微波低噪声放大器的主要技术指标、作用及方案设计

合集下载

微波仿真论坛RD实验低噪声放大器设计制作与调试

微波仿真论坛RD实验低噪声放大器设计制作与调试

3.2晶体管S参数扫描
选定晶体管的直流工作点后,可以进行 晶体管的S参数扫描,本节中选用的是 S参数模型sp_hp_AT41511_2_19950125,这一模型对应的 工作点为Vce=2.7V、Ic=5mA
下面给出进行S参数扫描的具体操作
微波仿真论坛RD实验低噪声放大 器设计制作与调试
3.2晶体管S参数扫描-sp模型
注意如何规划仿真,才能尽快得到需要的电路
要按照先局部后整体的优化,切忌直接全局优化,最好能够预先计 算设置优化元件的初值。
要注意仿真的数值稳定性,对于对参数以来敏感的仿真结果在最后 制作的时候是很难实现的。适当的时候需要考虑改系统拓扑。
养成不明白就多看微看波仿he真lp论的坛习RD惯实验低噪声放大
微波仿真论坛RD实验低噪声放大 器设计制作与调试
3.2晶体管S参数扫描-sp模型
得到S(1,1)的显示如图所示
微波仿真论坛RD实验低噪声放大 器设计制作与调试
3.2晶体管S参数扫描-sp模型
点击 ,激活的是数字 列表的显示方式,仿照前 面,将需要的参数加入右 边的显示列表。 对于 S(1,1)默认的显示是模/辐 角的格式。
3.2晶体管S参数扫描-sp模型
点击 ,激活的是 图形显示方式,在左 边所列的参数列表中 选择需要的参数,如: S(1,1)后,在点击 将其加入右边的显示 列表。
微波仿真论坛RD实验低噪声放大 器设计制作与调试
3.2晶体管S参数扫描-sp模型
然后会弹出数据显 示的格式,对于 S(1,1),选择dB。

要有好的软件设计习惯
各种文件的命名 电路的布局以及参数的设置和选择 要有合理的设计顺序
要记住你在使用的是软件
物理概念要明确,不要在无意义的地方花时间

微波低噪声放大器的原理与设计实验报告

微波低噪声放大器的原理与设计实验报告

微波低噪声放大器的原理与设计实验报告一、实验的那些小前奏。

家人们!今天咱来唠唠这个微波低噪声放大器的原理与设计实验。

一开始听到这个名字的时候,我就感觉它好高大上啊,就像那种在科学云端漫步的东西。

不过呢,当真正开始接触这个实验,就发现它其实也像个调皮的小怪兽,有点难搞,但又特别有趣。

二、啥是微波低噪声放大器呀。

那咱得先搞明白这个微波低噪声放大器是个啥玩意儿。

简单来说呢,它就像是一个超级贴心的小助手,在微波信号处理这个大舞台上发挥着重要的作用。

在我们周围,到处都有微波信号,就像空气中的小精灵一样。

但是呢,这些信号往往会夹杂着噪声,就像小精灵里面混进了一些捣蛋鬼。

这个微波低噪声放大器呢,它的本事就是在放大这些微波信号的同时,尽可能地把那些捣蛋的噪声给压制住,让我们能得到比较纯净又被放大了的信号。

想象一下,如果把微波信号比作是一场音乐会的演奏声,噪声就是那些在台下叽叽喳喳的杂音。

这个放大器就像是一个超棒的音乐厅管理员,它把演奏声放大,让每个角落都能听到美妙的音乐,同时把那些杂音都给屏蔽掉,让大家可以享受纯粹的音乐盛宴。

三、实验原理的探索之旅。

那这个放大器为啥能做到这样神奇的事情呢?这就涉及到它的原理啦。

它的内部就像是一个精心设计的小迷宫,里面有着各种各样的电子元件,像晶体管之类的。

这些元件就像是小迷宫里的小关卡,微波信号和噪声在里面穿梭的时候,就会受到不同的对待。

对于微波信号来说,这个小迷宫就像是为它量身定制的绿色通道。

通过巧妙地设置晶体管的工作状态,还有电路的一些参数,就可以让微波信号顺利地通过这些关卡,并且在通过的过程中被放大。

就好像小信号是一个小探险家,在这个友好的迷宫里越走越强壮,不断地成长变大。

而对于噪声呢,这个迷宫可就没那么友好啦。

因为噪声的一些特性和微波信号是不一样的,所以在经过那些关卡的时候,就会受到各种阻碍和削减。

比如说,通过合理地选择晶体管的类型和电路的结构,可以让噪声在某些地方就被消耗掉,就像小捣蛋鬼在迷宫里不断地碰壁,最后被削弱得没什么力气了。

低噪声放大器的设计

低噪声放大器的设计

一种900MHz频段低噪声放大器设计方法及测试结果本文介绍一种低噪声放大器的设计方法,对初学者可能有一定的借鉴作用。

关键词: LNA:低噪声放大器 IL:插入损耗ACPR:邻道功率比值 IM3:三阶交调EESOF\TOUCHSTN:八十年代流行的HP公司的小型微波软件一、任务的来源:受外单位的委托,要求设计一种低噪声放大器,具体要求如下:1.频率范围:820-960MHz2.增益:G≥45dB3.噪声系数:Nf≤1.54.带内平坦度:≤±0.2dB5.线性功率:P-1≥15dBm6.电调衰减:Att= 31dB (5bit)二、设计框架:1.放大器级数的考虑:由于常见器件有效实际增益为11~17dB,故此,3-4级方可满足增益要求。

经对比分析我们确定了以下方案:第一级:A TF10136 Nf=0.4dB G=13.5dB OIP3=18dBm第二级:MSA1105 Nf=4.1dB G=10.5 dB OIP3=25dBm第三级:SGA6586 Nf=2.6dB G=23.8dB OIP3=33dBm在第二级与第三级之间插入数字电调衰减器,其数字电调衰减器的最小IL为1.8dB,所以,总增益约为46dB。

2.噪声系数的计算:一个放大器的噪声系数主要取决于第一、二级放大管的Nf及Gain,见以下公式:NFs=NF1+(NF2-1)/G1+(NF3-1)/(G1G2)+……(NFn-1)/(G1G2…Gn-1) 式中:NFn为第n级器件的噪声系数Gn-1为第n-1级器件的增益基于产品批量生产的一致性考虑,经HP的EESOF\TOUCHSTN编程计算,将第一级FET优化设计成:Nf=0.85dB Gain=13.5dB,经以上公式计算得出噪声系数理论值为1.1dB,满足指标要求。

3.线性功率考虑:线性功率小,交调指标差,它将最终影响功放的ACPR 值和IM3;但是,过分地要求加大P-1,将增加电流消耗,降低了设备的可靠度,同时提高了造价,综合考虑诸多因素,SGA6586比较合适。

低噪声放大器 核心参数

低噪声放大器 核心参数

低噪声放大器核心参数低噪声放大器(Low Noise Amplifier,LNA)是一种用于增加信号幅度而又尽量减小噪声的放大器。

在无线通信、雷达、卫星通信和其他接收系统中,低噪声放大器起到了至关重要的作用。

为了设计出性能优越的低噪声放大器,需要对其核心参数有深入的了解。

在本文中,我们将详细介绍低噪声放大器的核心参数,并对其进行分析和讨论。

1. 噪声指标低噪声放大器最为重要的参数之一就是噪声指标。

噪声指标通常用于描述放大器在增益条件下的噪声性能。

常见的噪声指标包括噪声系数(Noise Figure,NF)、噪声温度(Noise Temperature,Tn)、噪声系数与增益的乘积(Gain Bandwidth Product,GBP)等。

噪声系数是描述放大器引入信号噪声的指标,一般以分贝(dB)为单位,数值越小代表噪声性能越好。

而噪声温度描述了放大器引入的噪声相当于理想传输线路引入的噪声温度,单位为开尔文(K)。

噪声系数与增益的乘积则是评价放大器噪声性能的综合指标。

2. 增益增益是低噪声放大器的另一个核心参数。

增益表示放大器输出信号与输入信号的幅度比值,通常用分贝(dB)表示。

增益越大意味着放大器输出信号的幅度增加的越多,但也需要注意,在增益增大的同时可能会伴随着噪声的增加。

低噪声放大器需要在保证足够增益的前提下尽量减小噪声。

3. 带宽低噪声放大器的带宽也是一个重要参数。

带宽指的是在放大器工作范围内的频率范围,通常用赫兹(Hz)表示。

低噪声放大器需要具有足够的带宽,以确保对输入信号的覆盖范围足够广,同时也需要避免出现频率失真等问题。

4. 饱和输入功率饱和输入功率也是低噪声放大器的重要参数之一。

饱和输入功率指的是在放大器输出的信号出现压制之前,输入信号的功率大小。

通常用分贝毫瓦(dBm)来表示。

饱和输入功率越大,意味着放大器能够承受更大的输入信号功率而不至于出现失真等问题。

5. 稳定性低噪声放大器的稳定性也是一个重要的核心参数。

低噪声放大器指南2

低噪声放大器指南2

低噪声放大器设计指南1.低噪声放大器在通讯系统中的作用随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,这就对系统的接收灵敏度提出了更高的要求,我们知道,系统接收灵敏度的计算公式如下: S min = -174+ NF+10㏒BW+S/N (1)由上式可见,在各种特定(带宽、解调S/N 已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF ,而决定接收机的噪声系数的关键部件就是处于接收机最前端的低噪声放大器。

低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以低噪声放大器的设计对整个接收机来说是至关重要的。

2. 低噪声放大器的主要技术指标:2.1 噪声系数NF噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即:对单级放大器而言,其噪声系数的计算为:其中 F min 为晶体管最小噪声系数,是由放大器的管子本身决定的, Γopt 、Rn 和Γs 分别为获得 F min 时的最佳源反射系数、晶体管等效噪声电阻、以及晶体管输入端的源反射系数。

对多级放大器而言,其噪声系数的计算为:NF=NF 1+(NF 2-1)/G 1+(NF 3-1)/G 1G 2+…… (4) 其中NF n 为第n 级放大器的噪声系数,G n 为第n 级放大器的增益。

在某些噪声系数要求非常高的系统,由于噪声系数很小,用噪声系数表示很不方便,常常用噪声温度来表示,噪声温度与噪声系数的换算关系为:T e = T 0 ( NF – 1 ) (5)其中T e 为放大器的噪声温度,T 0 =2900 K ,NF 为放大器的噪声系数。

NF(dB) = 10LgNF (6)2. 2 放大器增益G :放大器的增益定义为放大器输出功率与输入功率的比值:G=P out / P in (7) 从式(4)中可见,提高低噪声放大器的增益对降低整机的噪声系数非常有利,但低噪声放大器的增益过高会影响整个接收机的动态范围。

低噪声功率放大器设计

低噪声功率放大器设计

微波电子线路大作业——低噪声功率放大器设计班级:021013班学号:02011268姓名:低噪声放大器的设计一、设计要求:已知GaAs FET 在4 GHz 、50 Ω系统中的S 参数和噪声参量为S11=∠-60°,S21=∠81°,S12=∠26°,S22=∠-60°Fmin= dB Γout=∠100°RN=20 Ω设计一个低噪声放大器,要求噪声系数为2 dB ,并计算相应的最大增益。

若按单向化进行设计,则计算GT 的最大误差。

二、低噪声放大器设计原理及思路低噪声放大器功能概述低噪声放大器是射频/微波系统的一种必不可少的部件,它紧接接收机天线,放大天线从空中接收到的微弱信号。

低噪声放大器在对微弱信号放大的同时还会产生附加于扰信号,因此它的设计目标是低噪声,足够的增益,线性动态范围宽。

低噪声放大器影响整机的噪声系数和互调特性,分析如下 (1) 系统接收灵敏度: (2) 多个级连网络的总噪声系数放大器工作组态分类A 类放大器(导通角360度,最大理论效率50%)用于小信号、低噪声,通常是接收机前端放大器或功率放大器的前级放大。

B 类(导通角180度,最大理论效率%)和C 类(导通角小于180度,最大理论效率大于% )放大器电源效率高,愉出信号谐波成分高,需要有外部混合电路或滤波电路.由B 类和C 类放大器还可派生出D 类、E 类、P 类等放大器。

min114(dBm/Hz)NF 10log BW(MHz)/(dB)S S N =-+++32111212111n tot A A A A A AnF F F F FG G G G G G ---=++++放大器常用元器件①两端负阻的二极管器件变容二极管:参量放大隧道二极管:隧道效应耿氏二极管:转移电子碰撞雪崩渡越时间二极管:雪崩渡越时间特点:应用于放大器电路的早期器件,制造比较容易、便宜,但是两端口器件实现增益的相关电路价格确比较昂贵,且稳定性较差,调试工作困难。

微波集成电路中的低噪声放大器设计

微波集成电路中的低噪声放大器设计

微波集成电路中的低噪声放大器设计在微波集成电路(MMIC)的设计中,低噪声放大器(Low Noise Amplifier,简称LNA)的设计是至关重要的一环。

LNA的性能直接影响着整个系统的噪声指标,尤其在无线通信、雷达系统等对信号质量要求极高的应用中,LNA的设计显得尤为重要。

本文将探讨微波集成电路中低噪声放大器的设计原理、关键技术和优化策略。

### 1. 设计原理低噪声放大器的设计目标是在尽可能保持信号增益的前提下,最小化噪声指标。

在微波频段,噪声主要分为热噪声和器件本身的噪声。

因此,LNA的设计需要考虑以下几个方面:- **合适的工作点:** 选择适当的偏置点可以有效地降低器件本身的噪声。

- **优化的频率响应:** 在设计过程中需要考虑LNA在整个工作频段内的增益和噪声指标的平衡。

- **有效的匹配网络:** 设计合适的输入和输出匹配网络可以提高LNA的性能,并降低噪声指标。

### 2. 关键技术在微波集成电路中,实现低噪声放大器的关键技术主要包括:- **器件选择:** 选择具有低噪声特性的器件是设计低噪声放大器的首要步骤。

例如,高电子迁移率晶体管(HEMT)在微波和毫米波领域具有广泛应用,因其低噪声和高增益的特性而备受青睐。

- **封装和布局:** 良好的封装和布局设计可以降低射频信号与环境的干扰,减小器件的热噪声,并提高系统的稳定性和可靠性。

- **功率匹配网络:** 采用合适的功率匹配网络可以有效地提高LNA的输入和输出匹配度,从而减小信号的反射损耗,提高整体性能。

### 3. 优化策略为了进一步提高微波集成电路中低噪声放大器的设计效果,可以采取以下优化策略:- **噪声系数优化:** 通过调整电路拓扑结构和器件参数,优化LNA的噪声系数,以实现更低的噪声指标。

- **电源抑制:** 有效地抑制电源噪声对LNA性能的影响,采用低噪声、高稳定性的电源设计是一种有效的策略。

- **热管理:** 在高频高增益的工作条件下,合理设计散热结构,降低器件温度,有助于减小热噪声并提高系统的可靠性。

关于低噪声放大器的设计详细剖析

关于低噪声放大器的设计详细剖析

关于低噪声放大器的设计详细剖析在整个接收系统中,低噪声放大器总是处于前端的位置。

整个接收系统的噪声取决于低噪声放大器的噪声。

与普通放大器相比,低噪声放大器一方面可以减小系统的杂波干扰,提高系统的灵敏度;另一方面放大系统的信号,保证系统工作的正常运行。

总之,低噪声放大器的性能不仅制约了整个接收系统的性能,而且,对于整个接收系统技术水平的提高,也起了决定性的作用。

1 低噪声放大器的设计指标低噪声放大器的主要性能指标包括:稳定性、功率增益、噪声系数、增益平坦度等,在这些指标之中噪声系数和放大增益对系统性能的影响较大。

因此对低噪声放大器的设计主要从稳定性、功率增益、噪声系数、输入输出电压驻波比等方面进行考虑。

1.1 稳定性放大器电路必须满足的首要条件之一是其在工作频段内的稳定性。

因为假如在设计和制造放大器时不谨慎从事,在微波频率上一些不可避免的寄生因素往往足以引起振荡。

所以为了保证电路的稳定性,主要采取以下措施:1)可以在源极引入负反馈,使电路处于稳定状态;2)采用铁氧体隔离器能稳定电路;3)在漏极串联电阻或∏型阻性衰减器,通常接在低噪声放大器末级或末前级输出口。

而目前提高电路稳定性常用的是引入负反馈。

1.2 功率增益以及增益平坦度放大电路的增益是放大电路最重要性能指标,也是设计放大电路的一个基本参数。

因此在放大器的设计中增益指标的完成很是重要,功率增益主要有3种描述方式:可用功率增益GA,工作功率增益GP,转换功率增益GT。

增益平坦度对于低噪声放大电路来说,就是全频带范围内增益变化要平缓,不允许增益变化陡变。

1.3 噪声系数噪声系数是LNA的另一重要指标,如果接收系统噪声系数过大,信号会被噪声埋没,致。

低噪声放大器

低噪声放大器

低噪声放大器1. 引言低噪声放大器(Low-Noise Amplifier,LNA)是一种广泛应用于无线通信系统中的重要电路器件。

它的主要功能是将来自天线的微弱信号放大到一个足够强度,以便后续电路可以有效地处理。

在无线通信系统中,LNAs通常作为接收链路的第一级放大器,承担着放大微弱信号、增加系统灵敏度、提高信噪比的关键任务。

本文将介绍低噪声放大器的工作原理、性能指标以及常见的设计技术,希望能帮助读者更好地理解和应用低噪声放大器。

2. 工作原理低噪声放大器的工作原理与一般放大器相似,都是通过引入外部直流电源,利用放大元件(例如晶体管)的放大特性,将输入信号放大到所需的幅度。

与一般放大器不同的是,低噪声放大器在设计上注重将输入端的噪声最小化。

这是因为在无线通信系统中,接收链路中的噪声是非常重要的考量因素。

LNAs需要尽可能地放大微弱信号,同时不引入过多的噪声,以保持系统的信噪比。

为了实现低噪声的放大,低噪声放大器采用了一系列的设计技术和电路拓扑。

接下来,我们将介绍一些常见的设计技术。

3. 设计技术3.1 硅锗杂化放大器硅锗杂化放大器是一种常见的低噪声放大器设计技术。

它采用硅和锗两种材料的结合,兼具硅和锗的优点。

硅材料具有良好的集成性能和工艺制造能力,而锗材料具有较高的迁移率和较低的噪声系数。

因此,硅锗杂化放大器能够在保持良好集成性能的同时,实现较低的噪声指标。

3.2 噪声系数优化噪声系数是衡量低噪声放大器性能的重要指标之一。

为了优化噪声系数,设计者可以采用一系列的技术手段,例如:•尽量采用低噪声的放大元件,例如高迁移率的晶体管;•优化电源的供电电压和电流,以减小噪声;•使用电流源对放大电路进行偏置,以提高放大器的线性度。

3.3 反馈放大器设计反馈放大器是一种常用的放大器设计技术,也可以应用于低噪声放大器的设计中。

通过适当选择反馈回路的参数和拓扑结构,可以有效地减小放大器的噪声系数。

在反馈放大器中,一部分输出信号经过反馈回路与输入信号相叠加,形成反馈信号,从而减小噪声。

低噪声放大器 核心参数

低噪声放大器 核心参数

低噪声放大器核心参数
低噪声放大器的核心参数主要包括增益、带宽、噪声系数和输入/输出阻抗。

以下是对这些参数的详细解释:
1. 增益:低噪声放大器的增益是指输入信号经过放大器后的输出信号幅度与输入信号的幅度之间的比例关系。

增益通常用分贝(dB)表示。

高增益意味着放大器可以有效地放大微弱输入信号。

2. 带宽:低噪声放大器的带宽是指放大器能够有效放大输入信号的频率范围。

带宽通常以赫兹(Hz)表示。

较大的带宽意味着放大器可以传输更高频率的信号。

3. 噪声系数:低噪声放大器的噪声系数是指放大器引入的噪声对输入信号的影响程度。

噪声系数通常用分贝(dB)表示,数值越低表示放大器的性能越好。

在设计低噪声放大器时,尽量选择具有较低噪声系数的放大器,以保持信号的准确性和质量。

4. 输入/输出阻抗:低噪声放大器的输入阻抗是指放大器对输入信号源的负载效应,输出阻抗是指放大器驱动负载的能力。

较高的输入阻抗意味着放大器对输入信号源的负载效应较小,较低的输出阻抗意味着放大器可以有效地驱动负载。

这些核心参数是设计和选择低噪声放大器时需要考虑的重要因素,需要根据具体的应用需求和信号特征进行合理选择。

利用ADS设计低噪声放大器LNA

利用ADS设计低噪声放大器LNA

利用ADS 设计LNA低噪声放大器设计的依据和步骤:•满足规定的技术指标噪声系数(或噪声温度);功率增益;增益平坦度;工作频带;动态范围输入、输出为标准微带线,其特征阻抗均为50Ω步骤:• 放大器级数(对于我们,为了便于设计和学习,通常选择一级) • 晶体管选择 • 电路拓扑结构 • 电路初步设计•用CAD 软件进行设计、优化、仿真模拟一、低噪声放大器的主要技术指标1.LNA 的噪声系数和噪声温度 放大器的噪声系数NF 可定义如下outout in in N S N S NF //=式中,NF 为微波部件的噪声系数;S in ,N in 分别为输入端的信号功率和噪声功率; S out ,N out 分别为输出端的信号功率和噪声功率。

噪声系数的物理含义是:信号通过放大器之后,由于放大器产生噪声,使信噪比变坏;信噪比下降的倍数就是噪声系数。

通常,噪声系数用分贝数表示,此时)lg(10)(NF dB NF =放大器自身产生的噪声常用等效噪声温度T e 来表达。

噪声温度T e 与噪声系数NF 的关系是)1(0-⋅=NF T T e 式中,T 0为环境温度,通常取为293K 。

2.LNA 的功率增益、相关增益与增益平坦度微波放大器功率增益有多种定义,比如资用增益、实际增益、共扼增益、单向化增益等。

对于实际的低噪音放大器,功率增益通常是指信源和负载都是50Ω标准阻抗情况下实功率增益的大小还会影响整机噪声系数,下面给出简化的多级放大器噪声系数表达式: (112)13121+-+-+=G G N G N N N f f f f其中:f N -放大器整机噪声系数;321f f f N N N ,,-分别为第1,2,3级的噪声系数;21G G ,-分别为第1,2级功率增益。

从上面的讨论可以知道,当前级增益G 1和G 2足够大的时候,整机的噪声系数接近第一级的噪声系数。

因此多级放大器第一级噪音系数大小起决定作用。

作为成品微波低噪音放大器的功率增益,一般是20-50dB 范围。

低噪声放大器设计与仿真

低噪声放大器设计与仿真

实验3 低噪声放大器设计与仿真实验目的:1.了解微波低噪声放大器的技术指标和设计方法;2.掌握使用ADS软件进行微波有源电路的设计、仿真与优化。

实验内容:3.1 低噪声放大器的基础知识3.2 晶体管直流工作点扫描3.3 晶体管S参数扫描3.4 SP模型的仿真设计3.1 低噪声放大器的基础知识1. 低噪声放大器的作用●放大微弱信号●降低噪声干扰在接收机或各种特定的无线通信系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数,而决定接收机的噪声系数的关键部件就是处于接收机最前端的低噪声放大器。

因此,低噪声放大器的设计对整个接收机来说是至关重要的。

2. 低噪声放大器的主要技术指标●噪声系数●放大器增益●增益平坦度●稳定系数●输入输出驻波比●通频带、中心频率●输出功率●…提高低噪声放大器的增益对降低接收机的噪声系数是非常有利的,但是低噪声放大器的增益过高会影响到整个接收机的动态范围。

因此,一般来说,低噪声放大器的增益应与系统的整机噪声系数、接收机的动态范围等结合起来考虑。

3. 低噪声放大器的设计方法①选择合适的晶体管,下载并安装晶体管的库文件。

②进行直流分析,确定直流工作点。

③偏置电路设计。

④稳定性分析。

⑤噪声系数圆和输入匹配设计。

⑥最大增益的输出匹配设计。

⑦匹配网络的实现。

⑧版图的设计。

⑨原理图和版图的联合仿真。

4. 软件仿真注意事项➢仿真时模型的选择1晶体管✓sp模型:属于小信号线性模型,模型中已经带有了确定的直流工作点,和在一定范围内的S参数,仿真时要注意适用范围。

Sp模型只能得到初步的结果,对于某些应用来说已经足够,不能用来做大信号的仿真,或者直流馈电电路的设计,不能直接生成版图。

✓大信号模型:可以用来仿真大、小信号,需要自行选择直流工作点,仿真时要加入馈电电路和电源。

带有封装的大信号模型可以用来生成版图。

➢仿真时模型的选择2集总参数元件:电容、电阻、电感✓在进行电路优化时,可直接选用参数连续变化的模型✓在系统设计最后,需要把这些优化过的元件替换为器件库中系列中的元件才是可以制作电路、生成版图的。

低噪声放大器

低噪声放大器
1、噪声系数(Noise Figure):输入信号与输出信号的信 噪比(SNR)之比。 NF=(SNR)in/(SNR)out 通常情况下,它是以分贝为单位的。 2、增益(Gain):负载吸收功率与信源资用功率之比。 3、带内平坦度(Gain Flatness):通带内最大增益与最 小增益的差值。 4、驻波比(Standing Wave Ratio):最大电压与最小电 压之比。 5、输出功率(Power Out)
特点
相噪低 相噪高 功率小 功率小 相噪低
适用电路
放大振荡 功率放大 小信号放 大 小信号放 大 放大振荡
价格
低 中 高 高 高
2-10 2-40 2-40
HBT
1-40
关于放大管(续)
根据要求选定放大管后,首先要做的事情就是根据管子 提供的参数经过计算判断他的稳定性,一个稳定的系统才能 正常工作。那么怎么判断晶体管的稳定性呢? 我们从反射系数的角度出发,那就是当反射系数的模小于1的 时,系统才是稳定的。(?)经过一些计算最终我们得到下 面判别条件:
直流偏置电路设计(续)
选择静态电流 的原则
直流偏置电路设计(续)
直流偏置电路设计(续)
直流偏置电路设计(续)
直 流 偏 置 电 路 设 计 (续 )
直流偏置电路设计(续)
4、微波控制电路
根据我们的实际,微波控制电路主要采用反馈控制方式, 我们主要介绍ALC(Automatic Level Control),它的常见应 用就是AGC( Automatic Gain Control ),其他的反馈控制还 有AFC( Automatic Frequency Control )和PLL(Phase Lock Loop),下面以功率控制为例介绍ALC电路原理应用。

第1节 低噪声放大器指标

第1节 低噪声放大器指标

第1节低噪声放大器指标第1节低噪声放大器指标第1节低噪声放大器指标低噪声放大器(LNA )是射频接收机前端的主要部分。

它主要有四个特点。

1)它位于接收机的最前端,这就要求它的噪声越小越好。

为了抑制后面各级噪声对系统的影响,这要求有一定的增益,但为了不使后面的混频器过载,产生非线性失真,它的增益又不能过大。

放大器在工作频段内应该是稳定的。

2)它所接收的信号是很微弱的,所以低噪声放大器必定是个小信号放大器。

而且由于受传输路径的影响,信号的强弱又是变化的,在接收信号的同时又可能伴随着很多强信号的干扰,因此要求放大器有足够大的线性范围,而且增益最好是可以调节的。

3)低噪声放大器一般通过传输线直接和天线或者天线的滤波器相连,放大器的输入端必须和它们很好的匹配,以达到功率最大传输或者最小的噪声系数,并能保证滤波器的性能。

4)低噪声放大器应该具有一定的选频功能,抑制带外和镜像频率干扰,因此它一般是频带放大器。

低噪声放大器的所有指标都是互相牵连的,甚至是相互矛盾的。

这些指标不仅取决于电路的结构,对集成电路来说,还取决于工艺技术。

在设计中如何采用折衷的原则,兼顾各项指标,是很重要的。

LNA 是小信号放大器,必须给它设置一个静态偏置。

而降低功耗的根本办法是采用低电源电压、低偏置电流,但伴随的结果是晶体管的跨导减小,从而引起晶体管及放大器的一系列指标的变化。

2)工作频率放大器所能允许的工作频率和晶体管的特征频率Ft 有关。

减小偏置电流的结果会使晶体管的特征频率降低。

在集成电路中,增大晶体管的面积会使极间电容增加,这也降低了特征频率。

任何一个线性网络的噪声系数可以表示为:对于共射组态的单管双极型晶体管放大器的噪声系数又可以表示为:和是网络的输入端的等效噪声电压源和等效噪声电流源。

对于单管共源MOS 场效应管放大器,当仅考虑沟道噪声时,场效应管放大器噪声系数为:由此可见两点:a. 放大器的噪声系数和工作点有关,为了降低功耗而采用小电流偏置,结果是增大了噪声系数。

微波低噪声放大器的原理与设计

微波低噪声放大器的原理与设计

微波低噪声放大器的原理与设计一、实验目的1.了解射频放大器的基本原理与设计方法;2.利用实验模组实际测量以了解放大器的特性;3.学会使用微波软件对射频放大器的设计和仿真,并分析结果。

二、实验原理在一个无线接收系统中,为了获得良好的总体系统性能,需要一个性能优越的前端,而低噪声放大器(LNA)就是前端的一个重要组成部分。

低吸声放大器电路结构:低噪声放大器作为射频信号传输链路的第一级,必须满足以下要求:首先,具有足够高的增益及接收灵敏度;其次,具有足够高的线性度,以抑止干扰和防止灵敏度下降;第三,端口匹配良好,信号能够有效地传输。

另外,还要满足有效隔离、防止信号泄漏以及稳定性等方面的要求。

通常,射频电路端口要与50Ω阻抗匹配,为了满足输入端功率匹配条件,一般采用源极串联电感反馈匹配结构,如图15-1所示。

图15-2是该结构的小信号图。

图15-1 源极串联电感反馈匹配结构图15-2 源极串联电感反馈匹配结构的小信号图在图15-1、图15-2中,Lg为栅极串联电感,LS为源极串联电感,Cgs为等效栅源电容。

由图15-2可得:当谐振时有:其中,这种结构用电感来等效实电阻进行阻抗匹配,没有引入过多的噪声,因此被广泛采用。

在频率较高的频段设计制作放大器,通常采用场效应管FET。

影响放大器的噪声系数的因素有很多,除了选用性能优良的元器件外,电路的拓扑结构是否合理也是非常重要的。

放大器的噪声系数和信号源的阻抗有关,放大器存在着最佳的信号源阻抗,如图15-3所示。

此时,放大器的噪声系数是最小的,所以放大器的输入匹配电路应该按照噪声最佳来进行设计,也即根据FET的Γopt来进行设计。

为了获得较高的功率增益和较好的输出驻波比,输出匹配电路则采用共轭匹配。

输入匹配电路在达到最佳噪声匹配时,放大器的输入阻抗不一定恰好与信号源阻抗匹配,因而功率放大倍数不是最大。

设计低噪声放大器,首要考虑的是噪声要尽可能低,其次才是增益的问题。

低噪声放大器 核心参数

低噪声放大器 核心参数

低噪声放大器核心参数低噪声放大器是一种关键的电子元件,常用于放大微弱的信号并最大限度地减少信号中的噪声。

它在电信、音频处理、医疗设备、科学仪器等领域都有广泛的应用。

本文将重点介绍低噪声放大器的核心参数,并探讨其在各个领域中的重要性。

一、输入噪声系数(Input Noise Figure)输入噪声系数是低噪声放大器最重要的性能指标之一,通常以分贝(dB)为单位。

它描述了在输入端引入的噪声和理想情况下引入的噪声之间的差异。

输入噪声系数越低,说明放大器在放大信号的尽可能少地引入噪声,因此可以提高整个系统的信噪比。

在设计低噪声放大器时,通常会将输入噪声系数作为优化的重点。

二、增益(Gain)低噪声放大器的另一个核心参数是增益,通常以分贝为单位。

增益描述了信号通过放大器后的增加倍数,可以用来衡量放大器的信号增强能力。

在实际应用中,通常需要在尽可能低的噪声水平下获得足够的增益,因此增益也是设计低噪声放大器时需要考虑的重要因素。

三、带宽(Bandwidth)带宽是低噪声放大器的另一个重要参数,它描述了放大器能够处理的频率范围。

通常情况下,带宽越宽,放大器就可以处理更广泛的信号频率,这对于多种应用场景都至关重要。

在设计低噪声放大器时,需要平衡考虑增益和带宽之间的关系。

四、输出误差(Output Error)低噪声放大器的输出误差描述了输出信号与输入信号之间的失真程度。

对于一些对信号精度要求较高的应用,如医疗设备、科学仪器等,输出误差是需要特别关注的参数。

设计低噪声放大器时,需要尽量减小输出误差,以确保输出信号的准确性和稳定性。

五、输入/输出阻抗(Input/Output Impedance)输入/输出阻抗是描述低噪声放大器输入端和输出端与外部环境之间的匹配程度。

当输入/输出阻抗匹配较好时,可以最大限度地传输信号,减小信号反射和失真。

在设计低噪声放大器时,需要充分考虑输入/输出阻抗的匹配性。

低噪声放大器的核心参数包括输入噪声系数、增益、带宽、输出误差、输入/输出阻抗等。

基于HP41511的微波低噪声放大器的设计

基于HP41511的微波低噪声放大器的设计

收 稿 日期 : 0 9 0 —1 20 —9 4
放 大器 的增 益 定 义为放 大器 输 出功 率 与输 入
ed c 2 1 . 电 子 元 器 件 壶 用 6 c  ̄ n 0 03 9

第 1卷 2
第3 期
电 予元 器 件 焘 用
Elcr n cC mp n n & D v c p l ain e t i o o e t o e ie A p i t s c o
仿 真时 ,可将 噪声 系数 、放大 器增益 、稳 定 系数全 部加 入优化 目标 中进行优 化 .并通 过对带
第l卷 2
期 20第 3 0 年月 1 3
趣谛参尝
V1 o o1N. . 3 2
Ma .2 1 r 00
d i 03 6 /i n1 6 - 7 52 1 .3 2 o: .9 9 .s .5 3 4 9 .0 0 . 2 1 js 00
基于H 4 51 P 1 1的微波低 噪声放 大器 的设计
讯 设 备制 造商 的 普遍 追求 ,而这也 同时对 系统 的
接 收灵 敏度 提 出 了更 高 的要求 。
噪声 系数 的定 义为 放 大器输 入 信 噪 比与输 出 信 噪 比的比值 ,即 : 忙 () 2
1 微 波低 噪声 放 大 器 的 作 用

对单级 放 大器而 言 ,其 噪声 系数 的计算 为 :
定接 收 机噪 声 系数 的关 键部 件则 是 处 于接 收机 最 前端 的低 噪声 放大器 。 图 l 示 是 接 收机 射 频 前 端 的原 理 框 图 。 由 所
图 1 见 , 低 噪 声 放 大 器 的 主 要 作 用 是 放 大 天 线 可
对 多级放 大器 .其 噪声 系数 的计 算应 为 : 忙 ^ 1 A 一 )/ 1 ( 乃 1 GG+ +( 1 G+ Ⅳ 一 )/ l2…… () 4 其 中ⅣF 第n 放 大器 的噪声 系数 ,G 为 第n n 为 级

微波低噪声放大器CAD设计

微波低噪声放大器CAD设计

cir_pts (0.000 to 51.000)
并联一电感消除阻抗虚部
并联电感后阻抗图
m1 m1 freq=1.000GHz S(1,1)=0.139 / 80.488 L_value=22.000000 impedance = Z0 * (1.008 + j0.281)
S(1,1)
freq (1.000GHz to 1.000GHz)
(7)反射系数
反射系数的物理含义:反射功率与入射功率比值
г(dB)=20Log[(VSWR-1)/(VSWR+1)] г=(VSWR-1)/(VSWR+1) (8)端口驻波比
VSWR(in), VSWR(out) (voltage standing wave ratio) 对于低噪声放大器来说,输入端口驻波比比较差。
1.0E6
Unstable area
s_stab_circle(S[m1],51)
m1
0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
freq, GHz
m1 indep(m1)= 1.000G v s([0::sweep_size(f req)-1],f req)=9.000
NoiseCircles[m1,::] [0::sweep_size(freq)-1]
m1 indep(m1)= 1.000G vs([0::sweep_size(freq)-1],freq)=9.000
1.0E6
m1
0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
freq, GHz
(a)
(b)
• 在晶体管输入与输出端 之间并联反馈元件 • 在晶体管的源极与地之 间串联反馈元件

低噪声放大器的设计与应用

低噪声放大器的设计与应用

低噪声放大器的设计与应用在无线通信、雷达系统、微波器件等领域,低噪声放大器广泛应用,并被广泛认为是提高系统性能的重要元件。

低噪声放大器的设计和应用是通信和雷达系统等领域中一项非常重要的技术。

本文将探讨低噪声放大器的原理、设计方法以及在特定系统中的应用。

一、低噪声放大器的原理低噪声放大器的主要设计目的是在放大信号的同时,最大程度地减小噪声影响。

在一个低噪声放大器中,主要包含三个重要部分:放大器、噪声源和滤波器。

放大器:低噪声放大器所应用的放大器一般为场效应管、双极性晶体管等主流的弱信号放大器,因为它们的增益高、噪声小、频带宽度较宽。

噪声源:噪声源可以是管子的热噪声或1/f噪声,也可以是上游电路带入的噪声。

其中1/f噪声成分占主导地位,所以需要控制。

放大器的输入级是信号链中的最关键部分之一,这涉及到整个放大器的噪声性能。

因此,高品质的噪声源设计是低噪声放大器设计的关键。

滤波器:为了减少系统中其它元件带来的不必要的噪声,需要采用带通滤波器,使系统中只有正常工作频段的信号通过滤波器,滤除其他频段的信号和噪声。

二、低噪声放大器的设计方法1. 优化电路拓扑针对不同的应用场景,需要选择适合的电路拓扑。

普通的低噪声放大器主要使用共源放大器和共基放大器电路。

对于一些要求更高的特定领域的应用,可以使用差动放大器、共模反馈网络等结构。

2. 选择合适的器件器件的选择对低噪声放大器的性能非常重要。

对比不同品牌或同品牌的不同型号,选择适合的器件可以在一定程度上提高低噪声放大器的性能。

3. 优化元器件方案合理的元器件方案可以最小化电路噪声。

选择合适的电感、电容、阻值等元器件参数,使得噪声系数达到最小。

4. 接收机的前端设计在接收机前端设计中,要注意增加前置的增益,并且以选定的带宽过滤掉非目标信号的信号与噪声。

可采用滤波器和降噪电路,提高前端的收敛性和低信噪比下的鲁棒性。

三、低噪声放大器在特定系统中的应用1. 通信领域低噪声放大器在无线通信领域中有很重要的作用,特别是在移动通信、卫星通信和雷达信号处理等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微波低噪声放大器的主要技术指标、作用及方案设计
随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高。

功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,而这也同时对系统的接收灵敏度提出了更高的要求。

1微波低噪声放大器的作用
一般情况下,一个接收系统的接收灵敏度可由以下计算公式来表示:
由上式可见,在各种特定(带宽BW、解调S/N已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机噪声系数的关键部件则是处于接收机 前端的低噪声放大器。

图1所示是接收机射频前端的原理框图。

由图1可见,低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以,低噪声放大器的设计对整个接收机来说是至关重要的。

2微波低噪声放大器的主要技术指标
2.1噪声系数
噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即:
对单级放大器而言,其噪声系数的计算为:
其中Fmin为晶体管 噪声系数,是由放大器的管子本身决定的,Γopt、Rn和Γs分别为获得Fmin时的 源反射系数、晶体管等效噪声电阻以及晶体管输入端的源反射系数。

对多级放大器。

其噪声系数的计算应为:
其中NFn为第n级放大器的噪声系数,Gn为第n级放大器的增益。

对噪声系数要求较高的系统,由于噪声系数很小,用噪声系数表示很不方便,故常用噪声温度来表示,噪声温度与噪声系数的换算关系为:
其中Te为放大器的噪声温度,T0=2900K,NF为放大器的噪声系数。

2.2放大器增益
放大器的增益定义为放大器输出功率与输入功率之比:
G=Pout/Pin(7)
通常提高低噪声放大器的增益对降低整机的噪声系数非常有利,但低噪声放大器的增益过高会影响整个接收机的动态范围。

所以,一般来说,低噪声放大器的增益确定应与系统的整机噪声系数、接收机动态范围等结合起来考虑。

2.3反射系数
由式(3)可知,当Γs=Γopt时,放大器的噪声系数 ,NF=NFmin,但此时从功率传输的角度来看,输入端会失配,所以,放大器的功率增益会降低,但有些时候,为了获得 噪声,适当的牺牲一些增益也是低噪声放大器设计中经常采用的一种办法。

另外,低噪声放大器的输入输出驻波比、动态范围、工作频率、工作带宽及带内增益平坦度等指标也很重要,设计时也需加以考虑。

3电路仿真设计
本电路设计要求的频率范围为1.95~2.05GHz,噪声系数:为Nf应小于2dB,带内增益为G大于10dB,输入,输出阻抗为50Ω。

现以上述指标来进行电路晶体管的选择以及ADS仿真。

3.1晶体管的选择
根据放大器的性能要求,本设计选用HP公司的AT-41511作为 器件来进行设计。

由于在ADS软件中包含有这种型号晶体管的器件模型,因此,在设计和仿真过程中可以直接使用,而不必再自己建造器件模型。

3.2ADS仿真综合指标的实现
仿真时,可将噪声系数、放大器增益、稳定系数全部加入优化目标中进行优化,并通过对带内放大器增益的限制来满足增益平坦度指标, 终达到各个指标要求。

反复调整优化方法并优化目标中的权重(Weight),也可以对输入匹配网络进行优化。

但是,对部分电路指标的优化也可能导致其它某些指标的恶化,此时可以根据需要增加一些优化变量。

图2所示是经过 随机优化的S参数图。

仿真结果表明,该电路基本上已经达到了比较好的性能,且具有良好的输入输出匹配,较高的增益和稳定系数,同时噪声系数也比较好。

3.3封装模型仿真设计
进行完sp模型设计以后,还需要将sp模型替换为封装模型来做进一步设计。

具体需要进行的工作如下:
(1)将sp模型替换为封装模型;
(2)选择直流工作点并添加偏置电压;
(3)进行馈电电路的设计(电阻分压、扇形线、高阻线等的使用);
(4)替换为封装模型后各项参数可能会有所变化,如不满足技术指标,还可以对封装模型的原理图再进行仿真优化。

设计封装模型时。

可用图3所示的电路来对器件的I-V特性进行仿真,以选择其直流工作点。

在设计偏置电路时,为了防止交流信号对直流电源的影响,可在电源与馈电点之间添加1/4波长的高阻线以遏制交流信号。

如果电路中有终端短路的微带线,为了避免直流短路,还应在接地端插入隔直电容。

4结束语
从仿真设计的过程可以看到,使用Agilent公司的ADS软件进行射频电路设计、仿真和优化是非常方便的。

它含有丰富原理图模型库、多种仿真分析方式和一系列使用简便而功能强大的设计工具。

这都可使复杂的射频电路设计工作变得简便快捷,省去了大量人工计算设计的过程,提高了设计工作效率。

本文给出的微波低噪声放大器的设计还是比较成功的,基本达到了指标要求。

相关文档
最新文档