1、按下Tx按钮时,若Alarm红色告警灯亮,应立即停止发射,检查电缆线与发射天线接口是否旋紧,其余接口是否用封闭帽盖上,Output接口与电缆是否接好,或请老师检查。

否则会损坏机器。

2、测试感应器时,不能将感应灯靠近发射天线的距离太小,否则会烧毁感应灯。

(置于20cm 以外,或视感应灯亮度而定)。

3、尽量减少按下Tx按钮的时间,以免影响其它小组的测试准确性。

4、测试时尽量避免人员走动,以免人体反射影响测试结果。

六、报告要求1、按照标准实验报告的格式和内容完成实验报告。

2、制作两种对称振子天线和两种螺旋天线,观察接收效果。

画出天线形状,记录接收距离。

3、对实验中的现象分析讨论。

4、提出改进意见及建议。

七、接收天线参考形状实验二 电磁波传播特性实验一、预习要求1、什么是迈克尔逊干涉原理?它在实验中有哪些应用?2、驻波的产生原理及其特性。

二、实验目的1、学习了解电磁波的空间传播特性。

2、通过对电磁波波长、波幅、波节、驻波的测量,进一步认识和了解电磁波。

三、实验原理变化的电场和磁场在空间的传播称为电磁波。

几列不同频率的电磁波在同一媒质中传播时,几列波可以保持各自的特点(波长、波幅、频率、传播方向等),在同时通过媒质时,在几列波相遇或叠加的区域内,任一点的振动为各个波单独在该点产生振动的合成。

而当两个频率相同、振动方向相同、相位差恒定的波源所发出的波叠加时,在空间总会有一些点振动始终加强,而另一些点振动始终减弱或完全抵消,因而形成干涉现象。

干涉是电磁波的一个重要特性,利用干涉原理可对电磁波传播特性进行很好的探索。

而驻波是干涉的特例。

在同一媒质中两列振幅相同的相干波,在同一直线上反向传播时就叠加形成驻波。

由发射天线发射出的电磁波,在空间传播过程中可以近似看成均匀平面波。

此平面波垂直入射到金属板,被金属板反射回来,到达电磁波感应器;直射波也可直接到达电磁波感应器,这两列波将形成驻波,两列电磁波的波程差满足一定关系时,在感应器位置可以产生波腹或波节。

设到达电磁感应器的两列平面波的振幅相同,只是因波程不同而有一定的相位差,电场可表示为:cos()x m E E t kz ω=- cos()=++y m E E t kz ωδ其中z δβ=是因波程差而造成的相位差。

则当相位差(,,)===z n n δβπ1012时,合成波的振幅最小,z 1的位置为合成波的波节;相位差()/(,,)==+=z n n δβπ2212012时,合成波的振幅最大,z 2的位置为合成波的波腹。

实际上到达电磁感应器的两列波的振幅不可能完全相同,故合成波波腹振幅值不是二倍单列波的振幅值,合成波的波节值也不是恰好为零。

相关文档
最新文档